CN116845114A - 一种Topcon电池及制作方法 - Google Patents

一种Topcon电池及制作方法 Download PDF

Info

Publication number
CN116845114A
CN116845114A CN202310930329.7A CN202310930329A CN116845114A CN 116845114 A CN116845114 A CN 116845114A CN 202310930329 A CN202310930329 A CN 202310930329A CN 116845114 A CN116845114 A CN 116845114A
Authority
CN
China
Prior art keywords
layer
total reflection
reflection film
silicon thin
doped silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310930329.7A
Other languages
English (en)
Inventor
朱俊
沈家军
朱凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dier Laser Technology Wuxi Co ltd
Original Assignee
Dier Laser Technology Wuxi Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dier Laser Technology Wuxi Co ltd filed Critical Dier Laser Technology Wuxi Co ltd
Priority to CN202310930329.7A priority Critical patent/CN116845114A/zh
Publication of CN116845114A publication Critical patent/CN116845114A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种Topcon电池及制备方法,N型衬底的正面依次设有P型掺杂层、钝化层和正面减反层;正面减反层上印刷有正面栅线;N型衬底的背面依次设有隧穿氧化层和至少2层全反射膜;除最外层全反射膜的所有全反射膜的背面减反层上均设有槽,使得相邻全反射膜的掺杂硅薄层通过所述的槽相互连通;最外层全反射膜的背面减反层上印刷有背面栅线,背面栅线的副栅线对应所述槽设置。本发明通过背面多层全反射膜结构降低非栅线区域掺杂硅薄层厚度,减少掺杂多晶硅对长波的寄生吸收,多层全反射膜使得长波多次反射回电池内部,使得电池能更好地吸收长波光,提高转换效率。

Description

一种Topcon电池及制作方法
技术领域
本发明属于激光加工和光伏领域,具体涉及一种Topcon电池及制作方法。
背景技术
根据基底硅片不同,太阳能电池可以分为P型电池和N型电池。P型电池就是在P型硅片(掺杂3价元素)制备n+/p结构的电池,P型电池使用磷扩散工艺,主要代表为早期的BSF(铝背场)电池和目前主流的PERC(发射极钝化和背面接触)电池,极限转换效率为24.5%。2015年之前,BSF电池占据90%市场,2016年PERC电池开始发力,到2020年PERC电池占比超过85%。P型电池工艺比较简单、成本低,但是面临效率提升瓶颈。N型电池结构优化,具备更高的效率潜力。N型电池则使用硼扩散工艺,在N型硅片(掺杂5价元素)上制备p+/n结构,主要代表有TOPCON(Tunnel Oxide Passivating Contacts,隧穿氧化层钝化接触)和HJT(Heterojunction with Intrinsic Thin Layer,晶体硅异质结太阳电池),与P型电池相比具有转换率高、温度系数低、双面率高以及载流子寿命高等优点。TOPCON和HJT的极限转换效率分别为28.7%和27.5%,远超目前主流PERC电池24.5%的极限效率。
2013年在第28届欧洲PVSEC光伏大会上,TOPCON由德国Fraunhofer太阳能研究所首次提出。其首先在背面制备一层1-2nm的隧穿氧化层,然后再沉积一层掺杂多晶硅共同形成钝化接触结构,给硅片背面提供了良好的界面钝化。
由于背面的掺杂多晶硅对长波有寄生吸收,因此需要降低掺杂硅薄层的厚度。但是,掺杂硅薄层厚度太低,背面银浆会烧穿掺杂硅薄层,银浆接触到隧穿氧化层破坏钝化,效率反而会降低。为了达到降低掺杂硅薄层厚度但不影响浆料烧结,目前多采用激光或湿法制作poly-finger的方法。但湿法制作工序复杂,激光去除产能很低且需要清洗,都不适合量产。
发明内容
本发明要解决的技术问题是:提供一种Topcon电池及制作方法,提高转换效率。
本发明为解决上述技术问题所采取的技术方案为:一种Topcon电池,包括金字塔绒面的N型衬底;
在所述N型衬底的正面依次设有P型掺杂层、钝化层和正面减反层;正面减反层上印刷有正面栅线;
在所述N型衬底的背面依次设有隧穿氧化层和至少2层全反射膜;每层全反射膜由一层掺杂硅薄层和一层背面减反层构成;其中最内层全反射膜的掺杂硅薄层与所述隧穿氧化层接触,除最外层全反射膜的所有全反射膜的背面减反层上均设有槽,使得相邻全反射膜的掺杂硅薄层通过所述的槽相互连通;最外层全反射膜的背面减反层上印刷有背面栅线,背面栅线的副栅线对应所述槽设置。
按上述方案,最内层全反射膜的掺杂硅薄层的厚度为1-90nm;除最内层以外的其它全反射膜的掺杂硅薄层的厚度为1-100nm。
按上述方案,最内层全反射膜的背面减反层的厚度为10-50nm;除最内层以外的其它全反射膜的背面减反层的厚度为20-200nm;所述正面减反层的厚度为20-200nm。
按上述方案,所述槽的个数和位置与所述副栅线一致,槽的宽度为10-200μm。按上述方案,所述P型掺杂层还设有选择性发射极层。
本发明还提供如上所述Topcon电池的制作方法,选取N型衬底,在完成正面的P型掺杂层和背面的隧穿氧化层后,继续以下步骤:
在隧穿氧化层上依次制备最内层全反射膜的掺杂硅薄层和背面减反层;
在最内层全反射膜的背面减反层上开槽,槽内露出所述最内层全反射膜的掺杂硅薄层;
在开槽后的最内层全反射膜的背面减反层上继续制备其它层全反射膜,使得下一层全反射膜的掺杂硅薄层在所述槽内与上一层全反射膜的掺杂硅薄层连通;直到制备好最外层全反射膜的掺杂硅薄层;
晶化激活所述全反射膜中所有掺杂硅薄层中的掺杂物质;
正面去除多晶硅绕镀后,制备钝化层;
正面、背面分别制备正面减反层和所述最外层全反射膜的背面减反层;
正面背面分别进行栅线印刷,其中背面栅线的副栅线对应所述槽设置;
烧结。
按上述方法,所述的槽采用激光开槽的方式得到,其中激光为脉冲绿光,光斑直径5-60μm。
按上述方法,本方法在制备背面的隧穿氧化层之前的具体步骤为:
对N型衬底进行制绒处理,形成金字塔绒面;
在N型衬底的正面进行硼扩散,制备PN结,形成扩散层和硼硅玻璃层;
湿法刻蚀去除背面的硼硅玻璃层,并同时去除扩散层的背结及边结,使正背面绝缘,并在背面进行抛光。
按上述方法,所述的硼扩散时,方阻范围为50-200Ω/□,表面硼的浓度为1×1018-1×1022cm-3
按上述方法,本方法在制备背面的隧穿氧化层之前,还包括以下步骤:在所述P型掺杂层形成选择性发射极层。
本发明的有益效果为:
1、在Topcon电池背面,将最内层的掺杂硅薄层作为掩膜,并通过多层全反射膜结构,达到降低非栅线区域掺杂硅薄层厚度的目的,减少了掺杂多晶硅对长波的寄生吸收,长波能够达到掺杂硅薄层和减反层交界处,同时在Topcon电池背面的多层全反射膜,使得长波能够多次反射回电池内部,使得电池能更好地吸收长波光,提高了Topcon电池的转换效率;在背面栅线区域保留了足够厚度的掺杂硅薄层厚度,防止在印刷栅线时浆料烧穿破坏隧穿氧化层。
2、本发明制作方法简单可行。
附图说明
图1为本发明一实施例步骤一对应的产品结构示意图。
图2为本发明一实施例步骤二对应的产品结构示意图。
图3为本发明一实施例步骤三对应的产品结构示意图。
图4为本发明一实施例步骤四对应的产品结构示意图。
图5为本发明一实施例步骤五对应的产品结构示意图。
图6为本发明一实施例步骤六对应的产品结构示意图。
图7为本发明一实施例步骤七对应的产品结构示意图。
图8为本发明一实施例步骤八对应的产品结构示意图。
图9为本发明一实施例步骤九对应的产品结构示意图。
图10为本发明一实施例的方法流程图。
图11为本发明又一实施例的产品结构示意图。
图中:1-N型硅片,2-P型掺杂层,201-选择性发射极层,3-钝化层,4-减反层,401-第一减反层,4011-槽,402-第二减反层,4021-第二凹陷,403-正面减反层,5-隧穿氧化层,6-掺杂硅薄层,601-第一掺杂硅薄层,602-第二掺杂硅薄层,6021-第一凹陷,7-背面栅线,8-正面栅线。
具体实施方式
下面结合具体实例和附图对本发明作进一步说明。
本发明提供一种新型的Topcon电池的制作方法,在N型衬底上完成正面的P型掺杂层和背面的隧穿氧化层后,继续以下步骤:
在隧穿氧化层上依次制备最内层全反射膜的掺杂硅薄层和背面减反层;
在最内层全反射膜的背面减反层上开槽,槽内露出所述最内层全反射膜的掺杂硅薄层;
在开槽后的最内层全反射膜的背面减反层上继续制备其它层全反射膜,使得下一层全反射膜的掺杂硅薄层在所述槽内与上一层全反射膜的掺杂硅薄层连通;直到制备好最外层全反射膜的掺杂硅薄层;
晶化激活所述全反射膜中所有掺杂硅薄层中的掺杂物质;
正面去除多晶硅绕镀后,制备钝化层;
正面、背面分别制备正面减反层和所述最外层全反射膜的背面减反层;
正面背面分别进行栅线印刷,其中背面栅线的副栅线对应所述槽设置;
烧结。
按照上述方法制作得到的Topcon电池包括金字塔绒面的N型衬底;在所述N型衬底的正面依次设有P型掺杂层、钝化层和正面减反层;正面减反层上印刷有正面栅线;
在所述N型衬底的背面依次设有隧穿氧化层和至少2层全反射膜;每层全反射膜由一层掺杂硅薄层和一层背面减反层构成;其中最内层全反射膜的掺杂硅薄层与所述隧穿氧化层接触,除最外层全反射膜的所有全反射膜的背面减反层上均设有槽,使得相邻全反射膜的掺杂硅薄层通过所述的槽相互连通;最外层全反射膜的背面减反层上印刷有背面栅线,背面栅线的副栅线对应所述槽设置。
在本发明中,一层厚度减少的掺杂硅薄层和一层背面减反层构成的结构,可以减少掺杂多晶硅对长波的寄生吸收,长波能够达到掺杂硅薄层和背面减反层交界处,并反射回电池内部,达到全反射的目的,故而定义为全反射膜。
掺杂硅薄层中的薄,表达的含义是比现有技术中Topcon电池的掺杂硅层要薄。
实施例一:
如图10所示,本实施例Topcon电池的制作方法如下:
步骤一,如图1所示,选取单晶的N型硅片1进行表面织构化,即对N型硅片1进行制绒处理,形成金字塔绒面后,进行清洗烘干。
步骤二,在N型硅片1的正表面进行硼扩散制备PN结,形成扩散层和硼硅玻璃层。由步骤一决定扩散时方阻范围为50-200Ω/□,表面硼掺杂浓度为1×1018cm-3-1×1022cm-3,扩散时形成的硼硅玻璃层厚度为1-100nm。
步骤三,湿法刻蚀去除背面硼硅玻璃层,并同时去除扩散层的背结及边结,使正背面绝缘,并在背面进行抛光,得到的产品结构如图2所示,包括N型硅片1和设置在N型硅片1正面的P型掺杂层2。
步骤四,PECVD制备背面的隧穿氧化层5和5价元素掺杂(目前市场上为磷掺杂)的第一掺杂硅薄层601,如图3所示,第一掺杂硅薄层601的厚度为1-90nm。此处的PECVD也可替换为LPCVD或者PVD。按照本方案的工艺和结构,由于最内层全反射膜的掺杂硅薄层为掩膜,因此第一掺杂硅薄层601可以做的很薄,因此此处第一掺杂硅薄层601的厚度可以做到80nm、60nm、40nm、30、20nm、甚至1nm。
步骤五,PECVD制备背面第一减反层401,本实施例中所有减反层4均为氮化硅层。第一减反层401的氮化硅的分子式为SiNx,x为所有可选的自然数。第一减反层401与所述第一掺杂硅薄层601构成最内层全反射膜,第一减反层401的厚度为10-50nm,如图4所示。此处的PECVD也可替换为LPCVD或者PVD。
步骤六,如图5所示,使用激光将第一减反层401开槽4011,使得第一掺杂硅薄层601裸露出来,本实施例中所采用的激光为脉冲绿光,光斑5-60μm,波长为532nm,也可根据实际需要换成其它波长和光斑大小的激光。
步骤七,如图6所示,PECVD制备磷掺杂的第二掺杂硅薄层602,第二掺杂硅薄层602的厚度为1-100nm。由于所述槽4011的存在,在沉积时,所述孔4011位置的多晶硅直接沉积到槽4011中与第一掺杂硅薄层601连在一起,由于沉积工艺,会导致槽4011位置形成第一凹陷6021,但该第一凹陷6021并非刻意形成,而是工艺自然形成,也不在本发明的保护之中。此处的PECVD也可替换为LPCVD或者PVD。
步骤八,晶化激活掺杂硅薄层6(即第一掺杂硅薄层601和第二掺杂硅薄层602)中的掺杂物质,本实施例中为磷掺杂。
步骤九,正面湿法去除多晶硅绕镀。
步骤十,正面PECVD或ALD制备钝化层3,本实施例中钝化层3为氧化铝AlOx层,氧化铝层的厚度为1-100nm,如图7所示。
步骤十一,正面PECVD制备正面减反层403,厚度为20-200nm;背面PECVD制备第二减反层402,厚度为20-300nm,如图8所示。同样,由于沉积工艺,在制备第二减反层402时,会自然形成第二凹陷4021,但并非本发明保护特征。
步骤十二,正背面分别进行栅线印刷,得到正面栅线8和背面栅线7,其中背面栅线7的副栅线对应所述槽4011印刷。在印刷烧结工艺时,副栅线的浆料会烧穿所述槽4011中之前沉积的第二减反层402、第二掺杂硅薄层602,最终与所述第一掺杂硅薄层601接触。由于设置了多层全反射膜,所以隧穿氧化层5外有足够的厚度,因此印制栅线的浆料不至于烧穿破坏隧穿氧化层5。
步骤十三,烧结,得到Topcon电池。结构如图9所示,包括金字塔绒面的N型硅片1;在所述N型硅片1的正面依次设有P型掺杂层2、钝化层3和正面减反层403;正面减反层403上印刷有正面栅线8;在所述N型硅片1的背面依次设有隧穿氧化层5、第一掺杂硅薄层601、第一减反层401、第二掺杂硅薄层602和第二减反层402,其中,所述的第一减反层401上设有槽4011,使得第二掺杂硅薄层602在所述槽内与所述第一掺杂硅薄层601连通;所述第二减反层402上印刷有背面栅线7,背面栅线7的副栅线对应所述槽4011设置。
需要说明的是,第一减反层401、第二减反层402和正面减反层403均为减反层4,其成份均为氮化硅,但具体成份可以微调,无需完全一致。第一掺杂硅薄层601和第二掺杂硅薄层602均为掺杂硅薄层6,成份均为掺杂多晶硅,但具体成份可以微调,无需完全一致。
本实施例仅以两层全反射膜为例,也可根据需要设置三层、四层全反射膜。中间层全反射膜的制备方法与最内层全反射膜一致,中间层全反射膜的厚度可根据实际情况进行设置。
实施例二:
本实施例的原理、结构和方法与实施例一基本相同,其不同之处在于:
Topcon电池结构上,如图11所示,所述P型掺杂层2上还设有选择性发射极层201。
对应的制作方法上,在步骤二扩散之后,用激光在P型掺杂层2上制备选择性发射极层201,然后再进行步骤三。
本发明通过在Topcon电池背面制作掩膜,通过第一掺杂硅薄层601、第一减反层401、第二掺杂硅薄层602和第二减反层402构成的多层膜结构,达到降低非栅线区域掺杂硅薄层厚度的目的,减少了掺杂多晶硅对长波的寄生吸收,长波能够达到掺杂硅薄层6和减反层4交界处,同时在Topcon电池背面的多层膜结构形成双层全反射膜,使得长波能够多次反射回电池内部,进一步增加了电池对长波光子的吸收率,提高了Topcon电池的转换效率。在背面栅线区域保留了足够厚度的掺杂硅薄层6厚度(含第一掺杂硅薄层601和第二掺杂硅薄层602共两层),防止浆料烧穿破坏隧穿氧化层5。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种Topcon电池,其特征在于:包括N型衬底;
在所述N型衬底的正面依次设有P型掺杂层、钝化层和正面减反层;正面减反层上印刷有正面栅线;
在所述N型衬底的背面依次设有隧穿氧化层和至少2层全反射膜;每层全反射膜由一层掺杂硅薄层和一层背面减反层构成;其中最内层全反射膜的掺杂硅薄层与所述隧穿氧化层接触,除最外层全反射膜的所有全反射膜的背面减反层上均设有槽,使得相邻全反射膜的掺杂硅薄层通过所述的槽相互连通;最外层全反射膜的背面减反层上印刷有背面栅线,背面栅线的副栅线对应所述槽设置。
2.根据权利要求1所述的Topcon电池,其特征在于:最内层全反射膜的掺杂硅薄层的厚度为1-90nm;除最内层以外的其它全反射膜的掺杂硅薄层的厚度为1-100nm。
3.根据权利要求1所述的Topcon电池,其特征在于:最内层全反射膜的背面减反层的厚度为10-50nm;除最内层以外的其它全反射膜的背面减反层的厚度为20-200nm;所述正面减反层的厚度为20-200nm。
4.根据权利要求1所述的Topcon电池,其特征在于:所述槽的个数和位置与所述副栅线一致,槽的宽度为10-200μm。
5.根据权利要求1至4中任意一项所述的Topcon电池,其特征在于:所述P型掺杂层还设有选择性发射极层。
6.如权利要求1至5中任意一项所述的Topcon电池的制作方法,其特征在于:在N型衬底上完成正面的P型掺杂层和背面的隧穿氧化层后,继续以下步骤:
在隧穿氧化层上依次制备最内层全反射膜的掺杂硅薄层和背面减反层;
在最内层全反射膜的背面减反层上开槽,槽内露出所述最内层全反射膜的掺杂硅薄层;
在开槽后的最内层全反射膜的背面减反层上继续制备其它层全反射膜,使得下一层全反射膜的掺杂硅薄层在所述槽内与上一层全反射膜的掺杂硅薄层连通;直到制备好最外层全反射膜的掺杂硅薄层;
晶化激活所述全反射膜中所有掺杂硅薄层中的掺杂物质;
正面去除多晶硅绕镀后,制备钝化层;
正面、背面分别制备正面减反层和所述最外层全反射膜的背面减反层;
正面背面分别进行栅线印刷,其中背面栅线的副栅线对应所述槽印刷;
烧结。
7.根据权利要求6所述的制作方法,其特征在于:所述的槽采用激光开槽的方式得到,其中激光为脉冲绿光,光斑直径5-60μm。
8.根据权利要求6所述的制作方法,其特征在于:本方法在制备背面的隧穿氧化层之前的具体步骤为:
对N型衬底进行制绒处理,形成金字塔绒面;
在N型衬底的正面进行硼扩散,制备PN结,形成扩散层和硼硅玻璃层;
湿法刻蚀去除背面的硼硅玻璃层,并同时去除扩散层的背结及边结,使正背面绝缘,并在背面进行抛光。
9.根据权利要求8所述的制作方法,其特征在于:所述的硼扩散时,方阻范围为50-200Ω/□,表面硼的浓度为1×1018-1×1022cm-3
10.根据权利要求6至9中任意一项所述的制作方法,其特征在于:本方法在制备背面的隧穿氧化层之前,还包括以下步骤:在所述P型掺杂层形成选择性发射极层。
CN202310930329.7A 2023-07-27 2023-07-27 一种Topcon电池及制作方法 Pending CN116845114A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310930329.7A CN116845114A (zh) 2023-07-27 2023-07-27 一种Topcon电池及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310930329.7A CN116845114A (zh) 2023-07-27 2023-07-27 一种Topcon电池及制作方法

Publications (1)

Publication Number Publication Date
CN116845114A true CN116845114A (zh) 2023-10-03

Family

ID=88161732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310930329.7A Pending CN116845114A (zh) 2023-07-27 2023-07-27 一种Topcon电池及制作方法

Country Status (1)

Country Link
CN (1) CN116845114A (zh)

Similar Documents

Publication Publication Date Title
CN110010721B (zh) 一种基于se的碱抛光高效perc电池工艺
CN110838536A (zh) 具有多种隧道结结构的背接触太阳能电池及其制备方法
CN113345970A (zh) 一种p型背接触式晶硅太阳能电池、制备方法及电池组件
CN210926046U (zh) 太阳能电池
CN113809205B (zh) 太阳能电池的制备方法
CN111640823B (zh) 一种n型钝化接触电池及其制备方法
CN112951927A (zh) 太阳能电池的制备方法
WO2024000399A1 (zh) 太阳能电池结构及其制作方法
CN112820793A (zh) 太阳能电池及其制备方法
CN116705915B (zh) 一种新型双面TOPCon电池的制备方法
CN110634973A (zh) 一种新型晶硅太阳电池及其制备方法
CN115483298A (zh) 一种N型晶体硅TOPCon电池结构及其制备方法
CN210778636U (zh) 具有多种隧道结结构的背接触太阳能电池
CN210897302U (zh) 太阳能电池
US20230361227A1 (en) Laminated passivation structure of solar cell and preparation method thereof
CN219696463U (zh) 太阳能电池
CN114725225A (zh) 一种高效p型ibc电池及其制备方法
CN114430000A (zh) 太阳能电池的制备方法及太阳能电池
AU2023208080A1 (en) Solar Cell And Preparation Method Thereof
CN116469948A (zh) 一种TOPCon电池及其制备方法
CN115101621B (zh) 一种P-topcon电池及其制备方法
EP4297102A1 (en) Semiconductor substrate, solar cell, and photovoltaic module
CN117594684A (zh) 双面混合太阳能电池及其制备方法
CN115985992A (zh) 一种n型单晶硅hbc太阳能电池结构及其制备方法
CN111524982A (zh) 太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination