CN116858291A - 基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器 - Google Patents
基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器 Download PDFInfo
- Publication number
- CN116858291A CN116858291A CN202310235621.7A CN202310235621A CN116858291A CN 116858291 A CN116858291 A CN 116858291A CN 202310235621 A CN202310235621 A CN 202310235621A CN 116858291 A CN116858291 A CN 116858291A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- fiber
- double
- core optical
- demodulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 63
- 239000000919 ceramic Substances 0.000 claims abstract description 42
- 239000000835 fiber Substances 0.000 claims abstract description 42
- 238000001228 spectrum Methods 0.000 claims abstract description 34
- 230000000694 effects Effects 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 15
- 230000035945 sensitivity Effects 0.000 claims abstract description 10
- 230000008859 change Effects 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002121 nanofiber Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229920005560 fluorosilicone rubber Polymers 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35329—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
- G01D5/35377—Means for amplifying or modifying the measured quantity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
- G01D5/3538—Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
本发明提供的是一种基于双芯光纤Mach‑Zehnder干涉解调的环形谐振式传感器。它由光源、单模光纤、纤维集成耦合器、双芯光纤、压电陶瓷、环形谐振腔、光电探测器、数据采集卡、数据处理单元和压电陶瓷控制系统组成。双芯光纤通过纤维集成耦合器构成Mach‑Zehnder干涉仪,与环形谐振腔串联,光谱叠加形成游标效应。干涉仪缠绕在压电陶瓷上用于信号解调,环形谐振腔用于对外界参量测量。当传感信号发生变化时,数据处理单元对采集到的信号进行分析,并反馈给压电陶瓷控制系统,控制系统调节施加到压电陶瓷的电压,使信号回到初始状态。本发明通过调节施加电压实现信号解调,简化了解调系统,同时光谱叠加产生游标效应,增加了系统的灵敏度,可用于光纤传感术领域。
Description
技术领域
本发明涉及的是一种基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器,属于光纤传感技术领域。
背景技术
随着现代技术对传感器的要求日益增长,为了满足快速和具体的检测出机械、生物、化学等物质的物理特性的需求,促使了集成光波导传感器的快速发展。与普通的光纤传感器不同的是,集成光纤传感器可以很容易地小型化,因此有可能在一个很小的区域内进行大规模集成,以实现小型化的实验平台。在过去的几十年里,针对各种物理参数,获得了许多不同结构的光纤传感器。总的来说,这些传统的传感器可以满足物理参数检测的基本要求。
光纤环形谐振器作为光信息时代的一种常用器件,可用于滤波、传感、群速度控制、光开关等众多领域。当光环形谐振器所处的外界环境因素(如温度、压力、应变、电场、磁场等)发生改变时,就会引起入射光的表征参量(如振幅、相位、偏振态、波长等)产生相应的变化,此时,输出光也会有相应的改变。对于环形谐振器,最方便的检测方法是测量谐振波长发生的相应移动,实现与光强扰动无关的传感探测。采用光纤环形谐振器进行传感时,由于光在环中多次环绕,可以得到较高的传感精度。然而受限于光谱分析仪等仪器和应用场景,进一步提高传感器的分辨率和灵敏度一直是研究人员所追求的目标。
游标效应原本是游标卡尺中利用主尺与游标之间微小的刻度差异来提升测量灵敏度的一种现象,将游标效应用在光纤传感中,可以同时提高光纤干涉仪的灵敏度和动态范围。游标效应适用于具有周期性光谱的干涉仪,为了形成游标效应,一般将两个自由光谱范围接近的干涉仪级联。在级联后的光谱中,相位相同处对比度较高,相位相差π处对比度很低,从而形成一个大包络,灵敏度和动态范围都会明显放大,放大倍数取决于动态范围接近程度。
专利CN 113959606 A中提出了一种基于级联增强游标效应的混合型横向压力传感器,将Fabry-Perot干涉仪和Michelson干涉仪级联,Fabry-Perot干涉仪作为参考部分,Michelson干涉仪作为传感部分,在制作时控制两个干涉仪的自由光谱范围,使两个干涉信号叠加,形成游标效应。当外界环境变化使Fabry-Perot干涉仪和Michelson干涉仪的干涉条纹向相反方向移动时,大干涉包络呈现出增强游标效应,通过对干涉谱提取、解调,实现对横向压力的测量。
目前通过级联结构实现游标效应的多为双干涉仪结构,而利用环形谐振腔结合干涉仪实现游标效应鲜见报道。且无论是基于干涉仪还是环形谐振腔传感时,其解调手段都是应用光谱仪等大型设备,先提取光谱再进行数据分析处理,成本高昂,体积庞大,解调过程较为复杂。
发明内容
本发明的目的在于提供一种基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器,该系统省去了光谱仪等大型解调设备,整体结构简单,集成度高,双干涉仪叠加产生了游标效应,灵敏度高,通过压电陶瓷控制电压进行解调,响应速度快。
为实现上述目的,本发明所采用的技术方案为:
一种基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器,其由光源、单模光纤、纤维集成耦合器、双芯光纤、压电陶瓷、环形谐振腔、光电探测器、数据采集卡、数据处理单元和压电陶瓷控制系统组成。
所述的光源为窄线宽可调谐激光器。
所述的双芯光纤具有两个纤芯,且两个纤芯在传输时不会发生耦合,根据实际的传感需求,制成干涉仪的双芯光纤两纤芯存在折射率差。
所述的纤维集成耦合器由单模光纤与双芯光纤焊接后采用熔融拉锥或热扩散等方式制成,起到分束与合束的作用。沿单模光纤传输的光经过耦合器后可以以特定的分光比将光分散到双芯光纤的两个纤芯中,沿两个纤芯传输的光经过另一个耦合器后合束,两束光发生干涉,以此构成双芯光纤Mach-Zehnder干涉仪。双芯光纤Mach-Zehnder干涉仪缠绕在压电陶瓷上用于信号的解调。
所述的环形谐振腔为光纤环形谐振腔或微纳光纤环形谐振腔。
所述的压电陶瓷在施加电压后会发生形变,根据所探测传感参量的变化范围,所使用的压电陶瓷可以是单个的压电陶瓷,也可以由多个具有不同弹性系数的压电陶瓷组合而成。
光源发出的光经单模光纤传输至双芯光纤Mach-Zehnder干涉仪,该干涉仪的光谱可以通过压电陶瓷上施加的电压进行调控,用于信号的解调。双芯光纤Mach-Zehnder干涉仪输出的光沿单模光纤继续传输,经过环形谐振腔,该谐振腔用于环境参量的测量。干涉仪的光谱与环形谐振腔的光谱进行叠加,形成游标效应,放大了传感的灵敏度。当所测参量变化时,引起环形谐振腔的光谱发生变化,导致最终输出的光信号发生改变,光电探测器对输出信号进行探测,数据采集卡将探测的结果传输至数据处理单元,数据处理单元对结果进行分析,然后反馈至压电陶瓷控制系统,压电陶瓷控制系统调节施加到电陶瓷上的电压,调节双芯光纤Mach-Zehnder干涉仪的干涉谱,使最终探测到的信号与初始信号相同,利用预先标定得到的电压-传感量曲线,通过读取施加电压实现传感信号的解调。
本发明所使用的原理为:
对于光纤环形谐振腔,用E1-E4代表环形谐振腔中耦合器四个端口处的光波电场,E1为入射的电场,E4为最终输出的电场,忽略耦合区的长度,根据光的传输路径和耦合过程可以列出电场强度关系式:
E2=ikE1+rE3 (1)
E4=ikE3+rE1 (3)
式中:r为耦合器的透射系数,k为耦合系数,在不考虑耦合损耗的情况下,r与k满足关系式r2+k2=1。式中单通相移β为传播常量,/>n为光纤模式的有效折射率,λ为入射光的波长,a为振幅传递系数,L为谐振环的周长。由公式(1)-(3)可以得出传递函数的表达式:
进一步得出单环谐振器透射率的表达式:
由透射率表达式(5)可知,单环谐振器透射率的最小值和最大值分别出现在谐振波长处和非谐振波长处/>由于单环结构谐振器透射率表达式中余弦函数的周期性,环形谐振器的透射谱具有周期性,光谱中一个周期内的波长范围为一个自由光谱范围(FSR)。
对于双芯光纤Mach-Zehnder干涉仪,沿两纤芯传输的两束光的相位差为
式中:n1,n2分别表示纤芯的折射率,L1,L2分别表示两臂纤芯的长度。假定纤维集成耦合器的分光比为一比一,最终得到的干涉谱光强可以如下式表示:
式中I0为干涉仪入射光的光强,I为出射光光强,可以看到,光谱呈周期性变化。当环形谐振腔的FSR与干涉仪的FSR相近时,可以将两个光谱叠加形成游标效应。假设环形谐振腔的自由光谱范围为FSR1,干涉仪的自由光谱范围为FSR2,在波长为λ0时两个干涉仪的干涉峰完全重叠。从环形谐振腔与干涉仪两光谱第一个完全重叠的峰λ0开始,往右或者往左边出发,直到下一个完全重叠的位置才会出现另外的包络峰值,因此有K·FSR1=(K+1)FSR2,级联后新光谱的自由光谱范围为
环形谐振腔与干涉仪叠加的游标效应灵敏度受到两个自由光谱范围的影响,两个干涉仪的FSR越相近,放大系数M值越大。但在实际制备时,很难保证两个干涉仪的FSR达到预期值,因此,在整个传感系统制备完成后,可以预先对压电陶瓷施加一个电压,使缠绕在压电陶瓷上的干涉仪的FSR接近传感干涉仪的FSR,最终达到预期的M值。
在使用本发明进行传感测量前要进行标定,得到电压-传感量的相关曲线。在进行测量时,光源发出的光经过级联干涉以后被光电探测器探测到,经数据采集卡上传至数据处理单元,数据处理单元记录下初始信号;当外界环境变化时,级联的干涉谱发生漂移,光电探测器探测到的信号发生变化,数据处理单元对信号进行分析,将结果反馈至压电陶瓷控制单元控制施加到压电陶瓷上的电压,压电陶瓷会使上面缠绕的干涉仪光谱发生改变,引起级联干涉谱的改变,最终使探测到的信号与初始信号相同,读取施加的电压,根据标定的曲线得到传感量的变化量,实现解调功能。
本发明的有益效果为:
1、使用压电陶瓷调控手段实现解调,不需使用光谱仪等大型设备,提高了传感器的集成度,简化了解调过程中的数据运算;
2、干涉仪和环形谐振腔级联构成了游标效应,通过预先对压电陶瓷施加电压,可以调节干涉仪的自由光谱范围,实现了灵敏度的放大倍率可控;
3、干涉仪和环形谐振器通过单模光纤连接,可以相距较远的距离,解决了参考干涉仪易受传感量影响的问题。
附图说明
图1是基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器结构示意图;
图2(a)是非对称双芯光纤结构示意图,图2(b)是对称双芯光纤结构示意图;
图3(a)是微纳光纤环形谐振腔输出光谱,图3(b)是双芯光纤Mach-Zehnder干涉仪输出光谱;
图4是环形谐振腔和干涉仪叠加后的输出谱;
图中:1、光源;2、单模光纤;3-1、3-2、纤维集成耦合器;4、双芯光纤,4-1、非对称双芯光纤,4-1-1、非对称双芯光纤边芯,4-1-2、非对称双芯光纤中间芯,4-2、对称双芯光纤,4-2-1、4-2-2、对称双芯光纤纤芯;5、压电陶瓷;6、环形谐振腔;7、光电探测器;8、数据采集卡;9、数据处理单元;10、压电陶瓷控制器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图,对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的实施例,本领域普通技术人员在没有去做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明公开了一种基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器,以双芯光纤Mach-Zehnder干涉仪与微纳光纤环形谐振腔串联为例,其结构如图1所示,由光源、单模光纤、纤维集成耦合器、双芯光纤、压电陶瓷、环形谐振腔、光电探测器、数据采集卡、数据处理单元和压电陶瓷控制系统组成。所述的双芯光纤包含两个纤芯,典型的双芯光纤纤芯排布如图2所示,图2(a)为非对称式双芯光纤,图2(b)为对称式双芯光纤。本实施例所使用的双芯光纤为非对称式双芯光纤,两个纤芯的折射率为1.4652和1.4645。所使用的微纳光纤环形谐振腔通过单模光纤熔融拉锥后打结制成,环的直径为300微米。
采用热扩散技术制备纤维集成耦合器,首先将单模光纤与双芯光纤对芯焊接,因为采用的是非对称双芯光纤,中间芯可以完全与单模光纤对芯连接,因此在进行热扩散时可以采用对双芯光纤加热的方式。将一段双芯光纤放入炉子加热区中心轴上进行热扩散处理,经过一定时间的加热,双芯光纤热扩散区的中纤芯掺杂剂的浓度分布渐变为准高斯分布,以实现光束的耦合。炉子加热区的长度通常在厘米量级以上,保证梯度温度场中的折射率缓慢变化为准高斯分布。在进行热扩散时,使用光束分析仪进行实时监测,当两纤芯的分光比为1:1时停止加热。以此方式在两段双芯光纤上各制作两个耦合区,以实现两个Mach-Zehnder干涉仪的制备。
将制备好的干涉仪缠绕在压电陶瓷上,用于信号的解调;微纳光纤环形谐振腔用于对外界参量的测量。微纳光纤环形谐振腔的光谱如图3(a)所示,FSR约为1.76nm。调整压电陶瓷施加的电压,调节双芯光纤干涉仪的光谱,使其FSR与微纳光纤环形谐振腔的FSR相近,如图3(b)所示。通过单模光纤将干涉仪与环形谐振腔串联,两个干涉仪叠加形成游标效应,叠加后的光谱如图4所示,此时叠加后光谱包络的FSR约为17.58nm。采用可调谐窄线宽光源作为入射光源,调节光源波长,使入射波长为叠加后光谱输出强度最大处的波长。
对将各部分按图1所示进行连接,在进行传感测量前要先对整个系统进行标定。在标定时,首先记录下环境参量未发生变化时,光电探测器探测到的光强度并记录,作为初始值;然后对传感干涉仪施加确定的传感变化量,此时光电探测器探测到的光强度会发生变化,数据采集卡将探测的数据上传至数据处理单元,数据处理单元通过压电陶瓷控制器对压电陶瓷施加电压,调节干涉仪的光谱,使光电探测器探测到的信号发生变化,通过调整施加电压,最终使探测到的信号与初始值相同,记录在该传感量下的电压值,通过改变传感参量的变化量,最终得到施加电压与传感变化量的相关曲线,实现系统的标定。
在使用本系统进行传感测量时,将微纳光纤环形谐振腔置于所需探测的环境中,当测量环境发生变化时,探测信号发生变化,通过不断调整施加电压,最终使探测到的信号与初始值相同,读取此时的电压值,通过预先标定的曲线确定环境的变化量。
Claims (4)
1.基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器,其由光源、单模光纤、纤维集成耦合器、双芯光纤、压电陶瓷、环形谐振腔、光电探测器、数据采集卡、数据处理单元和压电陶瓷控制系统组成;双芯光纤通过纤维集成耦合器构成Mach-Zehnder干涉仪,并缠绕在压电陶瓷上,其干涉谱可以通过对压电陶瓷施加电压调控,用于系统解调;环形谐振腔用于传感测量;光源发出的光经单模光纤传输至干涉仪,后沿单模光纤继续传输,经过环形谐振腔后,两个光谱进行叠加,形成游标效应,放大了传感的灵敏度;当所测参量变化时,输出的光信号发生变化,光电探测器对输出信号进行探测,数据采集卡将探测的结果传输至数据处理单元,数据处理单元对结果进行分析,反馈至压电陶瓷控制系统,压电陶瓷控制系统调节施加到电陶瓷上的电压,使得第一个干涉仪的干涉谱发生变化,使最终探测到的信号与初始信号相同,利用预先标定得到的电压-传感量曲线,通过施加电压实现传感信号的解调。
2.根据权利要求1所述的基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器,其特征是:所述的光源为窄线宽可调谐激光器。
3.根据权利要求1所述的基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器,其特征是:所述的压电陶瓷由单个的压电陶瓷构成或由多个不同弹性系数的压电陶瓷组合而成。
4.根据权利要求1所述的基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器,其特征是:所述的环形谐振腔为光纤环形谐振腔或微纳光纤环形谐振腔。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310235621.7A CN116858291A (zh) | 2023-03-13 | 2023-03-13 | 基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310235621.7A CN116858291A (zh) | 2023-03-13 | 2023-03-13 | 基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116858291A true CN116858291A (zh) | 2023-10-10 |
Family
ID=88234663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310235621.7A Pending CN116858291A (zh) | 2023-03-13 | 2023-03-13 | 基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116858291A (zh) |
-
2023
- 2023-03-13 CN CN202310235621.7A patent/CN116858291A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5319435A (en) | Method and apparatus for measuring the wavelength of spectrally narrow optical signals | |
EP0023345B1 (en) | Optical sensing system | |
EP0013974A1 (en) | Method and apparatus for a Fabrey-Perot multiple beam fringe sensor | |
Zhang et al. | Highly sensitive temperature and strain sensor based on fiber Sagnac interferometer with Vernier effect | |
CN101598773A (zh) | 一种磁感应强度传感头及磁感应强度测量方法及其装置 | |
CN112525372B (zh) | 基于保偏光纤双臂异轴干涉仪的应变温度同时测量装置及方法 | |
CN112525373B (zh) | 一种基于双波长保偏光纤干涉仪的应变温度同时测量装置 | |
CN109253986B (zh) | 一种级联傅里叶变换光谱仪的双环光学传感器 | |
Zhu et al. | A dual-parameter internally calibrated Fabry-Perot microcavity sensor | |
CN105890799B (zh) | 基于级联π相移光纤布拉格光栅的温度传感器 | |
CN111811554A (zh) | 基于光腔衰荡大范围高精度光纤光栅传感方法及装置 | |
Liu et al. | Ultrasensitive parallel double-FPIs sensor based on Vernier effect and Type II fiber Bragg grating for simultaneous measurement of high temperature and strain | |
Yang et al. | Highly sensitive integrated photonic sensor and interrogator using cascaded silicon microring resonators | |
CN105180978B (zh) | 基于窄带光源和滤波特性可调元件的光学传感器及其方法 | |
Wang et al. | Cascade edge filter for demodulation of quasi-distributed FBG sensor | |
Li et al. | Highly sensitive strain sensor based on tapered few-mode fiber | |
Wu et al. | An ultra-compact and reproducible fiber tip michelson interferometer for high-temperature sensing | |
CN116858291A (zh) | 基于双芯光纤Mach-Zehnder干涉解调的环形谐振式传感器 | |
CN1851414A (zh) | 消除交叉敏感的光纤布拉格光栅传感系统 | |
CN114018402B (zh) | 一种光学谐振腔传感信号增强方法 | |
Han et al. | Ultrafast miniature humidity sensor based on single-sided microsphere resonator | |
CN116804564A (zh) | 基于游标效应的串联式双芯光纤干涉传感解调系统 | |
Yu et al. | ANN-Assisted High-Resolution and Large Dynamic Range Temperature Sensor Based on Simultaneous Microwave Photonic and Optical Measurements | |
Sun et al. | An improved strain sensor based on long-period fiber grating with a local ellipse-core structure | |
Li et al. | Performance analysis of PLC-based 32-channel arrayed waveguide grating used for FBG interrogator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |