CN116805160A - 用于训练神经网络以确定代表设备的磨损状态的特征向量的方法 - Google Patents
用于训练神经网络以确定代表设备的磨损状态的特征向量的方法 Download PDFInfo
- Publication number
- CN116805160A CN116805160A CN202310302880.7A CN202310302880A CN116805160A CN 116805160 A CN116805160 A CN 116805160A CN 202310302880 A CN202310302880 A CN 202310302880A CN 116805160 A CN116805160 A CN 116805160A
- Authority
- CN
- China
- Prior art keywords
- sensor data
- time
- data element
- point
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013598 vector Substances 0.000 title claims abstract description 69
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 57
- 238000012549 training Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000012545 processing Methods 0.000 claims abstract description 21
- 238000012544 monitoring process Methods 0.000 claims description 27
- 230000004044 response Effects 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 27
- 239000007795 chemical reaction product Substances 0.000 description 18
- 238000010801 machine learning Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 239000012467 final product Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007688 edging Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022202984.4A DE102022202984B3 (de) | 2022-03-25 | 2022-03-25 | Verfahren zum Trainieren eines neuronalen Netzwerks zum Ermitteln eines Merkmalsvektors, der den Abnutzungszustand einer Vorrichtung repräsentiert |
DE102022202984.4 | 2022-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116805160A true CN116805160A (zh) | 2023-09-26 |
Family
ID=87557091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310302880.7A Pending CN116805160A (zh) | 2022-03-25 | 2023-03-23 | 用于训练神经网络以确定代表设备的磨损状态的特征向量的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116805160A (de) |
DE (1) | DE102022202984B3 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117765779A (zh) * | 2024-02-20 | 2024-03-26 | 厦门三读教育科技有限公司 | 基于孪生神经网络的儿童绘本智能化导读方法及系统 |
-
2022
- 2022-03-25 DE DE102022202984.4A patent/DE102022202984B3/de active Active
-
2023
- 2023-03-23 CN CN202310302880.7A patent/CN116805160A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117765779A (zh) * | 2024-02-20 | 2024-03-26 | 厦门三读教育科技有限公司 | 基于孪生神经网络的儿童绘本智能化导读方法及系统 |
CN117765779B (zh) * | 2024-02-20 | 2024-04-30 | 厦门三读教育科技有限公司 | 基于孪生神经网络的儿童绘本智能化导读方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
DE102022202984B3 (de) | 2023-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11521105B2 (en) | Machine learning device and machine learning method for learning fault prediction of main shaft or motor which drives main shaft, and fault prediction device and fault prediction system including machine learning device | |
US12066797B2 (en) | Fault prediction method and fault prediction system for predecting a fault of a machine | |
US11527984B2 (en) | Abnormality determination system, motor control apparatus, and abnormality determination apparatus | |
JP6723669B2 (ja) | 異常検知プログラム、異常検知方法および異常検知装置 | |
JP7017861B2 (ja) | 異常検知システムおよび異常検知方法 | |
JP7282184B2 (ja) | 工業プロセスで使用されるコンポーネントから発生する信号の異常を検出及び測定するためのシステムと方法 | |
CN110197288B (zh) | 故障影响下设备的剩余使用寿命预测方法 | |
Niu et al. | Intelligent condition monitoring and prognostics system based on data-fusion strategy | |
JP4601492B2 (ja) | 生産工程の品質予測システムおよびその方法 | |
CN108829933A (zh) | 一种半导体制造设备的预测性维护与健康管理的方法 | |
US20120296605A1 (en) | Method, computer program, and system for performing interpolation on sensor data for high system availability | |
JP2017033526A (ja) | 故障条件を学習する機械学習方法及び機械学習装置、並びに該機械学習装置を備えた故障予知装置及び故障予知システム | |
US10809695B2 (en) | Information processing apparatus, machine learning device and system | |
CN117114454B (zh) | 一种基于Apriori算法的直流套管状态评估方法及系统 | |
US11029674B2 (en) | Information processing device and information processing method | |
JP7275062B2 (ja) | 時変システム動作における異常検出のためのシステム、方法およびコンピュータ読取可能記憶媒体 | |
US12001180B2 (en) | Condition-based method for malfunction prediction | |
JP6711323B2 (ja) | プロセスの異常状態診断方法および異常状態診断装置 | |
Yongxiang et al. | A data-driven prognostics approach for RUL based on principle component and instance learning | |
CN116805160A (zh) | 用于训练神经网络以确定代表设备的磨损状态的特征向量的方法 | |
US20180314242A1 (en) | Numerical controller | |
WO2020166236A1 (ja) | 作業効率評価方法、作業効率評価装置、及びプログラム | |
JP2018086715A (ja) | テレスコピックカバーの異常発生推定装置及び異常発生推定方法 | |
JPWO2020152741A1 (ja) | 異常要因推定装置、異常要因推定方法、及びプログラム | |
Liao et al. | Nonparametric and semi-parametric sensor recovery in multichannel condition monitoring systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |