CN116804201A - 一种茶树耐热负调控基因CsNIPA4及其应用 - Google Patents

一种茶树耐热负调控基因CsNIPA4及其应用 Download PDF

Info

Publication number
CN116804201A
CN116804201A CN202310992382.XA CN202310992382A CN116804201A CN 116804201 A CN116804201 A CN 116804201A CN 202310992382 A CN202310992382 A CN 202310992382A CN 116804201 A CN116804201 A CN 116804201A
Authority
CN
China
Prior art keywords
csnipa4
gene
vector
heat
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310992382.XA
Other languages
English (en)
Inventor
王明乐
张锐明
张陆玉
张徐杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202310992382.XA priority Critical patent/CN116804201A/zh
Publication of CN116804201A publication Critical patent/CN116804201A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于分子生物学领域,具体公开了一种耐热负调控基因CsNIPA4及其应用。本发明基于CsNIPA4基因构建植物表达载体pCAMBIA2300‑CsNIPA4,是将CsNIPA4基因插入到克隆载体pTOPO‑Blunt Simple Vector,然后经过BamHI和XbaI双酶切后连接到表达载体pCAMBIA2300‑C‑EGFP的BamHI和XbaI位点后得到。CsNIPA4基因在CaMV35S启动子的控制下过量表达,负调控转基因拟南芥和烟草的耐热性。本发明是CsNIPA4基因功能在植物中的首次报道。本发明对CsNIPA4基因进行功能鉴定,分析发现其负调控植物的耐热性,有潜力应用于培育植物耐热新品种。该发明不仅在理论上深化了植物高温响应机制,而且在生产实践中为茶树耐热栽培和耐热新品种的早期鉴定提供了理论依据。

Description

一种茶树耐热负调控基因CsNIPA4及其应用
技术领域
本发明属于分子生物学领域,具体涉及一种茶树耐热负调控基因CsNIPA4及其应用。
背景技术
全球气候变暖,导致高温胁迫现象频发,严重影响植物正常生长发育、限制作物生产力并影响粮食安全[1]。经过长期的适应,植物已经进化出可以应对生长环境中的适度的温度波动。植物热胁迫响应机制能使植物最大限度地减少热胁迫所带来的危害[2~3]。因此,深入了解和研究植物耐高温的分子机制至关重要。
高温胁迫严重影响茶树的生长发育。茶树(Camellia sinensis)受到高温胁迫后,芽叶变黄枯萎,严重者甚至死亡,给茶叶产量造成巨大损失[4~6]。目前,有关茶树耐热分子机制的研究相对较少,茶树耐热新品种的开发也处于空白阶段。
[1]Janni M,Gullì M,Maestri E,Marmiroli M,Valliyodan B,Nguyen HT,Marmiroli N.Molecular and genetic bases of heat stress responses in cropplants and breeding for increased resilience and productivity.JournalofExperimentalBotany,2020,71:3780-3802.
[2]Xu J,Tian J,Belanger FC,Huang B.Identification andcharacterization of an expansin gene AsEXP1associated with heat tolerance inC3Agrostis grass species.Journal ofExperimental Botany,2007,58:3789-3796.
[3]Haider S,Iqbal J,Naseer S,Yaseen T,Shaukat M,Bibi H,Ahmad Y,DaudH,Abbasi NL,Mahmood T.Molecular mechanisms ofplant tolerance to heat stress:current landscape and future perspectives.Plant CellReports,2021,40:2247-2271.
[4]Han WY,Huang JG,Li X.Li,ZX,Ahammed GJ,Yan P,Stepp JR.Altitudinaleffects on the quality of green tea in east China:a climate changeperspective.European Food Research and Technology,2017,243:323-330.
[5]Lou W,Sun K,Zhao Y,Deng S,Zhou Z.Impact of climate change oninter-annual variation in tea plant output in Zhejiang,China.InternationalJournal of Climatology,2021,41:E479-E490.
[6]Yan Y,Jeong S,Park CE,Mueller N D,Piao S,Park H,Joo J,Chen X,WangX,Liu J,Zheng C.Effects of extreme temperature on China’s teaproduction.Environmental Research Letters,2021,16:044040.
发明内容
本发明的目的是提供一个新的茶树耐热负调控基因CsNIPA4及其应用,以填补现有技术的空白:本发明是CsNIPA4基因功能在植物中的首次报道。
本发明利用抑制消减杂交技术从茶树中分离出响应热胁迫响应基因CsNIPA4,CsNIPA4基因在CaMV35S启动子的控制下过量表达,充分发挥该基因的功能;本发明借助转基因拟南芥和转基因烟草对CsNIPA4基因进行功能解析,明确其生物学功能,分析发现其负调控植物的耐热性,发现了其有潜力应用于基因编辑培育新品种,不仅在理论上深化了植物高温响应机制,而且在生产实践中为茶树耐热栽培和耐热新品种的早期鉴定提供了理论依据。
为实现上述目的,本发明提供如下技术方案:
一种茶树耐热负调控基因CsNIPA4,该基因的核苷酸序列如SEQ ID NO.1所示。
本发明还提供包含所述的茶树耐热负调控基因CsNIPA4的载体。所述载体为融合表达载体。
进一步,将CsNIPA4基因插入pCAMBIA2300-C-EGFP表达载体的BamHI和XbaI酶切位点可以得到pCAMBIA2300-CsNIPA4植物表达载体。其构建方法如下:
1)以茶树品种‘鄂茶10号’的叶片(新梢一芽二叶)总RNA反转录得到的cDNA为模板,以CsNIPA4-F和CsNIPA4-R为引物对进行扩增并回收;
2)将步骤1)所得扩增产物为模板,以CsNIPA4-F-BamHI和CsNIPA4-R-XbaI作为引物对进行扩增并回收;
3)将步骤2)所得扩增产物经BamHI和XbaI双酶切后与经BamHI和XbaI双酶切的pCAMBIA2300-C-EGFP载体用T4DNA连接酶连接、转化,提取验证正确的阳性克隆质粒,即为植物表达载体pCAMBIA2300-CsNIPA4。
所述步骤1)中,引物CsNIPA4-F的核苷酸序列如SEQ ID NO.2所示,引物CsNIPA4-R的核苷酸序列如SEQ ID NO.3所示。
所述步骤2)中,引物CsNIPA4-F-BamHI的核苷酸序列如SEQ ID NO.4所示,引物CsNIPA4-R-XbaI的核苷酸序列如SEQ ID NO.5所示。
本发明还提供耐热负调控基因CsNIPA4在影响植物耐热性育种中的应用,CsNIPA4基因过表达能够降低植物的耐热性,在植物中缺失或抑制CsNIPA4基因表达能够提高植物的耐热性。所述植物为茶树、拟南芥和烟草等。
本发明还提供包含所述的茶树耐热负调控基因CsNIPA4的植物表达载体在影响植物耐热性育种中的应用,CsNIPA4基因过表达能够降低植物的耐热性,在植物中缺失或抑制CsNIPA4基因表达能够提高植物的耐热性。所述植物为茶树、拟南芥和烟草等。
其中,pCAMBIA2300-CsNIPA4植物表达载体用于农杆菌介导的植物遗传转化,在影响植物热胁迫响应方面的应用,方法如下:
冻融法转化根癌农杆菌GV3101感受态细胞及验证;农杆菌侵染拟南芥及转基因拟南芥纯合子的筛选;叶盘转化烟草及对烟草转基因纯合株系的筛选;异源表达CsNIPA4对转基因拟南芥/烟草的耐热性影响分析。
与现有技术相比,本发明具有的优点及有益效果:
1.本发明提供的茶树耐热负调控基因CsNIPA4在植物中首次报道,该基因负调控植物的耐热性,未来可辅助育种。
2.本发明构建的植物表达载体pCAMBIA2300-CsNIPA4为首次报道,可直接用于农杆菌介导的遗传转化,可用于植物热响应方面的研究;发明构建的植物表达载体pCAMBIA2300-CsNIPA4可导入植物中,可以增强植物对高温敏感性,降低植株耐热性。对后续研究中通过深入发掘并沉默或敲除该基因增加植株耐热性提供理论基础。
附图说明
图1:阳性转化的农杆菌菌液PCR验证结果,M:DNAmarker(DL2000)。
图2:植物表达载体pCAMBIA2300-CsNIPA4的结构示意图。
图3:异源表达CsNIPA4对转基因拟南芥耐热性的影响。其中:
A为拟南芥在平板中的位置示意图;
B为高温处理对平板培养拟南芥生长的影响。Control:22℃正常温度和光周期条件下培养10d;Heat:7d龄拟南芥幼苗在45℃处理60min,然后转入正常温度和光周期条件下培养3d;
C为拟南芥的存活率。
图4:异源表达CsNIPA4对转基因烟草耐热性的影响。其中:
A为高温处理对土培烟草生长的影响。烟草在正常温度和光周期条件下培养7d后从平板中转移至营养土中,待其8周大时进行高温处理。Control:22℃;Heat:40℃处理24h;
B为丙二醛含量;C为电子泄漏率。
具体实施方式
下面对发明的具体实施方式进行详细的说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程。下列实施例中未注明具体条件的试验方法,通常按照常规条件进行。
实施例1茶树耐热负调控基因CsNIPA4的克隆
于2018年5月12日上午9:00采摘茶树品种‘鄂茶10号’的新梢(一芽二叶),液氮速冻后转于-80℃冰箱保存备用。利用RNA提取试剂盒(北京华越洋生物科技有限公司)进行总RNA的提取。使用分光光度计检测RNA纯度和质量。当A260/A280=1.8~2.0且A260/A230>2.0时,样品可以用于后续试验。使用新景生物试剂有限公司的cDNA第一链合成试剂盒(货号:7306025)说明书进行总RNA反转录为cDNA的操作。以反转录得到的cDNA为模板,根据SEQID NO.1以BioXM软件设计基因上下游引物CsNIPA4-F和CsNIPA4-R,参见高保真酶GXL DNA Polymerase(TaKaRa)说明书扩增CsNIPA4基因(运行PCR程序时,退火温度为55℃,延伸时间为90s)。上下游引物CsNIPA4-F/R的核苷酸序列如下:
CsNIPA4-F:5′-atggcggtgg aggcttctca-3′,其核苷酸序列如SEQ ID NO.2所示;
CsNIPA4-R:5′-cggcaatctc aatgagtcct-3′,其核苷酸序列如SEQ ID NO.3所示。
实施例2植物表达载体pCAMBIA2300-CsNIPA4的构建
利用Zero Background pTOPO-Blunt Simple Cloning Kit(AidLab)将目的基因CsNIPA4与pTOPO-Blunt Simple Vector连接,连接产物转化大肠杆菌DH5α感受态后涂板挑取单克隆,在含有氨苄青霉素(Ampicilin 100mg/L)抗性培养基中再培养后挑取单克隆,扩繁后用特异性引物CsNIPA4-F/R,以Taq酶(Sangon Biotech)进行PCR扩增(运行PCR程序时,退火温度为55℃,延伸时间为90s),CsNIPA4-F/R引物的核苷酸序列如下:
CsNIPA4-F:5′-atggcggtgg aggcttctca-3′;
CsNIPA4-R:5′-cggcaatctc aatgagtcct-3′。
扩增产物进行凝胶电泳,挑选长度正确的阳性单克隆送北京擎科新业生物技术有限公司测序。测序成功且比对正确的菌液扩大培养后参照Plasmid Mini Kit(AidLab)说明书,提取携带目的基因CsNIPA4片段的过渡载体pTOPO-CsNIPA4质粒备用。使用BioXM软件设计加有植物表达载体pCAMBIA2300-C-EGFP酶切位点BamHI(G-GATCC)和XbaI(T-CTAGA)的引物(CsNIPA4-F-BamHI:5′-ggatccatgg cggtggaggc ttctca-3′,其核苷酸序列如SEQ IDNO.4所示,和CsNIPA4-R-XbaI:5′-tctagacggc aatctcaatg agtcct-3′,其核苷酸序列如SEQ ID NO.5所示)。以上述pTOPO-CsNIPA4质粒为模板,参见高保真酶GXLDNAPolymerase(TaKaRa)说明书进行加酶切位点的目的片段扩增(运行PCR程序时,退火温度为55℃,延伸时间为90s)。纯化回收PCR产物,连接pTOPO-Blunt Simple Vector,转化大肠杆菌(DH5α)感受态后涂在含有氨苄青霉素(Ampicilin 100mg/L)抗性的培养基中再培养后挑取单克隆,扩繁后用基因特异性引物CsNIPA4-F/R,以Taq酶(Sangon Biotech)进行PCR扩增(运行PCR程序时,退火温度为55℃,延伸时间为90s),CsNIPA4-F/R引物的核苷酸序列如下:
CsNIPA4-F:5′-atggcggtgg aggcttctca-3′;
CsNIPA4-R:5′-cggcaatctc aatgagtcct-3′。
扩增产物进行凝胶电泳,电泳条带正确后,送北京擎科新业生物技术有限公司利用载体通用引物M13-F/R进行测序。测序无误后扩繁提质粒,利用BamHI和XbaI双酶切,回收目的条带,并与经BamHI和XbaI双酶切的pCAMBIA2300-C-EGFP连接,转化大肠杆菌DH5α感受态,后涂在含有卡那霉素(Kanamycin 100mg/L)抗性的培养基中再培养后挑取单克隆并扩繁。以菌液为模板,使用基因特异性引物CsNIPA4-F/R(见SEQ ID NO.2和SEQ ID NO.3)和EGFP-F/R引物,利用Taq酶(Sangon Biotech)进行PCR扩增(运行PCR程序时,退火温度为55℃,延伸时间为90s),扩增产物进行凝胶电泳,电泳条带正确后,送北京擎科新业生物技术有限公司使用EGFP-R引物反向测序,测序结果无误后,扩繁大肠杆菌,提取pCAMBIA2300-CsNIPA4质粒并保存备用。
实施例3冻融法转化根癌农杆菌GV3101感受态细胞及验证
参照农杆菌GV3101感受态说明书进行化学转化,步骤如下:取–80℃保存的农杆菌GV3101感受态于冰上融化,待其处于冰水混合物状态时插入冰中。每100μL感受态加1μg上述实施例2提取得到的pCAMBIA2300-CsNIPA4质粒DNA(体积不大于10μL),用手轻拨管底混匀,依次于冰上静置5min、液氮5min、28℃水浴5min、冰浴5min。加入500μL无抗LB液体培养基,于28℃摇床振荡培养2h。5000rpm离心5min,留取100μL左右的上清轻轻吸打以重悬菌液,然后涂布于含卡那霉素(Kanamycin 50mg/L)和利福平(Rifampicin 20mg/L)双抗性的LB平板上,置于28℃培养箱倒置培养2d,培养过程中注意观察菌落情况。对平板上长出的单克隆进行挑取和菌液PCR鉴定,以菌液为模板,使用基因特异性引物CsNIPA4-F/R(见SEQ IDNO.2和SEQ ID NO.3)和EGFP-F/R引物,利用Taq酶(Sangon Biotech)进行PCR扩增(运行PCR程序时,退火温度为55℃,延伸时间为90s),扩增产物进行凝胶电泳,阳性转化的农杆菌菌液PCR验证结果如图1,选取阳性转化子菌液加等体积50%甘油-80℃保存备用。
实施例4农杆菌侵染拟南芥及转基因拟南芥纯合子的筛选
吸取100μL上述实施例3保存的阳性转化子菌液加入含有卡那霉素(Kanamycin50mg/L)和利福平(Rifampicin 20mg/L)双抗性的20mL LB液体培养基中,于28℃摇床中220rpm振荡培养,一般培养16~24h(视菌液活性而定)。5000rpm离心5min收菌,使用含有5%蔗糖的1/2MS液体培养基(pH=5.8)重悬菌液,调整其OD600=0.8。向重悬菌液中加入起泡剂Silwet-77(每100mL菌液加入20μL Silwet-77),轻轻混匀,即为拟南芥侵染液。对开花期生长状态良好的野生型拟南芥的花序侵染。侵染后的拟南芥浇水避光16h(即黑暗高湿环境)后恢复正常光周期,后续根据拟南芥生长状态每隔3~4d侵染一次,连续侵染4~5次后,即可结束侵染。侵染后的植株留待收种,即为T0代。
在超净工作台中使用75%的酒精对装在1.5mL离心管中的种子进行浸泡消毒,每次5min,期间不断振荡使种子充分悬浮,重复2~3次,再用无菌ddH2O清洗5~6次,期间振荡使其充分清洗。将灭菌的种子在4℃黑暗环境条件下春化2d,然后均匀点播在含50mg/L卡那霉素抗生素的1/2MS固体培养基上,放在组培室(昼夜参数:22/18℃,16/8h)中培养。将经过平板筛选的阳性苗移至土中,提取DNA。以上述DNA溶液为模板,使用CsNIPA4基因特异引物CsNIPA4-F/R和EGFP-F/R两对引物进行PCR鉴定,单株收取T1代阳性苗种子,继续进行抗性筛选至T3代转基因纯合株系。若平板的植株全部为生长状态良好的绿色植株,则可以认定其为转基因纯合株系,可以进行后续的功能验证。
实施例5叶盘转化烟草及对烟草转基因纯合株系的筛选
从-80℃超低温冰箱取出含pCAMBIA2300-CsNIPA4的农杆菌菌液,用灭菌的枪头蘸取少量菌液在含卡那霉素(Kanamycin 50mg/L)和利福平(Rifampicin 20mg/L)的LB固体培养基上划线,后倒置于在28℃培养箱的黑暗环境中生长约48h,待其长出单菌落。挑取单菌落接种于含有卡那霉素(Kanamycin 50mg/L)和利福平(Rifampicin 20mg/L)的LB液体培养基中,后在28℃摇床中以黑暗条件、220rpm振荡培养24h。取1mL上述菌液接种于50mL含有卡那霉素(Kanamycin 50mg/L)和利福平(Rifampicin 20mg/L)抗生素的LB液体培养基中,继续在黑暗条件下以220rpm振荡培养约6~8h,至OD600值达到0.6~0.8。将菌液在5000rpm转速下离心10min,倒掉上清液,加入适量烟草侵染悬浮液,调节OD600至0.6~0.8。在超净工作台中将无菌烟苗叶片剪下,剔去主脉,选择较为平整的叶片部分剪成拇指盖大小的叶盘(期间为了防止叶盘萎蔫,可以将剪下的叶盘置于无菌水中保湿)。将叶盘倒入农杆菌重悬液中侵染8~10min,其间不断摇晃使得叶盘充分接触农杆菌。侵染结束后,用滤纸吸干叶盘表面水分,移入共培养基中,叶盘正面朝下接触共培养基,暗培养3d。获得继代培养生根的烟苗,从组培瓶中取出后清除根部的固体培养基后将其转至营养土(基质土和蛭石的体积比为3:1)中进行培养。
将种子在4℃黑暗春化两天后均匀撒在放有浸湿无菌滤纸培养皿中,在其表面再盖上一层浸湿的无菌滤纸,每3d喷一次无菌水,一周后将萌发的烟草苗移至营养土(基质土:蛭石=3:1)中培养。待阳性苗长出多片真叶后提取烟草DNA。
实施例6异源表达CsNIPA4对转基因拟南芥/烟草的耐热性影响分析
1)转基因拟南芥的热敏感性实验
平板耐热性试验:将野生型拟南芥(WT)、转基因拟南芥(OE-1、OE-2、OE-3、OE-4、OE-5、OE-6和OE-7)种子播种于MS固体平板(0.8g/L琼脂,30g/L蔗糖,pH5.8)上,未经处理的野生型拟南芥作为对照,在22℃正常温度和光周期条件下培养10d。转基因组于正常培养7d后将幼苗转移至45℃水浴锅中,高温处理60min后立即转移至正常培养条件下的光照培养箱中培养,3d后观察拟南芥存活率并拍照,异源表达CsNIPA4对转基因拟南芥耐热性的影响结果见图3,CsNIPA4基因超表达株系(OE)叶片在高温胁迫处理后出现明显的萎蔫、死亡。
2)转基因烟草的热敏感性试验
参照实施例5获得烟草7d幼苗。将7d的野生型烟草(WT)、转基因烟草(OE-1、OE-2)的幼苗移至营养土(基质:土蛭石=3:1)中培养。野生型烟草(WT)作为对照组,在22℃正常温度和光周期条件下培养8周。转基因组在生长室中24℃条件下(24℃,16h光照;20℃,8h黑暗)生长8周后进行高温耐热性试验,在40℃处理24h。所有处理均通过3个生物学重复完成。异源表达CsNIPA4对转基因烟草耐热性的影响结果如图4所示,CsNIPA4基因超表达株系(OE)叶片在高温胁迫处理后出现一定程度的萎蔫和黄化。继续对烟草叶片的相关生理指标进行测定。
3)丙二醛(MDA)含量测定
利用Boxbio丙二醛(MDA)含量检测试剂盒(货号:AKFA013),参照其说明书,分别称取0.05g野生型烟草(WT)、转基因烟草(OE-1、OE-2)样品,加入500μL的提取液,冰浴匀浆,4℃,8000rpm离心10min,去上清置于冰上待测。另取未加叶片的500μL提取液作为空白。用酶标仪分别测定其在450nm、532nm、600nm处的吸光值,计算相应的MDA含量。由图4可知:超表达株系的MDA含量显著上升。
4)电子泄漏率测定
分别快速称取野生型烟草(WT)、转基因烟草(OE-1、OE-2)叶片组织0.05g,置于已加入25mL ddH2O的50mL管中,另取一未加叶片的50mL管加入25mL ddH2O作为空白。管移至摇床28℃、220rpm摇震30min后静置10min,测定电导率,记为SI,空白记为CKI。沸水浴30min至叶片全部变为黄褐色,冷却后测定电导率,记为SL,空白记为CKL。按下列公式计算:电子泄漏率(%)=(SI-CKI)/(SL-CKL)×100%。以此数值来表示细胞膜对离子的选择透性。由图4可知:超表达株系的电子泄漏率升高。
综上,超表达烟草的叶绿素含量降低,丙二醛含量和电子泄漏率升高,这和拟南芥耐热性结果相互印证。
综上所述,本发明构建了含有茶树耐热负调控基因CsNIPA4的植物表达载体pCAMBIA2300-CsNIPA4,其中CsNIPA4首次报道。所构建的pCAMBIA2300-CsNIPA4载体可导入植物中,可以增强植物对高温敏感性,降低植株耐热性。后期可以通过深入发掘并沉默或敲除该基因增加植株耐热性。

Claims (8)

1.一种茶树耐热负调控基因CsNIPA4,其特征在于,所述茶树耐热负调控基因CsNIPA4的核苷酸序列如SEQ ID NO.1所示。
2.含有权利要求1所述的茶树耐热负调控基因CsNIPA4的载体。
3.根据权利要求2所述的载体,其特征在于,所述载体为融合表达载体。
4.根据权利要求2所述的载体,其特征在于,所述载体是将CsNIPA4基因插入pCAMBIA2300-C-EGFP表达载体的BamHI和XbaI酶切位点得到。
5.根据权利要求4所述的载体,其特征在于,构建载体的方法如下:
1)以茶树叶片的总RNA反转录得到的cDNA为模板,以CsNIPA4-F和CsNIPA4-R为引物对进行扩增并回收;
2)将步骤1)所得扩增产物为模板,以CsNIPA4-F-BamHI和CsNIPA4-R-XbaI作为引物对进行扩增并回收;
3)将步骤2)所得扩增产物经BamHI和XbaI双酶切后与经BamHI和XbaI双酶切的pCAMBIA2300-C-EGFP载体用T4DNA连接酶连接、转化,提取验证正确的阳性克隆质粒,即为植物表达载体pCAMBIA2300-CsNIPA4;
所述步骤1)中,引物CsNIPA4-F的核苷酸序列如SEQ ID NO.2所示,引物CsNIPA4-R的核苷酸序列如SEQ ID NO.3所示;
所述步骤2)中,引物CsNIPA4-F-BamHI的核苷酸序列如SEQ ID NO.4所示,引物CsNIPA4-R-XbaI的核苷酸序列如SEQ ID NO.5所示。
6.权利要求1所述的基因CsNIPA4、权利要求2-5任一所述的载体在影响植物耐热性育种中的应用,其特征在于,在植物中缺失或抑制CsNIPA4基因表达能够提高植物的耐热性。
7.权利要求1所述的基因CsNIPA4、权利要求2-5任一所述的载体在影响植物耐热性育种中的应用,其特征在于,在植物中过表达CsNIPA4基因能够降低植物的耐热性。
8.权利要求6或7所述的应用,其特征在于,所述植物为茶树、拟南芥或烟草。
CN202310992382.XA 2023-08-08 2023-08-08 一种茶树耐热负调控基因CsNIPA4及其应用 Pending CN116804201A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310992382.XA CN116804201A (zh) 2023-08-08 2023-08-08 一种茶树耐热负调控基因CsNIPA4及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310992382.XA CN116804201A (zh) 2023-08-08 2023-08-08 一种茶树耐热负调控基因CsNIPA4及其应用

Publications (1)

Publication Number Publication Date
CN116804201A true CN116804201A (zh) 2023-09-26

Family

ID=88079615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310992382.XA Pending CN116804201A (zh) 2023-08-08 2023-08-08 一种茶树耐热负调控基因CsNIPA4及其应用

Country Status (1)

Country Link
CN (1) CN116804201A (zh)

Similar Documents

Publication Publication Date Title
CN109837296B (zh) 玉米基因ZmNAC77的一个耐盐耐旱新功能及其应用
CN110643618A (zh) 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用
CN111424037A (zh) 一种春兰CgWRKY70基因及其应用
US20230313151A1 (en) Use of Gene Encoding Gibberellin 3Beta-Hydroxylase of Glycine Max, GmGA3ox1
CN113234720B (zh) 小麦长链非编码RNAlncR156及其在调控小麦响应干旱胁迫中的应用
CN112898391B (zh) 枳抗寒基因PtrERF9在植物抗寒遗传改良中的应用
CN114480414A (zh) 一种增强植物耐寒性或培育高耐寒性植物的方法
CN116804201A (zh) 一种茶树耐热负调控基因CsNIPA4及其应用
Khan et al. Genetic engineering of sugarcane with the rice tonoplast H+-ppase (OVP2) gene to improve sucrose content and salt tolerance
CN107164388B (zh) 小麦耐盐基因TaPEX1及其应用
CN116640799B (zh) 蒺藜苜蓿MtMET1基因在调控植物耐逆境胁迫中的应用
CN116410985B (zh) 小麦TaNF-YB3D基因、其可变剪接形式及应用
CN115948417B (zh) 一种大麦HvFRF1基因、蛋白、表达载体以及用途
CN115948421B (zh) 小麦耐碱生长素响应蛋白基因TaSAUR215及其应用
CN116064572B (zh) 一种促进不定根发育的MdWOX11基因、蛋白及其应用
CN110835367B (zh) 梨调控开花转录因子PbrSPL15及其应用
CN115976053A (zh) 一种干旱胁迫相关的鸭茅基因及其应用
CN117603995A (zh) 紫花苜蓿类钙调蛋白cml50基因及其应用
CN117625603A (zh) 一种创制耐冷茄子种质的方法及其应用
CN117511955A (zh) 紫花苜蓿类钙调蛋白cml16基因及其应用
CN118222579A (zh) 一种具有抗干旱胁迫的鸭茅基因及其应用
CN118290550A (zh) 黄花苜蓿R2-R3型转录因子MfMYB4及其应用
CN117230082A (zh) 调控植物开花时间的方法及其生物材料与应用
CN117586978A (zh) 棉花蛋白及其相关生物材料在增强植物耐涝性中的应用
CN116410285A (zh) 烟草转录因子NtbHLH68及其编码蛋白在烟碱合成代谢中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination