CN116855246A - 磷自掺杂型生物质碳量子点缓蚀剂与制备方法及其应用 - Google Patents

磷自掺杂型生物质碳量子点缓蚀剂与制备方法及其应用 Download PDF

Info

Publication number
CN116855246A
CN116855246A CN202310806771.9A CN202310806771A CN116855246A CN 116855246 A CN116855246 A CN 116855246A CN 202310806771 A CN202310806771 A CN 202310806771A CN 116855246 A CN116855246 A CN 116855246A
Authority
CN
China
Prior art keywords
carbon quantum
phosphorus
quantum dot
self
doping type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310806771.9A
Other languages
English (en)
Other versions
CN116855246B (zh
Inventor
廖秀芬
赖俊翔
侯保荣
孙丛涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Academy of Sciences
Original Assignee
Guangxi Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Academy of Sciences filed Critical Guangxi Academy of Sciences
Priority to CN202310806771.9A priority Critical patent/CN116855246B/zh
Publication of CN116855246A publication Critical patent/CN116855246A/zh
Application granted granted Critical
Publication of CN116855246B publication Critical patent/CN116855246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/04Cleaning or pickling metallic material with solutions or molten salts with acid solutions using inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/083Iron or steel solutions containing H3PO4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/088Iron or steel solutions containing organic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/103Other heavy metals copper or alloys of copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Luminescent Compositions (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本发明公开了一种磷自掺杂型生物质碳量子点缓蚀剂与制备方法及其应用,该法以生物质组分植酸为原料,在反应釜中进行一步水热反应,得磷自掺杂型碳量子点粗产品;粗产品用氨水调节pH使磷自掺杂型碳量子点沉淀,反复离心清洗得到纯净的磷自掺杂型碳量子点。生物质组分植酸富含P原子,以其同时作为碳源和磷源,无需外加其他试剂便可实现杂原子磷对碳量子点的掺杂。所述磷自掺杂型碳量子点分散均匀,粒径1.2‑4.3nm,平均粒径2.1nm,富含sp2型共轭碳和杂原子磷,可与金属离子发生配位反应,在金属表面形成纳米保护膜,阻止腐蚀物质对金属的腐蚀从而达到缓蚀的效果。本发明提供的磷自掺杂型碳量子点具有良好的水溶性、绿色环保、制备简单、成本低廉。

Description

磷自掺杂型生物质碳量子点缓蚀剂与制备方法及其应用
技术领域
本发明属于缓蚀剂技术领域,尤其涉及一种磷自掺杂型碳量子点缓蚀剂及其制备方法,具体是以生物质植酸同时作为碳源和磷源的绿色高效型磷自掺杂型碳量子点缓蚀剂、制备方法及其在碳钢金属酸洗液中的应用。
背景技术
金属制品在使用过程中其表面难免会产生锈蚀和污垢,尤其是石油化工行业的输油管道。酸洗是清除修饰和污垢最有效的方法,而最常用的酸洗液为硫酸和盐酸。然而,硫酸和盐酸都属于强酸,在清除金属表面污垢和锈蚀的同时也会对金属造成严重的腐蚀。除此之外,金属与酸反应产生的氢气不但会使金属材料发生氢脆腐蚀还会带出大量的酸雾,对操作人员及周围设备造成严重的危害。在酸洗液中添加缓蚀剂是解决上述问题最简单且经济有效的方式。
酸洗缓蚀剂通常是含电负性杂原子的化合物,含具有亲核体的电子对,可与金属原子的空轨道发生配位,从而吸附在金属表面,形成致密的吸附膜,阻止腐蚀性物质与金属接近,实现金属的保护。目前,有机化合物如咪唑、三唑、季铵盐、离子液体等,无机盐类,如亚硝酸盐、铬酸盐等,均以被应用于金属缓蚀。然而,咪唑、三唑、季铵盐、亚硝酸盐、铬酸盐具有较强的环境与生物毒性,而离子液体价格比较昂贵。因此亟需开发一种绿色、环保、廉价、高效的缓蚀剂应用于酸洗过程的金属腐蚀防护。
碳量子点是碳纳米材料家族中年轻的一员,具有优异的光电性质,在光电传感器、催化剂、细胞成像、光电器件等领域已经得到了广泛的应用。此外,碳是构成生命体的主要元素,由它构成的碳量子点具有良好的环境友好特性和生物相容性。由于生物质原料来源广泛,廉价易得,可再生,且含有丰富的官能团,是合成碳量子点的理想材料。现有研究表明,碳量子点也是一种良好的缓蚀剂。为了实现碳量子点与金属的有效结合,常常需要通过引入一些杂原子对碳量子点进行掺杂。目前,杂原子通常是通过外加含相关元素的化合物加以实现,这样无疑增加了实验的操作与实验成本。此外,在金属缓蚀领域,研究较多的为氮掺杂的碳量子点,而其他杂原子的掺杂研究较少。
发明内容
针对现有技术存在的不足,本发明的目的在于以生物质植酸同时作为碳源和磷源,采用简单的一步水热法制备磷自掺杂型碳量子点缓蚀剂,应用于碳钢酸洗过程的缓蚀。本发明提供的缓蚀剂具有绿色环保、高效、廉价的特点。
为解决上述技术问题,本发明采用以下技术方案:
以生物质植酸同时作为碳源和磷源,将其加入到聚PPL内衬的反应釜中,并加入一定量的去离子水,在马弗炉或鼓风干燥箱中进行水热反应,反应完成后冷却至室温,得到磷自掺杂型碳量子点粗产品。粗产品经滤膜过滤,透析袋透析得到磷自掺杂碳量子点提纯产品,干燥后得到磷自掺杂碳量子点缓蚀剂。所述磷自掺杂碳量子点缓蚀剂包含sp2型石墨碳、杂原子磷,可与金属铁离子发生配位作用,在铁表面形成保护膜,从而对碳钢起保护作用。
上述以磷自掺杂型碳量子点缓蚀剂的制备方法,按以下步骤进行操作:
步骤S1:将生物质植酸和去离子水同时加入到洁净的聚PPL内衬中,并将聚PPL内衬加入到水热反应釜中;
步骤S2:将步骤S1中的水热反应釜置于鼓风干燥箱或马弗炉中进行水热反应;
步骤S3:将步骤S2中反应完成后的水热反应釜自然冷却到室温得到磷自掺杂型碳量子点粗产品;
步骤S4:将步骤S3中得到的磷自掺杂型碳量子点调节pH至沉淀,离心分离,烘干,得到磷自掺杂型碳量子点缓蚀剂。
优选地,步骤S1中植酸的用量为0.5~6mL、去离子水为14~19.5mL,步骤S2中水热反应在150~260℃下进行3~12h,步骤S4中采用氨水、氢氧化钠等碱性物质调节pH至2~6。
优选地,步骤S1中植酸用量为2mL、去离子水为18mL,步骤S2中水热反应在260℃下进行6h,步骤S4中采用氨水或氢氧化钠调节pH 3~4。
上述方法得到磷自掺杂型碳量子点缓蚀剂。
本发明提供如前文所述的制备方法得到的磷自掺杂型碳量子点缓蚀剂,分散均匀,粒径1.2-4.3nm,富含sp2型共轭碳和杂原子磷,可与金属基体发生配位反应。
本发明提供如前文所述的磷自掺杂型碳量子点缓蚀剂在制备碳钢酸洗液中的应用。
本发明提供的磷自掺杂型碳量子点缓蚀剂,在1M的HCl溶液中,添加量为100~300mg/L。
优选地,在1M HCl酸洗液中,当磷自掺杂型碳量子点缓蚀剂添加量为200mg/L时,对Q235碳钢的缓蚀效果最佳,采用腐蚀失重法测得此时的缓蚀率为94.61%。
与现有技术相比,本发明至少具有如下优势:
1.制备磷自掺杂型碳量子点所用原料为生物质组分植酸,具有绿色环保、可再生、无毒等优势。
2.生物质植酸作为碳源的同时还可作为磷源实现磷的自掺杂,无需外加杂原子源。
3.制备磷自掺杂型碳量子点缓蚀剂采用的是简单的一步水热法,方便快捷。
4.本发明所提供的磷自掺杂型碳量子点具有优异的水溶性,且可为金属原子提供更多的结合位点,因此具有良好的缓蚀性能。
附图说明
图1是本发明中一种磷自掺杂型碳量子点缓蚀剂的制备方法及其在1M的HCl中对Q235碳钢缓蚀机理示意图。
图2是实施例1制备得到的磷自掺杂型碳量子点的透射电镜图。
图3是实施例1制备得到的磷自掺杂型碳量子点的粒径分布图。
图4是实施例1制备得到的磷自掺杂型碳量子点的荧光激发光谱、发射光谱及紫外-可见吸收光谱图。
图5是采用腐蚀失重法测得不同水热温度制备得到的磷自掺杂型碳量子点缓蚀剂在1M HCl介质中对Q235碳钢的缓蚀效率曲线图(实施例1~7)。
图6是采用腐蚀失重法测得不同水热时间下制备得到的磷自掺杂型碳量子点缓蚀剂在1M HCl介质中对Q235碳钢的缓蚀效率曲线图(实施例1,8~11)。
图7是采用腐蚀失重法测得不同磷自掺杂型碳量子点缓蚀剂用量在1MHCl介质中对Q235碳钢的缓蚀效率曲线图(实施例1,12~13)。
具体实施方式
实施例1
磷自掺杂型碳量子点缓蚀剂的制备:将2mL植酸和18mL去离子水加入到聚PPL内衬的高压反应釜中,混匀,置于260℃的马弗炉中,进行水热反应6h,自然冷却至室温,得到磷自掺杂型碳量子点粗产品。用氨水调节pH至3,使磷自掺杂型碳量子点沉淀,离心分离,弃去上清液,烘干,得到碳量子点缓蚀剂。
腐蚀失重实验:称取0.1g上述步骤中得到的磷自掺杂型碳量子点缓蚀剂添加到500mL的1M HCl溶液中,超声分散。接着,将Q235碳钢浸泡于上述溶液中24h后取出,去除表面腐蚀产物,烘干,称重,并与其腐蚀前的质量对比,计算反应前后的质量差。以不加磷自掺杂型碳量子点的1M HCl溶液对相同规格Q235碳钢的腐蚀失重量作参比,计算磷自掺杂量子点的缓释率。
实施例2
实施例2与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热温度为150℃。
实施例3
实施例3与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热温度为190℃。
实施例4
实施例4与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热温度为210℃。
实施例5
实施例5与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热温度为230℃。
实施例6
实施例6与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热温度为250℃。
实施例7
实施例7与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热温度为260℃。
实施例8
实施例8与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热时间为3h。
实施例9
实施例9与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热时间为5h。
实施例10
实施例10与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热时间为9h。
实施例11
实施例11与实施例1操作相同,唯一不同的是制备磷自掺杂型碳量子点的水热时间为12h。
实施例12
实施例12与实施例1操作相同,唯一不同的是在腐蚀失重实验中磷自掺杂型碳量子点缓蚀剂的添加量为0.05g。
实施例13
实施例13与实施例1操作相同,唯一不同的是在腐蚀失重实验中磷自掺杂型碳量子点缓蚀剂的添加量为0.15g。
如图1所示,本发明将植酸与去离子水加入到高压不锈钢反应釜中,进行水热反应,制备得到磷自掺杂型碳量子点缓蚀剂。所得到的磷自掺杂型碳量子点缓蚀剂具有sp2共轭碳结构和较强电负性的杂原子磷,为铁金属离子提供了丰富的结合位点,使得磷自掺杂型碳量子点缓蚀剂被吸附在碳钢表面,形成纳米保护膜,保护金属机体免受腐蚀介质的侵蚀,从而实现金属的缓蚀。
采用透射电子显微镜对实施例1所述磷自掺杂型碳量子点缓蚀剂进行表征,结果如图2所示。根据图2,本发明所提供的磷自掺杂型碳量子点缓蚀剂分散均匀。统计了100个磷自掺杂型碳量子点缓蚀剂的粒径,其尺寸分布如图3所示。根据图3,本发明所提供的磷自掺杂型碳量子点缓蚀剂粒径分布在1.2~4.3nm的范围内,平均粒径为2.1nm。
采用荧光分光光度计测量了实施例1所述磷自掺杂型碳量子点缓蚀剂的荧光激发和发射光谱。如图4所示,所述磷自掺杂型碳量子点缓蚀剂在226nm和326nm处各出现一个荧光激发峰。当用这两个激发峰激发时,它们的发射峰重叠在360nm左右,峰型窄而对称,半峰宽仅为26nm,说明所述磷自掺杂型碳量子点粒径分布均匀。
如图5所示,采用腐蚀失重法测量了实施例1~7中不同水热温度对所述磷自掺杂型碳量子缓蚀剂在1M的HCl中对Q235碳钢的缓蚀率。当水热温度在150~210℃范围内时,随水热温度对磷自掺杂型碳量子点的缓蚀效率影响不大,在210~260℃范围内时,缓释率随着水热温度的增加而增加,260℃时达最大。因此,优选地,本发明所述磷自掺杂型碳量子点缓蚀剂的水热温度为260℃。
如图6所示,采用腐蚀失重法测量了实施例1,8~11中不同水热时间对所述磷自掺杂型碳量子缓蚀剂在1M HCl中对Q235碳钢的缓蚀率。在水热时间6h以内时,随着时间的增加,磷自掺杂型碳量子缓蚀剂对Q235碳钢的缓蚀率增加;在6~10h内水热时间对缓蚀率的影响不大;超过10h后,缓蚀率随着水热时间的增加而降低。因此,优选地,本发明所述磷自掺杂型碳量子点缓蚀剂的最佳水热时间为6h。
如图7所示,采用腐蚀失重法测量了实施例1,12~13中不同磷自掺杂型碳量子缓蚀剂用量在1M的HCl中对Q235碳钢的缓蚀率。图7表明,最佳缓蚀剂用量为200mg/L。
以上仅是本发明的优选实施例,将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是对本领域的普通技术人员来说,在不脱离本发明构思的前提下,做出的若干变形和改进都属于本发明的保护范围。

Claims (8)

1.一种磷自掺杂型碳量子点缓蚀剂,其特征在于以生物质植酸同时作为碳源和杂原子磷源,以水作为溶剂,经一步水热法制备而成。
2.根据权利要求1所述的碳量子点缓蚀剂,其特征在于包括以下步骤:
步骤S1:将生物质组分植酸和去离子水同时加入到聚PPL内衬的高压反应釜中,混合均匀;
步骤S2:将步骤S1中的高压反应釜置于鼓风干燥箱或马弗炉等加热装置中进行水热反应;
步骤S3:步骤S2反应完成后自然冷却至室温,得到磷自掺杂型碳量子点粗产品;
步骤S4:将步骤S3中得到的磷自掺杂型碳量子点粗产品先通过离心处理去除大颗粒物质,通过调节pH使磷自掺杂型磷自掺杂型碳量子点聚沉,分离沉淀,烘干得到磷自掺杂型碳量子点粉末。
3.根据权利要求2所述的磷自掺杂型碳量子点缓蚀剂制备方法,其特征在于步骤S1中植酸的用量为0.5~4g、去离子水为10~80mL,水热反应温度为130~260℃,水热反应时间为4~12h。
4.根据权利要求3所述的磷自掺杂型碳量子点其特征在于,形貌分散均匀,粒径尺寸在1.2~4.3nm之间,平均粒径2.1nm。
5.根据权利要求3所述的磷自掺杂型碳量子点其特征在于,包含丰富的sp2共轭碳及杂原子磷,可与金属原子发生配位,在金属表面形成一层纳米膜,阻止腐蚀性物质与金属的接触,进而对金属起缓蚀作用。
6.权利要求3所述方法得到的磷自掺杂型碳量子点,其特征在于在226nm和326nm波长的激发下,所述磷自掺杂型碳量子点的发射光谱均出现在390nm,属于紫外光区,因此在紫外灯下肉眼无法观察到明显的荧光现象。
7.根据权利要求3所述的磷自掺杂型碳量子点缓蚀剂,于金属基材表面防腐领域的用途主要包括在制备金属酸洗液中的应用;所述金属基材包括碳钢、铜、铁、合金中的任意一种;所述金属酸洗液包括HCl、H2SO4、H3PO4、柠檬酸。
8.权利要求3所述方法得到的磷自掺杂型碳量子点,其特征在于在1M的盐酸介质中的缓蚀率达94.61%。
CN202310806771.9A 2023-07-03 2023-07-03 磷自掺杂型生物质碳量子点缓蚀剂与应用 Active CN116855246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310806771.9A CN116855246B (zh) 2023-07-03 2023-07-03 磷自掺杂型生物质碳量子点缓蚀剂与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310806771.9A CN116855246B (zh) 2023-07-03 2023-07-03 磷自掺杂型生物质碳量子点缓蚀剂与应用

Publications (2)

Publication Number Publication Date
CN116855246A true CN116855246A (zh) 2023-10-10
CN116855246B CN116855246B (zh) 2024-08-16

Family

ID=88220989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310806771.9A Active CN116855246B (zh) 2023-07-03 2023-07-03 磷自掺杂型生物质碳量子点缓蚀剂与应用

Country Status (1)

Country Link
CN (1) CN116855246B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950145A (zh) * 2016-05-30 2016-09-21 山西大学 一种磷掺杂荧光碳量子点的制备方法和应用
CN106829920A (zh) * 2017-01-18 2017-06-13 上海应用技术大学 一种绿色荧光碳量子点材料及其制备方法
CN108163843A (zh) * 2018-01-30 2018-06-15 集美大学 一种合成硫磷共掺杂石墨烯量子点的制备方法
KR20180120334A (ko) * 2017-04-27 2018-11-06 성균관대학교산학협력단 탄소 양자점의 제조 방법 및 탄소 양자점
CN112409602A (zh) * 2019-08-21 2021-02-26 Tcl集团股份有限公司 纳米材料及其制备方法和印刷显示材料
CN115814617A (zh) * 2022-12-19 2023-03-21 三达膜科技(厦门)有限公司 植酸-氮掺杂碳量子点复合物作为水相单体在制备聚酰胺纳滤膜中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950145A (zh) * 2016-05-30 2016-09-21 山西大学 一种磷掺杂荧光碳量子点的制备方法和应用
CN106829920A (zh) * 2017-01-18 2017-06-13 上海应用技术大学 一种绿色荧光碳量子点材料及其制备方法
KR20180120334A (ko) * 2017-04-27 2018-11-06 성균관대학교산학협력단 탄소 양자점의 제조 방법 및 탄소 양자점
CN108163843A (zh) * 2018-01-30 2018-06-15 集美大学 一种合成硫磷共掺杂石墨烯量子点的制备方法
CN112409602A (zh) * 2019-08-21 2021-02-26 Tcl集团股份有限公司 纳米材料及其制备方法和印刷显示材料
CN115814617A (zh) * 2022-12-19 2023-03-21 三达膜科技(厦门)有限公司 植酸-氮掺杂碳量子点复合物作为水相单体在制备聚酰胺纳滤膜中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENGRAN WANG, ET AL.: "Superior Oxygen Reduction Reaction on Phosphorus- Doped Carbon Dot/Graphene Aerogel for All-Solid-State Flexible Al–Air Batteries", 《ADV. ENERGY MATER.》, vol. 10, 5 December 2019 (2019-12-05), pages 1902736 *
杨 凤,等: "水热法一步合成 N/P-掺杂碳点及其荧光性能研究", 《化学研究与应用》, vol. 30, 31 March 2018 (2018-03-31), pages 313 - 318 *

Also Published As

Publication number Publication date
CN116855246B (zh) 2024-08-16

Similar Documents

Publication Publication Date Title
Ubaid et al. Multifunctional self-healing polymeric nanocomposite coatings for corrosion inhibition of steel
Saji A review on recent patents in corrosion inhibitors
Obot et al. Corrosion inhibition and adsorption behaviour for aluminuim by extract of Aningeria robusta in HCl solution: synergistic effect of iodide ions
Yeole et al. The effect of carbon nanotubes loaded with 2-mercaptobenzothiazole in epoxy-based coatings
Zeng et al. An eco-friendly nitrogen doped carbon coating derived from chitosan macromolecule with enhanced corrosion inhibition on aluminum alloy
CN111441061B (zh) 一种原位金属除锈防锈剂及其制备方法和应用方法
BA et al. An electrochemical investigation in the anticorrosive properties of silver nanoparticles for the acidic corrosion of aluminium
Fathabadi et al. Corrosion inhibition of mild steel with tolyltriazole
Rajkumar et al. Study of the corrosion protection efficiency of polypyrrole/metal oxide nanocomposites as additives in anticorrosion coating
Wang et al. Intelligent anticorrosion coating based on mesostructured BTA@ mCeO2/g-C3N4 nanocomposites for inhibiting the filiform corrosion of Zn-Mg-Al coated steel
Chai et al. Excellent corrosion resistance of FGO/Zn2SiO4 composite material in epoxy coatings
Noorollahy Bastam et al. Electrochemical measurements for the corrosion inhibition of mild steel in 0.5 M HCl using poly (epichlorohydrin) derivatives
CN116855246B (zh) 磷自掺杂型生物质碳量子点缓蚀剂与应用
Zunita et al. Investigation of corrosion inhibition activity of 3-butyl-2, 4, 5-triphenylimidazole and 3-butyl-2-(2-butoxyphenyl)-4, 5-diphenylimidazole toward carbon steel in 1% NaCl solution
Borghei et al. Synthesis, characterization and electrochemical performance of a new imidazoline derivative as an environmentally friendly corrosion and scale inhibitor
Taghavi Kalajahi et al. Graphene oxide/silver nanostructure as a green anti-biofouling composite toward controlling the microbial corrosion
Dave et al. Applications of nanomaterials in corrosion protection inhibitors and coatings
CN112609184B (zh) 一种复合量子点碳钢缓蚀剂、制备方法及应用
US20150275377A1 (en) Nanoparticles of diquaternary schiff dibases as corrosion inhibitors for protecting steel against exposure to acidic fluids
Arukalam et al. Cellulosic polymers for corrosion protection of aluminium
S Saji Contemporary developments in corrosion inhibitors-Review of patents
Fouda et al. 4-hydroxycoumarin derivatives as corrosion inhibitors for copper in nitric acid solutions
WO2021118486A1 (en) A component showing inhibitory effect against corrosion behavior of soft steel, copper and brass
CN114656960B (zh) 一种赖氨酸基碳量子点缓蚀剂及其制备方法与应用
Arukalam et al. The inhibition of aluminium corrosion in hydrochloric acid solution by Hydroxyethylcellulose

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant