CN116845365A - 一种立方晶系氯基富锂石榴石结构固体电解质及其制备方法 - Google Patents
一种立方晶系氯基富锂石榴石结构固体电解质及其制备方法 Download PDFInfo
- Publication number
- CN116845365A CN116845365A CN202310558988.2A CN202310558988A CN116845365A CN 116845365 A CN116845365 A CN 116845365A CN 202310558988 A CN202310558988 A CN 202310558988A CN 116845365 A CN116845365 A CN 116845365A
- Authority
- CN
- China
- Prior art keywords
- solid electrolyte
- chlorine
- based lithium
- cubic
- garnet structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000460 chlorine Substances 0.000 title claims abstract description 57
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 40
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 36
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 239000002223 garnet Substances 0.000 title claims abstract description 31
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 229910052801 chlorine Inorganic materials 0.000 title claims abstract description 29
- 239000013078 crystal Substances 0.000 title claims abstract description 11
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 12
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 10
- 238000000498 ball milling Methods 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 7
- 238000000227 grinding Methods 0.000 claims abstract description 7
- -1 la 2 O 3 Inorganic materials 0.000 claims abstract description 7
- 238000005245 sintering Methods 0.000 claims abstract description 7
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000001354 calcination Methods 0.000 claims abstract description 4
- 229910002076 stabilized zirconia Inorganic materials 0.000 claims abstract description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 5
- 239000011268 mixed slurry Substances 0.000 claims description 4
- 239000002002 slurry Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 abstract description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 abstract description 3
- 239000003792 electrolyte Substances 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- 239000003570 air Substances 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 3
- 239000010416 ion conductor Substances 0.000 description 3
- 230000037427 ion transport Effects 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000010431 corundum Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 241000508269 Psidium Species 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229910021525 ceramic electrolyte Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002226 superionic conductor Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Conductive Materials (AREA)
Abstract
一种立方晶系氯基富锂石榴石结构固体电解质及其制备方法,属于固态电池技术领域。是将LiOH、La2O3、ZrO2、Ga2O3、NH4Cl按照化学计量比(6.3+x):1.5:2:0.1:0.1进行混合,其中x=6.3×(1.1~1.3);然后加入研磨介质和钇稳定氧化锆玛瑙球湿法球磨,烘干煅烧后再次湿法球磨得到颗粒较细的粉体,烘干后压片,得到表面光滑且无裂纹的白色薄圆片,用同组分的粉体覆盖后进行二次烧结,从而得到所述固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1。本发明提出的立方晶系氯基富锂石榴石结构固体电解质,在提升材料电导率的同时改善了其稳定性,使两种性质兼而得之。
Description
技术领域
本发明属于固态电池技术领域,具体涉及一种立方晶系氯基富锂石榴石结构固体电解质及其制备方法。
背景技术
锂离子电池作为当今炙手可热的储能装置,广泛应用于电子产品、电动汽车(电池电动汽车和混合动力电动汽车)、储能系统以及特殊用途设备等。未来几十年,全球范围内对于锂离子电池的需求将持续增长,尤其是电动汽车及储能系统。而几乎所有的电化学能源转换设备(如燃料电池、电池以及超级电容器等)均是基于电荷分离实现高效运作的,电解质是实行分离电荷不可或缺的组件。电解质作为电池中唯一与其余所有部件均有物理关联的组件,须同时满足以下多个标准:(1)在电极之间传输离子的同时绝缘电子;(2)在极端化学条件下保持对电极的稳定性和(3)强阴极氧化性和强阳极还原性等。在过去的200年内,大多数电池研究都集中在液体电解质体系。电解液一般由电解质锂盐、高纯度有机溶剂以及必要的添加剂等几部分构成。常见锂盐有六氟磷酸锂(LiPF6)、高氯酸锂(LiClO4)以及四氟硼酸锂(LiBF4)等。有机溶剂作为电解液的主体部分,与之性能密切相关,一般由高介电常数溶剂与低粘度溶剂混合使用。常见溶剂有碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)以及碳酸乙烯酯(EC)等。虽然液体电解质具有高导电性(可达10-2S cm-1)和对电极表面良好的润湿性等优点,但存在电化学和热稳定性不足、离子选择性低以及安全性差等诸多问题。
这种情况下,电解质固态化是解决液体电解质持久性问题的有效策略。固体电解质不但零泄露、不可燃、遏抑锂枝晶生长,而且还可以有效提升电池整体能量密度。目前应用于锂离子电池的固态电解质可归为三类:聚合物、氧化物以及硫化物离子导体。尽管每类电解质都有其独到之处,但选择一种具有关键优势的电解质并对其进一步改性将是促进固态电解质以及固态锂离子电池发展的理想技术路线。氧化基陶瓷固态电解质中石榴石型超离子导体Li7La3Zr2O12对锂金属阳极具有高度化学稳定性,该性质是其它电解质无可比拟的。尽管如此,富锂石榴石型固态电解质的实际应用仍受一些关键问题的影响,如(1)与商业有机电解液相比,具有较低的离子传输性质;(2)在空气中的稳定性较差,极大地限制了其存储与输运。因此,在提升立方晶系富锂石榴石结构固体电解质电导率的同时改善其空气稳定性对于推动锂离子电池固态化是至关重要的。
基于此,在本发明中提出一种立方晶系氯基富锂石榴石结构固体电解质及其制备方法。该电解质在室温下获得了1.12×10-3S/cm高锂离子电导率。除此之外,具有良好控制的微观结构的氯基石榴石型固态电解质在环境空气以及富含H2O和CO2的环境中,甚至在水中均表现出优异的稳定性。该电解质的提出将进一步推动新型锂离子电池固态化的进程。
发明内容
本发明的目的是提出一种立方晶系氯基富锂石榴石结构固体电解质及其制备方法。该电解质兼具高锂离子传输性能以及优异的空气稳定性。
本发明采用传统高温固相法制备立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1。
(1)将LiOH、La2O3、ZrO2、Ga2O3、NH4Cl按照化学计量比x:1.5:2:0.1:0.1进行混合;其中x=6.3×(1.1~1.3),即在该过程中要添加10~30%过量的LiOH来补偿反复烧结过程中的锂损失;
(2)使用异丙醇(IPA)为研磨介质,向步骤(1)得到的混合物中加入研磨介质和钇稳定氧化锆(YSZ)玛瑙球,在行星式球磨机中以200~500rpm转速湿法球磨10~15h得到混合均匀的浆料;再将该浆料在70~90℃下烘干10~15h,随后在850~950℃下煅烧4~8小时得到中间体;
(3)将步骤(2)得到的中间体在行星球磨机中以200~500rpm转速湿法球磨10~15h,得到颗粒较细的粉体;将该粉体烘干后压片,压片模具直径为12~20mm(可根据要求选用不同直径模具),在100~200MPa下保持8~15min,得到表面光滑且无裂纹的白色薄圆片;
(4)将压制好的白色薄圆片置于带盖刚玉坩埚中,用步骤(3)中得到的同组分的粉末覆盖于白色薄圆片表面,于马弗炉中1100~1300℃条件下进行二次烧结,从而得到本发明所述的立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1。
与现有技术相比,本发明的有益效果为:
立方晶系富锂石榴石结构超离子导体是当前现有无机固态电解质中极具潜力应用于新型全固态电池的固态电解质。离子传输性质以及空气稳定性对于其来说是两种极为重要的性质。而在之前的研究以及工业化试行中,电导率与稳定性属于对立冲突的关系,难以兼而得之。本发明提出的立方晶系氯基富锂石榴石结构固体电解质,在提升材料电导率的同时改善了其稳定性,使两种性质兼而得之。
附图说明
图1:本发明制备的立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1与立方Li7La3Zr2O12标准衍射曲线对比图;
图2:本发明制备的立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1的Cl 2p XPS光谱;
图3:本发明制备的立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1的(a)表面以及(b)横截面SEM图;(c)TEM测得的(420)晶面间距,证实氯离子成功引入固态电解质体相;
图4:(a)本发明制备的立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1离子传导率随温度变化的Nyquist图谱;(b)离子电导率从室温到180℃温度范围内的Arrhenius图;
图5:在空气中暴露三个月后经典富锂石榴石Li6.4Ga0.2La3Zr2O12以及立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1与立方Li7La3Zr2O12标准衍射曲线对比图;
具体实施方式
实施例1:立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1制备
(1)将LiOH、La2O3、ZrO2、Ga2O3、NH4Cl按照化学计量比(6.3+x):1.5:2:0.1:0.1进行混合;其中x=6.3×1.2,即在该过程中要添加20%过量的LiOH来补偿反复烧结过程中的锂损失;
(2)使用异丙醇(IPA)为研磨介质,向步骤(1)得到的混合物中加入研磨介质和钇稳定氧化锆(YSZ)玛瑙球,在行星式球磨机中以350rpm转速湿法球磨12h得到混合均匀的浆料;将该浆料在80℃下烘干12h,随后在900℃下煅烧6小时得到中间体;
(3)将步骤(2)得到的中间体再在行星球磨机中以350rpm转速湿法球磨12h,得到颗粒较细的粉体;将该粉体烘干后压片,压片模具直径为15mm,在150MPa下保持10min,得到表面光滑且无裂纹的白色薄圆片;
(4)将压制好的白色薄圆片置于带盖刚玉坩埚中,将步骤(3)中得到的同组分的母粉覆盖于白色薄圆片表面,于马弗炉中1200℃条件下进行二次烧结,从而得到本发明所述的立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1。
实施例2:制备所得样品表征
通过XRD对样品进行物相结构分析,首先对制备好的陶瓷电解质片进行干燥,并研磨到合适的晶粒大小后,进行装样,把样品粉末制成一个有平整平面的试片。将样品置于日本Rigaku公司生产的D/MAX2550设备中,采用的射线源为Cu Kα(λ=0.154nm),管电压和管电流分别为50KV和200mA,扫描速度为6°/min,2θ扫描范围为10~80°。图1中XRD结果表明所制备的固体电解质归属于立方晶系Ia3d空间群。图2中X射线光电子能谱(XPS)分析揭示了Li6.3Ga0.2La3Zr2O11.9Cl0.1离子导体中氯元素的存在。Cl 2p区域200.2eV高结合能处2p3/2电子峰与氧化物晶体内部或(和)氧化物/金属界面处存在的氯阴离子有关,而199eV较低结合能处额外的2p3/2电子峰则受材料表面吸附氯的影响。
利用日本JEOL公司的JSM-6700F场发射扫描电子显微镜对所得陶瓷样品表面以及断面形貌进行观察。选择大小不超过样品台尺寸的样品,先对其进行超声清洗,然后用导电胶将样品粘在样品台上,放入扫描电镜中观察。图3(a)俯视SEM图像呈现出Li6.3Ga0.2La3Zr2O11.9Cl0.1陶瓷片平整且致密的表面。图3(b)显示的Li6.3Ga0.2La3Zr2O11.9Cl0.1横截面形貌可能是由于石榴石基固体电解质本征空气不稳定性造成的,兼之截面化学元素不均匀以及晶界处阳离子物种偏析。晶粒尺寸分布不均匀,这也赋予了烧结陶瓷片更致密的镶嵌型微观结构,更好的晶粒间连接以及更小的孔洞。
利用荷兰FEI公司的TecnaiG2 S-Twin F20型号高倍透射电子显微镜(HRTEM)研究立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1的精细结构。首先取少量的样品粉末置于离心管内,加入适量的乙醇或超纯水,在超声波清洗仪中超声进行分散,使样品完全溶解。随后用专门的镊子将铜网从样品盒中取出,放置于滤纸或者制样板上;借用移液枪或注射器将均匀分散的样品滴加于碳支持膜上。最后将样品放于适宜环境自然晾干,即可放入透射电镜进行观察。由图3(c)的TEM可知,由于Cl-半径大于Li6.3Ga0.2La3Zr2O11.9Cl0.1石榴石晶态氧化物中(420)晶面间距增大至/>
利用Solartron SI 1260阻抗/增益相位分析仪测定石榴石陶瓷片的离子电导率,在抛光的陶瓷片两侧涂Au浆作为阻塞电极。EIS数据在30MHz至1Hz的频率范围内测得,信号振幅为10mV。测试了镀金陶瓷片在室温至180℃范围内的交流阻抗。两次测试之间的时间间隔约为1小时。室温条件下,Li6.3Ga0.2La3Zr2O11.9Cl0.1石榴石离子导体在高频区域均拥有不完整半圆,随后阻抗虚部在复阻抗平面中以几近恒定的角度向低频方向增加,如图4(a)所示。用σion=L/RS计算陶瓷固体电解质中锂离子传输能力,其中R(Ω)是由EIS拟合所得总阻抗,L和S分别代表陶瓷片的厚度和面积。经由传统高温固相法制备的Li6.3Ga0.2La3Zr2O11.9Cl0.1在室温下的离子电导率可达1.12×10-3S/cm。该数值已非常接近Jalem等人基于力场模拟提出的锂离子传导极限(σbulk=1.7×10-3S cm-1),同时也非常接近液体有机电解质室温下锂离子传输数值。在室温~180℃范围内,经由总电导率获得的立方晶系氯基富锂石榴石结构固体电解质的活化能为0.23eV,如图4(b)所示。
在实际生产和运输过程中,固态电解质不可避免的会暴露于空气中,因此对制备的立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1空气耐久性进行评估。将经典富锂石榴石Li6.4Ga0.2La3Zr2O12与Li6.3Ga0.2La3Zr2O11.9Cl0.1同时暴露于实验室环境三个月之久。如图5所示,在经典富锂石榴石Li6.4Ga0.2La3Zr2O12陈化XRD衍射图谱中发现了与Li2CO3以及La(OH)3有关的强衍射峰,表明Li6.4Ga0.2La3Zr2O12与环境空气中的水蒸气发生反应,长时间暴露致使其分解。与之相比,本发明中提出的立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1表面则出现非常有限的碳酸盐杂质相。
Claims (5)
1.一种立方晶系氯基富锂石榴石结构固体电解质的制备方法,其步骤如下:
(1)将LiOH、La2O3、ZrO2、Ga2O3、NH4Cl按照化学计量比x:1.5:2:0.1:0.1进行混合;其中x=6.3×(1.1~1.3);
(2)使用异丙醇为研磨介质,向步骤(1)得到的混合物中加入研磨介质和钇稳定氧化锆玛瑙球,湿法球磨得到混合均匀的浆料,再将该浆料烘干后煅烧得到中间体;
(3)将步骤(2)得到的中间体再次湿法球磨得到颗粒较细的粉体,将该粉体烘干后压片,得到表面光滑且无裂纹的白色薄圆片;
(4)将步骤(3)压制好的白色薄圆片用步骤(3)得到的同组分的粉体覆盖后进行二次烧结,从而得到所述的立方晶系氯基富锂石榴石结构固体电解质Li6.3Ga0.2La3Zr2O11.9Cl0.1。
2.如权利要求1所述的一种立方晶系氯基富锂石榴石结构固体电解质的制备方法,其特征在于:是以200~500rpm转速湿法球磨10~15h得到混合均匀的浆料;是在70~90℃下烘干10~15h、在850~950℃下煅烧4~8小时得到中间体。
3.如权利要求1所述的一种立方晶系氯基富锂石榴石结构固体电解质的制备方法,其特征在于:是以200~500rpm转速湿法球磨10~15h得到颗粒较细的粉体;压片模具直径为12~20mm;是在100~200MPa下保持8~15min得到表面光滑且无裂纹的白色薄圆片。
4.如权利要求1所述的一种立方晶系氯基富锂石榴石结构固体电解质的制备方法,其特征在于:是在1100~1300℃条件下进行二次烧结。
5.一种立方晶系氯基富锂石榴石结构固体电解质,其特征在于:是由权利要求1~4任何一项所述的方法制备得到。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310558988.2A CN116845365A (zh) | 2023-05-18 | 2023-05-18 | 一种立方晶系氯基富锂石榴石结构固体电解质及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310558988.2A CN116845365A (zh) | 2023-05-18 | 2023-05-18 | 一种立方晶系氯基富锂石榴石结构固体电解质及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116845365A true CN116845365A (zh) | 2023-10-03 |
Family
ID=88173247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310558988.2A Pending CN116845365A (zh) | 2023-05-18 | 2023-05-18 | 一种立方晶系氯基富锂石榴石结构固体电解质及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116845365A (zh) |
-
2023
- 2023-05-18 CN CN202310558988.2A patent/CN116845365A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Achieving stable cycling of LiCoO2 at 4.6 V by multilayer surface modification | |
Liu et al. | Facile synthesis of NASICON-type Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li 3 PO 4 SEI layer | |
CN109830740B (zh) | 一种固态电解质及全固态电池 | |
Yi et al. | High densification and Li-ion conductivity of Al-free Li7-xLa3Zr2-xTaxO12 garnet solid electrolyte prepared by using ultrafine powders | |
EP3062373B1 (en) | Cathode active material, method for preparing same, and lithium secondary battery comprising same | |
KR101624805B1 (ko) | 고체 전해질층을 포함하는 이차전지 | |
Li et al. | Realizing fourfold enhancement in conductivity of perovskite Li0. 33La0. 557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy | |
CN107004841B (zh) | 正极活性材料、制备其的方法以及包含其的锂二次电池 | |
EP2159867B1 (en) | Aluminium-doped Li7La3Zr2O12 solid electrolyte and process for producing the same | |
EP3229294B1 (en) | Cathode active material, method for preparing same, and lithium secondary battery comprising same | |
Zhang et al. | Improved electrochemical performance of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials via incorporation of rubidium cations into the original Li sites | |
CN110265708B (zh) | 在季铵碱协同作用下合成石榴石结构的锂镧锆氧系固体电解质材料的固相合成方法 | |
Song et al. | CuGaS 2 nanoplates: a robust and self-healing anode for Li/Na ion batteries in a wide temperature range of 268–318 K | |
CN111116198A (zh) | 掺杂固溶物的llzo无机氧化物固态电解质及制备方法 | |
EP3411914A1 (en) | Annealed garnet electrolyte separators | |
Luo et al. | Effect of dual doping on the structure and performance of garnet-type Li7La3Zr2O12 ceramic electrolytes for solid-state lithium-ion batteries | |
US11594756B2 (en) | Sintered body and method for manufacturing thereof | |
CN112573574A (zh) | 一种通过调控锂空位含量制备石榴石型固态电解质的方法 | |
Lim et al. | PVP-functionalized nanometre scale metal oxide coatings for cathode materials: successful application to LiMn 2 O 4 spinel nanoparticles | |
KR101537067B1 (ko) | 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
Liu et al. | LiCoO2 sintering aid towards cathode-interface-enhanced garnet electrolytes | |
Botros et al. | Microstrain and electrochemical performance of garnet solid electrolyte integrated in a hybrid battery cell | |
CN111106380B (zh) | 一种具有表面涂层的固态电解质的制备方法和固态电解质电池 | |
Hu et al. | Enhanced electrochemical performance of LiMn 2 O 4 cathode with a Li 0.34 La 0.51 TiO 3-coated layer | |
CN117393842A (zh) | 卤族元素掺杂改性lzsp固态电解质材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |