CN116802006A - 在焊接类型操作中协同控制焊接类型输出的方法和装置 - Google Patents

在焊接类型操作中协同控制焊接类型输出的方法和装置 Download PDF

Info

Publication number
CN116802006A
CN116802006A CN202180090399.5A CN202180090399A CN116802006A CN 116802006 A CN116802006 A CN 116802006A CN 202180090399 A CN202180090399 A CN 202180090399A CN 116802006 A CN116802006 A CN 116802006A
Authority
CN
China
Prior art keywords
welding
control
control signal
power
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180090399.5A
Other languages
English (en)
Inventor
克雷格·斯蒂芬·克诺那
查尔斯·艾斯·泰勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Publication of CN116802006A publication Critical patent/CN116802006A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1012Power supply characterised by parts of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1043Power supply characterised by the electric circuit
    • B23K9/1056Power supply characterised by the electric circuit by using digital means
    • B23K9/1062Power supply characterised by the electric circuit by using digital means with computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1087Arc welding using remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding Control (AREA)

Abstract

公开了在焊接型操作期间协同控制焊接型输出的焊接型电力供应器(100)。示例的焊接型电力供应器(100)包括功率转换电路(110),其被配置为将输入功率转换为焊接型功率并将焊接型功率输出到焊接型焊炬(106);通信电路(118),其配置为在焊接型操作期间接收来自远程控制装置(104)的控制信号;以及控制电路(134),其配置为协同控制由功率转换电路(110)输出的焊接型功率的电压、焊接型功率的电流或送丝速度中的至少两项。

Description

在焊接类型操作中协同控制焊接类型输出的方法和装置
相关申请交叉引用
本申请要求获得2020年11月30日提交的美国临时专利申请序列号63/119,270,题为“在焊接类型操作中协同控制焊接类型输出的方法和装置(METHODS AND APPARATUS TOSYNERGICALLY CONTROL A WELDING-TYPE OUTPUT DURING A WELDING-TYPE OPERATION)”和2021年11月11日提交的美国专利申请号17/524,362,题为“在焊接类型操作中协同控制焊接类型输出的方法和装置(METHODS AND APPARATUS TO SYNERGICALLY CONTROL AWELDING-TYPE OUTPUT DURING A WELDING-TYPE OPERATION)”的权益。美国专利申请序列号63/119,270和17/524,362的全部内容在此明确地通过引用纳入。
背景技术
本公开一般涉及焊接以及,更具体地,在焊接类型操作期间协同控制焊接类型输出的方法和装置。
发明内容
公开了在焊接类型操作期间协同控制焊接类型输出的方法和装置,基本上如至少一个附图所示和结合至少一个附图进行描述,如权利要求中更完整地阐述。
说明书附图
图1是根据本公开的各方面,包括远程送丝器并被配置为提供协同功率控制的示例焊接型系统的框图。
图2是根据本公开的各方面,另一个示例焊接型系统的框图,该焊接型系统被配置为提供具有焊接型电力供应器的协同功率控制,该焊接型电力供应器具有与之一体形成的送丝器。
图3是根据本公开的各方面,另一个示例焊接型系统的框图,该焊接型系统包括被配置为提供协同功率控制的功率控制电路。
图4是图3的功率控制电路的示例实施方案的框图。
图5A是包括相应的电压、送丝速度,以及工艺模式的示例表,其可用于确定执行焊接操作的电压设定点、送丝速度设定点和/或工艺模式。
图5B是另一个示例表,其包括用于执行焊接操作的时间表和相应的焊接参数。
图6是表示示例机器可读指令的流程图,其可由图1、2和/或3的焊接型系统执行,以基于在焊接操作期间接收的输入协同控制焊接系统。
图7A和7B显示了表示示例机器可读指令的流程图,其可由图1、2和/或3的焊接型系统执行,以设置控制信号的保持值并基于保持值协同控制焊接型系统。
图8是表示可由图1、2和/或3的焊接型系统执行的示例机器可读指令的流程图,以基于控制信号协同控制焊接型系统并过滤控制信号的变化。
图9展示了图1、2和/或3的控制信号的输入值范围与基于焊接操作的指定物理特性的电压范围和送丝速度范围的示例映射关系。
图10是表示示例机器可读指令的流程图,该机器可读指令可由图1、2和/或图3的焊接型系统执行以在数值范围内协同控制焊接型系统,其中该范围是基于工件的特性确定的。
图11示出了图1、2和/或3的控制信号的输入信号范围的多个子范围与不同的功率范围、电压范围和/或送丝速度范围的示例映射关系,用于基于控制信号的输入值执行焊接型系统的协同控制。
图12表示示例机器可读指令的流程图,该机器可读指令可由图1、2和/或图3的焊接型系统执行以利用输入信号范围的多个子范围协同控制焊接型系统。
图13表示示例机器可读指令的流程图,该机器可读指令可由图1、2和/或图3的焊接型系统执行以控制焊接型系统执行焊接开始序列。
图14表示示例机器可读指令的流程图,该机器可读指令可由图1、2和/或图3的焊接型系统执行以控制焊接型系统协同控制焊接开始序列。
这些图不一定是按比例的绘制。在适当的情况下,可使用类似或相同的附图标记来表示类似或相同的部件。
具体实施方式
气体金属电弧焊(GMAW),也被称为MIG焊接,传统上是在进行焊接前以预选送丝速度和电压执行的。例如,传统的焊接电力供应器可以通过焊接电力供应器前面板上的旋钮或按钮来控制。如果操作者选择太小的功率,所产生的焊缝可能熔合不足,焊接可能失败。反之,如果操作者选择了过大的功率,可能会发生材料烧穿,产生孔而不是焊接接头。
一些传统的焊机,如米勒电气制造公司的211Auto-SetTMMIG焊机,通过允许操作员基于焊丝尺寸和材料厚度选择送丝速度和电压两者,使选择焊接参数的任务变得更容易。当工件具有统一的厚度和几何形状时,预选焊接参数是有效的,但在某些情况下,工件可能具有变化的厚度和/或几何形状。例如,如果操作者在焊接逐渐变窄的工件时,金属的散热能力就会降低,在整个距离内使用相同的功率设置可能会导致烧穿和产生孔。
所公开的示例方法和装置提供了用于GMAW工艺的焊接型电力供应器,该焊接型电力供应器使操作人员能够在焊接期间协同调节输出功率。操作员进行协同调节的示例方法涉及操纵焊炬上的控制装置,该控制装置在焊接期间容易被操作员接触到。
传统的焊接型电力供应器可以提供推荐的电压和送丝速度,并允许用户在指定的狭窄范围内改变电压和/或送丝速度,所公开的示例提供了控制装置,其允许操作者在广泛的操作范围内调节GMAW焊接型电力供应器的输出功率。例如,可以在焊炬上提供手动可调的控制装置,通过同时改变输出电压和送丝速度来协同调节功率,以提高或降低输出功率,以适应工作条件和焊件。本例中的焊炬,以及附接的电力供应器和/或远程送丝器,在操作者焊接时,用一种容易使用的方法,如可变输入(如模拟输入)触发器,改变焊接输出功率和/或送丝速度。
一些示例方法和装置在焊接期间进一步自动改变操作模式或沉积模式,使得操作者可以以连续可变的方式即时改变工艺,使得操作者具有非常宽的输出功率的操作范围。例如,如果操作者想从第一功率操作或沉积模式(如短弧焊接)转到较高的功率操作或沉积模式(如脉冲喷焊),例如操作者遇到被焊接工件的厚度增加,功率控制电路可以按照协同控制方案,缓慢提高输出电压和送丝速度,直到焊丝从短弧状态过渡到脉冲喷焊状态。在另一个示例方案中,功率控制电路可允许操作者从第一功率操作或沉积模式(如短弧焊接)过渡到较低功率操作或沉积模式(如受调控的金属沉积(RMDTM))。所公开的示例使操作者能够进入其他沉积模式,如受控短路(CSC)工艺,和/或无电弧“热丝”沉积。操作员可以在焊接操作过程中在不同的沉积模式之间进行实时切换,以精细控制焊丝沉积和/或对焊接的热输入。
一些公开的示例系统和方法提供了触发器保持特征,使操作人员能够设置特定的协同输出。当触发器保持生效时,操作者可以释放触发器(或脚踏板等),同时电源保持协同输出以继续焊接型操作。在一些示例中,触发器的保持是在基本恒定的输出(例如,小于阈值偏差)持续了一个阈值时间段之后生效的。在一些这样的例子中,触发器保持功能超时,并响应于操作者没有在阈值时间段内使用触发器保持功能而被禁用。例如,如果操作者不知道触发器保持功能可用并准备好生效,或者如果操作者希望继续使用协同输出而不使用触发器保持特征,那么触发器保持特征就会超时,并且触发器的释放不太可能导致非意图的继续焊接。一些公开的示例系统和方法输出可感知的警报,以通知操作者触发器保持可能生效(例如,当输入设备被释放时),如视觉警报、听觉警报、触觉警报和/或任何其他类型的可感知反馈。
由于输入装置(例如,触发器、脚踏板或其他可变输入装置)对一些操作者来说可能难以保持在稳定的位置上,一些公开的系统和方法过滤用于控制协同输出的输入信号。在一些例子中,过滤器减少了输出中短期或瞬时变化的影响。一些例子的系统和方法通过对输入信号施加权重来过滤输入信号,并使用输入信号的多个加权样本来确定过滤后的输入信号,然后用它来确定协同输出。最近的样本可以被赋予较低的权重,随着样本年龄的增加,应用于某一给定样本的权重也会增加。最近的样本的数量可以被限制,以使操作者在焊接过程中能够响应地改变协同输出。
在一些公开的示例系统和方法中,输入信号值的范围(例如,来自触发器、脚踏板或其他可变输入设备)被映射到焊接型系统所能达到的整个输出功率范围。在其他公开示例的系统和方法中,输入信号值的范围被映射到协同输出的子范围,和/或参与生成协同输出的变量(例如,电压和送丝速度)的子范围。在一些例子中,协同输出的子范围是根据焊接操作的一个或多个物理特性来确定的,如工件厚度、工件材料、焊丝直径、焊丝材料和/或保护气体成分。另外地或者可替代地,输入信号范围的子范围被映射到协同输出的不同子范围,其中输入信号范围的子范围不是等宽的,和/或协同输出的子范围不是等宽的。
一些公开的示例系统和方法涉及根据控制信号的值协同控制多个焊接型参数的值,例如通过在查找表中查找这些参数。在其他例子中,主要参数或关键参数(例如,电压、电流、功率等)可以与控制信号相关联,并且一个或多个次要参数(例如,送丝速度、脉冲修整等)基于主要参数的变化而调整。
另外地或可替代地,不是基于控制信号或主要参数修改参数,而是以通过控制信号控制一个或多个参数,而其他操作参数保持不变。保持参数恒定可以使操作者,例如,根据焊接的条件改变感兴趣的特定参数,而不需要由焊接型系统响应于修改的参数而进行多次调整。
如本文所用,术语“焊接型功率”是指适合于焊接、等离子切割、感应加热、CAC-A和/或热丝焊接/预热(包括激光焊接和激光熔覆)的功率。如本文所使用的,术语“焊接型电力供应器”是指当电力供应器应用于此时,能够提供焊接、等离子切割、感应加热、CAC-A和/或热丝焊接/预热(包括激光焊接和激光熔覆)功率的任何装置,包括但不限于逆变器、转换器、谐振电力供应器、准谐振电力供应器等,以及与其相关的控制电路和其他辅助电路。
如本文所使用的,焊接型电力供应器是指当功率被施加到其上时,能够为焊接、熔覆、等离子切割、感应加热、激光加工(包括激光焊接、激光混合作业和激光熔覆)、碳弧切割或刨削和/或电阻预热供电的任何装置,包括但不限于变压器-整流器、逆变器、转换器、谐振电力供应器、准谐振电力供应器、开关模式电力供应器等,以及与其相关的控制电路和其他辅助电路。
如本文所用,“焊接电压设定点”是指通过用户界面、网络通信、焊接程序规范或其他选择方法输入到功率转换器的电压。
如本文所使用的,“电路”包括任何模拟和/或数字组件、电源和/或控制元件,例如微处理器、数字信号处理器(DSP)、软件等,分立和/或集成部件,或其部分和/或组合。
如本文所使用的,“协同控制”是指根据特定的关系控制两个或更多个变量或部件。在一些例子中,通过输入设备控制主要变量,并且根据主要变量协同控制一个或多个变量。如本文所使用的,“协同输出”指的是焊接型功率,其中与产生焊接型功率相关的两个或更多个变量根据特定的关系被控制。
如本文所使用的,术语“远程送丝器”是指不与电源整合在一个壳体中的送丝器。
现在转向附图,图1是具有焊接型电力供应器102、送丝机104和焊炬106的示例焊接系统100的框图。焊接系统100为焊接应用提供电源、控制和供应消耗品。例子中的焊炬106被配置为气体金属电弧焊(GMAW)。在图示的例子中,电力供应器102被配置为向送丝器104供电,而送丝器104可以被配置为将输入功率输送到焊炬106。除了提供输入功率外,送丝器104还为各种焊接应用(如GMAW、药芯电弧焊(FCAW))向焊炬106提供填料金属。
电力供应器102接收主功率108(例如,来自交流电网、发动机/发电机组、电池、或其他能量产生或储存装置,或其组合),对主功率进行调节,并根据系统100的需求向一个或多个焊接装置提供输出功率。主功率108可以从非现场的位置供应(例如,主功率可以来自电网)。电力供应器102包括功率转换电路110,它可以包括变压器、整流器、开关等,能够根据系统100的要求(例如,特定的焊接过程和方法),将交流输入功率转换为交流和/或直流输出功率。功率转换电路110根据焊接电压设定点将输入功率(例如,主功率108)转换为焊接型功率,并通过焊接电路输出焊接型功率。
在一些示例中,功率转换电路110被配置为将主功率108转换为焊接型功率和辅助功率输出。然而,在其他例子中,功率转换电路110适合于仅将主功率转换为焊接型功率输出,并且提供单独的辅助转换器以将主功率转换为辅助功率。在其他一些例子中,电力供应器102直接从壁装插座接收转换后的辅助功率输出。电力供应器102可以采用任何合适的功率转换系统或机制来产生和提供焊接和辅助功率。
电力供应器102包括控制电路112以控制电力供应器102的操作。电力供应器102还包括用户界面114。控制电路112接收来自用户界面114的输入,通过用户界面114,用户可以选择工艺和/或输入所需的参数(例如,电压、电流、特定的脉冲或非脉冲焊接方法等)。用户界面114可以利用任何输入设备接收输入,例如通过键区、键盘、按钮、触摸屏、语音激活系统、无线设备等。此外,控制电路112根据用户的输入以及根据其他当前的操作参数来控制操作参数。具体地,用户界面114可以包括显示屏116,用于向操作者呈现、显示或指示信息。控制电路112还可以包括接口电路,用于与系统100中的其他设备,如送丝器104进行数据通信。例如,在某些情况下,电力供应器102与送丝器104和/或焊接系统100内的其他焊接装置进行无线通信。此外,在某些情况下,电源102使用有线连接与送丝器104和/或其他焊接装置进行通信,例如通过使用网络接口控制器(NIC)通过网络(例如以太网、10BASE2、10BASE-T、100BASE-TX等)进行数据通信。
控制电路112包括至少一个处理器120,其控制电力供应器102的操作。控制电路112接收和处理与系统100的性能和需求相关的多个输入。处理器120可以包括一个或多个微处理器,例如一个或多个“通用”微处理器,一个或多个专用微处理器和/或ASICS,和/或任何其他类型的处理装置和/或逻辑电路。例如,处理器120可以包括一个或多个数字信号处理器(DSPs)。
示例控制电路112包括一个或多个存贮装置123和一个或多个存储装置124。存贮装置123(例如,非易失性存储)可以包括ROM、闪存、硬盘、和/或任何其他合适的光、磁和/或固态存储介质、和/或其组合。存贮装置123存储数据(例如,对应于焊接应用的数据)、指令(例如,执行焊接过程的软件或固件)、和/或任何其他适当的数据。用于焊接应用的存储数据的示例包括焊炬的姿态(例如,方向)、接触端头和工件之间的距离、电压、电流、焊接装置设置等等。
存储装置124可以包括易失性存储器,例如随机存取存储器(RAM),和/或非易失性存储器,例如只读存储器(ROM)。存储器装置124和/或存贮装置123可以存储各种信息,并且可以用于各种目的。例如,存储装置124和/或存贮装置123可以存储供处理器120执行的处理器可执行指令125(例如,固件或软件)。此外,用于各种焊接过程的一个或多个控制方法,以及相关的设置和参数,连同配置为在操作期间提供特定输出(例如,开始送丝、允许气体流动、捕获焊接电流数据、检测短路参数、确定飞溅量)的代码,可以被存储在存贮装置123和/或存储装置124中。
在一些例子中,焊接电源从功率转换电路110通过焊接缆线126流向送丝器104和焊炬106。示例的焊接缆线126可从电力供应器102和送丝器104中的每一个上的焊接柱上附接和从中拆卸(例如,在磨损或损坏的情况下使焊接缆线126易于更换)。
示例通信收发器118包括接收器电路121和发送器电路122。一般来说,接收器电路121接收由送丝器104传送的数据,发射电路122将数据传送到送丝器104。示例的送线器104还包括通信收发器119,其在结构和/或功能上可以与通信收发器118相似或相同。
在一些例子中,气体供应器128提供保护气体,例如氩气、氦气、二氧化碳等,这取决于焊接应用。保护气体流向阀130,该阀控制气体的流动,并且如果需要,可以选择允许调节或调整供应给焊接应用的气体量。阀130可以被打开、关闭,或由控制电路112以其他方式操作,以启用、抑制或控制通过阀130的气体流动(例如,保护气体)。保护气体从阀130出来,通过缆线132(在一些实施方案中可以与焊接功率输出一起输送)流向送丝器104,送丝器104向焊接应用提供保护气体。在一些例子中,焊接系统100不包括气体供应128、阀130、/或缆线132。在其他一些例子中,阀130位于送丝器104中,并且,气体供应128连接到送丝器104。
在一些例子中,送丝器104使用焊接功率为送丝机104中的各种部件供电,例如为送丝器控制电路134供电。如上所述,焊接缆线126可被配置为提供或供应焊接功率。送丝器控制电路134控制送丝器104的操作。在一些例子中,送丝器104使用送丝器控制电路134来检测送丝器104是否与电力供应器102通信,并且如果送丝器104与电力供应器102通信,则检测电力供应器102的当前焊接过程。
接触器135(例如,高电流继电器)由送丝器控制电路134控制,并被配置为允许或抑制焊接功率继续流向焊接缆线126以进行焊接应用。在一些例子中,接触器135是机电设备。然而,接触器135可以是任何其他合适的装置,如固态装置,和/或可以完全被省略,焊接缆线126直接连接到焊炬106的输出。送丝器104包括焊丝驱动装置136,该焊丝驱动装置136接收来自送丝器控制电路134的控制信号,以驱动辊138旋转,将焊丝从焊丝卷轴140上拉下来。焊丝驱动装置136将电极丝送入焊炬106。焊丝通过焊炬缆线142提供给焊接应用。同样地,送丝器104可以通过缆线142从缆线132提供保护气体。电极丝、保护气体和来自焊接缆线126的功率在单个焊炬缆线144中被组合在一起,和/或被分别地提供给焊炬106。
焊炬106为焊接应用递送焊丝、焊接功率、和/或保护气体。焊炬106被用来在焊炬106和工件146之间建立焊接电弧。工作缆线148将工件146与电力供应器102(例如,与功率转换电路110)联接起来,为焊接电流提供返回路径(例如,作为焊接电路的一部分)。示例的工作缆线148可附接至电力供应器102和/或从中拆卸,以便更换工作缆线148。工作缆线148可以用夹子150(或另一个功率连接装置)端接,该夹子将电力供应器102联接到工件146上。
通信缆线154连接在电力供应器102和送丝器104之间,通信缆线使收发器118、119之间能够双向通信。通信收发器118和119可以通过通信缆线154、通过焊接电路、通过无线通信、和/或任何其他通信介质进行通信。这种通信的例子包括在远离电力供应器102的装置(例如送丝器104)上测量得到的焊接缆线电压。
示例焊炬106包括功率选择器电路156,以允许焊炬的用户(例如,焊工)以协同方式对来自焊炬的焊接输出进行调整。例如,当用户通过功率选择器电路156进行调整时,电源102和送丝器104协同改变焊接的输出电压和送丝速度。功率选择器电路156的示例实施方式是压敏触发器。例如,焊炬106可以包括与在传统焊接型焊炬中使用的相同的触发器,将其改型以提供模拟信号或编码的数字信号,以表示对触发器的输入量。在一些例子中,操作者可以渐增地压下触发器(例如,施加更多的压力)以协同地提高电压和送丝速度,和/或渐增地释放触发器(例如,施加更少的压力)以协同降低电压和送丝速度。功率选择器电路156的替代性实施方案包括转轮或滑条,其被配置为以控制电位计,并被定位为使操作者在(在同时地按住触发器的同时)焊接时对输入作出调整。在一些例子中,电位计包括机械开关,该机械开关配置为提供反馈,该反馈指示启动焊接过程的模拟输入装置的致动的下限。功率选择器电路156的另一个实施例是2020年1月30日提交的美国专利申请序列号16/777,185中公开的基于感应的控制装置,题为“具有开关功能的感应位置传感器(INDUCTIVEPOSITION SENSOR WITH SWITCH FUNCTION)”。美国专利申请序列号16/777,185的全部内容通过引用并入本文。
功率选择器电路156输出控制信号158到送丝器104的功率控制电路160。控制信号158可以是代表来自功率选择器电路156的输出的模拟或数字信号。示例的功率控制电路160可以使用控制电路134来实现和/或作为单独的电路来实现。功率控制电路160在涉及焊接型功率的焊接型操作期间识别用户输入(例如,来自功率选择器电路156的输入)。功率控制电路160,根据用户的输入,确定焊接型功率的电压调整和送丝速度调整。例如,功率控制电路160可以参考协同控制方案,如算法或查找表,以确定与用户输入相对应的电压设定点和/或送丝速度设定点。查找表可以存储在,例如,控制电路134的存贮装置123和/或存储器124中。
示例功率控制电路160产生一个或多个控制信号,以控制焊接型电力供应器102执行电压调整,并控制送丝器104执行送丝速度调整。例如,功率控制电路160可以向控制电路134提供送丝速度命令以控制焊丝驱动装置136的送丝速度,和/或通过通信收发器119和通信缆线154向电力供应器102传输控制信号以控制电力供应器102的输出电压。
在一些示例中,电压和送丝速度的协同控制导致功率控制电路160响应于通过功率选择器电路156的用户输入而改变沉积模式。例如,GMAW沉积模式,例如无电弧热丝模式、可调节金属沉积模式、受控短路模式、短弧模式、脉冲喷射模式或喷射转移模式,通常对应于不同的电压范围(在某些模式之间有一些范围重叠)。
在一些例子中,控制电路112实现了触发器保持特征,该触发器保持特征使得操作者能够设置特定的协同输出。当触发器保持生效时,操作者可以释放功率选择器电路156(例如,导致控制信号的归一化值下降到小于与输出焊接型功率相关的阈值),并且控制电路112继续使用控制信号158的保持值来保持协同输出。在一些例子中,在基本地恒定输出(例如,小于阈值偏差)持续了阈值时间段后,使触发器保持生效。另外地或可替代性地,焊炬106、送丝器104和/或任何其他装置可以包括输入装置(例如,按钮、开关等),该输入装置向控制电路112提供控制信号保持命令。当使用触发器保持时,例如操作者释放功率选择器电路156,控制电路112确定适当的协同输出,并根据与控制信号保持命令相关联的确定的保持值来控制功率转换电路110和送丝器104。例如,保持值可以利用操作者将功率选择器电路156保持一段阈值时间以产生控制信号保持命令的值,和/或在产生控制信号保持命令时控制信号158的值来确定。
响应于操作者在阈值时间段内不使用触发器保持功能,控制电路112可以使触发器保持特征超时,并且禁用触发器保持功能。例如,如果操作者不知道触发器保持功能可用或已准备生效,响应于焊炬106的触发器的释放,操作者可能不打算继续进行焊接型操作。在其他情况下,操作者可能不希望使用触发器保持,而更愿意在焊接型操作期间继续使用(例如,改变)协同输出。
一些示例中,控制电路112通过输出可感知的警报来响应控制信号保持命令,以通知操作者触发器保持可以生效(例如,当功率选择器电路156被释放时)。示例警报可以包括视觉警报、听觉警报、触觉警报和/或任何其他类型的可感知反馈。示例的触发器保持反馈可以包括,例如,听觉信号(例如,通过在电力供应器102中的扬声器、送丝器104、焊炬106、操作员的头盔和/或任何其他扬声器的哔哔声、音调、听觉消息和/或任何其他听觉反馈),视觉信号(例如、通过电力供应器102、送丝器104、焊炬106、操作者的头盔和/或任何其他视觉装置的光、LED、显示器和/或任何其他视觉反馈),触觉反馈(例如,在焊炬106或其他可被操作者感知的位置的触觉或其他触觉反馈),和/或任何其他形式的反馈。如果操作者选择使用触发器保持功能(例如,通过释放触发器或其他可变输入装置),触发器保持反馈信号向操作者传达在目前的协同输出水平上使触发器保持功能生效。在一些例子中,焊炬106包括振动电机以产生对操作者的触觉反馈,并且控制电路被配置为响应于控制信号保持命令输出触觉反馈信号以控制振动电机、偏心旋转质量致动器、压电致动器和/或任何其他触觉发生器。
示例控制电路112还可以过滤控制信号158,以避免在协同输出中因难以将功率选择器电路156保持在稳定位置而引起的非预期变化。例如,控制电路112可以过滤控制信号158以减少在协同输出中短期或瞬时变化的影响。示例性的过滤技术可能涉及使用控制信号158的一组最近的样本来确定协同输出,并根据样本的年龄对控制信号158的样本施加权重。因此,在确定协同输出时,较老的样本比较新的样本的权重更高。在一些这样的例子中,在样本的阈值年龄之后权重可以具有快速的增加,使得在小于阈值时间之前测量的样本的权重非常低,而在大于阈值时间之前测量的样本的权重大大增加。
所使用的另一示例技术涉及基于控制信号158在给定时间的值确定控制信号158的过滤子范围的值。当控制信号158在随后的时间的值保持在过滤子范围内时,控制电路112基于用于确定过滤子范围的控制信号158的值协同地控制焊接型功率的电压和送丝速度。
在一些例子中,控制电路112将控制信号158的值的范围或值的子范围映射到焊接型系统100能够达到的整个输出功率的范围。在其他例子中,控制信号158的值的范围被映射到协同输出的子范围和/或参与产生协同输出的变量(例如,电压和送丝速度)的子范围。例如,控制电路112可以根据焊接型操作的物理特性确定协同输出的推荐范围和/或容许范围,这些物理特性可以通过用户界面114输入,并将协同输出的推荐范围和/或容许范围映射到控制信号的值的范围,使得协同输出不能超出映射的协同输出的子范围。可用于确定协同输出子范围的示例物理特性可包括工件厚度、工件材料、焊丝成分、焊丝直径和/或保护气体成分。通过将控制信号158的值的范围映射到被确定为对焊接型操作的物理特性推荐或容许的子范围,可以防止操作者使用对于焊接的特定物理特性不推荐的协同输出,从而提高焊接质量并减少错误和/或返工。
另外地或可替代地,控制电路112可以将控制信号158的子范围映射到协同输出的不同子范围,其中控制信号158的子范围不等宽和/或协同输出的子范围不等宽。以这种方式,控制电路112可以使操作者在功率选择电路156的感兴趣范围的一部分中(例如,触发器或脚踏板的行程范围的部分)比在另一部分中对协同输出具有更高程度的控制。
图2是另一个示例焊接型系统200的框图,该系统配置为提供具有焊接型电力供应器202的协同功率控制,该焊接型电力供应器具有一体形成的送丝器204。示例焊接型电力供应器202包括图1的示例电力供应器102的功率转换电路110、控制电路112、用户界面114、显示器116、处理器120、存贮装置123、存储器124、指令125和阀130。
与示例系统100相比,在图2的示例中,电力供应器202包括一体形成的送丝器204,而不是连接到远程送丝器。图2的电力供应器202将焊接型功率和电极丝输出到焊炬106,该焊炬106包括示例功率选择器电路156。
一体形成的送丝器204包括焊丝驱动装置136、驱动辊138和焊丝卷轴140,并通过焊炬缆线142将焊丝送至焊炬106。
示例焊接型电力供应器202包括通信电路206,以接收来自功率选择器电路156的控制信号158(例如,在焊接操作期间)。在一些例子中,通信电路206将模拟信号转换为数字信号供控制电路112使用和/或接收来自功率选择器电路156的数字信号。示例控制电路112根据控制信号158协同控制焊接型功率的电压(例如,通过控制功率转换电路110)和送丝速度(例如,通过控制焊丝驱动装置136)。以这种方式,示例控制电路112可以以类似于图1的功率控制电路160的方式运行。
控制电路112可以查阅协同控制方案,例如算法或查找表,以确定对应于用户输入的电压设定点和/或送丝速度设定点。查找表可以存储在例如控制电路112的存贮装置123和/或存储器124中。
图3是另一示例焊接类型系统300的框图,包括具有功率控制电路160的焊炬106,该功率控制电路配置为提供协同功率控制。焊炬106中的示例性功率控制电路160可以以类似于上文参照图1描述的功率控制电路160的方式实现。
图4是图1和图3的功率控制电路160的示例实施方案的框图。图4的功率控制电路160可以在例如焊炬106、远程送丝器104、脚踏板、电力供应器102和/或图1-3的系统100、200、300的任何其他部件中实现。
图4的示例功率控制电路160包括输入电路402、控制电路404和输出电路406。输入电路402在涉及焊接型功率的焊接型操作期间识别用户输入。例如,当操作员在焊接过程中控制功率选择器电路156以协同调整焊接输出时,输入电路402可以接收来自功率选择器电路156的控制信号158。
控制电路404基于用户输入(例如,基于控制信号158)确定焊接型功率的电压调整和送丝速度调整。例如,控制电路404可以通过根据与焊接型功率的电压和焊炬106输出的送丝速度有关的协同控制方案解释用户输入来确定电压调整和送丝速度调整。在图4的例子中,控制电路404可以根据控制信号158在查找表中查找电压调整和送丝速度调整。
在一些示例中,控制电路404响应于用户输入而识别或确定沉积模式要被改变(例如,从第一沉积模式到第二沉积模式)。例如,随着协同控制方案导致电压增加或减少,可能会越过一个阈值,导致控制电路404确定(例如,基于电压调整、送丝速度调整、查找表408和/或任何其他协同控制因素)输出功率更恰当地适合于不同的沉积模式或转移模式。可由控制电路404选择的示例沉积模式包括无电弧热丝模式、可调节金属沉积模式、受控短路模式、短弧模式、脉冲喷溅模式或喷溅转移模式。在一些例子中,控制电路404可以对阈值应用滞后,使得控制电路404不在具有类似或交叠的电压和/或送丝速度范围的沉积模式之间重复切换。
输出电路406产生一个或多个控制信号410,以控制提供焊接型功率(例如,到焊炬106)的电力供应器102执行电压调整,和/或控制送丝器104执行送丝速度调整。在一些例子中,一个或多个控制信号410被传输到不同的设备(例如,电力供应器102和远程送丝器104)。在其他一些例子中,一个或多个控制信号410被传送到单个装置(例如,从电力供应器102到远程送丝器104,从远程送丝器104到电力供应器102,从焊炬106到包括一体式送丝器204的电力供应器202,等)。
图5A是包括相应的电压、送丝速度和工艺模式的示例表500,可用于确定用于执行焊接操作的电压设定点、送丝速度设定点和/或工艺模式。该示例表500可用于实现图4的查找表408。虽然图5A中显示了一个示例表500,但查找表408可以包括对应于不同焊接条件(例如,不同的工件材料,不同的焊丝类型,不同的气体类型等)的多个表。在查找表408中表示的协同控制方案使操作者能够调整焊接输出,以对焊接条件的变化作出反应,例如工件厚度和/或焊缝方向的变化。
图5A的示例查找表500将不同的输入值(例如,由控制信号158表示的值)与相应的电压(例如,电弧电压设定点)、送丝速度和/或沉积模式联系起来。例如,当操作者在焊接型操作中增加控制信号158的值和/或减少控制信号158的值时(例如,通过渐增地压下和/或释放触发器,通过增加和/或减少与电位计的操作性连接的控制装置等),图4的控制电路404可在表500中查找递增的和/或递减的输入值以确定相应的输出电压、送丝速度和/或沉积模式。在一些例子中,相应的电压、送丝速度和/或沉积模式是在焊接操作前(例如,在制造期间、下载固件更新、下载软件包等)根据经验确定并填入到表500中。
图5B是另一个示例表502,包括用于执行焊接操作的日程和相应的焊接参数。作为表500的代替或附加,可以使用示例表502来实现图4的查找表408。在示例表502中,不同的输入值范围对应于不同的日程,并且每个日程可以被分配不同的变量。当控制电路112接收到控制信号158时,控制电路112查找作为输入值的与控制信号158的值相对应的日程,并根据表502中规定的与日程相关的参数控制功率转换电路110。与日程相关的参数和/或输入值可由操作者设置。使用示例表502,操作者可以在焊接型操作期间通过功率选择器电路156控制控制信号158(例如,基于触发器、脚踏板或其他可变输入设备的压下量)在预先配置的日程之间进行切换。
图6是表示示例性机器可读指令600的流程图,其可被执行以实现一个或多个公开的示例方法和/或设备。示例指令600可由图1-4的示例控制电路112、示例控制电路134和/或示例功率控制电路160执行,以在焊接型操作期间协同控制焊接型输出。参照图2的示例焊接型电力供应器202描述了示例指令600,但指令可以被修改以由图1、3和/或4的功率控制电路160执行。
在框602处,示例控制电路112确定是否正在执行焊接操作。如果没有执行焊接操作(框602),控制电路404重复执行框602直到焊接发生为止。当控制电路112确定焊接发生时(框602),在框604处,功率转换电路110将输入功率转换为焊接型功率,并将焊接型功率输出到焊炬106。
在框606,通信电路206确定是否从远程控制装置(例如,从功率选择器电路156)接收到控制信号(例如,控制信号158)。如果已经从远程控制装置接收了控制信号158(框606),在框608处,控制电路112基于控制信号158确定协同电压和送丝速度。
在框610处,控制电路112(例如,基于用于确定协同电压和送丝速度的协同控制方案)确定是否需要改变沉积模式。如果需要改变沉积模式(框610),在框612处,控制电路112根据控制信号、电压和/或送丝速度确定要使用的沉积模式。
在确定沉积模式(框612)之后,如果沉积模式没有发生改变(框610),或者如果尚未接收到控制信号(框606),在框614处,控制电路112控制功率转换电路110输出确定的电压(例如,通过直接控制和/或通过收发电路)。
在框616处,控制电路112(例如,通过直接控制和/或通过收发器电路)控制送丝器(例如,一体式送丝器204、远程送丝器104)以确定的送丝速度送丝。
在控制功率转换电路110和/或送丝器104、204之后,控制返回到框602。
图7A和7B示出了代表示例机器可读指令700的流程图,该示例机器可读指令700可由图1、2和/或3的焊接型系统100、200、300执行,以设置控制信号(例如,从功率选择器电路156接收的信号)的保持值并基于该保持值协同控制焊接型系统100、200、300。下面将参照图1的系统100来描述示例指令700,并且该指令在焊接操作没有发生时开始。
示例指令700可以被执行,例如,使焊接操作者能够设置所需的协同输出值(例如,协同控制的功率输出,和/或协同控制的电压和送丝速度),然后在使操作者免于保持精确的控制信号值(例如,恒定的焊炬触发器位置)的同时继续输出协同输出值。因此,示例指令700可以减少操作员的疲劳。
在框702,控制电路112(例如,通过处理器120)确定是否正在执行焊接操作。例如,控制电路112可以确定是否从焊炬106的触发器(例如,功率选择器电路156)、脚踏板和/或其他控制输入接收了控制信号的至少一个阈值。如果没有进行焊接操作(框702),则控制返回框702以等待焊接操作。
如果正在执行焊接操作(框702),在框704,控制电路112复位并启动保持超时定时器。保持超时定时器可用于禁用保持值。例如,操作者可能不知道系统可以提供“触发器保持”功能和/或操作者不希望在特定的焊接操作中使用保持值。当保持超时定时器届满时,示例控制电路112可以禁用保持值,并对于焊接操作的剩余部分使用控制信号的输入值。
在框706,控制电路112重置触发器保持范围并重置触发器保持定时器。触发器保持范围是控制信号的值的范围,当控制信号的值保持在触发器保持范围内时,控制电路112运行触发器保持定时器以确定是否设置保持值。触发器保持范围可以被设置和/或更新为控制信号的接收值周围的一定范围,以使控制电路112能够检测操作者是否将输入装置保持在基本恒定的水平上,在这种情况下,触发器保持可能对操作者有用。较大的触发器保持范围可能使操作者更容易设置触发器保持范围,但操作者将不得不更多地移动输入装置以改变输出值。相反地,较小的触发器保持范围可能需要操作者在输入装置上更精确地进行触发器保持,但将使操作者能够更紧密地控制触发器保持设置的水平。
在触发器保持定时器届满时,控制电路112设置控制信号的保持值并使用该保持值而不是从功率选择器电路156接收的输入值。然而,如上所述,如果控制信号的接收值在保持超时定时器的持续时间内保持在一阈值以上或在一定范围内,则可以禁用触发器保持。
在框708处,控制电路112确定从远程控制设备(例如,从功率选择器电路156)接收的控制信号(例如,控制信号158)的值。例如,控制电路112可以确定控制信号的值,该值与操作者按压焊炬106的触发器、按压脚踏板或以其他方式将输入值控制在输入值的一定范围内的程度成比例。控制信号的值的示例范围可以用例如0到100%的标准化范围来表示,其中0是触发器完全释放的程度,100%是触发器完全压下的程度。控制信号的值的范围可以基于用于生成控制信号的模拟或数字输入装置的类型。
在框710,控制电路112确定控制信号的值是否在触发器保持范围内。例如,控制电路112可以监测操作者是否将输入装置(例如,触发器)保持在基本恒定的值上。如果控制信号的值不在触发器保持范围内(框710),在框712,控制电路112根据接收到的控制信号的值设置触发器保持范围并重置触发器保持定时器。例如,如果操作者改变控制信号的值,则控制电路112基于控制信号的更新值设置新的触发器保持范围,以使得控制电路112能够确定操作者是否在改变的信号值下保持输入装置。
另一方面,如果控制信号的值在触发器保持范围内(框710),在框714,控制电路112确定触发器保持定时器是否已经届满,或者是否已经收到另一个控制信号保持命令。其他控制信号保持命令的例子可以包括指定的输入装置,该装置使操作者能够对触发器保持功能进行操作,例如焊炬106上的按钮或开关。另外地或者可替代地,示例控制电路112可以响应于触发器保持定时器的届满而产生控制信号保持命令。
如果触发器保持定时器尚未届满并且尚未接收到其他控制信号保持命令(框714),或者在基于控制信号的接收值设置触发器保持范围(框712)之后,在框716,控制电路112基于控制信号的接收值确定协同电压和送丝速度。例如,控制电路112可以确定与控制信号的接收值相对应的功率水平,并且计算或查找(例如在查找表中)与该功率水平相对应的电压和送丝速度参数。
在框718,控制电路112基于确定的电压和送丝速度控制功率转换电路110将输入功率转换为焊接型功率并将焊接型功率输出到焊炬106。例如,控制电路112可以根据确定的电压来控制功率转换电路110,并根据确定的送丝速度来控制焊丝驱动装置136。在将输入功率转换为焊接型功率并输出焊接型功率后(框718),控制返回框708以确定控制信号的更新值。当操作者改变控制信号的值(例如,通过调整触发器被压下或其他输入装置被调整的量),控制电路112随着控制信号的值被调整而调整协同电压和送丝速度。
转向图7B,响应于触发器保持定时器的届满或其他控制信号保持命令(例如,操作者将输入装置保持在基本恒定的位置,从输入装置接收到控制信号保持命令输入等)(框714),在框720,控制电路112生成控制信号保持命令,确定控制信号的保持值,并输出触发器保持反馈信号。例如,控制电路112可以使用用于确定触发器保持范围的控制信号的相同值作为保持值。
示例触发器保持反馈信号可以是,例如,听觉信号(例如,通过电力供应器102、送丝器104、焊炬106、操作员的头盔中的扬声器和/或任何其他扬声器的哔哔声、音调、听觉消息和/或任何其他听觉反馈)、视觉信号(例如、通过电力供应器102、送丝器104、焊炬106、操作者的头盔的灯、LED、显示器和/或任何其他视觉反馈和/或任何其他视觉装置)、触觉反馈(例如,在焊炬106或其他可被操作者感知的位置上的触觉或其他触觉反馈),和/或任何其他形式的反馈。如果操作者选择使用触发器保持功能(例如,通过释放触发器或其他可变输入装置),则触发器保持反馈信号向操作者告知在目前的协同输出水平上触发器保持功能被使用。
在框722,控制电路112确定保持超时定时器是否已经届满。例如,如果保持超时定时器届满,则在控制电路112确定触发器保持定时器已届满之后,操作者已经继续按压触发器一段时期。例如,如果触发器保持定时器5秒置位,并且保持超时定时器10秒置位,如果操作者保持输入装置10秒(和/或在触发器保持定时器届满后5秒),控制电路112禁用或移除保持值,并且基于接收到的控制信号的值执行协同控制。在一些例子中,如果操作者保持触发值至少一定的时间量而不发生触发器保持标准,则保持超时可被配置为禁用触发器保持。
如果保持超时定时器已届满(框722),在框724,控制电路112停止触发器保持定时器。结果,控制电路112在焊接型操作的剩余时间内有效地禁用触发器保持。
如果保持超时定时器尚未届满(框722),在框726,控制电路112确定保持信号的值是否至少是阈值。例如,控制电路112可以监测以确定操作者是否已经释放了输入装置,使得操作者正在使用触发器保持值进行协同控制。
在停止触发器保持定时器(例如,触发器保持被禁用)(框724)之后,或者如果控制信号的值至少是阈值(例如,操作者正在继续保持触发器)(框726),在框728,控制电路112确定从远程控制装置(例如,功率选择器电路156)接收的控制信号的值。框728可以与上面描述的框708相似或相同。
在框730,控制电路112基于控制信号的值确定协同电压和送丝速度。框730可以与上述框716相似或相同。
如果控制信号的值小于阈值(例如,操作者已经接受了触发器保持并释放了触发器)(框726),在框732,控制电路112基于保持值确定协同电压和送丝速度。因此,在控制信号的接收值小于阈值时,控制电路112可以忽略该接收值。
在基于保持值(框732)或基于控制信号的值(框730)确定协同电压和送丝速度之后,在框734,控制电路112基于确定的协同电压和送丝速度将输入功率转换为焊接型功率并将焊接型功率输出到焊炬106。框734可以与上述框718相似或相同。
在框736,控制电路112确定是否仍在执行焊接操作。例如,如果输入信号仍然低于阈值,则控制电路112可以确定焊接操作仍然在执行,或者如果控制信号的值已经增加到阈值以上,则可以确定焊接操作不再执行(例如,操作员已经重新作用输入装置,然后释放输入装置以停止焊接操作)。如果焊接操作仍在执行(框736),则控制返回到框726。
当焊接操作不再被执行时(框736),示例指令结束。
图8是代表示例机器可读指令800的流程图,其可由图1、2和/或3的焊接型系统100、200、300执行,以基于控制信号协同控制焊接型系统100、200、300并过滤控制信号的变化。下面将参照图1的系统100来描述示例指令800,并指令在焊接操作未发生时开始。指令800可以与图7A和7B的指令700结合起来实施。
在框802,控制电路112确定是否正在执行焊接操作。例如,控制电路112可以确定是否从焊炬106的触发器(例如,功率选择器电路156)、脚踏板和/或其他控制输入接收了控制信号的至少一个阈值。如果没有执行焊接操作(框802),则控制返回到框802以等待焊接操作。
如果正在执行焊接操作(框802),在框804,控制电路112确定从远程控制装置(例如,焊炬106的功率选择器电路156)接收的控制信号(例如,控制信号158)的值。
在框806,控制电路112过滤控制信号中小于噪声阈值的变化。噪声可以由于例如环境噪声如无线电频率和/或其他电磁信号、产生控制信号的输入装置中的物理不稳定性产生的噪声和/或任何其他来源而发生。
在一些例子中,控制电路112可以通过通过以下方式来过滤噪声:基于控制信号的接收值建立值的范围或窗口并将值的范围内的值视为相同的值。另外地或可替代地,控制电路112可以通过使用权重对控制信号的样本值进行加权来过滤噪声,该权重对较早的样本来说较高,对较新的样本来说较小(例如,直到样本年龄的上限)。因此,加权滤波器可以减少控制信号158中的瞬时变化的影响,同时允许操作员改变输出水平。在其他例子中,控制电路112可以对控制信号的样本应用不断增加的时间常数,使得保持时间较长的值在输出值中的影响更大。
在框808,控制电路112基于控制信号的过滤值确定协同电压和送丝速度。例如,控制电路112可以确定与控制信号的滤波值相对应的功率水平,并且计算或查找(例如在查找表中)与该功率水平相对应的电压和送丝速度参数。
在框810,控制电路112控制功率转换电路110将输入功率转换为焊接型功率并基于确定的电压和送丝速度将焊接型功率输出到焊炬106。例如,控制电路112可以基于确定的电压控制功率转换电路110,并基于确定的送丝速度控制焊丝驱动装置136。
然后控制返回到框802以继续,同时焊接操作继续。
图9示出了基于焊接操作的特定物理特性的,图1、2和/或图3的控制信号的输入值范围904a、904b到电压范围和送丝速度范围的示例映射关系900。
示例控制电路112可以确定映射关系900以协同控制功率转换电路110和送丝器104的输出,以使用小于整个电压范围和小于整个送丝速度范围。例如,控制电路112可以使用焊接操作的物理特性来确定用于映射到输入值范围的电压和送丝速度的子范围。焊接的示例物理特性可包括工件厚度、工件材料、焊丝成分、焊丝直径和/或保护气体成分。
一些传统的焊接系统根据工件厚度、焊丝成分、焊丝直径和保护气体成分提供推荐的电压和送丝速度。推荐的电压和送丝速度可以与推荐的电压和/或送丝速度的范围一起提供,操作者被允许在这个范围内调整电压和送丝速度。推荐的电压和送丝速度也可以与电压和/或送丝速度的允许范围一起提供,该允许范围可以超过电压和/或送丝速度的推荐范围的边界。
图9的示例映射900将控制信号158的输入范围(例如,归一化范围0%至100%)映射到电压的第一极限范围和送丝速度的第一极限范围(极限范围904a)。在一些例子中,电压的第一极限范围和送丝速度的第一极限范围是基于与推荐电压和送丝速度相关的推荐电压范围和送丝速度范围,和/或基于焊接操作的物理特性。在图9的例子中,归一化范围的下端对应于电压的第一极限范围和送丝速度的第一极限范围的下端(例如,20V和300ipm),而归一化范围的上端对应于电压的第一极限范围904a和送丝速度的第一极限范围904a的上端(例如,22V和360ipm)。
图9的示例映射900交替地将控制信号158的输入范围(例如,归一化范围0%至100%)映射到电压的第二极限范围和送丝速度的第二极限范围(子范围904b)。在一些例子中,电压的第二限制范围和送丝速度的第二限制范围是基于与推荐电压和送丝速度相关的电压和送丝速度的允许范围(例如,比推荐范围更宽的范围,但小于电压和送丝速度输出的整个范围)和/或基于焊接操作的物理特性。在图9的例子中,控制信号的归一化范围的下端(例如,控制信号的最小值)对应于电压的第二极限范围和送丝速度的第二极限范围的下端(例如,19V和280ipm),并且归一化范围的上端对应于电压和送丝速度的第二极限范围904b的上端(例如,23V和380ipm)。
随着控制信号的值(例如,在0至100%的归一化范围内)变化,控制电路112按比例、反比例或分段按比例地控制功率转换电路110和送丝器104的输出。与将输入值的范围映射到第一极限范围904a相比,将控制信号的值的范围映射到第二极限范围904b导致控制电路112对于每单位控制信号的值的变化更多地增加或减少功率输出(例如,电压和送丝速度)。
图10是代表示例机器可读指令1000的流程图,该示例机器可读指令可由图1、2和/或图3的焊接型系统执行,以在一定数值范围内协同控制焊接型系统,其中该范围是基于工件的特征而确定。下面将参照图1的系统100来描述示例指令1000,并且指令在焊接操作没有发生时开始。指令1000可以与图7A和7B和/或8的指令700、800结合起来实施。
在框1002,控制电路112确定是否已经接收到指定焊接操作的一个或多个物理特性的输入。例如,可以通过用户界面114和/或通过通信收发器118(例如,从送丝器104和/或从另一设备)接收输入。指定的物理特性可以包括工件厚度、工件材料类型、焊丝类型、焊丝直径或保护气体类型中的一个或多个。
如果已经接收到指定焊接操作的一个或多个物理特性的输入(框1002),在框1004,控制电路112基于指定的物理特性查找电压范围(例如,上限和下限值)和送丝速度范围(例如,上限和下限值)。例如,电压范围和送丝速度范围可以基于推荐范围、允许范围和/或基于指定的物理特性确定的任何其他范围。
在框1006,控制电路112将控制信号的输入值范围映射到确定的电压范围和送丝速度范围。例如,控制电路112可以将输入值范围的下端(例如,归一化范围的0%、归一化范围的10%等)映射到电压和送丝速度的极限范围的下端,并且将输入值范围的上端映射到电压和送丝速度的极限范围的上端。然后,示例控制电路112可以根据控制信号相对于输入值范围的值在上限和下限之间进行插值运算。
在映射输入值范围(框1006)之后,或者如果尚未接收到指定物理特性的输入(框1002),在框1008,控制电路112确定是否正在执行焊接操作。例如,控制电路112可以确定是否从焊炬106的触发器(例如,功率选择器电路156)、脚踏板和/或其他控制输入接收了控制信号的至少一个阈值。如果没有进行焊接操作(框1008),则控制返回框1002以等待输入和/或焊接操作的开始。
如果正在执行焊接操作(框1008),在框1010,控制电路112确定输入值范围是否被映射到极限范围。如果输入值范围被映射到极限范围(框1010),在框1012处,控制电路112基于接收到的控制信号的值和电压和送丝速度的映射范围来确定协同电压和送丝速度。例如,控制电路112可以基于控制信号158相对于输入值范围的值从电压和送丝速度的映射极限范围插值计算电压和送丝速度的值。
另一方面,如果输入值范围没有被映射到极限范围(框1010),在框1014,控制电路112基于接收到的控制信号的值和电压和送丝速度的默认范围确定协同电压和送丝速度。示例的默认范围可以是系统100的整个电压范围和整个送丝速度范围、手动选择的范围和/或基于其他参数确定的范围。
在基于映射范围(框1012)或默认范围(框1014)确定协同电压和送丝速度之后,在框1016,控制电路112基于确定的协同电压和送丝速度控制功率转换电路110将输入功率转换为焊接型功率,并且将焊接型功率输出到焊炬106。例如,控制电路112可以根据确定的电压控制功率转换电路110,并根据确定的送丝速度控制焊丝驱动装置136。然后控制返回到框1008,以确定焊接操作是否继续。
图11示出了示例映射1100,该示例映射1100将图1、2和/或图3的控制信号158的输入信号范围1106的多个子范围1102、1104映射到不同的功率范围、电压范围和/或送丝速度范围(例如,协同输出1108),用于基于控制信号158的输入值执行焊接型系统100的协同控制。
在图11的例子中,输入信号范围1106的不同子范围对于控制信号158的值的每单位变化具有不同的协同输出(例如,功率、电压、送丝速度)变化率。例如,输入信号范围1106的第一子范围1102与第二子范围1104相比占输入信号范围1106的较大部分,但相比第二子范围1104其映射到输入信号范围1106的协同输出范围1108的较小子范围1110。结果,当控制信号158在第一子范围1102内时,控制信号158的单位变化将导致在协同输出1108中的变化比当控制信号158在第二子范围1104内时更小。
在示例映射1100中,控制信号158的较低子范围1102比较高子范围1104提供更大的控制颗粒度。然而,可以根据用户的选择或规范(例如,通过用户界面114和/或通过从送丝器104接收到的配置和/或通过通信收发器118的另一个远程配置),或基于焊接特征的自动配置来使用其他映射。例如,操作员可希望在输入信号范围1106的较高输出子范围和/或在输入信号范围的中间子范围具有更大程度的控制。在一些例子中,操作员可以选择子范围1102、1104的数量和/或边限,和/或选择相应的协同输出子范围1110、1112的边限。
图12是代表示例机器可读指令1200的流程图,其可由图1、2和/或图3的焊接型系统100执行,以使用输入信号的范围的多个子范围协同控制焊接型系统100。例如,图1的控制电路112可以执行指令1200以配置控制信号158的子范围到协同功率、电压和/或送丝速度的子范围1110、1112的映射,例如图11的映射1100。
在框1202,控制电路112确定是否已经接收到指定控制信号子范围(例如,子范围1102、1104)到协同输出子范围(例如,子范围1110、1112)的映射的输入。例如,可以通过用户界面114和/或通过通信收发器118(例如,从送丝器104和/或从另一装置)接收输入。如果已经接收到指定控制信号子范围到协同输出子范围的映射的输入(框1202),在框1204,控制电路112将控制信号的第一值子范围(例如,子范围1102)映射到第一电压子范围和第一送丝速度子范围(例如,子范围1110)。在框1206,控制电路112将控制信号的第二值子范围(例如,子范围1104)映射到第一电压子范围和第二送丝速度子范围(例如,子范围1112)。
在映射(框1206)之后,或者如果没有接收到指定映射的输入(框1202),在框1208,控制电路112确定是否正在执行焊接操作。例如,控制电路112确定是否从焊炬106的触发器(例如,功率选择器电路156)、脚踏板和/或其他控制输入接收到控制信号的至少一个阈值。如果没有进行焊接操作(框1208),则控制返回到框1202以等待输入和/或焊接操作的开始。
如果正在执行焊接操作(框1208),在框1210,控制电路112确定控制信号158的接收值是否在控制信号的第一值子范围内。如果接收到的控制信号158的值在控制信号的第一值子范围内(例如,子范围1102)(框1210),在框1212,控制电路112基于接收到的控制信号的值和映射的第一电压子范围和第一送丝速度子范围(例如,子范围1110)确定协同电压和送丝速度。例如,控制电路112可以基于子范围1102的上端和下端值以及电压和送丝速度子范围1110的上端和下端值来插值计算电压和送丝速度。
另一方面,如果控制信号158的接收值不在控制信号的第一值子范围内(例如,接收值在第二子范围1104内)(框1210),在框1214,控制电路112基于接收的控制信号的值以及映射的第二电压子范围和第二送丝速度子范围(例如,子范围1112)确定协同电压和送丝速度。例如,控制电路112可以基于子范围1104的上端和下端值以及电压和送丝速度子范围1112的上端和下端值来插值计算电压和送丝速度。
在确定协同电压和送丝速度之后(框1212或1214),在框1216,控制电路112控制功率转换电路110将输入功率转换为焊接型功率,并且基于确定的协同电压和送丝速度将焊接型功率输出到焊炬106。例如,控制电路112可以基于确定的电压控制电源转换电路110,并基于确定的送丝速度控制焊丝驱动装置136。然后控制返回到框1208以确定焊接操作是否继续。
虽然参照控制信号的两个值子范围来描述示例指令1200,但在其他示例中,指令1200可以被修改以适应三个或更多的子范围。
回到图1-3,示例控制电路112可以根据预定的焊接开始序列和/或使用协同控制来控制焊接开始序列。焊接开始时,电弧被建立起来,焊池被稳定并生长到稳态条件,这对焊接的早期部分和由此产生的焊件有很大影响。相反,稳态焊接指的是焊接开始序列之后的那部分焊接,其中焊接条件相对稳定。
示例的焊接开始序列包括以下阶段:1)电弧发动,在此阶段建立电弧;2)焊池稳定;以及3)焊池生长。焊池稳定阶段涉及提高送丝电机速度,并基于送丝电机速度控制焊接型功率输出的电压或焊接型功率输出的电流中的至少一个,而焊池生长阶段涉及将焊池的大小增加到所需大小。预先确定的焊接开始序列为每个阶段限定了预先确定的参数和/或时间,但可能涉及闭环反馈来调整参数。相反地,示例控制电路112可以允许使用从功率选择器电路156接收到的控制信号对一个或多个阶段进行协同控制。例如,控制电路112可以使操作者在焊池生长阶段控制输出功率以控制进入稳态焊接的焊池的生长速度和/或大小。
在一些例子中,控制电路112根据预定的焊接开始序列控制功率转换电路110、送丝器104和/或任何其他装置。在预定的焊接开始序列结束时,控制电路112改变进行协同控制的参数(例如,电压、电流、送丝速度、功率等),根据上面公开的例子,该参数用于焊接的稳定状态部分。从预定的焊接开始序列到协同控制的改变可以通过阶跃变化实现,其中控制电路112尽可能快地(例如,考虑到电路因素,如电感和/或电机惯性,小于上限时间段)从焊接开始序列的参数变化到协同控制的稳定状态的参数(基于控制信号)。在其他例子中,从预定的焊接开始序列到协同控制的变化可以在一定时间段内斜变发生。
在一些例子中,在预定的焊接开始序列期间,操作者可以在焊接开始序列的计划或预定的结束时间之前结束焊接开始序列和/或改变为稳定状态参数。例如,操作者可以通过至少一个阈值量来调整控制信号(例如,完全地或部分地拉动或释放触发器或脚踏板)。另外地或可替代地,控制电路112可以在预定的焊接开始序列结束时设置控制信号的值,以对应于电压设定点、电流设定点、送丝速度设定点和/或任何其他设定点。例如,在焊接开始序列结束时的控制信号的值可被用作对应于一个或多个参数设定点的参考值,并且控制信号和控制信号的参考值之间的差异可被用于控制相对于设定点的输出参数。
图13是代表示例机器可读指令1300的流程图,其可由图1、2和/或图3的焊接型系统执行以控制焊接型系统100执行焊接开始序列。例如,图1的控制电路112可以执行指令1300,以使用协同控制执行焊接开始序列和/或稳态焊接。
在框1302,控制电路112确定是否已经发起了焊接。例如,控制电路112可以确定输入信号(例如,触发器、脚踏板等)是否至少为阈值。例如,触发器可以包括带有机械开关的模拟输入装置。如果尚未发起焊接(框1302),则控制返回到框1302以等待焊接发起和/或启用焊接型系统100的配置。
当焊接被发起时(框1302),在框1304,控制电路112确定焊接开始序列是否要被协同控制。如果焊接开始序列不被协同控制(框1304),在框1306,控制电路112基于预定的焊接序列发动电弧。示例的预定焊接序列包括电弧发动阶段、焊池稳定阶段和焊池生长阶段。控制电路112可以在预定的焊接开始序列的电弧发动阶段发动电弧。
在框1308,控制电路112稳定焊池(例如,预定的焊接开始序列的焊池稳定阶段)。在框1310,控制电路112确定控制信号中是否有至少一个阈值变化。例如,控制电路112可以确定操作者是否在一个或任何一个方向上至少以阈值量移动触发器或脚踏板。如果控制信号中没有出现至少一个阈值的变化(框1310),在框1312,控制电路112控制功率转换电路,使焊池生长到目标尺寸。例如,目标尺寸可以根据时间长度、输出电流、光学测量或其他测量,和/或任何其他技术来确定。
在框1314,控制电路112确定控制信号中是否已经有至少一个阈值变化。框1314可以与框1310相似或相同。
在通过控制信号中没有阈值变化的预定焊接开始序列(框1310、1312和1314)生长焊池之后,在框1316,控制电路112确定焊接开始序列是否完成。例如,控制电路112可以确定是否已经达到了阈值输出,是否已经产生了阈值焊池大小,和/或一定时间长度是否已届满。如果焊接开始序列未结束(框1316),则控制返回框1312以继续生长焊池。
如果要协同控制焊接开始序列(框1304),在框1318,控制电路112协同控制焊接开始序列。例如,控制电路112可以在焊接开始序列期间(例如,响应于通过远程控制装置的焊接过程的启动)基于控制信号控制焊接电压输出、焊接电流输出、送丝速度和/或任何其他参数中的两个或更多个。在一些例子中,协同控制的焊接开始序列可以实现电弧发动阶段、焊池稳定阶段和焊池生长阶段,以及协同控制主要或仅影响焊池生长阶段。例如,为了开始稳态焊接,操作者可以调整控制信号以更快或更慢地扩大焊池和/或得到更大或更小的焊池。下面将参照图14讨论实施框1316的示例指令。
当焊接开始序列结束时(框1316或1318),或者如果在预定的开始序列期间控制信号有阈值变化(框1310、1314),在框1320,控制电路112确定是否协同控制稳态焊接。例如,操作者可以选择是否仅对焊接开始序列、仅对焊接的稳态部分或上述两者使用协同控制。
如果要协同控制稳态焊接(框1320),在框1322,控制电路112协同控制稳态焊接。框1322可由图6的示例指令600实现。反之,如果稳态焊接不被协同控制(框1320),在框1324,控制电路112基于设定点控制稳态焊接。
从预定的焊接开始序列过渡到稳态焊接的协同控制和/或从焊接开始序列的协同控制过渡到基于设定点的稳态焊接的控制,可以通过阶跃变化来完成(例如,考虑到例如焊接电路电感和/或送丝电机惯性,尽可能快地改变参数)。例如,当从预定的焊接开始序列过渡到稳态焊接的协同控制时,控制电路112可以通过基于控制信号立即改变设定点来调整焊接型功率的电压、焊接型功率的电流和/或送丝速度。
在其他例子中,过渡可以在至少一个阈值时间段内完成(例如,斜变)。例如,当从预定的焊接开始序列过渡到稳态焊接的协同控制时,控制电路112可以在该时间段内,基于1)电压、电流和/或送丝速度的值和2)基于控制信号的电压、电流和/或送丝速度的协同控制值之间的差异,调整电压、电流和/或送丝速度。
在协同地(框1322)或非协同地(框1324)控制稳态焊接之后,在框1326,控制电路112确定焊接是否已经结束。例如,控制电路112可以监测控制信号和/或焊接电流。如果焊接没有结束(框1326),控制返回到框1320,继续控制稳态焊接。当焊接已经结束(框1326),控制返回到框1302。
图14是代表示例机器可读指令1400的流程图,其可由图1、2和/或图3的焊接型系统执行以控制焊接型系统100以协同控制焊接开始序列。例如,图1的控制电路112可以执行指令1400以实现图13的框1318。
在框1402,控制电路112控制功率转换电路110和送丝器104以发动电弧。在框1404,控制电路112控制功率转换电路110和送丝器104以稳定焊池。例如,响应于功率选择器电路156或其他控制装置的激活,控制电路112可以设置电弧发动参数和/或焊池稳定参数,包括电压、电流和/或送丝速度。
一些例子中,电弧发动参数和/或焊池稳定参数不基于控制信号的值。然而,在其他一些例子中,电弧发动参数和/或焊池稳定参数是基于控制信号的值落在多个范围中的哪个范围。例如,较高的范围可能导致控制电路112选择与热启动焊接开始序列相关的参数集,而较低的范围可能导致控制电路112选择非热启动参数集。
在框1406,控制电路112从远程控制装置,例如功率选择器电路156(例如,触发器或控制踏板)接收控制信号。在框1408,控制电路112根据控制信号确定协同电压和送丝速度。框1408可以与图6的框608类似地执行,但是对应于控制信号的精确参数可以根据相对于稳态焊接的焊接开始序列的要求来调整。
在框1410,控制电路112控制功率转换电路110以输出确定的电压,并控制送丝器(例如,一体式送丝器204、远程送丝器104)以确定的送丝速度送丝。基于控制信号对功率转换电路110和送丝器的控制对焊池的生长速度进行控制。
在框1412,控制电路112确定是否结束焊接开始序列。例如,控制电路112可以确定预定的持续时间是否已经过去,控制信号是否已经改变至少一个阈值量,或者控制信号是否已经满足了阈值(例如,触发器完全拉动,超出机械或数字开关值的触发器释放)。如果焊接开始序列没有结束(框1412),则控制返回到框1406,继续根据控制信号使焊池生长。当焊接开始序列结束时(框1412),示例指令1400结束,控制返回到图13的框1320。
虽然上面公开的例子是参照协同电压和送丝速度来描述的,但公开的系统和方法可以根据,例如,正在进行的焊接型操作的类型来控制其他参数。例如,作为控制电压的替代或附加,所公开的系统和方法可以协同控制电流与一个或多个其他参数。
本方法和系统可以在硬件、软件和/或硬件和软件的组合中实现。本方法和/或系统可以在至少一个计算系统中以集中的方式实现,或者以分布式的方式实现,其中不同的元素分布在几个互连的计算系统中。任何种类的计算系统或其他设备都适合于执行本文所述的方法。硬件和软件的典型组合可以包括通用计算系统,该系统具有程序或其他代码,当被加载和执行时,控制计算系统,使其执行本文所述的方法。另一个典型的实施方案可以包括专用集成电路或芯片。一些实施方案可包括非暂时性机器可读(例如,计算机可读)介质(例如,FLASH驱动器、光盘、磁存储盘或类似物),其上存储有机器可执行的一行或多行代码,从而使机器执行本文所述的过程。如本文所用,术语“非暂时性机器可读介质”被限定为包括所有类型的机器可读存储介质,并且不包括传播信号。
如本文所使用的,例如,特定的处理器和存储器在执行第一行或多行代码时可包括第一“电路”,在执行第二行或多行代码时可包括第二“电路”。正如本文所利用的,“和/或”是指由“和/或”连接的列表中的任何一个或多个项目。作为一个例子,“x和/或y”是指三元素集合{(x),(y),(x,y)}的任何元素。换句话说,“x和/或y”意味着“x和y的一个或两个”。作为另一个例子,“x,y,和/或z”是指七元素集{(x),(y),(z),(x,y),(x,z),(y,z),(x,y,z)}的任何元素。换句话说,“x、y和/或z”意味着“x、y和z中的一个或多个”。如本文所使用的,术语“示例性”是指作为非限制性的例子、实例或说明。如本文所使用的,术语“例如”和“譬如”列出了一个或多个非限制性例子、实例或说明。如本文所使用的,只要电路包括执行该功能的必要硬件和代码(如果有必要的话),无论该功能的执行是否被禁用或未被启用(例如,通过用户可配置的设置、工厂修整等),电路就“可操作的”以执行该功能。
虽然本方法和/或系统已经参照某些实施方案进行了描述,但本领域的技术人员将理解,在不脱离本公开的范围的情况下,可以做出各种改变,并且可以用等价物替代。此外,在不偏离本公开的范围的情况下,可以进行许多修改以使特定的情况或材料适应本公开的教导。例如,系统、框和/或所公开实施例的其他组件可以被组合、分割、重新排列和/或以其他方式修改。因此,本方法和/或系统不限于所公开的特定实施方案。相反,本方法和/或系统将包括落入所附权利要求范围内的所有实施方案,包括字面意义上的和根据等价原则的。

Claims (20)

1.一种焊接型电力供应器,包括:
功率转换电路,所述功率转换电路配置为将输入功率转换为焊接型功率,并将所述焊接型功率输出到焊接型焊炬;
通信电路,所述通信电路配置为在焊接型操作期间接收来自远程控制装置的控制信号;以及
控制电路,所述控制电路配置为:
响应于通过所述远程控制装置焊接过程的启动,基于预定的焊接开始序列控制所述焊接型功率和送丝速度;以及
在所述预定的焊接开始序列之后,基于控制信号,协同控制由所述功率转换电路输出的所述焊接型功率的电压、所述焊接型功率的电流,或送丝速度中的至少两项。
2.如权利要求1所述的焊接型电力供应器,其中所述控制电路被配置为通过以下方式协同控制所述电压和所述送丝速度:
基于所述控制信号设定所述焊接型功率的命令功率水平;
确定与所述指令功率水平相对应的所述电压和所述送丝速度;
控制所述功率转换电路以输出所述电压;以及
基于所述送丝速度控制送丝器。
3.如权利要求1所述的焊接型电力供应器,其中所述通信电路被配置为接收来自焊接型焊炬或脚踏板中的至少一个的所述控制信号。
4.如权利要求3所述的焊接型电力供应器,其中所述焊接型焊炬或所述脚踏板包括模拟输入装置或数字输入装置中的至少一个。
5.如权利要求4所述的焊接型电力供应器,其中所述模拟输入装置包括电位计或机械开关中的至少一种,所述电位计或机械开关被配置为提供反馈,所述反馈指示模拟输入装置启动焊接过程的致动下限。
6.如权利要求4所述的焊接型电力供应器,其中所述数字输入装置包括编码器,并且所述控制电路被配置为基于所述编码器的值满足阈值输出值来识别焊接过程的启动。
7.如权利要求1所述的焊接型电力供应器,其中所述控制电路被配置为:
确定在所述预定的焊接开始序列结束时所述控制信号的值;以及
基于所述控制信号和在所述预定的焊接开始序列结束时所述控制信号的值,协同控制所述焊接型功率的所述电压、所述焊接型功率的所述电流、或所述送丝速度中的至少两项。
8.如权利要求7所述的焊接型电力供应器,其中所述控制电路被配置为:
设置在所述预定的焊接开始序列结束时所述控制信号的值,所述控制信号的值对应于电压设定点、电流设定点或送丝速度设定点中的至少一个;以及
基于将所述控制信号与在所述预定的焊接开始序列结束时所述控制信号的值的比较,以及基于所述电压设定点、所述电流设定点或所述送丝速度设定点中的至少一个,协同控制所述焊接型功率的所述电压、所述焊接型功率的所述电流,或所述送丝速度中的至少两个。
9.如权利要求7所述的焊接型电力供应器,其中所述控制信号被配置成过滤所述控制信号中小于噪声阈值的变化。
10.如权利要求1所述的焊接型电力供应器,其中所述预定的焊接开始序列包括电弧发动阶段和焊池稳定阶段,所述焊池稳定阶段包括提高送丝电机速度和基于所述送丝电机速度控制所述焊接型功率输出的所述电压或所述焊接型功率输出的所述电流中的至少一个。
11.如权利要求1所述的焊接型电力供应器,其中所述控制电路被配置为在至少一个阈值时间段内从所述预定的焊接开始序列过渡到协同控制。
12.如权利要求11所述的焊接型电力供应器,其中所述控制电路被配置为,在所述时间段内,基于1)在所述预定的焊接开始序列结束时所述焊接型功率输出的所述电压、所述焊接型功率的所述电流或所述送丝速度中至少两项的值以及2)基于所述控制信号的所述焊接型功率输出的所述电压、所述焊接型功率的所述电流,或送丝速度中的至少两项的协同控制值之间的差异,调整所述焊接型功率输出的所述电压,所述焊接型功率的所述电流,或所述送丝速度。
13.如权利要求1所述的焊接型电力供应器,其中所述控制电路被配置为利用阶跃变化从所述预定的焊接开始序列过渡到协同控制。
14.如权利要求13所述的焊接型电力供应器,其中所述控制电路被配置为通过在所述预定的焊接开始序列之后立即将所述焊接型功率输出的所述电压、所述焊接型功率的所述电流或所述送丝速度中的至少两项的设定点改变为基于所述控制信号的协同控制值,来调整所述焊接型功率输出的所述电压、所述焊接型功率的所述电流,或所述送丝速度中的至少两项。
15.如权利要求1所述的焊接型电力供应器,其中所述控制电路被配置为响应于所述控制信号中的至少一个阈值变化而结束所述预定的开始序列,并开始所述协同控制。
16.一种焊接型电力供应器,包括:
功率转换电路,所述功率转换电路配置为将输入功率转换为焊接型功率,并将所述焊接型功率输出到焊接型焊炬;
通信电路,所述通信电路配置为在焊接型操作期间接收来自远程控制装置的控制信号;以及
控制电路,所述控制电路配置为:
响应于通过所述远程控制装置对焊接过程的启动,在焊接开始序列期间,基于所述控制信号,协同控制由所述功率转换电路输出的所述焊接型功率的电压、所述焊接型功率的电流,或送丝速度中的至少两项;以及
在焊接开始序列之后,基于相应的设定点或控制信号中的至少一个,控制所述电压、所述电流或所述送丝速度中的至少两个。
17.如权利要求16所述的焊接型电力供应器,其中所述控制电路被配置为在所述焊接开始序列期间基于所述控制信号协同控制作为热启动电流的所述电流,以及所述送丝速度。
18.如权利要求17所述的焊接型电力供应器,其中所述控制电路被配置为通过以下方式协同控制所述热启动电流和所述送丝速度:
基于所述控制信号设定所述焊接型功率的命令功率水平;
确定与所述命令功率水平相对应的所述热启动电流和所述送丝速度;
控制所述功率转换电路,以输出所述热启动电流;以及
基于所述送丝速度控制送丝器。
19.根据权利要求16所述的焊接型电力供应器,其中所述控制电路被配置为在焊接开始序列后的至少一个阈值时间段内从所述协同控制过渡到所述相应的设定点。
20.根据权利要求16所述的焊接型电力供应器,其中所述控制电路被配置为在焊接开始序列之后通过阶跃变化从所述协同控制过渡到所述对应的设定点。
CN202180090399.5A 2020-11-30 2021-11-24 在焊接类型操作中协同控制焊接类型输出的方法和装置 Pending CN116802006A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063119270P 2020-11-30 2020-11-30
US63/119,270 2020-11-30
US17/524,362 2021-11-11
US17/524,362 US20220168837A1 (en) 2020-11-30 2021-11-11 Methods and apparatus to synergically control a welding-type output during a welding-type operation
PCT/US2021/060797 WO2022115585A2 (en) 2020-11-30 2021-11-24 Methods and apparatus to synergically control a welding-type output during a welding-type operation

Publications (1)

Publication Number Publication Date
CN116802006A true CN116802006A (zh) 2023-09-22

Family

ID=81752201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180090399.5A Pending CN116802006A (zh) 2020-11-30 2021-11-24 在焊接类型操作中协同控制焊接类型输出的方法和装置

Country Status (5)

Country Link
US (1) US20220168837A1 (zh)
EP (1) EP4251358A2 (zh)
CN (1) CN116802006A (zh)
CA (1) CA3203008A1 (zh)
WO (1) WO2022115585A2 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395085B2 (en) * 2010-02-23 2013-03-12 Illinois Tool Works Inc. Wire feed speed referenced variable frequency pulse welding system
US10065257B2 (en) * 2011-06-23 2018-09-04 Lincoln Global, Inc. Welding system with controlled wire feed speed during arc initiation
US11498148B2 (en) * 2017-09-07 2022-11-15 Illinois Tool Works Inc. Methods and apparatus to synergically control a welding-type output during a welding-type operation

Also Published As

Publication number Publication date
US20220168837A1 (en) 2022-06-02
CA3203008A1 (en) 2022-06-02
WO2022115585A3 (en) 2022-07-07
EP4251358A2 (en) 2023-10-04
WO2022115585A2 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
CN111050968B (zh) 用于在焊接型操作期间协同地控制焊接型输出的方法和设备
US10252367B2 (en) Method and system of welding with auto-determined startup parameters
EP3808495A1 (en) Systems and methods for automatic control of welding parameter output ranges
US7005610B2 (en) Voltage regulated GMAW welding using a constant current power source and wire feeder having variable gain
CN113458546A (zh) 用于控制焊接参数命令限值的系统和方法
EP3753664A2 (en) Methods and apparatus to control welding power and preheating power
CN112533722A (zh) 焊接电力供应器和用于焊接电力供应器的用户界面
EP3888835B1 (en) Welding-type power supply for synergically controling a welding-type output during a welding-type operation
CN112453644A (zh) 焊接电力供应器和用于焊接电力供应器的用户界面
CN116802006A (zh) 在焊接类型操作中协同控制焊接类型输出的方法和装置
EP3892409B1 (en) Welding-type power supplies for synergically controling a welding-type output during a welding-type operation
EP3888833A1 (en) Welding-type power supply with provision of feedback based on synergic control of a welding-type output
EP3812075A1 (en) Systems and methods for remote weld schedule control
CN111843112A (zh) 用于控制焊接功率和预加热功率的方法和设备
CA3105539A1 (en) Systems and methods to control welding processes using a voltage-controlled control loop
CA3170291A1 (en) Systems and methods to provide interfaces for control of welding-type systems
CA3135882A1 (en) SYSTEMS AND METHODS FOR PROVIDING A VISUAL AID FOR THE SELECTION OF WELDING PARAMETERS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination