CN116879021A - 一种采空区桩基础承载力实验平台 - Google Patents

一种采空区桩基础承载力实验平台 Download PDF

Info

Publication number
CN116879021A
CN116879021A CN202310839486.7A CN202310839486A CN116879021A CN 116879021 A CN116879021 A CN 116879021A CN 202310839486 A CN202310839486 A CN 202310839486A CN 116879021 A CN116879021 A CN 116879021A
Authority
CN
China
Prior art keywords
model
pile foundation
goaf
single pile
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310839486.7A
Other languages
English (en)
Inventor
沈宇鹏
赵晓林
孙增奎
王开源
徐金翠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
CCCC Highway Consultants Co Ltd
Original Assignee
Beijing Jiaotong University
CCCC Highway Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University, CCCC Highway Consultants Co Ltd filed Critical Beijing Jiaotong University
Priority to CN202310839486.7A priority Critical patent/CN116879021A/zh
Publication of CN116879021A publication Critical patent/CN116879021A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Paleontology (AREA)
  • Mining & Mineral Resources (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Civil Engineering (AREA)

Abstract

本申请公开了一种采空区桩基础承载力实验平台,涉及建筑施工技术领域。能够解决目前采空区桩基础受力机制不明确的问题。该平台包括模型外壳、群桩基础模型、采空区模型和土体/岩体;群桩基础模型包括承台模型、第一单桩基础模型和第二单桩基础模型;第一、第二单桩基础模型的下端均插入土体内;第一单桩基础模型的上端设有桩顶力传感器,下端设有桩端力传感器,内部设有应变片;承台模型上设有加载组件;第一单桩基础模型的外周设有沉降观测标;模型外壳上设有基准梁;基准梁上设有第一位移计和第二位移计;桩顶力传感器、桩端力传感器、应变片、第一位移计和第二位移计均与采集仪连接。本申请同时公开了另一种采空区桩基础承载力实验平台。

Description

一种采空区桩基础承载力实验平台
技术领域
本申请涉及建筑施工技术领域,尤其涉及一种采空区桩基础承载力实验平台。
背景技术
在采空区上方有时不可避免地需要修建高层建筑、高速公路和高速铁路等。但是,由于缺少对采空区“活化”的深入研究,如果没有采取必要的技术措施,就容易导致结构物出现开裂和沉降,同时,地基处理的费用高昂或者技术措施复杂,也不利于实际工程的实施。
桩基础具有较多优点,如:可以考虑桩间土的承载能力,减少了桩的数量,降低工程造价;充分发挥桩基础对沉降的控制,减小桩基沉降对周围环境的影响。另外,桩基础理论研究和工程应用已逐渐发展成熟,在采空区进行桩基础承载力的研究,利用桩基础的优越性能解决采空区地基稳定性问题,具有重要意义。由于采空区的存在,导致桩基础的受力形式与普通的桩基础存在一些不同,如:桩基础穿越采空区的位置几乎不存在桩侧摩阻力,降低桩基础的承载力;围岩的稳定性降低,会导致桩侧摩阻力的降低,进而导致桩基础的沉降变大;采空区残余变形过大,会使桩基础二次受力,增大桩基础的荷载,在桩基础的一些位置会形成应力集中,桩基础产生脆性破坏。然而,目前关于采空区大直径桩基础的受力机制还不是十分完备,现有的实验装置大多是针对一般地基条件下桩基础承载力的研究,无法体现采空区对桩基础承载力的影响,无法满足采空区条件下桩基础承载力的研究需要。
因此,需要提供一种采空区桩基础承载力实验平台,进行室内采空区桩基础承载实验,以解决目前采空区桩基础受力机制不明确的问题。
发明内容
本申请的实施例提供一种采空区桩基础承载力实验平台,能够解决目前采空区桩基础受力机制不明确的问题。
为达到上述目的,一方面,本申请的实施例提供了一种采空区桩基础承载力实验平台,包括模型外壳和设置在所述模型外壳内的群桩基础模型和采空区模型;所述采空区模型与所述模型外壳之间填充土体/岩体;所述群桩基础模型包括承台模型和连接在所述承台模型下部的第一单桩基础模型和第二单桩基础模型;所述第一单桩基础模型和所述第二单桩基础模型的下端均插入所述土体/岩体内;所述第一单桩基础模型的上端与所述承台模型之间设有桩顶力传感器,所述第一单桩基础模型的下端设有桩端力传感器;所述第一单桩基础模型内设有应变片;所述承台模型的上表面上设有加载组件;所述第一单桩基础模型的外周设有沉降观测标;所述模型外壳的顶部设有基准梁;所述基准梁上设有第一位移计和第二位移计;所述第一位移计能够测量所述承台模型与所述基准梁之间的位移;所述第二位移计能够测量所述沉降观测标与所述基准梁之间的位移;所述桩顶力传感器、所述桩端力传感器、所述应变片、所述第一位移计和所述第二位移计均与采集仪连接。
进一步地,所述加载组件包括加载板和设置在所述加载板上的砝码。
进一步地,所述采空区模型的材料为所述土体/岩体,所述采空区模型通过模具预制而成。
进一步地,所述模型外壳为开口朝上的矩形箱体;所述矩形箱体包括框架和连接在所述框架上的面板;所述框架的材质为铝合金;所述面板的材质为有机玻璃。
进一步地,所述第一单桩基础模型的数量为两个。
进一步地,所述第一单桩基础模型和所述第二单桩基础模型均采用PVC管。
进一步地,所述应变片为多个,多个所述应变片沿轴向均布在所述第一单桩基础模型的内壁上。
进一步地,所述承台模型的材质为有机玻璃。
进一步地,所述沉降观测标为多个;多个所述沉降观测标的埋设深度均不同。
另一方面,本申请的实施例还提供了一种采空区桩基础承载力实验平台,包括模型外壳和设置在所述模型外壳内的单桩基础模型和采空区模型;所述采空区模型与所述模型外壳之间填充土体/岩体;所述单桩基础模型的下端均插入所述土体/岩体内;所述单桩基础模型的上端设有桩顶力传感器,所述桩顶力传感器的上表面上设有加载组件,所述单桩基础模型的下端设有桩端力传感器;所述单桩基础模型内设有应变片;所述单桩基础模型的外周设有沉降观测标;所述模型外壳的顶部设有基准梁;所述基准梁上设有第一位移计和第二位移计;所述第一位移计能够测量所述单桩基础模型与所述基准梁之间的位移;所述第二位移计能够测量所述沉降观测标与所述基准梁之间的位移;所述桩顶力传感器、所述桩端力传感器、所述应变片、所述第一位移计和所述第二位移计均与采集仪连接。
本申请相比现有技术具有以下有益效果:
本申请实施例采空区桩基础承载力实验平台能够保证实验过程中桩基础模型和采空区模型的稳定性,满足在不同桩径、不同采空区直径、不同采空区顶板厚度、不同采空区位置条件下的实验要求,模拟采空区形态对桩基础承载力的影响,模拟采空区围岩发生任意位移时桩基础的情况,实现加载过程中桩基础承载力变化和采空区形态变化的监测和分析、判断采空区破坏时以及桩基础破坏时的应力状态。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例采空区桩基础承载力实验平台的正视图;
图2为本申请实施例采空区桩基础承载力实验平台中群桩基础模型的俯视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
实施例1:
参照图1和图2,本申请的实施例提供了一种采空区桩基础承载力实验平台,包括模型外壳1、群桩基础模型2、采空区模型3、土体/岩体4、基准梁5、桩顶力传感器6、桩端力传感器7、应变片8、沉降观测标9、第一位移计10、第二位移计11和加载组件12。
模型外壳1为开口朝上的矩形箱体,矩形箱体包括框架和连接在框架上的面板。框架的材质为铝合金,面板的材质为有机玻璃,由于有机玻璃和铝合金具有较高的强度和刚度,因此,可以提高模型外壳1的强度和刚度,保证实验过程中模型外壳1的稳定性。
模型外壳1内设有群桩基础模型2和采空区模型3。采空区模型3与模型外壳1之间填充土体/岩体4。土体/岩体4根据不同的实验要求可填筑不同类型材料、不同高度。采空区模型3与土体/岩体4的材料相同,且可根据不同实验要求进行选择,也就是说,根据不同实验的要求,采空区模型3的空间形态和位置可任意布置。由此,本申请实施例可以满足能够模拟不同采空区顶板厚度、不同采空区位置条件下的实验要求。
群桩基础模型2包括承台模型21和连接在承台模型21下部的第一单桩基础模型22和第二单桩基础模型23。承台模型21的材质为有机玻璃,其承受加载系统传递的竖向荷载,并传递到第一单桩基础模型22和第二单桩基础模型23上。第一单桩基础模型22和第二单桩基础模型23均采用具有一定的强度和刚度的PVC管,由此,能够承受承台模型21传递的竖向荷载。
承台模型21的上表面中心处设有加载组件12。加载组件12包括加载板121和设置在加载板121上的砝码122。根据实验要求,可以放置不同重量的砝码122,实现对群桩基础模型2的加载。
第一单桩基础模型22和第二单桩基础模型23的下端均插入土体/岩体4内。第一单桩基础模型22和第二单桩基础模型23的数量均可以为一个或多个,具体可以根据实际工况进行选择。为了便于描述,以下以第一单桩基础模型22为两个,第二单桩基础模型23为六个进行描述。
两个第一单桩基础模型22的上端均与承台模型21之间设有桩顶力传感器6,两个第一单桩基础模型22的下端均设有桩端力传感器7,两个第一单桩基础模型22内均设有多个沿轴向均布在第一单桩基础模型22内的应变片8。桩顶力传感器6和桩端力传感器7对能够在实验过程中对群桩基础模型2的顶部和端部的力进行实时监测。应变片8能够测量实验过程中群桩基础模型2的应变的变化,对群桩基础模型2在加载过程中承载力的变化进行实时监测和分析。
需要说明的是:安装应变片8时,需要提前将PVC管(第一单桩基础模型22)分成两个对称的曲面管体,在两个曲面管体111的内壁每隔一定距离对称的设置应变片8,连接导线并将两端拧紧后埋设在土体/岩体4中,将导线引出后与外部的采集仪连接。另外,由于实验中采用的PVC管的管径均较小,因此,桩顶力传感器6和桩端力传感器7均可以直接连接在PVC管的端部,若PVC管的通径较大时,可以在PVC管的管口处设置安装片,然后将桩顶力传感器6和桩端力传感器7固连在安装片上。桩顶力传感器6和桩端力传感器7也通过导线与外部的采集仪连接。
第一单桩基础模型22的外周还设有多个沉降观测标9,多个沉降观测标9的埋设深度均不同。模型外壳1的顶部设有基准梁55。基准梁55上设有一个第一位移计10和多个第二位移计11。第一位移计10和多个第二位移计11均选用百分表位移计,且两者的结构相同。第二位移计11的数量与沉降观测标9的数量相同。第一位移计10能够测量承台模型21与基准梁55之间的位移。第二位移计11与沉降观测标9连接,能够测量沉降观测标9与基准梁55之间的位移。第一位移计10和第二位移计11也均通过导线与采集仪连接。由此,通过第一位移计10、第二位移计11和沉降观测标9的配合使用,可以对实验过程中不同深度的土体/岩体4的沉降进行实时监测。
本申请的实施例提供了一种采空区桩基础承载力实验平台的工作原理如下:
通过增加砝码122给群桩基础模型2施加竖向荷载,试验采用慢速荷载维持法,第一位移计10对群桩基础模型2的沉降值进行实时监测;多个第二位移计11分别对不同深度的土体/岩体4的沉降值进行实时监测;桩顶力传感器6和桩端力传感器7对群桩基础模型2的顶部和端部的力进行实时监测;应变片8能够测量实验过程中群桩基础模型2的应变的变化,从而计算出桩身轴力以及桩侧摩阻力,进而对群桩基础模型2在加载过程中承载力的变化进行实时监测和分析。
故,本申请实施例能够分析不同桩径、不同采空区直径、不同采空区顶板厚度、不同采空区位置条件下群桩承载力特性,实现对加载过程中桩顶载荷-沉降曲线Q-St和桩端载荷-沉降曲线P-Sb的实时监测以及不同荷载等级下、不同采空区条件下桩身荷载传递规律和桩侧阻力及桩端阻力的发挥机理、桩侧阻力与桩-/土岩相对位移的刻画。
实施例2:
实施例2与实施例1的区别仅在于:将实施例1中的群桩基础模型2模型替换成了单桩基础模型。单桩基础模型的上端设有桩顶力传感器6,桩顶力传感器6的上表面上设有加载组件12。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (10)

1.一种采空区桩基础承载力实验平台,其特征在于,包括模型外壳和设置在所述模型外壳内的群桩基础模型和采空区模型;所述采空区模型与所述模型外壳之间填充土体/岩体;所述群桩基础模型包括承台模型和连接在所述承台模型下部的第一单桩基础模型和第二单桩基础模型;所述第一单桩基础模型和所述第二单桩基础模型的下端均插入所述土体/岩体内;所述第一单桩基础模型的上端与所述承台模型之间设有桩顶力传感器,所述第一单桩基础模型的下端设有桩端力传感器;所述第一单桩基础模型内设有应变片;所述承台模型的上表面上设有加载组件;所述第一单桩基础模型的外周设有沉降观测标;所述模型外壳的顶部设有基准梁;所述基准梁上设有第一位移计和第二位移计;所述第一位移计能够测量所述承台模型与所述基准梁之间的位移;所述第二位移计能够测量所述沉降观测标与所述基准梁之间的位移;所述桩顶力传感器、所述桩端力传感器、所述应变片、所述第一位移计和所述第二位移计均与采集仪连接。
2.根据权利要求1所述的采空区桩基础承载力实验平台,其特征在于,所述加载组件包括加载板和设置在所述加载板上的砝码。
3.根据权利要求1所述的采空区桩基础承载力实验平台,其特征在于,所述采空区模型的材料为所述土体/岩体,所述采空区模型通过模具预制而成。
4.根据权利要求1所述的采空区桩基础承载力实验平台,其特征在于,所述模型外壳为开口朝上的矩形箱体;所述矩形箱体包括框架和连接在所述框架上的面板;所述框架的材质为铝合金;所述面板的材质为有机玻璃。
5.根据权利要求1所述的采空区桩基础承载力实验平台,其特征在于,所述第一单桩基础模型的数量为两个。
6.根据权利要求1所述的采空区桩基础承载力实验平台,其特征在于,所述第一单桩基础模型和所述第二单桩基础模型均采用PVC管。
7.根据权利要求6所述的采空区桩基础承载力实验平台,其特征在于,所述应变片为多个,多个所述应变片沿轴向均布在所述第一单桩基础模型的内壁上。
8.根据权利要求1所述的采空区桩基础承载力实验平台,其特征在于,所述承台模型的材质为有机玻璃。
9.根据权利要求1所述的采空区桩基础承载力实验平台,其特征在于,所述沉降观测标为多个;多个所述沉降观测标的埋设深度均不同。
10.一种采空区桩基础承载力实验平台,其特征在于,包括模型外壳和设置在所述模型外壳内的单桩基础模型和采空区模型;所述采空区模型与所述模型外壳之间填充土体/岩体;所述单桩基础模型的下端均插入所述土体/岩体内;所述单桩基础模型的上端设有桩顶力传感器,所述桩顶力传感器的上表面上设有加载组件,所述单桩基础模型的下端设有桩端力传感器;所述单桩基础模型内设有应变片;所述单桩基础模型的外周设有沉降观测标;所述模型外壳的顶部设有基准梁;所述基准梁上设有第一位移计和第二位移计;所述第一位移计能够测量所述单桩基础模型与所述基准梁之间的位移;所述第二位移计能够测量所述沉降观测标与所述基准梁之间的位移;所述桩顶力传感器、所述桩端力传感器、所述应变片、所述第一位移计和所述第二位移计均与采集仪连接。
CN202310839486.7A 2023-07-10 2023-07-10 一种采空区桩基础承载力实验平台 Pending CN116879021A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310839486.7A CN116879021A (zh) 2023-07-10 2023-07-10 一种采空区桩基础承载力实验平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310839486.7A CN116879021A (zh) 2023-07-10 2023-07-10 一种采空区桩基础承载力实验平台

Publications (1)

Publication Number Publication Date
CN116879021A true CN116879021A (zh) 2023-10-13

Family

ID=88263767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310839486.7A Pending CN116879021A (zh) 2023-07-10 2023-07-10 一种采空区桩基础承载力实验平台

Country Status (1)

Country Link
CN (1) CN116879021A (zh)

Similar Documents

Publication Publication Date Title
AU2020433233B2 (en) System and method for monitoring and verifying global failure mode of soil and rock dual-element side slope
CN111206627B (zh) 隧道-基坑多重开挖影响既有桩基的离心模型试验装置及方法
CN106049559B (zh) 一种基于荷载补偿的大直径桩基自平衡检测方法
CN105606070B (zh) 一种建筑物竖向和水平向变形测试装置及方法
KR100916810B1 (ko) 수평재하 모형실험장치
CN204590104U (zh) 一种模拟自平衡测桩法的模型实验装置
CN109469125A (zh) 一种光纤光栅传感检测的桩基荷载试验装置及其检测方法
CN117388082B (zh) 一种前拉式隧道锚室内试验模型及试验方法
CN106400857B (zh) 用于现场测量开口桩内土塞闭塞程度的模型装置及方法
CN112267450B (zh) 一种用于超厚层回填土的深层平板载荷原位测试方法
CN211927256U (zh) 一种扩大头锚杆群锚试验装置
CN116879021A (zh) 一种采空区桩基础承载力实验平台
CN209841563U (zh) 一种扩大头锚杆周围土体应力应变模拟试验装置
CN106088171B (zh) 一种预制桩桩顶水平位移及桩身应力联合测试方法
CN111608213A (zh) 一种基坑支护桩水平位移的测量方法及装置
CN111551356A (zh) 一种扩大头锚杆群锚试验装置及其试验方法
CN206638503U (zh) 海上风电试验台
CN209243787U (zh) 基桩试验系统
CN206667311U (zh) 海上风电试验桩内部试验装置
CN105133673B (zh) 一种用于边坡模型实验的加载测力装置及其加载固定方法
CN206479269U (zh) 一种土栖小动物挖掘力测试装置
CN113639948B (zh) 用于测定边坡稳定性的爆破振动试验装置及评价预警方法
CN220598400U (zh) 一种室内挤土桩挤土效应模拟实验系统
CN210315475U (zh) 一种测量静止土压力系数的模型箱
CN113702158B (zh) 嵌岩管桩水平加载p-y曲线法数据精确采集方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination