CN116805160A - 用于训练神经网络以确定代表设备的磨损状态的特征向量的方法 - Google Patents

用于训练神经网络以确定代表设备的磨损状态的特征向量的方法 Download PDF

Info

Publication number
CN116805160A
CN116805160A CN202310302880.7A CN202310302880A CN116805160A CN 116805160 A CN116805160 A CN 116805160A CN 202310302880 A CN202310302880 A CN 202310302880A CN 116805160 A CN116805160 A CN 116805160A
Authority
CN
China
Prior art keywords
sensor data
time
data element
point
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310302880.7A
Other languages
English (en)
Chinese (zh)
Inventor
S·霍普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN116805160A publication Critical patent/CN116805160A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)
CN202310302880.7A 2022-03-25 2023-03-23 用于训练神经网络以确定代表设备的磨损状态的特征向量的方法 Pending CN116805160A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022202984.4A DE102022202984B3 (de) 2022-03-25 2022-03-25 Verfahren zum Trainieren eines neuronalen Netzwerks zum Ermitteln eines Merkmalsvektors, der den Abnutzungszustand einer Vorrichtung repräsentiert
DE102022202984.4 2022-03-25

Publications (1)

Publication Number Publication Date
CN116805160A true CN116805160A (zh) 2023-09-26

Family

ID=87557091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310302880.7A Pending CN116805160A (zh) 2022-03-25 2023-03-23 用于训练神经网络以确定代表设备的磨损状态的特征向量的方法

Country Status (2)

Country Link
CN (1) CN116805160A (de)
DE (1) DE102022202984B3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117765779A (zh) * 2024-02-20 2024-03-26 厦门三读教育科技有限公司 基于孪生神经网络的儿童绘本智能化导读方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117765779A (zh) * 2024-02-20 2024-03-26 厦门三读教育科技有限公司 基于孪生神经网络的儿童绘本智能化导读方法及系统
CN117765779B (zh) * 2024-02-20 2024-04-30 厦门三读教育科技有限公司 基于孪生神经网络的儿童绘本智能化导读方法及系统

Also Published As

Publication number Publication date
DE102022202984B3 (de) 2023-08-31

Similar Documents

Publication Publication Date Title
US11521105B2 (en) Machine learning device and machine learning method for learning fault prediction of main shaft or motor which drives main shaft, and fault prediction device and fault prediction system including machine learning device
US12066797B2 (en) Fault prediction method and fault prediction system for predecting a fault of a machine
US11527984B2 (en) Abnormality determination system, motor control apparatus, and abnormality determination apparatus
JP6723669B2 (ja) 異常検知プログラム、異常検知方法および異常検知装置
JP7017861B2 (ja) 異常検知システムおよび異常検知方法
JP7282184B2 (ja) 工業プロセスで使用されるコンポーネントから発生する信号の異常を検出及び測定するためのシステムと方法
CN110197288B (zh) 故障影响下设备的剩余使用寿命预测方法
Niu et al. Intelligent condition monitoring and prognostics system based on data-fusion strategy
JP4601492B2 (ja) 生産工程の品質予測システムおよびその方法
CN108829933A (zh) 一种半导体制造设备的预测性维护与健康管理的方法
US20120296605A1 (en) Method, computer program, and system for performing interpolation on sensor data for high system availability
JP2017033526A (ja) 故障条件を学習する機械学習方法及び機械学習装置、並びに該機械学習装置を備えた故障予知装置及び故障予知システム
US10809695B2 (en) Information processing apparatus, machine learning device and system
CN117114454B (zh) 一种基于Apriori算法的直流套管状态评估方法及系统
US11029674B2 (en) Information processing device and information processing method
JP7275062B2 (ja) 時変システム動作における異常検出のためのシステム、方法およびコンピュータ読取可能記憶媒体
US12001180B2 (en) Condition-based method for malfunction prediction
JP6711323B2 (ja) プロセスの異常状態診断方法および異常状態診断装置
Yongxiang et al. A data-driven prognostics approach for RUL based on principle component and instance learning
CN116805160A (zh) 用于训练神经网络以确定代表设备的磨损状态的特征向量的方法
US20180314242A1 (en) Numerical controller
WO2020166236A1 (ja) 作業効率評価方法、作業効率評価装置、及びプログラム
JP2018086715A (ja) テレスコピックカバーの異常発生推定装置及び異常発生推定方法
JPWO2020152741A1 (ja) 異常要因推定装置、異常要因推定方法、及びプログラム
Liao et al. Nonparametric and semi-parametric sensor recovery in multichannel condition monitoring systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication