CN116801900A - 用于治疗骨折的化合物、组合物和使用方法 - Google Patents

用于治疗骨折的化合物、组合物和使用方法 Download PDF

Info

Publication number
CN116801900A
CN116801900A CN202180087681.8A CN202180087681A CN116801900A CN 116801900 A CN116801900 A CN 116801900A CN 202180087681 A CN202180087681 A CN 202180087681A CN 116801900 A CN116801900 A CN 116801900A
Authority
CN
China
Prior art keywords
compound
bone
amino acid
acid residues
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180087681.8A
Other languages
English (en)
Inventor
P·S·洛
斯图尔特·洛
J·尼尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purdue Research Foundation
Original Assignee
Purdue Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purdue Research Foundation filed Critical Purdue Research Foundation
Priority claimed from PCT/US2021/047824 external-priority patent/WO2022093373A1/en
Publication of CN116801900A publication Critical patent/CN116801900A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

趋骨性配体‑骨合成代谢剂化合物和相关组合物以及用于治疗骨折的方法。

Description

用于治疗骨折的化合物、组合物和使用方法
优先权
本专利申请涉及并且要求以下各项的优先权权益:(a)2020年10月26日提交的美国临时专利申请号63/105,669,以及(b)2021年5月27日提交的美国临时专利申请号63/193,748。上述优先权申请的内容通过引用而以其整体并入。
关于政府支持的声明
本发明是在美国国立卫生研究院(National Institutes of Health)授予的DE028713的政府支持下完成的。政府对本发明拥有某些权利。
技术领域
本公开内容涉及趋骨性(osteotropic)配体、骨合成代谢剂(bone anabolicagent)、包含二者的缀合物、包含上述物质的组合物以及用于治疗骨折的方法。
对序列表的简述
本文所述的序列在附图中陈述并且也以随同本文提交的计算机可读形式提供并且通过引用而并入本文中。根据37C.F.R.§1.821(f),以计算机可读形式记载的信息与本文提供的书面序列表相同。
背景技术
在美国每年发生超过1830万例骨折。有些骨折可能导致身体活动受损、生产力丧失和生活质量下降,而骨折不愈合可能由于极大地延长康复时间而增大这些病态。颅面骨折可能因为伴随的进食和说话困难而特别令人虚弱。在老年人中髋部骨折愈合延迟在许多情况下可能导致过早死亡。综合考虑,断骨对修复成本、康复费用和物理治疗的总体财务影响估计为458亿美元,而且这些费用预计将随着我们人口不断老化而增加。
本文在一些实施方案中提供了用于治疗骨折或改善骨折的愈合的组合物和方法(例如,通过趋骨性配体和骨合成代谢剂的联合使用(例如,缀合物))。该目的以及其他目的和优点以及发明特征将根据本文提供的描述而明白易懂。
发明内容
在一些实施方案中,本文提供了一种用于治疗(例如,有需要的)个体的骨愈合事件(例如,骨折)的方法,所述方法包括施用(例如,治疗有效量的)本文提供的化合物或其药学上可接受的盐,例如,包含骨靶向剂(例如,趋骨性配体)和/或合成代谢剂(例如,骨合成代谢剂)的化合物或其药学上可接受的盐。
在一些实施方案中,本文提供了一种具有式(I)的结构的化合物:
X-Y-Z。
在一些实施方案中,所述具有式(I)的结构的化合物是其药学上可接受的盐。在一些实施方案中,X是骨合成代谢剂。在一些实施方案中,X是选自以下的骨合成代谢剂:甲状旁腺激素(PTH)(例如,或其衍生物或片段(例如,具有骨合成代谢活性))、PTH相关蛋白(PTHrP)(例如,或其衍生物或片段(例如,具有骨合成代谢活性)),以及阿巴洛肽(例如,或其衍生物或片段(例如,具有骨合成代谢活性))。在一些实施方案中,Y是不存在或接头(例如,可释放性接头或不可释放性接头)。在一些实施方案中,Y是可释放性接头或不可释放性接头。在一些实施方案中,Z是趋骨性配体(例如,酸性寡肽(AOP)(例如,包含至少4个氨基酸残基(例如,4至20个氨基酸残基)))。
在一些实施方案中,X是选自以下的骨合成代谢剂:PTH(例如,或其衍生物或片段(例如,具有骨合成代谢活性))、PTHrP(例如,或其衍生物或片段(例如,具有骨合成代谢活性)),以及阿巴洛肽(例如,或其衍生物或片段(例如,具有骨合成代谢活性))。
在一些实施方案中,所述骨合成代谢剂是PTH或PTHrP或其衍生物或片段(例如,(SEQ ID NO:1和/或具有骨合成代谢活性))。在一些实施方案中,所述骨合成代谢剂是甲状旁腺激素(PTH)(例如,或其衍生物或片段)。在一些实施方案中,所述骨合成代谢剂是PTHrP或其衍生物或片段。在一些实施方案中,所述骨合成代谢剂是经修饰的PTH或其衍生物或片段。例如,所述经修饰的PTH或其衍生物或片段通过合成进行修饰。在一些实施方案中,所述骨合成代谢剂是经修饰的PTHrP或其衍生物或片段,例如,包含SEQ ID NO:1。在某些实施方案中,所述经修饰的PTHrP或其衍生物或片段通过合成进行修饰。在一些实施方案中,所述骨合成代谢剂是阿巴洛肽(例如,或其衍生物或片段(例如,具有骨合成代谢活性))。在一些实施方案中,所述骨合成代谢剂是阿巴洛肽(SEQ ID NO:2)。在一些实施方案中,所述骨合成代谢剂是(例如,合成)修饰的阿巴洛肽。
在一些实施方案中,X是PTH或其衍生物或片段(例如,具有骨合成代谢活性)。
在一些实施方案中,X是PTHrP或其衍生物或片段(例如,具有骨合成代谢活性)。
在一些实施方案中,X是阿巴洛肽或其衍生物或片段(例如,具有骨合成代谢活性)。
在一些实施方案中,X是达沙替尼(dasatinib)。
在一些实施方案中,X是胰岛素原样生长因子II(pro-IGF-II)。
在一些实施方案中,X是环肽(例如,任选取代的101或任选取代的102)。在一些实施方案中,X是任选取代的101。在一些实施方案中,X是任选取代的102。在一些实施方案中,X是101。在一些实施方案中,X是102。
在一些实施方案中,X调节整合素α5β1活性。在一些实施方案中,X是整合素α5β1的配体。在一些实施方案中,101和102调节整合素α5β1活性。
在一些实施方案中,Z是四环素、膦酸盐(例如,单-双膦酸盐、三-双膦酸盐或聚-双膦酸盐)或AOP。在一些实施方案中,Z是四环素。在一些实施方案中,Z是单-双膦酸盐、三-双膦酸盐或聚-双膦酸盐。在一些实施方案中,Z是单-双膦酸盐。在一些实施方案中,Z是三-双膦酸盐。在一些实施方案中,Z是聚-双膦酸盐。
在一些实施方案中,Z是氨基酸残基的线性链。在一些实施方案中,Z是氨基酸残基的支化链。在一些实施方案中,Z是AOP(例如,包含至少4个谷氨酸氨基酸残基或4个天冬氨酸氨基酸残基)。
在一些实施方案中,Z包含至少4个氨基酸残基(例如,4个或更多、10个或更多、20个或更多、30个或更多、50个或更多、75个或更多、或者100个或更多)。在一些实施方案中,Z包含4至75个酸性氨基酸残基(例如,D-谷氨酸氨基酸残基)。在一些实施方案中,Z包含至多100个氨基酸残基(例如,100个或更少、75个或更少、50个或更少、30个或更少、20个或更少、10个或更少,或者4个或更少)。在一些实施方案中,Z包含不少于4个并且不多于35个氨基酸。在一些实施方案中,Z包含不少于4个并且不多于20个氨基酸。在一些实施方案中,Z包含不少于6个并且不多于30个氨基酸。在一些实施方案中,Z包含不少于8个并且不多于30个氨基酸。在一些实施方案中,Z包含不少于8个并且不多于20个氨基酸。在一些实施方案中,Z包含谷氨酸氨基酸残基。在一些实施方案中,Z包含D-谷氨酸氨基酸残基。
在一些实施方案中,Z包含4至75个D-谷氨酸氨基酸残基。在一些实施方案中,Z包含8至30个D-谷氨酸氨基酸残基。在一些实施方案中,Z包含8至20个D-谷氨酸氨基酸残基。
在一些实施方案中,AOP包含约4至约20个氨基酸残基(例如4至约20或者约4至20个)或更多个氨基酸残基,例如4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20个。在多种实施方案中,AOP包含约20个氨基酸残基,例如20个氨基酸残基。
在一些实施方案中,Z包含至少4个(例如,D-)谷氨酸氨基酸残基(例如,4至20个D-谷氨酸氨基酸残基)和/或至少4个(例如,D-)天冬氨酸氨基酸残基(例如,4至20个D-天冬氨酸氨基酸残基)。
在一些实施方案中,所述氨基酸是天冬氨酸(由字母D表示)、谷氨酸(由字母E表示)或其混合物。所述氨基酸残基可以具有D手性、L手性或其混合物。在一些实施方案中,所述氨基酸残基具有D手性。在一些实施方案中,所述氨基酸残基具有L手性。在一些实施方案中,Z包含至少4个(例如,酸性)氨基酸残基(例如,具有相同手性(例如,D-氨基酸残基或L-氨基酸残基))。在一些实施方案中,至少4个(例如,酸性)氨基酸残基中的每一个具有D手性。在一些实施方案中,天冬氨酸是D-天冬氨酸或L-天冬氨酸。在一些实施方案中,谷氨酸是D-谷氨酸或L-谷氨酸。在一些实施方案中,Z包含不少于4个并且不多于20个D-谷氨酸残基或L-谷氨酸残基。在一些实施方案中,Z包含不少于4个并且不多于20个D-天冬氨酸残基或L-天冬氨酸残基。
在一些实施方案中,Z包含至少4个(例如,D-)谷氨酸氨基酸残基(例如,4至20个D-谷氨酸氨基酸残基)和/或至少4个(例如,D-)天冬氨酸氨基酸残基(例如,4至20个D-天冬氨酸氨基酸残基)。
在一些实施方案中,Z包含(例如,D-)谷氨酸氨基酸残基和(例如,D-)天冬氨酸氨基酸残基的混合物。
在一些实施方案中,Z包含至少4个重复D-谷氨酸氨基酸残基(例如,4个重复D-谷氨酸氨基酸残基(DE4)或更多、6个重复D-谷氨酸氨基酸残基(DE6)或更多、8个重复D-谷氨酸氨基酸残基(DE8)或更多、10个重复D-谷氨酸氨基酸残基(DE10)或更多、15个重复D-谷氨酸氨基酸残基(DE15)或更多、20个重复D-谷氨酸氨基酸残基(DE20)或更多、25个重复D-谷氨酸氨基酸残基(DE25)或更多、30个重复D-谷氨酸氨基酸残基(DE30)或更多、或者35个重复D-谷氨酸氨基酸残基(DE35)或更多)。在一些实施方案中,Z包含至少DE10或更多、DE15或更多、或者DE20或更多。在一些实施方案中,Z是DE10或DE20。
在至少一些实施方案中,Z包含至少DE15或至少DE20。
在一些实施方案中,X是阿巴洛肽或其衍生物或片段(例如,具有骨合成代谢活性)并且Z是DE20。
在一些实施方案中,Y是不可释放性接头。在一些实施方案中,Y是包含至少一个碳-碳键的不可释放性接头。在一些实施方案中,Y是包含至少一个酰胺键的不可释放性接头。在一些实施方案中,Y是包含至少一个碳-碳键和至少一个酰胺键的不可释放性接头。
在一些实施方案中,Y是不可释放性接头并且包含一个或多个酰胺键。在一些实施方案中,Y是不可释放性接头并且包含1-20个酰胺键。在一些实施方案中,Y是不可释放性接头并且包含1-10个酰胺键。在一些实施方案中,Y是不可释放性接头并且包含10-20个酰胺键。在一些实施方案中,Y是不可释放性接头并且包含1-5个酰胺键。
在一些实施方案中,Y是不可释放性接头并且包含一个或多个氨基酸接头基团。在一些实施方案中,Y是多肽。在一些实施方案中,所述多肽包含1-20个氨基酸残基。在一些实施方案中,所述多肽包含1-10个氨基酸残基。在一些实施方案中,所述多肽包含10-20个氨基酸残基。在一些实施方案中,所述多肽包含1-5个氨基酸残基。
在一些实施方案中,Y是不可释放性接头并且包含一个或多个醚键(C-O)。在一些实施方案中,Y是不可释放性接头并且包含1-20个醚键(C-O)。在一些实施方案中,Y是不可释放性接头并且包含1-10个醚键(C-O)。在一些实施方案中,Y是不可释放性接头并且包含10-20个醚键(C-O)。在一些实施方案中,Y是不可释放性接头并且包含1-5个醚键(C-O)。
在一些实施方案中,Y是不可释放性接头并且包含一个或多个聚乙二醇(PEG)接头基团。在一些实施方案中,Y是PEG。
在一些实施方案中,Y是不可释放性接头并且包含一个或多个硫醚键(C-S)。在一些实施方案中,Y是不可释放性接头并且包含1-20个硫醚键(C-S)。在一些实施方案中,Y是不可释放性接头并且包含1-10个硫醚键(C-S)。在一些实施方案中,Y是不可释放性接头并且包含10-20个硫醚键(C-S)。在一些实施方案中,Y是不可释放性接头并且包含1-5个硫醚键(C-S)。
在一些实施方案中,Y是可释放性接头。在一些实施方案中,Y是包含至少一个二硫键(S-S)的可释放性接头。在一些实施方案中,Y是包含至少一个酯(例如,O(C=O))的可释放性接头。在一些实施方案中,Y是包含至少一个(例如,蛋白酶特异性)酰胺键的可释放性接头。
在一些实施方案中,Y是可释放性接头并且包含一个或多个酰胺键。在一些实施方案中,Y是可释放性接头并且包含1-20个酰胺键。在一些实施方案中,Y是可释放性接头并且包含1-10个酰胺键。在一些实施方案中,Y是可释放性接头并且包含10-20个酰胺键。在一些实施方案中,Y是可释放性接头并且包含1-5个酰胺键。
在一些实施方案中,Y是可释放性接头并且包含一个或多个氨基酸接头基团。在一些实施方案中,Y是多肽。在一些实施方案中,多肽包含1-20个氨基酸残基。在一些实施方案中,多肽包含1-10个氨基酸残基。在一些实施方案中,多肽包含10-20个氨基酸残基。在一些实施方案中,多肽包含1-5个氨基酸残基。
在一些实施方案中,Y是可释放性接头并且包含一个或多个醚键(C-O)。在一些实施方案中,Y是可释放性接头并且包含1-20个醚键(C-O)。在一些实施方案中,Y是可释放性接头并且包含1-10个醚键(C-O)。在一些实施方案中,Y是可释放性接头并且包含10-20个醚键(C-O)。在一些实施方案中,Y是可释放性接头并且包含1-5个醚键(C-O)。
在一些实施方案中,Y是可释放性接头并且包含一个或多个PEG接头基团。
在一些实施方案中,X是阿巴洛肽(例如,或其衍生物或片段(例如,具有骨合成代谢活性)),Y是包含至少一个蛋白酶特异性酰胺键的可释放性寡肽接头,并且Z是20个重复DE20。
在一些实施方案中,X是阿巴洛肽(例如,或其衍生物或片段(例如,具有骨合成代谢活性)),Y是不可释放性寡肽接头,并且Z是DE10。在一些实施方案中,化合物是SEQ IDNO:3。在一些实施方案中,化合物是SEQ ID NO:14。
在一些实施方案中,X是阿巴洛肽或其衍生物或片段(例如,具有骨合成代谢活性),Y是不可释放性寡肽接头,并且Z是DE20。在一些实施方案中,化合物是SEQ ID NO:4。
在一些实施方案中,X是阿巴洛肽或其衍生物或片段(例如,具有骨合成代谢活性),Y是不可释放性寡肽接头,并且Z是DE20。在一些实施方案中,化合物是SEQ ID NO:11。
在一些实施方案中,X是肽(多肽)。在一些实施方案中,具有式(I)的结构的化合物是肽(多肽)。
在一些实施方案中,本文提供了具有骨合成代谢活性的肽(多肽)(例如,阿巴洛肽(SEQ ID NO:2))。在一些实施方案中,本文提供了具有骨合成代谢活性的基本上纯的肽(多肽)(例如,阿巴洛肽),其中所述肽(多肽)包含与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:14中所列的氨基酸序列具有至少75%、至少85%、至少95%氨基酸序列同一性的氨基酸序列。在一些实施方案中,SEQ ID NO:3和/或SEQ ID NO:14具有骨合成代谢活性(例如,和骨靶向活性)。在一些实施方案中,SEQ ID NO:4具有骨合成代谢活性(例如,和骨靶向活性)。在其他实施方案中,所述肽(多肽)包含与(例如,PTH、PTHrP(SEQID NO:1)或阿巴洛肽(Abalo)(SEQ ID NO:2))或SEQ ID NO:3中所列的氨基酸序列具有至少75%序列同一性(例如,至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高,或者至少95%序列同一性或更高)的氨基酸序列。在其他实施方案中,所述肽(多肽)包含与PTH或PTHrP(SEQ ID NO:1)或Abalo(SEQ ID NO:2)或SEQ ID NO:4中所列的氨基酸序列具有至少75%序列同一性(例如,至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高,或者至少95%序列同一性或更高)的氨基酸序列。
在另一实施方案中,所述肽(多肽)是与图1A中所示的氨基酸序列具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高的氨基酸序列。在另一实施方案中,所述肽(多肽)是图1A中所示的氨基酸序列。在另一实施方案中,所述肽(多肽)是与图1B中所示的氨基酸序列具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高的氨基酸序列。在另一实施方案中,所述肽(多肽)是图1B中所示的氨基酸序列。在一些实施方案中,所述肽(多肽)是与101(例如,参见图1A中SEQ ID NO:7)具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高的氨基酸序列。在一些实施方案中,所述肽(多肽)是101(例如,参见图1A中SEQ ID NO:7)。在一些实施方案中,所述肽(多肽)是与102(例如,参见图1B中SEQ ID NO:8)具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高的氨基酸序列。在一些实施方案中,所述肽(多肽)是102(例如,参见图1B中SEQ ID NO:8)。
在一些实施方案中,本文提供的化合物包含有效载荷。在一些实施方案中,所述有效载荷包含Abalo或其衍生物或片段(例如,具有骨合成代谢活性)(例如,SEQ ID NO:2)。在一些实施方案中,所述有效载荷包含本文提供的接头(例如,SEQ ID NO:12)。在一些实施方案中,所述有效载荷包含Abalo或其衍生物或片段(例如,具有骨合成代谢活性)(例如,SEQ.ID.NO.:2)以及本文提供的接头(例如,SEQ ID NO:12)。
在一些实施方案中,所述接头是或包含SEQ ID NO:12。在一些实施方案中,所述接头是或包含基本由SEQ ID NO:12组成的多肽。在一些实施方案中,所述接头包含SEQ IDNO:12的一个或多个氨基酸。在一些实施方案中,所述接头包含SEQ ID NO:12的每个氨基酸。在一些实施方案中,所述接头是SEQ ID NO:12。
在一些实施方案中,所述肽(多肽)是本文提供的任何化合物(例如,具有式(I)、SEQ ID NO:3或SEQ ID NO:4的结构的化合物)的药学上可接受的盐。
在一些实施方案中,本文提供了药物组合物,所述药物组合物包含本文提供的任何化合物(例如,具有式(I)、SEQ ID NO:3或SEQ ID NO:4的结构的化合物)或其药学上可接受的盐。在某些实施方案中,所述药物组合物包含本文提供的任何化合物以及至少一种药学上可接受的载体或赋形剂。
在一些实施方案中,本文提供的化合物(例如,具有式(I)、SEQ ID NO:3或SEQ IDNO:4的结构的化合物)被(例如,皮下)施用于个体(例如,患者或有需要的个体)。
本文在一些实施方案中提供了式X-Y-Z的缀合物。
在一些实施方案中,X是选自以下的骨合成代谢剂:PTH、PTHrP(SEQ ID NO:1)、阿巴洛肽(SEQ ID NO:2)、上述任一种的具有骨合成代谢活性的衍生物,以及上述任一种的具有骨合成代谢活性的片段。
在一些实施方案中,Y当存在时是接头,其可以是可释放性或不可释放性。
在另一实施方案中,所述接头是与图1A中所示的氨基酸序列具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高的氨基酸序列。在另一实施方案中,所述接头是图1A中所示的氨基酸序列。在另一实施方案中,所述接头是与图1B中所示的氨基酸序列(例如,SEQ ID NO:12)具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高的氨基酸序列。在另一实施方案中,接头是图1B中所示的氨基酸序列(例如,SEQ ID NO:12)。
在一些实施方案中,Z是趋骨性配体,其是包含至少11至100个氨基酸残基的AOP。
氨基酸残基可以是谷氨酸、天冬氨酸或其混合物。氨基酸残基可以具有D手性。AOP可以是氨基酸残基的线性链。当Y存在时,Y可以是包含至少一个碳-碳键和/或至少一个酰胺键的不可释放性接头。或者,当Y存在时,Y可以是包含至少一个二硫键、酯键和/或蛋白酶特异性酰胺键的可释放性接头。
在一些实施方案中,本文提供了药物组合物,所述药物组合物包含本文提供的任何化合物(例如,具有式(I)、SEQ ID NO:3或SEQ ID NO:4的结构的化合物)或其药学上可接受的盐(例如,以及至少一种药学上可接受的载体或赋形剂)。
在一些实施方案中,本文还提供了药物组合物,所述药物组合物包含有效量的上述缀合物以及药学上可接受的载体。
在一些实施方案中,本文提供的化合物(例如,具有式(I)、SEQ ID NO:3或SEQ IDNO:4的结构的化合物)被(例如,皮下)施用于个体(例如,患者或有需要的个体)。
在一些实施方案中,本文提供了一种治疗(例如,个体(例如,患者或有需要的个体)的)骨折的方法。在一些实施方案中,所述方法包括将治疗有效量的本文提供的任何化合物(例如,具有式(I)、SEQ ID NO:3或SEQ ID NO:4的结构的化合物)(例如,皮下)施用于所述个体(例如,患者或有需要的个体)。在一些实施方案中,通过将治疗有效量的本文提供的任何化合物(例如,具有式(I)、SEQ ID NO:3或SEQ ID NO:4的结构的化合物)(例如,皮下)施用于个体(例如,患者或有需要的个体)来治疗所述个体(例如,患者或有需要的个体)的骨折或改善骨折的愈合。
在一些实施方案中,本文提供了一种治疗(例如,有需要的)患者的骨折的方法,所述方法包括向所述(例如,有需要的)患者(例如,皮下)施用治疗有效量的本文提供的任何化合物(例如,具有式(I)、SEQ ID NO:3或SEQ ID NO:4的结构的化合物)或药物组合物,从而治疗所述(例如,有需要的)患者的骨折。
在一些实施方案中,所述(例如,有需要的)患者易患骨折。在一些实施方案中,所述(例如,有需要的)患者患有糖尿病。在一些实施方案中,所述(例如,有需要的)患者患有骨质疏松。在一些实施方案中,所述(例如,有需要的)患者患有颌面缺陷、缺损或损伤(例如,颌面骨折。在一些实施方案中,颌面骨折是用微板(microplate)稳定化的下颌骨截骨术。在一些实施方案中,所述(例如,有需要的)患者患有糖尿病、骨质疏松和/或颌面缺陷、颌面缺损或颌面损伤(例如,颌面骨折)。在一些实施方案中,所述患者患有选自糖尿病、骨质疏松、颌面损伤和颌面缺陷的一种或多种共病。
在一些实施方案中,(例如,皮下)施用治疗有效量的本文提供的任何化合物(例如,具有式(I)的结构的化合物)或药物组合物是通过注射进行。在一些实施方案中,(例如,皮下)施用治疗有效量的本文提供的任何化合物(例如,具有式(I)的结构的化合物)或药物组合物是通过皮下注射进行。在一些实施方案中,治疗有效量的本文提供的任何化合物或药物组合物通过胃肠外施用或肠内施用来施用。
在一些实施方案中,本文提供了一种治疗(例如,个体(例如,患者或有需要的个体)的)骨折的方法。在一些实施方案中,所述方法包括将治疗有效量的本文提供的任何化合物(例如,具有式(I)、SEQ ID NO:3或SEQ ID NO:4的结构的化合物)(例如,皮下)施用于个体(例如,患者或有需要的个体)。在一些实施方案中,通过将治疗有效量的本文提供的任何化合物(例如,具有式(I)、SEQ ID NO:3或SEQ ID NO:4的结构的化合物)(例如,皮下)施用于个体(例如,患者或有需要的个体)来治疗所述个体(例如,患者或有需要的个体)的骨折或改善骨折的愈合。在一些实施方案中,施用治疗有效量的本文提供的任何化合物或药物组合物是通过胃肠外施用或肠内施用进行。
在一些实施方案中,施用导致在施用治疗有效量的本文提供的化合物或药物组合物后三周(例如,2至3周)内减轻患者的疼痛。
还提供了用于促进(例如,有需要的)患者的骨生长的方法。在某些实施方案中,所述方法包括向患者施用治疗有效量的本文提供的化合物或药物组合物,从而与治疗前(例如,在施用本文提供的化合物或药物组合物之前的骨密度)相比使所述患者的骨中骨矿物质密度增大。
在一些实施方案中,骨中增大的骨矿物质密度发生在骨折部位或在(例如,经受骨质疏松的患者中)存在于骨上的一个或多个再吸收凹坑中。在本文提供的方法的一些实施方案中,本文提供的化合物被皮下施用(例如,于有需要的个体)。
在所述方法的一些实施方案中,将治疗有效量的本文提供的任何化合物或药物组合物(例如,在时间段例如一周、一个月、一年或更久期间)每日、每周、每两周或每月地施用。在一些实施方案中,将治疗有效量的本文提供的任何化合物或药物组合物每周一次或两次地施用。在一些实施方案中,将治疗有效量的本文提供的任何化合物或药物组合物以1至800独立剂量施用。在某些实施方案中,治疗有效量的化合物或药物组合物具有在或介于0.01mg/kg患者体重至1mg/kg患者体重之间的化合物浓度。
在一些实施方案中,骨合成代谢剂是PTH或PTHrP(SEQ ID NO:1)或其衍生物或片段(例如,具有骨合成代谢活性)。在一些实施方案中,骨合成代谢剂是PTH或其衍生物或片段。在一些实施方案中,骨合成代谢剂是PTHrP(SEQ ID NO:1)或其衍生物或片段。在一些实施方案中,骨合成代谢剂是(例如,合成)修饰的PTH或其衍生物或片段。在一些实施方案中,骨合成代谢剂是(例如,合成)修饰的PTHrP(SEQ ID NO:1)或其衍生物或片段。在一些实施方案中,骨合成代谢剂是阿巴洛肽或其衍生物或片段(例如,具有骨合成代谢活性)。在一些实施方案中,骨合成代谢剂是阿巴洛肽(SEQ ID NO:2)。在一些实施方案中,骨合成代谢剂是(例如,合成)修饰的阿巴洛肽。
在一些实施方案中,Z是氨基酸残基的线性链。在一些实施方案中,Z是AOP(例如,包含至少4个谷氨酸氨基酸残基或4个天冬氨酸氨基酸残基)。
在一些实施方案中,Z包含至少4个氨基酸残基(例如,4个或更多、10个或更多、20个或更多、30个或更多、50个或更多、75个或更多、或者100个或更多)。在一些实施方案中,Z包含至多100个氨基酸残基(例如,100个或更少、75个或更少、50个或更少、30个或更少、20个或更少、10个或更少,或者4个或更少)。在一些实施方案中,Z包含不少于4个并且不多于35个氨基酸。在一些实施方案中,Z包含不少于4个并且不多于20个氨基酸。在一些实施方案中,Z包含不少于6个并且不多于30个氨基酸。在一些实施方案中,Z包含不少于8个并且不多于30个氨基酸。在一些实施方案中,Z包含不少于8个并且不多于20个氨基酸。
在一些实施方案中,AOP包含约4至约20个氨基酸残基(例如4至约20或约4至20)或更多个氨基酸残基,例如4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20个。在多种实施方案中,AOP包含约20个氨基酸残基,例如20个氨基酸残基。
在一些实施方案中,所述氨基酸是天冬氨酸(由字母D表示)、谷氨酸(由字母E表示)或其混合物。所述氨基酸残基可以具有D手性、L手性或其混合物。在一些实施方案中,所述氨基酸残基具有D手性。在一些实施方案中,所述氨基酸残基具有L手性。在一些实施方案中,Z包含至少4个(例如,酸性)氨基酸残基(例如,具有相同手性的氨基酸残基(例如,D-氨基酸残基或L-氨基酸残基))。在一些实施方案中,至少4个(例如,酸性)氨基酸残基中的每一个具有D手性。在一些实施方案中,天冬氨酸是D-天冬氨酸或L-天冬氨酸。在一些实施方案中,谷氨酸是D-谷氨酸或L-谷氨酸。在一些实施方案中,Z包含不少于4个并且不多于20个D-谷氨酸残基或L-谷氨酸残基。在一些实施方案中,Z包含不少于4个并且不多于20个D-天冬氨酸残基或L-天冬氨酸残基。
在一些实施方案中,Z包含至少4个(例如,D-)谷氨酸氨基酸残基(例如,4至20个D-谷氨酸氨基酸残基)和/或至少4个(例如,D-)天冬氨酸氨基酸残基(例如,4至20个D-天冬氨酸氨基酸残基)。
在一些实施方案中,Z包含(例如,D-)谷氨酸氨基酸残基和(例如,D-)天冬氨酸氨基酸残基的混合物。
在一些实施方案中,Z包含至少4个重复D-谷氨酸氨基酸残基(例如,DE4或更多、DE6或更多、DE8或更多、DE10或更多、DE15或更多、或者DE20或更多、DE25或更多、DE30或更多、或者DE35或更多)。在一些实施方案中,Z包含至少10个重复D-谷氨酸氨基酸残基(例如,DE4或更多、DE6或更多、DE8或更多、DE10或更多、DE15或更多、或者DE20或更多、DE25或更多、DE30或更多、或者DE35或更多)。在一些实施方案中,X是阿巴洛肽或其衍生物或片段(例如,具有骨合成代谢活性)并且Z是DE20。
在一些实施方案中,Y是不可释放性接头。在一些实施方案中,Y是包含至少一个碳-碳键的不可释放性接头。在一些实施方案中,Y是包含至少一个酰胺键的不可释放性接头。在一些实施方案中,Y是包含至少一个碳-碳键和至少一个酰胺键的不可释放性接头。
在一些实施方案中,Y是可释放性接头。在一些实施方案中,Y是包含至少一个二硫键(S-S)的可释放性接头。在一些实施方案中,Y是包含至少一个酯(例如,O(C=O))的可释放性接头。在一些实施方案中,Y是包含至少一个(例如,蛋白酶特异性)酰胺键的可释放性接头。
在一些实施方案中,Y是本文别处(例如,以上)所述的接头。
在一些实施方案中,Z是本文别处(例如,以上)所述的趋骨性配体。
在一些实施方案中,X是阿巴洛肽或其衍生物或片段(例如,具有骨合成代谢活性),Y是不可释放性寡肽接头,并且Z是DE20。在一些实施方案中,所述化合物是SEQ ID NO:11。
在一些实施方案中,X是阿巴洛肽或其衍生物或片段(例如,具有骨合成代谢活性),Y是包含至少一个蛋白酶特异性酰胺键的可释放性寡肽接头,并且Z是DE20。
在一些实施方案中,所述化合物是显像剂(例如,染料)。
在一些实施方案中,所述化合物是单光子发射计算机断层摄影术/计算断层摄影术(SPEC/CT)显像剂。
在一些实施方案中,所述化合物在本文别处(例如,以上)描述。
在一些实施方案中,所述化合物是SEQ ID NO:3。在一些实施方案中,所述化合物是SEQ ID NO:4。
在一些实施方案中,本文提供了药物组合物,所述药物组合物包含本文提供的任何化合物(例如,具有式(I)、SEQ ID NO:3或SEQ ID NO:4的结构的化合物)或其药学上可接受的盐(例如,以及至少一种药学上可接受的载体或赋形剂)。
在一些实施方案中,本文还提供了一种治疗骨折的方法。在一些实施方案中,所述方法包括向患有骨折的患者(例如,皮下)施用有效量的式X-Y-Z的缀合物或包含所述缀合物的药物组合物,从而治疗所述患者的骨折。所述患者可能患有糖尿病、骨质疏松或颌面骨折,例如用微板稳定化的下颌骨截骨术。有效量的缀合物或有效量的药物组合物可以通过注射例如皮下注射来施用。
本公开内容的其他实施方案以及适用性的全范围将根据具体实施方式而变得明白易懂。但是,应理解具体实施方式和具体实施例仅通过说明的方式而给出。本公开内容的精神和范围内的各种变化和修改对于本领域技术人员将变得显而易见。
附图说明
图1A示出了SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6(达沙替尼的靶向缀合物的结构)和SEQ ID NO:7。
图1B示出了SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ IDNO:12、SEQ ID NO:13、SEQ ID NO:14和SEQ ID NO:15。
图2A示出了与放射标记的酪氨酰基半胱氨酸缀合的四环素、单-双膦酸盐、多磷酸盐和酸性寡肽的化学结构。
图2B示出了递送125I酪氨酰基半胱氨酸有效载荷的骨靶向性配体的缀合物相对于骨折的/健康的股骨比例的图。
图3A示出了与非靶向性/游离SEQ ID NO:1相比,靶向的SEQ ID NO:1的组织相对于注射剂量百分比/g的图。
图3B示出了注射后24小时哺乳动物的骨折股骨中靶向的SEQ ID NO:1和游离SEQID NO:1的缀合物相对于注射剂量百分比/g的图。
图3C示出了与非靶向性/游离SEQ ID NO:1相比,用SEQ ID NO:1靶向的缀合物相对于骨折的/健康的股骨比率的图。
图4示出了注射后24小时与(L)Asp10偶联的六种不同放射碘化的有效载荷的组织相对于注射剂量百分比/g的图。
图5示出了相对于非靶向性CK2.3,与10个(L)天冬氨酸偶联的放射碘化的酪蛋白激酶2.3肽(CK2.3)的组织相对于注射剂量百分比/g的图。
图6示出了相对于非靶向性CK2.3,与10个(L)天冬氨酸、10个(L)谷氨酸或10个(L)氨基己二酸偶联的放射碘化的CK2.3的组织相对于注射剂量百分比/克的图。
图7示出了相对于非靶向性CK2.3,与10个或20个(L)谷氨酸偶联的放射碘化的CK2.3的组织相对于注射剂量百分比/g的图。
图8示出了相对于非靶向性CK2.3,与20个L-谷氨酸或D-谷氨酸偶联的放射碘化的CK2.3的组织相对于注射剂量百分比/g的图。
图9示出了骨折后10天在注射后不同的时间点在带有中段股骨骨折的哺乳动物中与10个L-天冬氨酸或D-天冬氨酸偶联的S0456(近红外(IR)荧光团)的注射后小时数相对于μg染料/mg组织的图。
图10示出了相对于非靶向性CK2.3,与不同酸性寡肽偶联的放射碘化的CK2.3的靶向性配体相对于注射剂量百分比/克的图。
图11A示出了与(D)Glu10酸连接的螯合99Tc的Tc螯合剂EC20的单光子发射计算机断层摄影术/计算断层摄影术(SPEC/CT)图像。
图11B示出了与(D)Glu20酸连接的螯合99Tc的Tc螯合剂EC20的SPEC/CT图像。
图11C示出了不同组织中标记的(D)Glu10和(D)Glu20化合物的组织相对于注射剂量百分比/g的图。
图11D示出了螯合99Tc的EC20(D)Glu10的结构。
图12示出了三-双膦酸盐靶向性配体的结构。
图13示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于骨体积(BV)的图。
图14示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于骨体积/总体积(BV/TV)的图。
图15示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于最大(max)载荷(N)的图。
图16示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于断裂功(mJ)的图。
图17示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于屈服后移位(mm)的图。
图18示出了在使用本文提供的化合物的四周治疗期期间I型糖尿病啮齿动物的天数相对于血糖(mg/dl)的图。
图19示出了在整个治疗中I型糖尿病性骨折小鼠受治疗组的天数相对于平均身体质量变化%的图。
图20A示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于骨体积的图。
图20B示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于骨体积/总体积的图。
图21A示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂与胰岛素相对于小梁厚度的图。
图21B示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂与胰岛素相对于小梁间隙的图。
图22A示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂与胰岛素相对于最大力(N)的图。
图22B示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂与胰岛素相对于断裂功(mJ)的图。
图22C示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂与胰岛素相对于模量(MPa)的图。
图23A示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于BV的图。
图23B示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于骨体积/总体积(BV/TV)的图。
图24A示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于最大载荷(N)的图。
图24B示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于断裂功(mJ)的图。
图24C示出了四周后靶向的合成代谢活性缀合物对哺乳动物测试的药剂相对于刚度(MPa)的图。
图25示出了在患有中段股骨骨折的哺乳动物模型中测试的药剂相对于血清钙治疗的血清钙浓度(mg/dl)的图。
图26示出了对于不同受治疗组,天数相对于在运动旷场箱中行进的距离(cm)的图。
图27示出了对于不同受治疗组,天数相对于在运动旷场箱中移动所花费的时间的图。
图28示出了对于不同受治疗组,天数相对于在运动旷场箱中平均速率(cm/s)的图。
图29示出了对于缺损和移植物和颅骨缺损,药剂相对于非钙化面积(mm2)的图;对于螺钉,药剂相对于迁移百分比(%)的图;对于下颌骨截骨术,药剂相对于间隙直径(mm)的图;以及对于下颌骨截骨术,药剂相对于最大负荷(N)的图。
图30示出了本文提供的化合物的小时数相对于血液中注射剂量百分比(cpm/g)的图。
图31示出了在骨折股骨和对侧股骨中本文提供的化合物的小时数相对于骨中的注射剂量百分比(cpm/g)的图。
图32示出了本文提供的化合物的治疗相对于最大载荷(N)的图。
图33示出了本文提供的化合物的治疗相对于断裂功(mJ)的图。
图34示出了本文提供的化合物的治疗相对于最大载荷(N)的图。
图35示出了用非靶向性阿巴洛肽治疗开始后三周成像的骨的CT图像。
具体实施方式
本公开内容涉及治疗骨折的化合物和组合物的制备和用途。在一些实施方案中,所述化合物、组合物和方法采用将治疗剂(例如,选择性地)定位于骨折或其他目标骨损伤的策略。例如,提供的化合物、组合物和方法可以包含趋骨性配体。在一些实施方案中,所述化合物和组合物被配制为表现出增大的保留时间(例如由于增高的抗降解性),以至再施用所述化合物或组合物以在靶向部位(例如,骨折部位)维持治疗有效浓度的频率得以降低。本文的化合物、组合物和方法相比于用于治疗骨折的传统疗法给予显著的优势。例如,相对于在局部应用治疗剂例如骨形成蛋白-2(BMP2)时所用的传统推注施用,靶向性疗法提供一种使药物的治疗性浓度维持更长持续时间的无创性方式。这可能导致更稳固的愈合刺激和更快的修复。无创性质可以进一步允许医师控制何时和多久施用药物以便它们可以影响骨折愈合的不同阶段,以及调整治疗策略以满足患者愈合时间的可变性。它还可以降低全身性暴露和副作用,并且可以避免(例如合成代谢剂的局部应用)漏入邻近组织中。
骨折可能存在于患有骨质疏松的患者中。骨质疏松可能是晚年(例如,>65岁)个体患有的共病并且可能是由于成骨细胞与破骨细胞之间失衡。在女性中,该失衡可能由于在绝经期间雌激素的损失而触发。由于该失衡所致的骨密度损失可能导致(相比于早年)在相对减小的力下断裂的脆弱骨。该失衡在骨基本单元中还可能减缓骨折的愈合。
年龄超过50岁的三个女性中的至少一个以及五个男性中的一个可能患有骨质疏松性骨折。骨质疏松患者有至少两倍可能性患有骨折(例如,由于肌少症和衰弱的骨),于是骨质疏松性骨折对于有风险的群体而言可能是挑战。此群体可能受益于无创性策略而加速骨折愈合。
相似地,糖尿病患者遭受骨折是非糖尿病患者的六倍。糖尿病患者可能经受骨折不愈合是健康患者的两倍。在一些实例中,发生骨折的增多始于(例如,在骨的细胞外基质中)微结构变化。高血糖可能导致胶原链之间的非酶促性交联。此外,在I型糖尿病中,从朗格汉斯岛中的β细胞产生的胰岛素损失可能导致骨矿物质密度降低(例如,由于胰岛素对成骨细胞而言是合成代谢的)。此外,骨愈合可能由于不良血管化和神经病而受损。在这些患者中,因为例如,他们在被固定化时可能更易于遭受共病,所以加速骨折修复可能是重要的。糖尿病患者可能是用目前骨愈合治疗选择方案治疗的挑战性矫形患者。
虽然长骨骨折可能需要暂时固定化和短期生活方式改变,但是颌面骨折可能持续地导致生活品质的严重下降(例如,时常持续存在,直到受损的骨基本上修复时为止)。此种生活品质下降可能是由于在颅面区域中高密度的神经末梢产生的疼痛、在这些区域中所有五种主要感觉的集中,以及此区域的关键性功能(例如,交流和咀嚼)的丧失。
虽然在美国骨折的身体负担和财务负担已频繁地令人痛惜,但是用于治疗这些骨折的方法意外地尚未改善。在一些实例中,治疗方法依赖于用杆、板和/或模型稳定化。
在许多实例中,迄今被批准的成骨药物在手术期间被局部敷用。例如,因为手术未被建议用于大多数骨折,所以采用这些药剂的机会可能难得。
在许多实例中,批准的骨合成代谢剂的代谢更新相对快速,由此可能使它们的治疗性益处的持续时间限制于局部敷用之后的短暂窗口。
此外,局部敷用的合成代谢药漏入周围组织中可能导致不良副作用,包括例如,异位骨生长。在一些实例中,成骨剂的全身性施用在健康组织例如神经、肌肉和脉管系统中刺激不需要的合成代谢过程。在一些实例中,高钙血症、高血压、免疫抑制、甚至癌症是围绕骨合成代谢药的全身性施用的令人担忧之事。
一种可能的解决方案是骨靶向。迄今,骨靶向主要集中在向与骨折无关的骨科病理学(例如骨质疏松症、骨髓炎和骨转移)递送有效载荷。这些治疗大多是选择性地将化合物递送至骨骼的双膦酸盐。然而,在治疗骨折时,必须将化合物选择性地递送至骨折部位,以避免当药物非特异性地递送至所有骨时可能发生的异位骨化。虽然四环素可能对骨折的骨相比于健康骨适中地更具选择性,但四环素可能对骨、肝脏和肾脏有毒性,因此不是一种理想的解决方案。
使用用于骨折靶向的双膦酸盐也存在若干局限性,包括它们抑制破骨细胞,而破骨细胞对于正常的骨骼重塑和骨折骨痂从编织骨变成层状骨二者都是必不可少的。使用双膦酸盐作为靶向性配体的另一问题是,它们在骨中具有长达20年的半衰期,由此取决于它们的治疗性货物的稳定性而可能潜在地导致对它们的分子靶点的不期望地长期刺激。
对于雷奈酸盐,可以观察到类似的靶向性。这些化合物可以用作靶向性分子用于许多骨病,并且可以与合成代谢剂附接以加速骨的生长和愈合。然而,类似于双膦酸盐,它们具有长久的骨半衰期。
鉴于双膦酸盐、雷奈酸盐和多磷酸盐的问题,包括繁琐的合成和不良的溶解性,仍然需要一种不呈现此类缺点的趋骨性配体。令人期望地,趋骨性配体可以将附接的肽类治疗剂递送至骨折处,特别是递送至骨折骨痂。
阿巴洛肽(SEQ ID NO:2)是甲状旁腺激素相关蛋白(PTHrP)(SEQ ID NO:1)的合成代谢性的34个氨基酸的合成类似物。阿巴洛肽可以有助于促进骨生长和保存骨密度,并且可以用于治疗骨质疏松。阿巴洛肽(SEQ ID NO:2)相似于PTHrP(SEQ ID NO:1)发挥作用并且靶向、结合至和激活甲状旁腺激素1(PTH1)受体(PTH1R)。
PTH1R是在成骨细胞和骨基质细胞中表达的G蛋白偶联受体(GPCR)。PTH1R继而激活环腺苷一磷酸(cAMP)信号通路和骨合成代谢信号通路,从而导致骨生长和增大的骨矿物质密度和体积。骨质量和强度的增高有助于预防/治疗骨质疏松并且降低骨折的风险。
通过在整个愈合过程中不断向骨折处敷用骨合成代谢剂,可以改善对断骨的管理。在一些实例中,使羟基磷灰石暴露在断骨上。在一些实例中,与羟基磷灰石以高亲和力和特异性结合的分子可以提供一种使骨合成代谢剂靶向骨折处的治疗方法(例如,并提供对骨折愈合的持续刺激)。
骨折患者可能遭受功能丧失(例如,由于疼痛和骨折缺乏稳定性)。骨骼功能丧失的传统治疗方法包括,例如,通过手术植入板和杆而改善稳定性、用非甾体类抗炎药(NSAID)和阿片类物质缓解疼痛,以及局部敷用合成代谢剂。手术植入杆和板是侵入性的,可能疼痛。例如,在一些实例中,患者过快地使用他们身体的骨折部分,因而延迟愈合。在一些实例中,阿片类物质可能引起认知损害,并且例如,1)是最常滥用的药物类别(例如,在年轻和老年群体中骨科创伤后),以及2)在一些实例中,是造成在损伤愈合之后一些疼痛综合征持续的原因。此外,在一些实例中,阿片类物质可能诱发头晕和眩晕,由此可能例如导致跌倒,从而可能进一步加剧现有的骨损伤或造成新的骨损伤。在一些实例中,因为NSAID可能损及愈合过程,所以不鼓励NSAID用于骨折疼痛。例如,为了缓解疼痛而施用NSAID可能导致骨密度降低、在早期骨折固定期间软骨形成减少,以及最终骨缺损的不连合。这种受损的愈合的机制可以包括,例如,干细胞分化的延迟和BMP2产量的减少。在一些实例中,患者在治疗后继续感到疼痛,尽管有较好的射线摄影术结果,却导致了功能的丧失。BMP2是一种被批准用于治疗骨折的疗法,可以改善骨折愈合,但也已有报道称,在一些实例中,手术后疼痛加剧,由此可能延迟骨折后功能的获得。
化合物
在一些实施方案中,本文提供了包含酸性寡肽(AOP)的化合物(例如,酸性氨基酸的十聚体和二十聚体,天冬氨酸或谷氨酸的十聚体和二十聚体,或者上述的各种组合)。在一些实施方案中,AOP有效地靶向脊柱融合。在一些实施方案中,二十聚体比十聚体更有效。在一些实施方案中,AOP相比于双膦酸盐和四环素是高选择性的。在一些实施方案中,谷氨酸聚合物和天冬氨酸聚合物在递送部位处具有相似的保留时间。在一些实施方案中,虽然寡天冬氨酸在肾脏中具有降低的非特异性保留,但是对于寡谷氨酸观察到的保留时间的稍微增长是短暂的。在一些实施方案中,天冬氨酸寡肽和谷氨酸寡肽二者均在18小时后从肾脏(例如,几乎定量地)清除。在一些实施方案中,AOP靶向所有化学分类(例如,疏水性的、中性的、阳离子型的、阴离子型的、短寡肽和长多肽)的肽。在一些实施方案中,此靶向特别有益,因为它允许此平台的开发和广泛用途以开发其他靶向疗法(例如,许多骨合成代谢剂是肽,但是它们的物理性质可能差别很大)。
在一些实施方案中,本文提供了包含AOP的非天然D对映体的化合物,在一些实例中,该化合物相比于各自的L对映体在骨折表面上表现出增长的保留时间。这可能是由于例如相比于其他化合物增高的抗降解性。在一些实施方案中,增长的保留时间影响为了在手术的靶向部位(例如,骨折)处保持治疗有效浓度而需要重新施用治疗剂的频率。在一些实施方案中,增长的保留时间影响为了引发目标响应(例如,治疗性响应)而需要施用治疗剂的量。在一些实施方案中,线性AOP优于支化AOP(例如,由于减小或不存在干扰)。
在一些实施方案中,对合成代谢剂的靶向递送提供了(例如,通过注射,例如,皮下注射,例如,在远端部位处)治疗剂向骨折处的定位。在一些实施方案中,本文提供的化合物重复地施用于(例如,有需要的)患者。在一些实施方案中,本文提供的化合物以相对低剂量施用于(例如,有需要的)患者。在一些实施方案中,本文提供的化合物以安全剂量施用于(例如,有需要的)患者。在一些实施方案中,本文提供的化合物以治疗性剂量施用于(例如,有需要的)患者。在一些实施方案中,靶向递送最小化(例如,若未消除)合成代谢剂的漂移(例如,至其他组织中和不需要的矿化)。在一些实施方案中,该区域中骨生长在相对长时间中受到刺激(例如,以达到相对快速的结果(例如,以便患者可以相比于非靶向性递送方法更快速地恢复他们的术后移动能力))。
在一些实施方案中,本文提供了具有式(I)的结构的化合物:
X-Y-Z
或其药学上可接受的盐,其中:
X是骨合成代谢剂;
Y当存在时是接头,所述接头可以是可释放性或不可释放性;并且
Z是趋骨性配体。
Z可以是任何适合的趋骨性配体。在一些实施方案中,趋骨性配体对骨具有亲和力,例如,羟基磷灰石。在一些实施方案中,趋骨性配体有助于将所述化合物(或其衍生物或片段)导向至(例如,愈合)骨。在一些实施方案中,趋骨性配体具有使骨合成代谢剂靶向骨折或其他骨损伤的潜力。在一些实施方案中,趋骨性配体是对羟基磷灰石具有亲和力的配体。在一些实施方案中,趋骨性配体是雷奈酸盐、双膦酸盐(例如,阿伦膦酸盐(alendronate))、四环素、多磷酸盐、酸性分子(例如具有两个或更多个羧酸的分子)、钙螯合剂、金属螯合剂或AOP。在一些实施方案中,趋骨性配体是AOP。在一些实施方案中,趋骨性配体是选自单-双膦酸盐、三-双膦酸盐和聚-双膦酸盐的双膦酸盐。
在一些实施方案中,Z包含至少4个氨基酸残基(例如,4个或更多、10个或更多、20个或更多、30个或更多、50个或更多、75个或更多、或者100个或更多)。在一些实施方案中,Z包含至多100个氨基酸残基(例如,100个或更少、75个或更少、50个或更少、30个或更少、20个或更少、10个或更少,或者4个或更少)。在一些实施方案中,Z包含不少于4个并且不多于30个氨基酸。在一些实施方案中,Z包含不少于4个并且不多于20个氨基酸。在一些实施方案中,AOP包含约4至约20个氨基酸残基(例如4至约20或约4至20)或更多个氨基酸残基,例如4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20个。在多种实施方案中,AOP包含约20个氨基酸残基,例如20个氨基酸残基。在其他实施方案中,AOP可以包含超过20个氨基酸残基,例如21、22、23、24、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95或多达100个氨基酸残基。
在一些实施方案中,所述氨基酸可以是天冬氨酸(由字母D表示)、谷氨酸(由字母E表示)或其混合物。所述氨基酸残基可以具有D手性、L手性或其混合物。在一些实施方案中,所述氨基酸残基具有D手性。在一些实施方案中,所述氨基酸残基具有L手性。在一些实施方案中,天冬氨酸是D-天冬氨酸或L-天冬氨酸。在一些实施方案中,谷氨酸是D-谷氨酸或L-谷氨酸。在一些实施方案中,Z包含不少于4个并且不多于20个D-谷氨酸残基或L-谷氨酸残基。在一些实施方案中,Z包含不少于4个并且不多于20个D-天冬氨酸残基或L-天冬氨酸残基。
在一些实施方案中,AOP包含一个或多个中性或碱性氨基酸(例如,条件是该AOP有效地作为趋骨性配体发挥功能)。在一些实施方案中,AOP包含一个或多个合成氨基酸(例如,其可以是酸性、中性或碱性)。
在一些实施方案中,AOP是线性(线性链)或支化的(支化链)。线性链用于多种实施方案中。在一些实施方案中,AOP可以是环化的。
趋骨性配体(Z)可以是单个单元、聚合物、树枝状聚合物或多个单元。在一些实施方案中,趋骨性配体是聚合物。在一些实施方案中,合成代谢剂是环状的。在一些实施方案中,合成代谢剂是环肽。在一些实例中,环肽是由连接成链的两个或更多个氨基酸组成的化合物(或其基团),其中该化合物的两部分合并而形成杂环(例如,肽)分子。环肽的示例包括但不限于101和102的结构(参见,例如,图1A和1B)。
在一些实施方案中,X是任何适合的骨合成代谢剂。在一些实施方案中,骨合成代谢剂是中性、阴离子型、阳离子型或疏水性的。在一些实施方案中,骨合成代谢剂是寡肽(例如,包含小于或等于约10个(或小于10个)氨基酸残基,例如10、9、8、7、6、5或4个氨基酸残基)。在一些实施方案中,骨合成代谢剂包含大于或等于约10个(或大于10个)氨基酸残基,例如10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39或40个氨基酸残基。
合成代谢剂的示例包括但不限于阿巴洛肽(SEQ ID NO:2)、SEQ ID NO:5(例如,由胰岛的β细胞分泌的34个残基的肽激素;与胰岛素原样生长因子II(pro-IGF-II)的E-肽的Asp69-Leu102对应)、SEQ ID NO:7(例如,与10个谷氨酸残基缀合的ITGA(ITGA5))、SEQ IDNO:6(具有10个谷氨酸残基的缀合物)、甲状旁腺激素(PTH)、甲状旁腺激素相关蛋白(PTHrP)(SEQ ID NO:1),或者上述任一种的具有骨合成代谢活性的衍生物(例如,一个或多个氨基酸突变,例如用天然存在的氨基酸或非天然存在的氨基酸插入、缺失和置换),或者上述任一种的具有骨合成代谢活性的片段。
在一些实施方案中,后随标识D#例如D20的骨合成代谢剂表示该骨合成代谢剂附接(或接合或连接,例如在N末端或C末端处)至趋骨性配体(例如,具有20个天冬氨酸残基的正交各向异性(orthotropic)配体)。在一些实施方案中,后随标识E#例如E20的骨合成代谢剂表示该骨合成代谢剂附接(或接合或连接,例如在N末端或C末端处)至趋骨性配体(例如,具有20个谷氨酸残基的正交各向异性配体)。
在一些实施方案中,SEQ ID NO:1是AVSEHQLLHDKGKSIQDLRRRFFLHHLIAEIHTAEIRATSEVSPNSK PSPNTKNHPVRFGSDDEGRYLTQETNKVETYKEQPLKTP。
在一些实施方案中,SEQ ID NO:2是AVSEHQLLHDKGKSIQDLRRRELLEKLLxKLHTA,其中x是α-氨基异丁酸(Aib)。在一些实施方案中,SEQ ID NO:2的C末端被酰胺化。在一些实施方案中,SEQ ID NO:2是AVSEHQLLHDKGKSIQDLRRRELLEKLLxKLHTA,其中x是Aib,并且C末端被酰胺化。
在一些实施方案中,SEQ ID NO:15是AVSEHQLLHDKGKSIQDLRRRELLEKLLxKLHTAEIRATSEVSPNS,其中x是Aib。在一些实施方案中,SEQ ID NO:3还包含“eeeeeeeeee”,其中“e”表示D-谷氨酸(例如,SEQ ID NO:3)。在一些实施方案中,“EEEEEEEEEE”可以被添加至SEQ IDNO:15的末端而获得SEQ ID NO:14,其中“E”表示L-谷氨酸。
在一些实施方案中,SEQ ID NO:4是AVSEHQLLHDKGKSIQDLRRRELLEKLLxKLHTAEIRATSEVSPNSe eeeeeeeeeeeeeeeeeee,其中x是Aib。在一些实施方案中,“e”表示D-谷氨酸(例如,“E”表示L-谷氨酸,而“e”表示D-谷氨酸)。在一些实施方案中,SEQ ID NO:4是AVSEHQLLHDKGKSIQDLRRRELLEKLLxKLHTAEIRATSEVSPNSe eeeeeeeeeeeeeeeeeee,其中x是Aib,并且“e”表示D-谷氨酸。
在一些实施方案中,化合物与SEQ ID NO:3具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高。在一些实施方案中,化合物与SEQ ID NO:4具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高。在一些实施方案中,化合物与SEQ ID NO:14具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高。
在式(I)的一些实施方案中,Y是不可释放性接头。在一些实施方案中,Y是包含至少一个碳-碳键和/或至少一个酰胺键的不可释放性接头。在一些实施方案中,Y是可释放性接头。在一些实施方案中,Y是包含至少一个二硫键(S-S)、酯(例如,-O(C=O)-)和/或蛋白酶特异性酰胺键的可释放性接头。
在一些实施方案中,靶向性分子(即,趋骨性配体)未从用于在体内治疗性有效的化合物的药物/合成代谢剂切割。这可能是有利的,因为其可允许使用趋骨性配体以及包含合成代谢剂的组合物,因为在所述化合物靶向递送至骨折部位或其他目标部位之前仅(例如,全身性)释放可忽略量(如果有的话)的合成代谢剂。在一些实施方案中,调整活性组分的释放特性是制备有效药物组合物的困难方面。在一些实施方案中,本文提供的包含不可释放性接头的化合物(例如,通过消除安排释放时间的必要性)避免了制备有效药物组合物的困难。在一些实施方案中,本文提供的化合物的合成代谢剂在结合(例如,与趋骨性配体缀合)时是活性的。因此,在一些实施方案中,包含与不可释放性接头(例如,Y)缀合的靶向性分子(例如,Z)的化合物可以降低与其连接的合成代谢剂(X)的全身性暴露和/或全身性不良效应。
在一些实施方案中,包含不可释放性接头的缀合物降低或消除从该缀合物中以其游离形式释放的组分(例如,本文提供的化合物和/或配体的游离形式)的毒性。
根据本领域常知的方法或以下开发的方法例如通过PEG化等,可释放性接头和不可释放性接头二者均可以被工程化为优化(例如,化合物的)生物分布、生物利用度和PK/PD,并且/或者增高(例如,化合物)摄入目标组织中。根据本领域已知的构思,考虑到分子靶(例如,该靶是细胞内的,还是细胞外的),接头可以进一步被工程化。在一些实施方案中,接头被配置为在被细胞(例如,骨细胞)捕获之前避免药学活性量的合成代谢剂显著释放在循环中。
在一些实施方案中,接头可以包含一个或多个间隔子(例如,以促进特定的释放时间、促进增高摄入目标组织中和/或优化化合物的生物分布、生物利用度和/或PK/PD)。间隔子可以包含以下中的一个或多个:烷基链、聚乙二醇(PEG)、肽、糖、肽聚糖、可点击性接头(例如,三唑类)、刚性接头例如聚脯氨酸和聚哌啶等。
在一些实施方案中,本文提供的化合物的一个或多个接头可以包含PEG、PEG衍生物,或者可实现本文陈述的目的的本领域已知的或以下开发的任何其他接头。在一些实施方案中,接头重复n次,其中n是正整数。
缀合物可以根据本领域已知的和本文举例说明的方法例如固相肽合成进行合成。
药物组合物
本文所述的化合物可以单独地施用或者配制为药物组合物,该药物组合物包含一种或多种所述化合物和一种或多种药学上可接受的赋形剂。如本文所用,术语“组合物”通常是指包含多于一种成分(包括本文所述的化合物)的任何产品。应理解,本文所述的组合物可以从分离的化合物或者从所述化合物的盐、溶液、水合物、溶剂化物及其他形式来制备。某些官能团,例如羟基、氨基和类似基团,可以在化合物的各种物理形式中与水和/或各种溶剂形成复合物。还应理解,组合物可以从化合物的各种无定形、非无定形、部分结晶、结晶和/或其他形态形式来制备,组合物可以从化合物的各种水合物和/或溶剂化物来制备。因此,引述化合物的此类药物组合物包含所述化合物的各种形态形式和/或溶剂化物或水合物形式中的每一种、或任何组合或单独形式。
一种实施方案提供了一种药物组合物,该药物组合物包含式(I)的化合物或由此式涵盖任何化合物或其药学上可接受的盐,以及至少一种药学上可接受的赋形剂。
一种实施方案提供了一种药物组合物,该药物组合物包含有效量的治疗性(或预防性)有效的式(I)的化合物或由此式涵盖任何化合物或其药学上可接受的盐,以及至少一种药学上可接受的赋形剂。
在一些实施方案中,本文提供了一种药物组合物,该药物组合物包含治疗有效量的本文提供的任何化合物,可以被(例如,皮下)施用于有需要的患者。在多种实施方案中,该组合物是可注射性组合物,例如适合于皮下注射的组合物。
本文所述的化合物和/或组合物可以以包含一种或多种药学上可接受的载体、佐剂、稀释剂、赋形剂和/或媒剂(vehicle)及其组合的单元剂型和/或组合物施用。
如本文所用,术语“施用”通常是指将本文所述的化合物引导至宿主对象的任何和全部方式,包括但不限于通过口腔、静脉内、肌肉内、皮下、透皮、吸入、颊部、眼部、舌下、阴道、直肠和类似的给药途径。
所述化合物作为盐的施用可以是适当的。可接受的盐的实例包括但不限于碱金属(例如,钠、钾或锂)盐或碱土金属(例如,钙)盐;然而,在施用于受治疗的对象时通常无毒且有效的任何盐都是可接受的。在至少一个实施方案中,该盐可以是乙酸铵盐。相似地,“药学上可接受的盐”是指可用于药物中的含有反离子的那些盐。这种盐可以包括但不限于:(1)酸加成盐,该酸加成盐可以通过使母体化合物的游离碱与无机酸(例如盐酸、氢溴酸、硝酸、磷酸、硫酸、高氯酸及诸如此类)反应而获得,或者与有机酸(例如乙酸、草酸、(D)或(L)苹果酸、马来酸、甲磺酸、乙磺酸、对甲苯磺酸、水杨酸、酒石酸、柠檬酸、琥珀酸、丙二酸及诸如此类)反应而获得;或者(2)当母体化合物中存在的酸性质子被金属离子(例如,碱金属离子、碱土金属离子或铝离子)置换而形成的盐,或与有机碱(例如乙醇胺、二乙醇胺、三乙醇胺、三甲胺、N-甲基葡萄糖胺及诸如此类)配合而形成的盐。药学上可接受的盐对于本领域的技术人员而言是熟知的,并且设想到任何此类药学上可接受的盐。
可接受的盐可以使用本领域已知的标准程序来获得,包括(但不限于)使充分酸性的化合物与适合的碱反应而提供生理上可接受的阴离子。适合的酸加成盐是由形成无毒性盐的酸形成。说明性而非限制性的实例包括乙酸盐、天冬氨酸盐、苯甲酸盐、苯磺酸盐、碳酸氢盐/碳酸盐、硫酸氢盐/硫酸盐、硼酸盐、樟脑磺酸盐、柠檬酸盐、乙二磺酸盐、乙磺酸盐、甲酸盐、富马酸盐、葡庚糖酸盐、葡萄糖酸盐、葡萄糖醛酸盐、六氟磷酸盐、海苯酸盐(hibenzate)、盐酸/氯化物、氢溴酸/溴化物、氢碘酸/碘化物、羟乙磺酸盐、乳酸盐、苹果酸盐、马来酸盐、丙二酸盐、甲磺酸盐、甲基硫酸盐、萘酸盐、2-萘磺酸盐、烟酸盐、硝酸盐、乳清酸盐、草酸盐、棕榈酸盐、双羟萘酸盐、磷酸盐/磷酸氢盐/磷酸二氢盐、蔗糖酸盐、硬脂酸盐、琥珀酸盐、酒石酸盐、甲苯磺酸盐和三氟乙酸盐。本文所述的化合物的适合的碱盐是由形成无毒盐的碱形成。说明性而非限制性的实例包括精氨酸、苄星(benzathine)、钙、胆碱、二乙胺、二醇胺、甘氨酸、赖氨酸、镁、葡甲胺、醇胺、钾、钠、氨基丁三醇和锌盐。也可以形成酸和碱的半盐,例如半硫酸盐和半钙盐。
所述化合物可以被配制为药物组合物并且以适应于所选给药途径的各种形式施用于哺乳动物宿主,例如人类患者。例如,药物组合物可以被配制用于并且经由骨内、静脉内、动脉内、腹膜内、颅内、肌肉内、局部、吸入和/或皮下途径施用。在至少一个实施方案中,化合物和/或组合物可以被直接(经由注射、安置或其他方式)施用于受损骨组织中和/或骨折部位处的缺损腔。在至少一个实施方案中,化合物可以与药学上可接受的媒剂例如惰性稀释剂或可同化的可食用性载体组合而被全身性施用。对于口腔治疗性施用,活性化合物可以与一种或多种赋形剂组合,并且以可摄取的片剂、颊含片剂、锭剂、胶囊、酏剂、混悬剂、糖浆剂、糯米纸囊剂(wafer)等形式使用。组合物和制剂的百分比可以不同,并且可以是约1%至约99%重量的活性成分和粘合剂、赋形剂、崩解剂、润滑剂和/或甜味剂(如本领域已知的)。在这种治疗上有用的组合物中,活性化合物的量是可以获得有效的剂量水平。
在无菌条件下(例如通过冻干)制备胃肠外化合物/组合物可以使用本领域技术人员熟知的标准制药技术容易地完成。在至少一个实施方案中,用于制备胃肠外组合物的化合物的溶解性可以通过使用适当的配制技术例如掺入增溶剂来提高。
如前所述,化合物/组合物也可以通过输液或注射(例如,使用针(包括微针)注射器和/或无针注射器)来施用。活性组合物的溶液可以是水溶液,任选地与无毒表面活性剂混合并且/或者包含载体或赋形剂,例如盐类、碳水化合物和缓冲剂(优选3至9的pH),但对于一些应用,它们可能更适合地配制成无菌非水溶液剂,或者配制成与合适的媒剂(例如无菌的、无热原的水或磷酸盐缓冲盐水)一起使用的干燥形式。例如,分散体可以在甘油、液体PEG、三乙酸甘油酯和它们的混合物以及油中制备。在普通的储存和使用条件下,这些制剂可以进一步包含防腐剂以防止微生物的生长。
适合于注射或输液的药物剂型可以包括无菌的水溶液剂或分散体或包含适于临时制备无菌的可注射性或可输注性溶液剂或分散体的活性成分的无菌粉末,任选地包封在脂质体中。在所有情况下,最终剂型应该是无菌的、流动的,并且在制造和储存条件下是稳定的。液体载体或媒剂可以是溶剂或液体分散介质,包括例如但不限于水、乙醇、多元醇(例如甘油、丙二醇、液体PEG等)、植物油、无毒的甘油酯和/或其适合的混合物。在至少一个实施方案中,可以通过形成脂质体、在分散体的情况下通过维持所需的粒度或通过使用表面活性剂来保持适当的流动性。可以通过添加各种抗细菌剂和抗真菌剂(例如对羟苯甲酸酯类、氯丁醇、苯酚、山梨酸、硫柳汞等)来防止微生物的作用。在某些情况下,可以令人期望地包含一种或多种等渗剂,例如糖类、缓冲剂或氯化钠。对可注射性组合物的延长吸收可以通过掺入为了延迟吸收而配制的药剂例如单硬脂酸铝和明胶来实现。
无菌的可注射性或可输注性溶液剂可以通过将活性化合物和/或组合物和一种或多种上述其他成分(根据需要)渗入到所需量的适当溶剂中,然后过滤灭菌来制备。在用于制备无菌可注射性溶液剂的无菌粉末的情况下,优选的制备方法是真空干燥和冷冻干燥,由此产生活性成分以及先前无菌过滤的溶液中存在的任何其他所需成分的粉末。
对于局部施用,可以令人期望地将化合物与可接受的载体组合作为组合物或制剂施用于骨,该载体可以是固体、液体或凝胶基质。例如,在某些实施方案中,有用的液体载体可以包括水、醇或二醇或水-醇/二醇混合物,在其中化合物可以在有效水平下溶解或分散,任选地借助于无毒的表面活性剂。附加地或可替代地,可以添加佐剂,例如抗微生物剂,以针对给定用途而优化特性。所得的液体组合物可以从吸收垫上被敷用、用于浸渍绷带和/或其他敷料、通过使用泵式或气雾剂喷雾器而被喷施到目标区域上,或简单地直接敷用至对象的所需区域(例如,骨折部位)。
增稠剂,例如合成聚合物、脂肪酸、脂肪酸盐和脂肪酸酯、脂肪醇、改性纤维素或改性矿物材料,也可以与液体载体一起使用而形成可涂敷的糊剂、凝胶剂、软膏剂、肥皂等,以直接应用于对象的皮肤。
如本文所用,术语“治疗有效剂量”是指(除非另有明确说明)在一次或在治疗周期的过程中施用化合物时影响对象的健康、保健或死亡率(例如,并不限于支持或促进骨折的愈合或骨生长)的该化合物量。
在一些实施方案中,本文提供的任何化合物或药物组合物的治疗有效量是根据本领域已知的方法(例如,动物模型、人类数据以及表现出类似药理活性的化合物的人类数据)确定的。化合物的有用剂量可以通过在动物模型中比较它们的体外活性和体内活性来确定。将小鼠和其他动物中的有效剂量外推至人类对象的方法是本领域已知的。事实上,化合物的剂量可以根据宿主对象的状况、被治疗的骨折、化合物的给药途径和组织分布以及与其他治疗性疗法共同使用(例如,与用于促进骨生长的其他可注射性组合物例如生长因子、干细胞、天然移植物、基于生物和合成的组织工程化的支架等、硬件植入和/或超声波疗法等的施用联合;和/或与其他治疗剂例如胰岛素的施用联合)的可能性而显著地改变。在一些实施方案中,本文提供的任何化合物或药物组合物的治疗有效量是通过考虑例如式(I)的X的效力(例如采用的合成代谢剂的类型)、体重、给药方式(例如,皮下)、被治疗的疾病或病况、疾病或病况其严重程度等,或其任何组合来确定。用于治疗所需的组合物的量(例如,治疗有效量或剂量)不仅将随着特定的应用而变化,而且随着所选的盐(如果可适用)和对象的特征(例如,年龄、状况、性别、对象的体表面积和/或质量、对药物的耐受性)而变化,最终将由主治医师、临床医生或其他人员决定。
在一些实施方案中,本文提供的任何化合物或药物组合物的治疗有效量是约0.01mg/kg/天至约1,000mg/kg/天。例如,治疗有效量或剂量可以范围在约0.05mg/kg患者体重至约30.0mg/kg患者体重,或约0.01mg/kg患者体重至约5.0mg/kg患者体重,包括但不限于0.01mg/kg、0.02mg/kg、0.03mg/kg、0.04mg/kg、0.05mg/kg、0.1mg/kg、0.2mg/kg、0.3mg/kg、0.4mg/kg、0.5mg/kg、1.0mg/kg、1.5mg/kg、2.0mg/kg、2.5mg/kg、3.0mg/kg、3.5mg/kg、4.0mg/kg、4.5mg/kg和5.0mg/kg,其全部都是kg患者体重。静脉内剂量可以数个数量级更低。在一些实施方案中,每天、每周、每两周、每月或每两月(例如,皮下)施用治疗有效量的本文提供的任何化合物或药物组合物。
在一些实施方案中,本文提供的任何化合物或药物组合物的治疗有效量以1至800剂施用。在某些实施方案中,化合物或药物组合物的治疗有效量具有在或介于0.01mg/kg患者体重至1mg/kg患者体重之间的化合物浓度。
在一些实施方案中,(例如,向个体施用的)本文提供的任何化合物或药物组合物(例如,SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4等)的治疗有效量是约0.01mg/kg/天至约1,000mg/kg/天。在一些实施方案中,(例如,向个体施用的)本文提供的任何化合物或药物组合物(例如,SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4等)的治疗有效量是约1μg/剂至约10mg/剂。在一些实施方案中,(例如,向个体施用的)本文提供的任何化合物或药物组合物(例如,SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ IDNO:4等)的治疗有效量是约50μg/剂至约5mg/剂。在一些实施方案中,(例如,向个体施用的)本文提供的任何化合物或药物组合物(例如,SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQID NO:4等)的治疗有效量是约0.01nmol/kg/剂至约10ng/kg/剂。在一些实施方案中,(例如,向个体施用的)本文提供的任何化合物或药物组合物(例如,SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4等)的治疗有效量是约0.1nmol/kg/剂至约5ng/kg/剂。
化合物的总治疗有效量可以以单剂量或分剂量施用,并且根据执业医生决定可以在本文给定的典型范围之外。在一些实施方案中,每周一次或两次施用治疗有效量的本文提供的任何化合物或药物组合物。在一些实施方案中,每周一次施用治疗有效量的本文提供的任何化合物或药物组合物。在一些实施方案中,每周两次施用治疗有效量的本文提供的任何化合物或药物组合物。
有效量的X-Y-Z缀合物,例如包含有效量的该缀合物的药物组合物,可以通过任何适合的途径来施用。适合的途径的实例是通过注射,例如皮下注射。适合的途径的其他实例是胃肠外和肠内。
治疗方法
在一些实施方案中,本文提供了使用提供的化合物和/或组合物来治疗(例如,有需要的个体的)骨折的方法。所述化合物、组合物和方法可以利用(例如,选择性地)靶向骨折部位以防止所述化合物或组合物内存在的合成代谢剂的脱靶效应的策略。
在一些实施方案中,治疗(例如,有需要的)患者的骨折的方法包括向该患者(例如,皮下)施用治疗有效量的本文提供的(例如,具有式(I)的结构的)化合物或药物组合物,从而治疗该患者的骨折。在一些实施方案中,施用治疗有效量的本文提供的化合物或药物组合物导致在施用后2-3周内患者的疼痛减轻。在一些实施方案中,施用治疗有效量的本文提供的化合物或药物组合物导致在施用后3周内患者的疼痛减轻。在一些实施方案中,所述(例如,有需要的)患者易患骨折。例如,患者可能患有选自以下的一种或多种共病:糖尿病、骨质疏松、颌面损伤(例如颌面骨折)、颌面缺陷和颌面缺损。
还提供了用于促进(例如,有需要的)患者的骨生长的方法。在一些实施方案中,此类方法包括向该患者(例如,皮下)施用治疗有效量的本文提供的(例如,具有式(I)的结构的)化合物或药物组合物,从而相比于治疗前增大该患者的骨中骨矿物质密度。在一些实施方案中,骨中增大的骨矿物质密度发生在骨折部位。在一些实施方案中,骨中增大的骨矿物质密度发生在所述施用步骤之前存在于所述骨中的一个或多个再吸收凹坑(例如,其中该患者正在经受骨质疏松)处。
在一些实施方案中,患者患有糖尿病。在一些实施方案中,患者患有糖尿病,并且X是阿巴洛肽(SEQ ID NO:2)、SEQ ID NO:7、SEQ ID NO:8(具有10个谷氨酸残基的缀合物)、其具有骨合成代谢活性的衍生物(例如,一个或多个氨基酸突变,例如天然存在的氨基酸或非天然存在的氨基酸的插入、缺失和置换),或其具有骨合成代谢活性的片段。
在一些实施方案中,患者患有骨质疏松。在一些实施方案中,患者患有骨质疏松,并且式(I)的X是甲状旁腺激素、其具有骨合成代谢活性的衍生物(例如,一个或多个氨基酸突变,例如天然存在的氨基酸或非天然存在的氨基酸的插入、缺失和置换),或其具有骨合成代谢活性的片段。
在一些实施方案中,患者患有颌面损伤,例如,微板稳定化的下颌骨截骨术(即,颌面骨折)。患者可能患有填充有骨移植物(例如,骨整合)的缺损、假体植入物(例如,板、螺钉和/或骨整合)或者医师诱导的骨缺损(例如,下颌骨截骨术、颅骨缺损或具有移植物的缺损)。在一些实施方案中,患者患有颌面缺陷。
在一些实施方案中,该方法可以进一步包括将第二疗法(例如,疼痛药物、骨移植物、植入物(例如,网格)、生长激素及诸如此类)施用于患者以治疗患者的骨折或一种或多种共病。在患者至少患有糖尿病的一些实施方案中,施用第二疗法可以包括向该患者施用治疗有效量的胰岛素。在患者至少患有骨折的一些实施方案中,施用第二疗法可以包括将硬件(例如,网格或销)或一种或多种治疗性化合物植入在骨折部位处。
如图2A中所示,在一些实施方案中,本文提供的某些化合物的靶向性配体(例如,其中式(I)的Z包含羟基磷灰石靶向性配体)当施用时可以以不同的特异性积聚在股骨骨折部位(参见图2B)。在一些实施方案中,用125I-酪氨酸标记并且静脉内注射入带有骨折的小鼠中的四环素、单-双膦酸盐、多磷酸盐和(L)Asp8(由8个L-天冬氨酸组成的酸性寡肽)以不同的特异性积聚在股骨骨折部位(图2B)。在一些实施方案中,在骨折的股骨中相比于在健康股骨中125I标记的四环素的选择性比率是2.6,这是重要的,因为它支持开发一种药物,该药物主要在骨折部位而非在整个骨骼处引发其合成代谢效应。
在一些实施方案中,随着四环素配体(式(I)的Z)更换为阿伦膦酸盐、多磷酸盐和/或酸性八聚天冬氨酸,骨折与健康的比率持续增大。在一些实例中,(例如,在测试的配体中)八聚天冬氨酸对骨折的骨相比于健康骨具有最高的特异性,选择性比率为11.2。在一些实例中,(例如,在对式(I)的Z测试的配体中)四环素对骨折的骨相比于健康骨具有最高的特异性,具有选择性比率。
在一些实例中,单-双膦酸盐和多磷酸盐呈现出对骨折的骨降低的特异性。在一些实例中,将单-双膦酸盐和多磷酸盐肽靶向性能力与更加特异性的趋骨性配体比较。在一些实例中,将PTHrP(SEQ ID NO:1)的N末端34个氨基酸用125I标记并且系接至单-双膦酸盐(例如,阿伦膦酸盐)、三-双膦酸盐(例如,包含与中心附接的三个阿伦膦酸盐(图12))、多磷酸盐(例如,由以酸酐键连接的45个磷酸盐组成)或十聚天冬氨酸(例如,类似于本文所述的八聚天冬氨酸)。例如,靶向的SEQ ID NO:1的生物分布示于图3A中,其是组织相对于注射的剂量/g百分比的图。
在一些实例中,单-双膦酸盐(例如,阿伦膦酸盐)作为靶向性配体(例如,式(I)的Z)使一种(例如,中等)量的125I-SEQ ID NO:1(1-34)能够递送至骨折部位。在一些实例中,单-双膦酸盐(例如,阿伦膦酸盐)作为靶向性配体(例如,式(I)的Z)对断骨相比于健康骨具有约2:1的特异性(图3C)。在一些实例中,本文提供了(例如图3C(例如,缀合物相对于骨折/健康股骨比率的图))用本文所述的化合物或组合物(例如,SEQ ID NO:1)靶向的骨折骨痂和对侧健康股骨的选择性比率。
在一些实例中,本文提供了一种化合物(例如,配体),该化合物包含一个或多个阿伦膦酸盐(例如,至少一个阿伦膦酸盐、至少两个阿伦膦酸盐、至少三个阿伦膦酸盐或更多)。在一些实例中,本文提供的化合物(例如,包含三个阿伦膦酸盐)具有减小的骨折靶向性。在一些实例中,本文提供的化合物(例如,多磷酸盐)具有最少的125I-SEQ ID NO:1(1-34)递送至骨折表面(例如,24小时后仅1.55%的注射药物存在于骨折表面上)。在一些实例中,本文提供的化合物(例如,AOP(例如,包含10个天冬氨酸))具有向骨折骨的(例如,高)特异性递送(例如,相比于单-双膦酸盐,对骨折具有3.5倍特异性并且积聚在骨折中(图3B)。在一些实例中,本文提供了(例如图3B(例如,缀合物相对于注射剂量百分比/g的图))在骨折(例如,注射后24小时小鼠的股骨)中靶向化合物(例如,SEQ ID NO:1)和游离化合物(例如,SEQ ID NO:1)的骨折积聚。
在一些实例中,本文所述的AOP将本文所述的附接的合成代谢肽(例如,式(I)的X)递送至骨折表面。在一些实例中,(1)有效载荷的化学特征、(2)AOP侧链结构、(3)AOP长度、(4)AOP支化和/或(5)AOP稳定性影响AOP将附接的合成代谢肽递送至骨折表面的能力。
在一些实例中,本文所述的治疗性有效载荷的特征(例如,尺寸、电荷和疏水性)可以影响附接的AOP(例如,活性药物;例如式(I)的X)富集在骨折部位。在一些实例中,CK2.3(例如,带有+5的净电荷的阳离子型肽)、骨桥蛋白衍生的肽(ODP)(例如,带有-3的净电荷的阴离子型肽)或趋化性隐蔽肽(CTC)(例如,带有0的净电荷的中性肽)是治疗性有效载荷。在一些实例中,P4(例如,具有0.49的疏水性指数的疏水性肽(GRAVY))是治疗性有效载荷。在一些实例中,F109(例如,具有9个氨基酸的链长度)或酪蛋白激酶2.3肽(CK2.3)(例如,具有39和30个氨基酸的链长度)。在一些实例中,治疗性有效载荷在表1中提供。在一些实例中,将骨合成代谢肽附接至L-Asp10,用iodogen 125I放射标记(例如,并且注射至具有骨折股骨的小鼠中并且允许在评价组织生物分布之前循环18小时)。
表1
本文提供了组织相对于注射剂量百分比/g的图,其示出了在骨折后10天向带有中段股骨骨折的ND-4Swiss-Webster小鼠(n=6)注射后24小时(根据本文的某些实施方案制备的),与(L)Asp10偶联的六种不同放射碘化的有效载荷的生物分布(例如,图4)。在一些实例中,肽的化学特性对L-Asp10使它们靶向骨折表面的能力几乎没有影响(参见图4)。在一些实例中,39-氨基酸PACAP在骨折靶向能力方面稍微不同于其他合成代谢肽。在一些实例中,有效载荷尺寸及其他主要化学/物理变量对AOP介导的骨靶向都没有发挥一致的影响(例如,因为相似长度的肽(CK2.3)未显示骨折积聚的减少)。在一些实例中,其他合成代谢货物似乎相似地靶向(例如,表明附接的AOP可能支配肽类货物的生物分布)。
为了探讨肽支化对有效载荷靶向性的影响,比较了由各5个天冬氨酸的两条链或10个天冬氨酸的单条线性链构建的酸性寡天冬氨酸将CK2.3有效载荷递送至骨折表面的能力。本文提供了组织相对于从其所得的注射剂量百分比/g的图(例如,其示出了相对于非靶向性CK2.3,与10个(L)天冬氨酸的支化链或线性链偶联的放射碘化的CK2.3的生物分布)(例如,图5)。骨折后10天向带有中段股骨骨折的ND-4Swiss-Webster小鼠(n=5)注射后18小时测定生物分布。如图5中所示,在一些实例中,与支化肽相比,线性肽2.7倍更好地富集在骨折表面上。此外,由于非靶向性CK2.3显示出在骨折部位的少量摄入,所以CK2.3的创伤介导的非特异性沉积可能当作酸性寡肽缀合物积聚在骨折部位的主要促成因素而不予考虑。
在一些实例中,本文所述的AOP与骨折表面的相互作用通过其与暴露的钙相互作用来介导。例如,钙可以在邻近的阴离子电荷相隔8.6A的距离时螯合。认识到AOP的阴离子侧链的长度可以决定负电荷之间的此相隔距离,比较了天冬氨酸、谷氨酸和氨基己二酸的靶向能力,其中侧链羧基从肽主链分别延伸一个、两个和三个碳,从而允许寡肽侧链的阴离子电荷之间间隔增大。
在一些实例中,图6示出了组织相对于注射剂量百分比/克的图(例如,其示出了相对于非靶向性CK2.3,与10个(L)天冬氨酸、10个(L)谷氨酸或10个(L)氨基己二酸的线性链偶联的放射碘化的CK2.3的生物分布)。骨折后10天向带有中段股骨骨折的ND-4Swiss-Webster小鼠(n=5)注射后18小时测定生物分布。在一些实例中,十聚谷氨酸和十聚天冬氨酸表现出在骨折部位的最大摄入(例如,与非靶向性Ck2.3相比6倍的积聚,并且氨基己二酸促进骨折保留与非靶向性Ck2.3没有显著差异)(图6)。在一些实例中,包含谷氨酸或天冬氨酸的AOP构成了具有对钙结合而言最佳电荷间隔的肽(例如,解释了支化肽的结合降低)。自然界主要选择谷氨酸用于其在骨矿化时的钙结合功能的事实,加之反复观察到谷氨酸寡聚体的合成可能比天冬氨酸寡聚体更有效(因为不需要的天冬酰胺的形成),促使人们关注优化谷氨酸寡聚体以进行骨折靶向工作。
为了探讨寡肽长度对要用作式(I)的Z的分子靶向骨折的能力的影响,比较了10个或20个氨基酸长度的寡谷氨酸将相同CK2.3货物递送至骨折股骨表面的能力。图7示出了组织相对于注射剂量百分比/g的图,其示出了相对于非靶向性CK2.3,与10个或20个(L)谷氨酸的线性链偶联的放射碘化的CK2.3的生物分布。注射(例如,骨折后10天向带有中段股骨骨折的ND-4Swiss-Webster小鼠(n=5)注射)后18小时测定生物分布。在一些实例中,相比于较短的寡谷氨酸,与较长的寡谷氨酸系接的CK2.3更多地(例如,3.3倍)积聚在骨折部位。虽然未被缀合的酸性寡肽的亲和力似乎在仅8个氨基酸的链长度时最大(参见,例如,Sekido等人,“Novel drug delivery system to bone using acidic oligopeptide:pharmacokinetic characteristics and pharmacological potential,”doi.org/10.3109/10611860108997922(2001)),但可能会出现观察到的二十聚体相对于观察到的十聚体增大的亲和力,这是因为需要更广泛地与羟基磷灰石结合以将CK2.3大小的有效载荷保留在骨折表面。CK2.3有效载荷和二十聚体的改善的定位也可能是部分地由于靶向性配体上的有效载荷的立体阻碍的相对减小。
其他组的研究已表明酸性寡肽是不易于口服生物可利用的(参见,例如,Shaji等人,“Oral protein and peptide drug delivery,”Indian J.Pharmaceutical Sci.70:189-200(2005));然而,在一些实例中,频繁的注射妨碍了患者顺应性,因此可能造成问题。在一些实例中,本文提供了长效(例如,可注射性)制剂。在一些实例中,由D-氨基酸和L-氨基酸构成的酸性寡肽对羟基磷灰石的亲和力是相似的(Sekido等人,(2001),同上)。在一些实例中,由(例如,较差代谢性的)D-谷氨酸构成的线性寡谷氨酸链(例如,而不是由L-谷氨酸构成的易消化性链)提供在骨折表面处更长久的药物保留。在一些实例中,本文比较了谷氨酸二十聚体的D对映体和L对映体积聚和持续存在于骨折部位的能力。
例如,图8示出了组织相对于注射剂量百分比/g的图,其示出了相对于非靶向性CK2.3,与20个L-谷氨酸或D-谷氨酸的线性链偶联的放射碘化的CK2.3的生物分布。在一些实例中,注射(例如,骨折后10天向带有中段股骨骨折的ND-4Swiss-Webster小鼠(n=5)注射)后18小时测定生物分布。例如,如图8中所示,Glu20的D对映体相比于L对映体4.7倍更多地积聚在骨折的股骨,并且91.9倍于非靶向性CK2.3。
在一些实例中,荧光染料SO456附接至Asp10肽的D对映体和L对映体(参见图9)。对不同标记的对映体链在骨折的和健康的对侧股骨中的积聚进行量化。
图9是注射后小时数相对于μg染料/mg组织的图,其示出了骨折后10天在注射后不同的时间点,与10个L-天冬氨酸或D-天冬氨酸的线性链偶联的S0456(近IR荧光团)在带有中段股骨骨折的ND-4Swiss-Webster小鼠中的积聚。在一些实例中,标记的化合物在健康的股骨(例如,未受损的对侧股骨)和断裂的股骨中的积聚被量化为从死后溶解的股骨中提取的标记的染料量。例如,如图9中所示,Asp10的保留半衰期被估计为~35小时,而(D)Asp10的保留半衰期被预测为超过100小时。在一些实例中,相比于用放射标记的肽有效载荷所检测的,该差异稍微较小,这可能是由于相对于荧光有效载荷,肽有效载荷的半衰期较短。在一些实例中,增强的稳定性导致通过肾脏的清除延长,例如,这可能是因为相比于L-异构体,缓慢地可降解的D-异构体更缓慢地从骨及其他组织中释放。
在一些实例中,与本文提供的(例如,任何)其他靶向性配体相比,DE20将显著更多的货物递送至骨折部位(参见图10)。例如,图10是靶向性配体相对于注射剂量百分比/克的图,其示出了相对于非靶向性CK2.3,与不同酸性寡肽偶联的放射碘化的CK2.3在骨折股骨中的积聚。注射(例如,骨折后10天向带有中段股骨骨折的ND-4Swiss-Webster小鼠(n=5)注射)后18小时测定生物分布。在一些实例中,标记的化合物在骨折股骨中的积聚被报告为注射剂量百分比/克组织。
在一些实例中,为了视觉上比较DE10和DE20寡肽的生物分布,例如,由于延伸靶向性配体的影响大于预期的,对两种寡肽进行SPECT/CT成像,并且视觉上检查它们的生物分布。例如,图11A是与DE10酸连接的螯合99Tc的Tc螯合剂EC20的单光子发射计算机断层摄影术/计算断层摄影术(SPEC/CT)图像(螯合99Tc的EC20(D)Glu10的结构示于图11D中),并且图11B是与DE20酸连接的螯合99Tc的Tc螯合剂EC20的SPEC/CT图像。如图11A和11B中所示,两种酸性寡肽产生高分辨的图像,靶向的放射显像剂几乎完全地富集在骨折部位。信号与体积的比率在骨折中大于10倍地高于在其他吸附部位例如生长板中。然而,在一些实例中,吸附至生长板可能将患者限于成年人。
还进行了第二生物分布分析。图11C,其是组织相对于注射剂量百分比/g的图,示出了标记的DE10和DE20化合物在不同组织中的积聚,量化为注射剂量百分比/克(n=10)。在股骨的骨折骨痂中观察到大部分信号,而在高骨转换的部位处观察到痕量浓度的药物。在一些实例中,DE10和DE20具有相似的特异性,但是DE20在骨中具有更久的保留。图11C中所示的结果非常类似于图10中的结果(即,相比于DE10,DE20约5倍更有效地积聚在骨折部位)。因此,在本文所述的研究中,在本文测试的所有配体中,DE20呈现出最大的骨折靶向能力,并且(例如,在本文测试的所有靶向性配体中)DE20寡肽显示出对骨折部位的最大选择性。
还在经受I型糖尿病的鼠科对象体内测试了本文中靶向的合成代谢化合物的骨折愈合功效。图13示出了测试的药剂(相比于盐水和胰岛素(对照),包含SEQ ID NO:3、5、6或7的化合物)相对于骨体积(BV)的图。这些结果证实,四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内I型糖尿病性骨折愈合功效高于对照(即,更具治疗有效性)。
图14示出了测试的药剂(相比于盐水和胰岛素(对照),包含SEQ ID NO:3、5、6或7的化合物)相对于骨体积/总体积(BV/TV)的图。这些结果显示,四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内I型糖尿病性骨折愈合功效。
图15示出了测试的药剂(相比于盐水和胰岛素(对照),包含SEQ ID NO:3、5、6或7的化合物)相对于最大载荷(N)的图,其示出了四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内I型糖尿病性骨折愈合功效。在一些实例中,最大载荷表示在死后四点弯曲分析中愈合的股骨在其重新骨折之前承受的最大力。在一些实例中,最大载荷是骨在骨折修复的部位处如何强壮的量度。
图16示出了测试的药剂(相比于盐水和胰岛素(对照),包含SEQ ID NO:3、5、6或7的化合物)相对于断裂功(mJ)的图,其示出了,四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内I型糖尿病性骨折愈合功效。在一些实例中,断裂功表示在死后四点弯曲分析中愈合的股骨在其重新骨折之前吸收的能量的总量。在一些实例中,断裂功是骨在骨折修复的部位处如何强壮的量度。
图17是测试的药剂(相比于盐水和胰岛素(对照),包含SEQ ID NO:3、5、6或7的化合物)相对于屈服后移位(mm)的图,其示出了,四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内I型糖尿病性骨折愈合功效。在此,屈服后移位是骨如何脆弱的量度(例如,糖尿病通常使骨更脆弱)。在一些实例中,本文提供的化合物减轻骨的脆性(例如,图17)。
图18是天数相对于血糖(mg/dl)的图,其示出了在包含SEQ ID NO:3、5、6或7的化合物(以及胰岛素和盐水对照)的四周治疗期期间I型糖尿病小鼠的平均血糖水平。在一些实例中,不同受治疗组的血糖的纵向跟踪表明仅胰岛素对高血糖具有显著影响,例如,表明本文提供的化合物的效应不是通过血糖代谢。在一些实例中,靶向性配体与SEQ ID NO:5的C末端附接干扰SEQ ID NO:5的葡萄糖调节效应。在一些实例中,对骨痂的显微CT扫描说明除了SEQ ID NO:7之外所有治疗都有利于软骨内骨化。
图19是天数相对于平均身体质量变化%的图,其示出了在整个治疗期间I型糖尿病性骨折小鼠受治疗组的平均重量变化。在一些实例中,盐水小鼠体重减轻(正如对于糖尿病所预期的),用包含SEQ ID NO:6的药剂(达沙替尼的靶向的缀合物(例如,D10-酯-达沙替尼))治疗的小鼠也是如此,例如,其在较高剂量下呈现出稍微毒性。在一些实例中,SEQ IDNO:6改善了强度而未改善骨痂矿化(例如,其可能是由于其抗衰老(senolytic)效应)。
因此,在一些实例中,本文提供的化合物是无毒的(例如,关于总重变化)。此外,本文提供的化合物的施用可以改善矿化和强度(例如,即使在除了胰岛素受治疗组之外的任何组中高血糖状态未受到控制)。在一些实例中,高血糖对干细胞有毒性。
在某些实施方案中,胰岛素与本文提供的化合物和组合物一起施用。如图20A-22C中所示的数据证实的,相对于仅用胰岛素治疗的组,本文中的化合物可以显著地改善愈合。
图20A示出了与盐水和胰岛素(对照)相比测试的本文药剂(包含SEQ ID NO:4、8或9)相对于骨体积的图,其示出了四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内I型糖尿病性骨折愈合功效。如图20A中所示,骨体积表示骨折骨痂的100个最厚的显微CT载玻片的骨体积,并且是在骨折修复的部位处骨已矿化多少的量度。图20B是(相比于作为对照的盐水和胰岛素)测试的此类药剂相对于骨体积/总体积的图,其示出了四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内I型糖尿病性骨折愈合功效。在此,BV/TV表示骨体积除以骨折骨痂的100个最厚的显微CT载玻片的总体积,并且是在骨折修复的部位处骨密度如何的量度。
在一些实例中,如图20A和20B中所示,(例如,相比于单独用胰岛素治疗)本文提供的化合物改善了骨痂的矿化。在一些实例中,此类化合物增大了骨折骨痂密度(例如,与胰岛素单独相比更是如此)。
图21A是(与单独盐水和胰岛素相比)与胰岛素施用联合测试的药剂(例如,SEQ IDNO:4、8或9)相对于小梁厚度的图,其示出了四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内I型糖尿病性骨折愈合功效。图21B是(与单独盐水和胰岛素相比)与胰岛素施用联合测试的药剂(例如,SEQ ID NO:4、8或9)相对于小梁间隙的图,其示出了四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内I型糖尿病性骨折愈合功效。
图22A是(与单独盐水和胰岛素相比)与胰岛素一起测试的药剂(例如,SEQ ID NO:4、8或9)相对于最大力(N)的图,其示出了四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内骨折愈合功效。在此,最大力表示愈合的股骨在其重新骨折之前承受的最大力。图22B显示了(与单独盐水和胰岛素相比)与胰岛素施用联合测试的药剂(例如,SEQ ID NO:4、8或9)相对于断裂功(mJ)的图,其示出了四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内骨折愈合功效。断裂功表示愈合的股骨在其重新骨折之前吸收的能量的总量,并且可以是骨在骨折修复的部位处如何强壮的量度。图22C是(与单独盐水和胰岛素相比)与胰岛素施用联合测试的药剂(例如,SEQ ID NO:4、8或9)相对于模量(MPa)的图,其示出了四周后靶向的合成代谢活性缀合物对雄性IGS-1带有骨折的小鼠(n=10)的体内骨折愈合功效。刚度是在死后四点弯曲分析中愈合的股骨的杨氏模量的量度,并且可以是骨的抗变形性如何的量度。在一些实例中,本文提供的化合物(包含,例如,阿巴洛肽(SEQ ID NO:2(其在SEQ ID NO:3内))和SEQ ID NO:8)相比于胰岛素对照(例如,显著地)改善了强度。在一些实例中,与胰岛素单独相比,本文提供的化合物(例如,阿巴洛肽(SEQ ID NO:2)和SEQ ID NO:8)更大地改善了强度和矿化。
在一些实例中,本文提供的化合物(例如,相对于盐水(例如,并且相比于雌激素替代更是如此))改善骨折骨痂的矿化和密度(图23A-B)。
图23A是测试的药剂(例如,包含SEQ ID NO:3、6、7或10)相对于骨体积的图,其示出了四周后靶向的合成代谢活性缀合物对雌性卵巢切除的Swiss Webster带有骨折的小鼠(n=9)的体内绝经后骨质疏松性骨折愈合功效。如参考图23A中,骨体积表示骨折骨痂的100个最厚的显微CT切片的骨体积,并且是在骨折修复的部位处骨已矿化多少的量度。图23B是测试的药剂相对于骨体积/总体积(BV/TV)的图,其示出了四周后靶向的合成代谢活性缀合物对雌性卵巢切除的Swiss Webster带有骨折的小鼠(n=9)的体内绝经后骨质疏松性骨折愈合功效。在图23B中,BV/TV表示骨体积除以骨折骨痂的100个最厚的显微CT切片的总体积,并且是在骨折修复的部位处骨密度如何的量度。
在一些实例中,本文提供的化合物改善了股骨的强度(参见,例如,图24A-C)。
图24A是(相比于作为对照的盐水或雌激素)测试的药剂(例如,包含SEQ ID NO:3、6、7或10)相对于最大载荷(N)的图,其示出了四周后靶向的合成代谢活性缀合物对雌性OVXSwiss Webster带有骨折的小鼠(n=9)的体内绝经后骨质疏松性骨折愈合功效。在图24A中,最大载荷表示愈合的股骨在其重新骨折之前承受的最大力。
图24B是(相比于作为对照的盐水或雌激素)测试的药剂(例如,包含SEQ ID NO:3、6、7或10)相对于断裂功(mJ)的图,其示出了四周后靶向的合成代谢活性缀合物对雌性OVXSwiss Webster带有骨折的小鼠(n=9)的体内绝经后骨质疏松性骨折愈合功效。在图24B中,断裂功表示骨在骨折修复的部位处如何强壮的量度。
图24C是(相比于作为对照的盐水或雌激素)测试的药剂(例如,包含SEQ ID NO:3、6、7或10)相对于刚度(MPa)的图,其示出了四周后靶向的合成代谢活性缀合物对雌性OVXSwiss Webster带有骨折的小鼠(n=9)的体内绝经后骨质疏松性骨折愈合功效。在图24C中,刚度是在死后四点弯曲分析中愈合的股骨的杨氏模量的量度,并且可以用作骨的抗变形性如何的量度。
在一些实例中,本文提供的化合物(例如,显著地)改善骨折股骨的愈合(例如,在本文所述的低雌激素状态中(例如,远优于用雌激素替代来控制雌激素损失)。在一些实例中,将本文提供的化合物施用于患有骨折的骨质疏松患者。
图25是(相比于作为对照的盐水或雌激素)测试的药剂(例如,包含SEQ ID NO:3、6、7或10)相对于血清钙浓度(mg/dl)的图,其示出了在患有中段股骨骨折的Swiss Webster小鼠模型中治疗21天对血清钙的影响。在一些实例中,使用本文所述的靶向的合成代谢剂(例如,相对于游离合成代谢剂)有益于治疗骨折,例如,因为本文的靶向的合成代谢剂可以限制对甲状旁腺激素调节肾脏中发生的钙代谢的影响。
在一些实例中,SEQ ID NO:4在骨折部位处升高的积聚改善了骨折愈合(例如,图26-30)。在一些实例中,比较了在施用通过将阿巴洛肽(SEQ ID NO:2)治疗骨质疏松的医嘱人类剂量异速缩放而计算的初始剂量之后股骨骨折愈合时间。在一些实例中,CT图像显示了用非靶向性阿巴洛肽治疗开始之后三周成像的骨沉积富集在骨折的周边,最小密度桥接相对的骨痂(参见,例如,图35)。
在一些实例中,例如,在用靶向的阿巴洛肽(SEQ ID NO:4)治疗三周之后,在施用本文提供的化合物后骨密度(例如,更加)均匀地分布在骨折区域各处(例如,骨痂的总体尺寸也超过受阿巴洛肽治疗的小鼠中骨痂的总体尺寸)。骨形态分析证实,在受SEQ ID NO:4治疗的小鼠中矿化的体积(骨体积;BV)与总骨体积(总体积;TV)的比率的1.5倍增长。更详细的形态分析进一步揭示,在受SEQ ID NO:4治疗的股骨中,骨密度的此增长主要是由于小梁间隙的减小,而不是小梁厚度的增大。
在一些实例中,例如,为了确定观察到的骨沉积增大是否意味着力学性能的改善,测量了愈合的股骨在它们再次骨折之前使其弯曲所需的力。在一些实例中,观察到,相比于受游离阿巴洛肽治疗的股骨,受SEQ ID NO:4治疗(例如,患有中段股骨骨折的小鼠)的骨折保持2.5倍更大的最大载荷(图32)。
在一些实例中,在受SEQ ID NO:4治疗的小鼠中骨折力超过在相同小鼠中的对侧健康股骨或在受盐水治疗的小鼠中的相似未经修饰的股骨骨折所需的力。这表明在此时间点修复的股骨与原本未断裂的股骨相比强30%。在一些实例中,在受SEQ ID NO:4治疗的股骨中的断裂功(例如,在相似的力学研究中)平均3.5倍高于在患有中段股骨骨折的小鼠的受阿巴洛肽治疗的股骨中(图33)。
总之,这些数据表明D-Glu20介导的阿巴洛肽在骨折表面上的积聚极大地促进了愈合过程,使骨折的股骨比生理盐水或阿巴拉泰德处理的小鼠的股骨更快地恢复到全机械强度。与受盐水或阿巴洛肽治疗的小鼠中的股骨相比,骨折的股骨更快速地恢复至完全力学强度。
在一些实例中,SEQ ID NO:4比SEQ ID NO:3(例如,在改善骨愈合方面)更有效。
在一些实例中,虽然SEQ ID NO:3比阿巴洛肽更好,但是如果患者需要更少的剂量,则其临床相关性可能巨大地改善。增加靶向性寡肽的长度,以确定它是否充分增加了药物对断骨的亲和力,以至合成代谢性有效载荷在骨折部位的保留可以延长,并且可能需要较低频率地给药。向小鼠每三天一次地给药,而不是每天。对CT扫描的目视检查揭示,在骨折后三周,相对于非靶向性阿巴洛肽,在受靶向的阿巴洛肽治疗的小鼠中,有更多的骨沉积。当比较在断裂前由abalode10与abalode 20达到的最大载荷时,趋势表明20%-30%更大的强度。当每种药物与盐水比较时,SEQ ID NO:4显著地较高,而SEQ ID NO:3在每三天给药时缺乏显著性。结果显示在图34中,其是患有中段股骨骨折的小鼠的治疗(盐水、SEQ IDNO:3(0.1nmol/mg(0.1x)、1nmol/mg(1x)和10nmol/mg(10x),以及SEQ ID NO:4(0.1nmol/mg(0.1x)、1nmol/mg(1x)和10nmol/mg(10x))相对于最大载荷(N)的图。
本说明书中提到的所有专利、专利申请公开、期刊文章、教科书和其他出版物都表明了本公开内容相关的领域的技术水平。所有这些出版物都通过引用而纳入本文中,在程度上如同每个单独的出版物被明确地且单独地指明通过引用而被纳入一样。
虽然本文已经显示和描述了本公开内容的某些实施方案,但是对于本领域的技术人员来说,显然这种实施方案仅以示例的方式提供。要求保护的发明旨在不受本说明书中提供的具体实例限制。
本文中对实施方案的描述和说明并不意味着在限制性意义上进行解释。在不脱离本发明的情况下,本领域技术人员现在可以想到许多变化、改变和替换。此外,应当理解,本发明的所有方面并不限于本文陈述的具体描述、配置或相对比例,这取决于各种条件和变量。应当理解,本文所述的本发明实施方案的各种替代方案可以用于实施本发明。因此,设想到本发明还应涵盖任何此类替代方案、修改、变化或等同方案。所附权利要求旨在界定本发明的范围,并且由此涵盖这些权利要求范围内的方法和结构以及它们的等同方案。
某些定义
如本文和所附权利要求中使用的,除非上下文另有明确规定,否则单数形式“一个”、“一种”和“该”包括复数所指物。因此,例如,对“一种化合物”的提及包括多种此类化合物。当本文中对于物理性质(例如分子量)或化学性质(例如化学式)使用范围时,范围的所有组合和子组合以及其中的具体实施方案旨在都被包括。术语“约”在提及数值或数值范围时,意味着所提及的数值或数值范围是实验变异性(或统计实验误差)内的近似值,因此数值或数值范围可在所述数值或数值范围的1%至15%之间变化。术语“包括”(以及相关术语,例如“包括”或“包含”或“具有”或“含有”)旨在不排除可以“由所述特征组成”或“基本上由所述特征组成”的任何化合物、组合物、方法、工艺或诸如此类的实施方案。本文说明性地描述的发明可以适当地在本文未具体公开的任何元件或限制不存在的情况下实施。
相对于参考序列的“序列同一性百分比(%)”被定义为在比对序列并在必要时引入缺口以实现最大序列同一性百分比并且不考虑任何保守性置换作为序列同一性的部分之后候选序列中分别与参考序列中的残基相同的氨基酸或核酸残基的百分比。以确定序列同一性百分比为目的的比对可以通过本领域技术范围内的各种方式实现,例如,通过使用公开可获得的计算机软件。例如,可以通过使用GAP程序(Genetics Computer Group,软件;现在通过Accelrys在http://www.accelrys.com可获得)来确定序列之间的同一性或相似性百分比,并且可以使用例如ClustalW算法(VNTI软件,InforMax Inc.,Gaithersburg,MD)进行比对。此外,可以使用目标核酸序列或氨基酸序列来搜索序列数据库。虽然数据库搜索的算法通常基于BLAST软件(Altschul等人,1990),但是本领域技术人员可以确定用于比对序列的适当参数,包括在被比较的序列的全长上实现最大比对所需的任何算法。在一些实施方案中,可以沿着核酸序列或氨基酸序列的全长确定同一性百分比。
如本文所述,本公开内容的某些化合物可以包含“任选取代的”部分。通常,术语“取代的”,无论其前是否有术语“任选”,都意味着指定部分的一个或多个氢被合适的取代基替代。除非另有说明,否则“任选取代的”基团可以在该基团的每个可取代的位置处具有合适的取代基,当任何给定结构中的多于一个位置可以被选自特定组中的多于一个取代基取代时,在每个位置处取代基可以是相同或不同的。所设想的取代基的组合优选地是导致形成稳定的或化学上可行的化合物的那些取代基。
如本文所用,术语“患者”、“对象”和“个体”可互换地使用。这些术语都不需要医务人员的监督。例如,向个体施用包括个体向自己施用治疗剂,以及医疗专业人员向个体施用治疗剂。
本文所用的术语“基团(radical)”是指分子的片段,其中该片段具有开放价,其是形成键的附接点。单价基团具有一个开放价,以便它可以与另一化学基团形成一个键。在一些实施方案中,本文使用的分子的基团(例如,叶酸受体结合剂的基团)是通过从该分子中去除一个氢原子而产生,从而在去除氢原子的位置处产生具有一个开放价的单价基团。在适当的情况下,基团可以是二价、三价等,其中两个、三个或更多个氢原子已被去除而产生可以与两个、三个或更多个化学基团成键的基团。在适当的情况下,只要去除的原子只占形成基团的分子中总原子的小部分(占原子数的约20%或更少),就可以通过去除除了氢原子以外的其他原子(例如卤素原子)或通过去除两个或更多个原子(例如羟基)而产生基团开放价。
术语“治疗”或“疗法”包括在慢性或急性治疗情境中减少、减轻、消除、改善、缓解或减弱与骨折、糖尿病、骨质疏松有关的症状。
已采用的术语和表达式用作描述性术语而非限制性术语。在这方面,当某些术语在“某些定义”下被定义以及在“具体实施方式”中的其他地方被定义、描述或讨论时,所有这些定义、描述和讨论都旨在归于这些术语。在使用这些术语和表达式时,也非意在排除所示和所述特征的任何等同方案或其部分。此外,虽然在“具体实施方式”中使用了小标题,例如“某些定义”,但是这种使用仅仅是为了便于提及,而非意在将一部分中的任何公开内容仅仅限制在该部分中;相反,在一个小标题下的任何公开内容都意在构成在每个其他小标题下的公开内容。
实施例
以下实施例用于说明本公开内容。实施例旨在不以任何方式限制要求保护的发明的范围。
所有的统计分析都用GraphPad Prism(8.0版;GraphPad Software,CA)进行。数据被显示为平均值±标准偏差。在图中,根据以下定义,统计学显著性的水平用星号表示:*P<0.05;**P<0.01;***P<0.001;****P<0.0001。统计分析通过采用单因素方差分析(ANOVA)和Dunnett事后分析进行,在0.05的P值下报告经调整的显著性。对于图4-8进行了Bonferroni事后分析,而不是Dunnet事后分析。图9用双因素方差分析和Dunnett事后分析进行分析。
实施例1:合成肽类有效载荷
全部有效载荷(例如,图1A)都在氩气流下在固相肽合成小瓶中合成。Wang树脂(0.6mmol/g)在9:1v/v CH2Cl2/二甲基甲酰胺(DMF)中加载3倍过量的第一氨基酸(半胱氨酸)、HOBt-Cl和DIC 4小时,使用催化量的4-二甲基氨基吡啶(DMAP)。然后将树脂用两当量的乙酸酐和吡啶封端30分钟以封闭该树脂上的任何未反应的羟基。这些步骤后随连续地用二氯甲烷(DCM)和DMF洗涤三次。
在每次偶联反应之后,通过与DMF中的20%(v/v)哌啶一起进行两次10分钟孵育而除去9-芴基甲氧基羰基(Fmoc)。然后,在添加下一种氨基酸之前,将树脂用DMF洗涤两次。使每种氨基酸在3倍过量2-(1H-苯并三唑-1-基)-1,1,3,3-四甲基脲鎓六氟磷酸盐(HBTU)/N-甲基吗啉(NMM)中反应30分钟,然后与3倍过量苯并三唑-1-基-氧基三吡咯烷子基磷鎓六氟磷酸盐(PyBOP)/N-甲基吗啉(NMM)双偶联30分钟。根据上述条件添加所有氨基酸。除非另有说明,否则使用含有酸敏感性侧链保护基的标准Fmoc保护的氨基酸。其后,通过使用自动化肽合成仪(Focus XC,AAPPTec)使用上述固相程序,将表1中所示的酪氨酸或肽序列添加至肽上。一旦合成完成,就使用上述条件而将末端Fmoc除去,其后将树脂用DMF洗涤三次,用DCM洗涤三次,用甲醇洗涤两次,然后用氩气干燥。
通过使用95:2.5:2.5三氟乙酸/水/三异丙基甲硅烷和过量TCEP而使含有肽的干燥树脂裂解2小时。然后,通过使用10倍体积的冷二乙醚而使肽从裂解溶液中沉淀。将该溶液在2,000相对离心力(RCF)下旋转5分钟,然后倾析。然后将团粒干燥并且进行分析型液相色谱-质谱(1220LC;6130MS,Agilent)以证实合成。将粗品肽溶解在DMF和水的混合物中并且通过制备型反相高效液相色谱(1290,Agilent,Santa Clara,CA)纯化。使用C-18柱和0-50%乙酸铵:乙腈流动相在40分钟期间纯化2,2,6,6-四甲基哌啶(TMP)。将通过分析型液相色谱-质谱(1220LC;6130MS,Agilent,Santa Clara,CA)评估仅包含纯的有效载荷的级分冻干(FreeZone,LABCONCO,Kansas City,MO)并以冻干粉末的形式在-20℃下储存直至其与靶向性配体偶联之前。
根据本领域已知的方法将以下置换引入甲状旁腺激素相关蛋白(PTHrP)(SEQ IDNO:1)的残基1-46中:Glu22、Glu25、Leu23、Leu28、Leu31、Lys26、Lys30和Aib29。这些置换增强肽稳定性,在患有骨质疏松的患者中诱导更大的骨密度,并且扩展最大合成代谢活性的窗口而不增大毒性。为了使合成代谢肽在吸附至暴露的羟基磷灰石时的信号传导最大化,通过使用标准的固相肽化学而将该PTHrP片段的C末端缀合至20个D-谷氨酸(E)残基的线性肽(D-Glu20或DE20),从而以19%总产率和94%最终纯度(如通过高压液相色谱(HPLC)和质谱证实的)得到最终的融合蛋白(SEQ ID NO:4)。
实施例2:合成(线性)趋骨性肽
根据上述固相合成方法,靶向性配体肽全部都被合成以获得适当的长度、氨基酸组成和对映体立体化学,正如它们的名称所示。当仍然在树脂上时,如上所述将N末端胺脱保护,并且使树脂在DMF中与3倍马来酰亚胺丙酸、3倍过量苯并三唑-1-基氧基三吡咯烷子基磷鎓六氟磷酸盐(PYBOP)、HOBt-Cl和5倍过量N,N-二异丙基乙胺(DIPEA)反应4小时。然后,在室温下,通过利用马来酰亚胺化学,使肽在含有10倍过量三(2-羧基乙基)膦(TCEP)的磷酸盐缓冲盐水(PBS)中与包含半胱氨酸的肽偶联24小时。然后,如上所述,将靶向性有效载荷缀合物裂解、脱保护和纯化。
实施例3:合成(支化的)趋骨性肽
简言之,通过使用固相肽合成,在氩气流下合成了支化的靶向性配体。在DCM和DIPEA中,以0.6mmol/g用Nα,Nε-二-Fmoc-L-赖氨酸加载2-氯三苯甲基树脂(0.6mmol/g)60分钟。然后,相继地通过MeOH的四次洗涤,随后用DCM和DMF洗涤三次而将树脂封端。然后如上所述合成该支化链。将N末端Fmoc保留,并在乙酸/四氟乙烯(TFE)/DCM的1:1:8混合物中对该肽进行软裂解30分钟。将裂解溶液在减压下蒸发,使末端的羧酸在DCM中与3倍过量N-(2-氨基乙基)马来酰亚胺、3倍过量PYBOP和HOBt-Cl以及5倍过量DIPEA缀合4小时。然后通过在95:2.5:2.5的三氟乙酸/水/三异丙基甲硅烷中孵育两小时而将酸敏感性保护基脱保护。然后用10体积的冷二乙醚使该肽沉淀,通过与20%(v/v)哌啶在DMF中孵育15分钟,随后在冷二乙醚中沉淀,而将末端的Fmoc脱保护。如上所述,所得粗品产物通过制备型反相高效液相色谱(1290,Agilent)进行纯化。最后,也如上所述,经纯化的靶向性配体通过马来酰亚胺偶联而与不同的有效载荷缀合。
实施例4:合成单-双膦酸盐靶向性配体
将阿仑膦酸溶于氢氧化钠中,然后在2-(N-吗啉代)乙磺酸(MES)缓冲液中稀释,用HCl将pH降至5。将三当量的3-马来酰亚胺基丙酸用四当量的1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)进行预活化。将该反应在40℃下搅拌过夜,并将粗品产物通过制备型反相高效液相色谱(1290,Agilent,Santa Clara,CA)在C-18柱上使用0-25%乙酸铵/乙腈流动相纯化40分钟。
将通过分析型液相色谱-质谱(1220LC;6130MS,Agilent)分析的仅包含纯的马来酰亚胺产物的级分冻干并在-20℃下储存直至需要用于如上所述通过马来酰亚胺偶联而与有效载荷偶联之前。
实施例5:合成三-双膦酸盐靶向性配体
使二-叔丁基-2,2'-((3-氨基-2-(2-(2-(叔丁氧基)-2-氧代乙氧基)乙基)戊烷-1,5-二基)双(氧基))二乙酸酯在45℃下在DCM中与1.5当量的3-马来酰亚胺基丙酸、4当量的N,N'-二环己基碳二亚胺(DCC)和3当量的DIPEA反应24小时。将二环己基尿素(DCU)沉淀物过滤出,并在低压下减小体积。该产物通过快速色谱法进行纯化,并将羧酸在50:50TFA/DCM中进行脱保护30分钟。将溶剂在减压下除去,并使所得的2,2'-((2-(3-(羧基甲氧基)-1-(3-(2,5-二氧代-2,5-二氢-1H-吡咯-1-基)丙酰胺基)丙基)丁烷-1,4-二基)双(氧基))二乙酸在pH 4.5的MES缓冲液中与12当量的阿仑膦酸和12当量的EDC在45℃下反应24小时。所得的粗品产物通过制备型反相高效液相色谱(1290,Agilent,Santa Clara,CA)进行纯化,经纯化的靶向性配体通过马来酰亚胺偶联而与不同的有效载荷缀合,如上所述。图12中显示了一个三-双膦酸盐的结构。R可以代表任何肽或小分子。
实施例6:合成多磷酸盐靶向性配体
将45个磷酸盐的磷酸盐玻璃状聚合物以10mM的浓度溶解在100mM MES中。然后,加入足够的EDC以达到100mM浓度,然后加入三当量的DIPEA,随后加入五当量的N-(2-氨基乙基)-马来酰亚胺。如上所述,经纯化的靶向性配体通过马来酰亚胺偶联而与不同的有效载荷缀合。
实施例7:合成99mTc螯合剂分子
与D-Glu20(DE20)和D-Glu10(DE10)连接的99mTc螯合剂通过标准的Fmoc固相肽合成法来合成,如前所述。载有Fmoc半胱氨酸(TRT)的Wang树脂偶联至Fmoc天冬氨酸(OtBu),然后偶联至Nα-Boc-Nβ-Fmoc-L-2,3-二氨基丙酸而产生99mTc螯合剂(参见,例如,Leamon等人,“Synthesis and biological evaluation of EC20:A new folate-derived,99mTc-basedradiopharmaceutical,”Bioconjug.Chem.13:1200–1210(2002))。然后,该螯合剂通过标准的酰胺化学而与8-(Fmoc-氨基)-3,6-二氧杂辛酸偶联,其随后通过标准的酰胺偶联而缀合至10或20个D-谷氨酸的线性寡肽。然后,如前所述,对该寡肽进行裂解和纯化。
实施例8:合成近红外(NIR)染料缀合物
制备了近红外(NIR)荧光染料S0456的马来酰亚胺衍生物,用于标记上述的骨折靶向性配体。它按照(以下)方案I中所示进行合成。为了此目的,将S0456、N-Boc-酪胺和氢氧化钾(KOH)在含有二甲亚砜(DMSO)的烧瓶中混合以溶解固体,并将该溶液在氩气下在60℃搅拌1.2小时。将所得溶液用冷乙酸乙酯沉淀,在剧烈搅拌后,以3,000rpm离心3分钟。将深绿色固体在真空干燥器中干燥过夜,并在40%三氟乙酸(TFA)/DCM中进行脱保护30分钟,然后真空浓缩以除去所有TFA和DCM。然后,将粗品固体溶于水中,并进行制备型反相高效液相色谱(1290,Agilent,Santa Clara,CA)纯化。将纯的级分在真空中浓缩并冻干。为了用马来酰亚胺进行衍生化,将固体与3-马来酰亚胺基丙酸N-琥珀酰亚胺酯和DIPEA一起溶解在DMSO中,并在氩气氛下搅拌一小时,然后如上所述通过制备型反相高效液相色谱(1290,Agilent,Santa Clara,CA)纯化。具有N末端半胱氨酸的十聚天冬氨酸(L和D)靶向性配体如前所述进行制备和纯化。为了使十聚天冬氨酸半胱氨酸缀合至S0456-马来酰亚胺,将S0456-马来酰亚胺在氩气脱气的烧瓶中溶于DMSO中,然后在搅拌下向该溶液中加入Asp10-Cys。将混合物在室温下搅拌2.5小时,然后用制备型反相高效液相色谱(1290,Agilent,Santa Clara,CA)进行纯化。经纯化和冻干的产物呈现为绿色绒毛状固体。(D)Asp10-S0456缀合物的合成依照与关于(L)Asp10-S0456所描述的相同的程序,只是D-天冬氨酸用于合成(D)Asp10
方案I:(L)Asp10-S0456缀合物的合成。试剂和条件:A)S0456-Cl,DIPEA,DMSO,60℃;B)40% TFA/DCM,室温;C)3-马来酰亚胺基丙酸N-琥珀酰亚胺基酯,DIPEA,DMSO,室温;D)Asp10-Cys,DMSO。
实施例9:中段股骨骨折模型
采用无菌手术技术将23号针作为髓内钉插入麻醉的12周龄雌性ND-4Swiss-Webster年龄匹配的小鼠的股骨中,以便在其骨折前内部固定在该骨上。近交系例如C57/BL6和Swiss-Webster ND-4小鼠之间未观察到靶向性能力的差异。简言之,将后爪的右膝周围的小鼠毛发去除,使用3%异氟烷用麻醉汽化器(VetEqip,Livermore,CA)对动物进行麻醉。然后将皮肤用必妥碘擦洗,随后用70%乙醇擦洗进行清洁。然后在髌骨上做出切口,以暴露出髌骨肌腱,并将该肌腱横切以暴露出股骨的远端髁。在远端股骨处在髁之间将无菌23号针钻穿髌骨表面中心的皮质壳。将销钉沿着髓腔的中心插入直到它到达股骨的近端骨骺的骨内表面。然后将针用剪线钳剪断,以使其与股骨的远端平齐,并且将皮肤用4-0不可吸收性尼龙缝线缝合。然后,使用来自RISystem的落重式骨折装置在稳定化的股骨中诱发骨折,并通过使用X射线柜(Carestream,Kodak,Rochester,NY)经由X射线进行验证。小鼠在骨折后接受丁丙诺啡(0.03mg/天)三天以减轻疼痛。所有动物实验都按照普渡大学的机构动物护理和使用委员会(Institutional Animal Care and Use Committee,IACUC)批准的协议进行。
实施例10:半衰期和生物分布
为了分析在骨折部位靶向的荧光缀合物的半衰期,将L-Asp10-S0456或D-Asp10-S0456溶解在PBS中,无菌过滤,并在骨折后10天皮下注射,以达到250nmol/小鼠的最终剂量。然后在注射后2、24、48、72和96小时对小鼠进行安乐死,通过将骨折骨痂切除并溶解在中性缓冲的乙二胺四乙酸(EDTA)的12%溶液中,对骨折部位处的荧光进行量化。简言之,将断裂的股骨收集,用PBS冲洗,在真空干燥器中彻底干燥过夜,破碎成小块,并在浸入上述EDTA溶液中之前称重。将样品在摇床上搅动8小时以使骨脱钙,然后在8,000rpm下离心5分钟以收集上清液。然后通过使用用于量化的染料的已知浓度的标准曲线,根据其OD780确定上清液中L-Asp10-S0456或DAsp10-S0456的浓度。
实施例11:对肽的放射标记
将十(10)μg的Pierce Iodination(iodogen;Thermo Fisher Scientific,Waltham,MA)试剂溶解在200μL氯仿中,然后添加至6X 50mm玻璃试管中,并在稳定的氩气流中蒸发。然后将溶于40μL PBS中的50nmol肽缀合物与10μL(1mCi)的Na125I(ARC)一起加入。将玻璃试管密封并置于摇床上30分钟,然后通过放射制备型反相高效液相色谱(1260HPLC;Agilent Flow-RAM放射性检测器,Lablogic Systems Ltd,Sheffield,UK)进行纯化,梯度为0-100%的0.1% TFA/水:乙腈。将具有正确保留时间和放射信号的级分分离和冻干。对有效载荷肽在内源性的酪氨酸、色氨酸或组氨酸残基上进行放射碘化,所述残基在生理条件下在最长的碘化实验(27小时)期间保持稳定(参见Savoie等人,“Studies on mono-anddiiodohistidine.I.The identification of iodohistidines from thyroidaliodoproteins and their peripheral metabolism in the normal man and rat,”J.Clin.Invest.52:106–115(1973))。
为了99mTc标记,将溶于经氮气鼓泡的水(10mg/ml)中的0.6mg EDTA二钠二水合物添加至50mg葡萄糖酸钠在经氮气鼓泡的水中的溶液(100mg/ml)中。向该混合物中加入0.2mg氯化锡二水合物溶于经氮气鼓泡的0.2N HCl中的溶液(10mg/ml)。然后向该溶液中加入4μmol含有99mTc螯合剂的肽,将pH用NaOH调整至6.8(Leamon等人,(2002),同上)。将该溶液在液氮中快速冷冻,并且冻干过夜。然后将该化合物与15mCi的m99Tc(Cardinal Health)混合,摇晃15分钟后,通过分析型放射反相高效液相色谱(1260HPLC;Agilent Flow-RAM放射性检测器,Lablogic)来确认定量螯合。
实施例12:生物分布分析
为了活体动物研究,将99mTc或125I放射标记的肽溶解在PBS中,并在诱导中段股骨骨折后10天皮下注射到小鼠中,以确保血流已返回至该区域。每只小鼠均通过皮下施用而接受0.25mCi(12.5nmol肽在0.1mL媒剂中)剂量的放射碘化的肽或3mCi(0.1ml)剂量的99mTc标记的肽。18小时后,通过心脏穿刺取出血液,并通过CO2窒息来杀死小鼠。将器官和组织(心、肺、肌肉、皮肤、肝、脾、肾、骨折的股骨和健康的股骨)切除和称重,并使用γ计数器(Cobra Auto-Gamma,Packard;GMI Corporation,Franklin,IN)对它们的放射性进行计数。注射剂量百分比通过以下公式计算:
骨折与健康比率通过以下公式计算:
实施例13:SPECT/CT
99mTc标记的D-Glu10-螯合剂和D-Glu20-螯合剂配制成7mCi/100μl,并在股骨骨折后两周经由尾静脉注射。18小时后,通过CO2窒息将小鼠安乐死,并使用单光子发射计算机断层摄影术/计算断层摄影术(SPEC/CT)扫描仪(U-SPECT-II/CT,MiLabs,Houten,TheNetherlands)进行成像。使用高分辨率、全身12分钟扫描来收集CT图像,然后使用0.6mm准直器进行1小时SPECT扫描。通过使用MiLabs软件,选择140keV的能量窗口、16个子集和4次迭代的重建参数在没有后置过滤器的情况下重建SPEC/CT图像。使用ImageJ软件进行三维重建。
实施例14:骨折修复模型-糖尿病
通过使用Fmoc固相肽合成法来合成SEQ ID NO:5、阿巴洛肽(SEQ ID NO:2)、SEQID NO:6和SEQ ID NO:9(具有10个天冬氨酸残基的缀合物)的靶向的缀合物。从SEQ ID NO:5中,使用了氨基酸1-34,而阿巴洛肽(SEQ ID NO:2)是SEQ ID NO:1中的氨基酸1-36的稳定形式。通过七次皮下注射链脲菌素(STZ),在40只8周龄雄性CD-1小鼠中诱发糖尿病,直到血糖读数超过250mg/dL。使小鼠处于这种确认的糖尿病状态下2个月,以使糖尿病能够对骨产生影响。然后,使用无菌手术技术将23号针作为髓内钉安置在麻醉小鼠的股骨中以进行内部固定,然后使用来自RISystem的落重式骨折装置来诱发骨折,并通过X射线来证实。小鼠在骨折后三天接受丁丙诺啡。它们每天被皮下给药胰岛素阳性对照、媒剂阴性对照、SEQ IDNO:5或阿巴洛肽(SEQ ID NO:2),持续4周。通过使用显微CT(Scanco Medical Ag)对骨折愈合进行定性评估。通过使用ElectroForce TestBench(TA Instruments,New Castle,DE)对骨折的股骨测试4点弯曲至断裂的强度。产生了最大载荷、刚度、屈服后移位,以及断裂功的数据。统计分析采用单因素方差分析(ANOVA)进行,在p值小于0.05(*)和0.01(**)的情况下报告显著性。所有动物实验都按照普渡大学的IACUC批准的协议进行。
测试了四种化合物。阿巴洛肽(D)_e10、SEQ ID NO:6和SEQ ID NO:7(图1A和图1B)在健康股骨骨折中都重复地加速愈合。阿巴洛肽(SEQ ID NO:2)是甲状旁腺相关蛋白激素的稳定化形式。达沙替尼是一种SRC激酶,对成骨细胞和破骨细胞都具有脱靶效应,其改善整体骨密度。达沙替尼也已被证明是抗衰老剂。ITGA是一种纤连蛋白模拟物,其促进膜内骨折愈合。SEQ ID NO:5被包括在这项研究中,因为Preptin 1-16具有中等的骨合成代谢活性。还表明,全长化合物(参见图1A和图1B)也改善了葡萄糖敏感性。因此,假设全长SEQ IDNO:5的葡萄糖调节特性可能有益于I型糖尿病性骨折的愈合,作为一种双重作用的化合物,可能通过两种机制来改善愈合。与作为阳性对照的胰岛素和作为阴性对照的盐水相比,比较了这些化合物。
除了SEQ ID NO:6之外,所有靶向化合物相对于生理盐水都改善了矿化和骨密度,其中SEQ ID NO:5对骨痂矿化影响最大,而阿巴洛肽对密度影响最大。结果显示在图13和14中。BV表示骨折骨痂的100个最厚的显微CT切片的骨体积,并且是在骨折修复的部位处骨已矿化多少的量度。BV/TV表示BV除以骨折骨痂的100个最厚的显微CT载玻片的TV,并且是在骨折修复的部位处骨密度如何的量度。将胰岛素以2IU/天给药。0.1x、50x和10x的剂量分别为0.1nmol、50nmol和10nmol的每天通过皮下注射递送的缀合物。将SEQ ID NO:6以10μmol/kg每隔一天给药。
所有靶向的化合物对骨折强度的改善都超过了仅胰岛素单独治疗。尽管胰岛素改善了矿化,但是它无法恢复受高血糖损伤的骨的品质,所以骨仍然脆弱。骨脆性是导致糖尿病中如此多骨折的原因。脆性的量度是在4点弯曲测试中的屈服后移位。结果显示在图15和16中。
将胰岛素以2IU/天给药。0.1x、50x和10x的剂量分别是0.1nmol、50nmol和10nmol的每天通过皮下注射递送的缀合物。将SEQ ID NO:6以10μmol/kg每隔一天给药。
除了SEQ ID NO:6之外,所有化合物都降低了骨的脆性(图17)。胰岛素是改善血糖水平的唯一化合物(图18)。通过治疗骨折,动物能够恢复它们由于糖尿病而失去的重量(图19)。
然而,由于非糖尿病患者将不会因服用本文提供的化合物而停止服用胰岛素,因此用与胰岛素联合给药的化合物来重复该实验(图20-22)。
对于图20A和20B,将胰岛素以2IU/天给药,并且0.1x、10x和100x的剂量分别为0.1nmol、10nmol和100nmol的每天通过皮下注射递送的缀合物。该图表明,SEQ ID NO:8比胰岛素更好地改善了骨痂的矿化,所有实验治疗剂都导致了骨折骨痂密度的增加,与胰岛素单独相比更是如此。
对于图21A和21B,将胰岛素以2IU/天给药,并且0.1x、10x和100x的剂量分别为0.1nmol、10nmol和100nmol的每天通过皮下注射递送的缀合物。该图表明,未观察到小梁骨的显著变化。
对于图22A-22C,除了盐水组之外,在所有组中将胰岛素以2IU/天给药。0.1x、10x和100x的剂量分别为0.1nmol、10nmol和100nmol的每天通过皮下注射递送的缀合物。该图表明,相比于胰岛素对照,阿巴洛肽(SEQ ID NO:2)和SEQ ID NO:8显著地改善了强度。所有显著性水平都是相对于受胰岛素治疗组而非盐水对照组进行计算。总体上,SEQ ID NO:9没有显著地改善糖尿病中的骨折愈合。然而,与胰岛素单独相比,阿巴洛肽(SEQ ID NO:2)和SEQ ID NO:8更加改善了强度和矿化,并且它们表现出作为潜在治疗剂的前景。
实施例15:骨折修复模型-绝经期后骨质疏松
在骨质疏松期间遍及骨骼中存在的增加的再吸收凹坑在骨质疏松单独存在的情况下充当适度的定位部位。然而,在骨质疏松期间,定位确实仍然发生在骨骼的其他地方。大多数仍然定位在骨折部位。这可能导致某些群体需要禁用某些类型的骨靶向治疗剂。然而,对于患有骨折的骨质疏松患者,愈合再吸收凹坑的脱靶骨骼效应实际上可能是一种积极的副作用,并且可能不造成问题。这将是双重效果,其中骨折被治愈,并且骨质疏松也被治疗而防止未来的骨折。
通过双侧卵巢切除术对8周龄雌性Swiss Webster小鼠(n=10)手术诱导绝经后骨质疏松。骨质疏松通过显微CT测量的整体骨矿物质密度的损失而得到确认。
通过使用2-3%异氟烷对小鼠进行麻醉。皮下施用丁丙诺啡(0.03mg/kg)以缓解术后疼痛。从髂嵴背侧将3cm x 2.5cm区域剃毛。将该区域用必妥碘洗涤,然后用70%乙醇洗涤,然后包扎。做出2cm中线切口,并将皮肤从下层筋膜切开。做出中线的1cm侧向切口,穿过筋膜,到达腹腔。将腹腔中卵巢周围的脂肪组织向后拉并轻轻拉出。
将卵巢分离,并将该结构附近0.5cm处的子宫角和血管结扎。将卵巢去除,并在对侧上重复该过程。通过使用单丝缝合线将腹膜腔缝合,随后缝合皮肤。将小鼠放在干净的恢复笼中,并且得以从麻醉中清醒。每12小时向小鼠给药丁丙诺啡,持续3-5天。骨质疏松被预期在4-6周内发生,此时小鼠经受稳定化的股骨骨折,如上所述。
卵巢切除之前和卵巢切除之后8周测量骨矿物质密度(BMD)以确认骨质疏松的发生。在长期暴露于低雌激素水平8周后,将髓内钉置于小鼠的股骨中,然后通过落重诱导Einhorn骨折模型,并通过X射线确认。向小鼠每天给药,持续4周。通过显微CT对结构变化进行量化,并通过4点弯曲至断裂测试对力学性能进行评估。
将S0456、boc-酪胺和KOH加入脱气的50mL RB烧瓶中。将DMSO(5mL)加入以溶解所有固体,然后在氩气氛下将该混合物在60℃搅拌1.2小时。将所得的混合物冷却至室温,并滴加至冷乙酸乙酯(50mL)中。将所得的混合物剧烈搅拌,然后在3,000rpm下离心3分钟。在离心后,在锥形管底部可以看到深绿色固体。将上清液(非常轻微地浅绿色澄清溶液)弃去,然后将新的一批冷乙酸乙酯添加至该固体中。将该混合物剧烈搅拌,并进行与之前相同的离心过程。将所得的深绿色固体在真空干燥器中干燥过夜,然后加入40% TFA/DCM溶液(5mL)。将该混合物在室温下搅拌30分钟,然后在真空中浓缩以除去所有TFA和DCM。将浓缩的粗品溶于3mL水中,进行制备型HPLC纯化。将S0456-酪胺的纯级分收集,真空浓缩,冷冻和冻干而得到纯产物,呈绒毛状深绿色固体。将该固体(120mg)与3-马来酰亚胺基丙酸N-琥珀酰亚胺酯(30mg)和DIPEA(40μL)一起溶于DMSO(3mL)中,并在氩气氛下搅拌1hr,然后用制备型HPLC纯化。将S0456-马来酰亚胺的纯级分收集,真空浓缩,冷冻和冻干而得到深绿色绒毛状固体的纯产物(125mg)。
D10-Cys如下进行合成。为了SPPS树脂的初始加载,将2-氯三苯甲基氯树脂(0.4g,1.4mmol/g)在DCM(10mL/g树脂)中溶胀,然后加入溶于DCM(14mL)中的Fmoc-L-Asp(OtBu)-OH(1.15g,2.8mmol)和DIPEA(1.66mL,9.5mmol)。将该混合物通过氩气鼓泡而搅拌1hr,其后将溶液排出,然后添加20mL封端混合物(DCM:MeOH:DIPEA=17:2:1),并对该溶液再次鼓泡20分钟。然后对树脂进行标准洗涤程序,其包括在每次偶联反应后用DMF(3次)、DCM(3次)和IPA(3次)洗涤,以及在每次脱保护后用DMF(3次)洗涤。在初始加载后,所有后续的偶联反应都是用Fmoc-L-Asp(OtBu)-OH(1.15g,2.8mmol)或Fmoc-S-三苯甲基-L-半胱氨酸(1.64g,2.8mmol)、PyBOP(1.42g,2.75mmol)和DIPEA(1.66mL,9.5mmol)在DMF(14mL)中的溶液进行。所有天冬氨酸和半胱氨酸残基都使用了一小时标准偶联时间。用在DMF中20%哌啶溶液进行两次Fmoc脱保护,各自为5分钟和10分钟。通过使用由90% TFA、3.3% TIPS、3.3%水和3.3% EDT组成的裂解混合物,将11聚体肽产物从树脂中裂解。在裂解后,将粗品产物在减压下浓缩以除去大部分TFA、水、TIPS和EDT,然后用Et2O洗涤3次并在减压下干燥24小时而产生白色粉末状的D10-Cys 1(680mg,总产率81.3%,平均偶联效率98.1%)。
D10-S0456缀合物如下进行合成。将S0456-马来酰亚胺(100mg)在用氩气脱气的烧瓶中溶解在2mL DMSO中,然后在搅拌下向该溶液中加入D10-Cys。将该混合物在室温下搅拌2.5小时,然后用制备型HPLC纯化。经纯化和冻干的产物呈现为绿色绒毛状固体(57mg)。
向如前所述已经受中段股骨骨折和双侧卵巢切除术的雌性12周龄Swiss Webster在颈部附近皮下注射10nmol的S0456缀合物。在24小时后,将它们处死,并进行了尸检。在Spectral Ami光学成像系统中在745nm以5%激发功率激发1秒钟对组织进行成像。在810nm处收集荧光发射。
为了定量测定钙离子(Ca2+)和评价药物对钙代谢的效应,使用了来自BioAssaySystems(Hayward,CA)的QuantiChrom钙测定试剂盒。该试剂盒中的酚磺酞染料与游离钙形成非常稳定的蓝色复合物。在612nm处测量的颜色强度直接与样品中的钙浓度成比例。优化的制剂将物质例如镁、脂质、蛋白质和胆红素的任何干扰最小化。在给药21天后在治疗性研究结束时,在3%异氟烷诱导的麻醉下,通过心脏穿刺从小鼠采集1mL血液。将血液以500G旋转5分钟,以使细胞成团粒。将血清从细胞团粒中取出并储存在-80℃,直到钙浓度定量之前。通过将125μL 20mg/dL标准品和125μL dH2O混合而将该标准品稀释至10mg/dL Ca2+。将全血样品(5μL)转移至孔中。接着,加入200μL工作试剂,并将板轻轻敲击以进行混合。其后,将样品在室温下孵育3分钟,读取570-650nm处的光密度(吸光度峰在612nm)以获得OD样品。其后,将10mg/dL标准品(5μL)转移到样品孔中。敲击该板以混合,在相同的波长下测量光密度而得到OD标准品。接着,将5μL 20mM EDTA加入到早前的同一孔中,轻敲该板以混合。在相同的波长测量下读取光密度而得到OD空白。全血样品的浓度计算如下:[Ca2+]=(OD样品–OD空白)/(OD标准品–OD样品)x 10x n(mg/dL)
其中OD样品、OD空白和OD标准品分别是样品、样品空白和样品加标准品的OD读数;10是标准品的浓度mg/dL,n是样品稀释系数。如果计算的钙浓度大于10mg/dL,则将样品在dH2O中稀释,并重复测定。然后我们将结果乘以稀释系数n。
最初,测试了四种化合物。SEQ ID NO:3、SEQ ID NO:6和SEQ ID NO:7在健康股骨骨折中都重复地加速愈合,而阿巴洛肽(SEQ ID NO:2)是甲状旁腺相关蛋白激素的稳定化形式。达沙替尼是一种SRC激酶,对成骨细胞和破骨细胞都具有脱靶效应,改善整体骨密度。达沙替尼也已被证明是抗衰老剂。ITGA是一种纤连蛋白模拟物,其促进膜内骨折愈合。
除了SEQ ID NO:10(具有20个谷氨酸残基的缀合物)之外,所有靶向的化合物相对于盐水都改善了矿化和骨折骨痂的密度,而且与雌激素替代相比更是如此(图23A-B)。
对于图23A和23B,将苯甲酸雌激素每周以30μg/kg给药。0.1x、1x和10x的剂量分别为0.1nmol、1nmol和10nmol的每天通过皮下注射递送的缀合物。将SEQ ID NO:6每隔一天以10μmol/kg给药。
相同的三种化合物证明有效地改善股骨的强度(图24A-C)。
关于图24A-C,将苯甲酸雌激素每周以30μg/kg给药。0.1x、1x和10x的剂量分别为0.1nmol、1nmol和10nmol的每天通过皮下注射递送的缀合物。将SEQ ID NO:6每隔一天以10μmol/kg给药。
许多所述化合物在这种低雌激素状态下显著地改善了骨折股骨的愈合,远比用雌激素替代来控制雌激素损失更好。这可能使靶向化合物有助于患有骨折的骨质疏松患者更快地愈合而具有吸引力。正如对糖尿病小鼠注意到的,对照小鼠的骨痂愈合的所有指标都显著地低于标准健康小鼠的指标,代表了具有明显挑战性的患者群体。
检查了用游离合成代谢剂(SEQ ID NO:1)或靶向合成代谢剂(阿巴洛肽_D10(SEQID NO:1的靶向稳定化形式))治疗骨质疏松小鼠4周的效果。检查了已经出现了年龄诱导的骨质疏松的20月龄Swiss Webster雌性小鼠,因为老年小鼠自然出现骨密度降低。存在于股骨、骨盆和腰椎(受骨质疏松影响最大的区域)的平均骨矿物质密度通过PerkinElmer显微CT进行量化,使用标准模体来量化骨骼受影响的部分的骨矿物质密度。小鼠接受了4周治疗。
靶向的和游离的疗法改善了受治疗小鼠的BMD。需要对其他指标进行评估,以确定靶向药物本身在治疗骨质疏松方面的益处。如果两者在改善方面都是有效的,则就减少副作用而言,靶向药物可能仍然是可取的。游离的骨质疏松药物因其全身性副作用而受到限制。尤其是甲状旁腺家族,受限于其对血钙的影响。但是如图25证实的,与游离形式相比,(SEQ ID NO:13)的靶向形式没有显著地增加血钙。
通过使用盐水作为对照,将0.1nmol的游离PTH(的靶向形式)与靶向PTH(SEQ ID NO:13)进行了比较。因此,尽管骨质疏松是一种全身性疾病,但是使用靶向合成代谢剂相比于游离合成代谢剂还是有优势的,因为靶向合成代谢剂可以限制对甲状旁腺激素调节肾脏中发生的钙代谢的影响。
实施例16:骨折修复模型-颌面
在以下五种大鼠模型中检查了化合物的应用结果:(i)颌骨骨折,使用非临界尺寸的下颌骨缺损建模(图29,子图1),(ii)重大颌面手术,通过引入填充有骨移植材料的临界尺寸的缺损建模(图29,子图2),(iii)植入金属的骨整合(图29,子图3),(iv)颅骨临界尺寸的缺损(图29,子图4),以及(v)微板稳定化的下颌骨截骨术(图29,子图5和6)。除了下颌骨缺损之外,对所有手术都观察到某种程度的愈合。用微板稳定化的下颌骨截骨术证明了未来成功的最大潜力。到手术后三周,在截骨间隙的减小方面观察到明显的改善,其中受治疗组的间隙的直径是盐水对照的直径的13%(p<0.01)。还改善了微结构。在受治疗组中,骨的结构已被重塑成接近正常骨,而明显的间隙仍然存在于盐水组中。最后,受治疗的颌骨在损坏之前可能承受的最大载荷是盐水组的2.7倍(p<0.5),当将受治疗的颌骨的强度与对侧颌骨的强度比较时,发现了它们已恢复至非断骨的强度。结果总结在图29中,其示出了对于缺损和移植物以及颅骨缺损,药剂相对于非钙化面积(mm2)的图;对于螺钉,药剂相对于迁移百分比(%)的图;对于下颌骨截骨术,药剂相对于间隙直径(mm)的图;以及对于下颌骨截骨术,药剂相对于最大负荷(N)的图。
实施例17:疼痛/功能结果
小鼠的疼痛/功能结果是通过转向行为测试来获得的。通过使用Von Frey探针来评估异常性疼痛,而使用DigiGait评估增益,通过使用跑步轮来评估功能,通过使用运动旷场测试来评估与功能关联的焦虑。旷场运动测试提供了最一致的测量结果。
在测试运动活性之前,使小鼠在行为室中习惯30-60分钟。在实验开始前,使动物习惯于运动箱一次,持续10分钟。然后,它们被单独安置在带有红外光跟踪束的运动箱中10分钟,然后被移出并放回它们的笼子。使用3点方向性测试,通过EthoVision对小鼠进行追踪。在实验之前,对小鼠进行两周测量。然后它们接受中段股骨骨折模型,并被分配到三个治疗组之一:1)阿巴洛肽DE20,每周两次;2)磷酸盐缓冲盐水,每周两次;或3)布洛芬(0.6g/L),均在它们的水中。小鼠在骨折后接受了5周治疗,每周测量一次。
所有小鼠在它们的基线状态下都在它们的盒子中到处跑,这表明它们感觉很好。然而,在骨折后,接受盐水和布洛芬治疗的小鼠偏好呆在边缘和角落里,这表明它们感到不舒服和焦虑。受阿巴洛肽治疗的小鼠则恢复至它们以前的健康状态,并到处跑。有趣的是,布洛芬小鼠没有改善它们的疼痛/功能结果。已知道布洛芬抑制骨折修复,所以受到的镇痛效果可能被动物的愈合下降所克服。然而,SEQ ID NO:4的小鼠的骨折加速愈合确实导致了更多的功能和更好的健康。小鼠不仅定位到表明它们有更好的健康的区域,而且在该试验的运动部分,它们的功能指标也定量地改善,如图26-28所示。
图26是天数相对于移动距离(cm)的图,其示出了不同治疗组(n=7)在运动旷场箱中在10分钟时间段中移动的平均总距离。图27是天数相对于移动所耗时间的图,其示出了不同治疗组(n=7)在运动旷场箱中在10分钟时间段中的平均移动所耗时间。图28是天数相对于平均速率(cm/s)的图,其显示了不同治疗组(n=7)在运动旷场箱中在10分钟时间段中的平均速率。
对于图26-28,第0天代表了骨折前基线数据。将盐水和SEQ ID NO:4(1nmol)两次/周注射。将布洛芬以0.6g/L的浓度在小鼠的水中不断施用。
图26示出了受阿巴洛肽治疗的小鼠开始跑得更远,而图27示出了它们开始跑更长的时间段,图28示出了受阿巴洛肽治疗的小鼠开始跑得更快。所有这些指标表明增高的功能和更好的表现,其表明通过显微CT量化的结构和力学愈合的增加,并且生物力学测试也对应于改善的功能和减轻的疼痛。这些结果超过据报告用BMP治疗已见到的结果,即BMP尽管被批准用于骨折修复却没有改善疼痛或功能。因此,通过向动物给药一种在骨折后两周至三周之间使骨恢复至它们先前未断裂时的强度的靶向骨合成代谢剂——SEQ ID NO:4,可以实现疼痛减轻到该时间。
实施例18:PK性质
将SEQ ID NO:4皮下注射到带有骨折的小鼠中。在125I-标记的阿巴洛肽和SEQ IDNO:4的循环半衰期(4.2小时相比于3.7小时)或累积全身性暴露(AUC;分别24.4小时和20小时)中没有观察到显著差异,表明在靶向药物和非靶向性药物之间任何脱靶暴露或所得的全身性毒性应当是相似的。结果显示在图30中,其是患有中段股骨骨折的小鼠的小时数相对于血液中注射剂量百分比(cpm/g)的图。相比之下,观察到在骨折部位处两种阿巴洛肽的滞留时间的大差异,其中SEQ ID NO:4的半衰期测得为67小时,而非靶向性阿巴洛肽(SEQID NO:2)的半衰期为8.8小时。半衰期的差异导致SEQ ID NO:4的累积滞留时间(AUC)相比于阿巴洛肽(SEQ ID NO:2)大11倍(即,96小时相比于8小时)。在对侧股骨中SEQ ID NO:4的滞留时间是其在骨折股骨中的滞留时间的1/8低,表明了关于对健康骨生长的刺激的问题应是最小的。结果显示在图31中,其是患有中段股骨骨折的小鼠的小时数相对于骨中注射剂量百分比(cpm/g)的图。因此,虽然D-Glu20-靶向的阿巴洛肽和非靶向性阿巴洛肽的全身性暴露是相似的,但是在骨折表面处SEQ ID NO:4的显著增高的浓度预期将改善相关骨折的修复速率。
应认识到,各种修改可能在要求保护的发明的范围内。因此,应当理解,尽管本发明已经具体地在优选实施方案和任选特征的上下文中公开,但是本领域技术人员可以采取本文公开的构思的修改和变化。所述修改和变化被视为在本文要求保护的发明的范围内。
序列表
<110> 普渡研究基金会
<120> 用于治疗骨折的化合物、组合物和使用方法
<130> 69248-03
<150> 63/105,669
<151> 2020-10-26
<150> 63/193,748
<151> 2021-05-27
<160> 21
<170> PatentIn版本 3.5
<210> 1
<211> 86
<212> PRT
<213> 人工序列
<220>
<223> 经修饰的甲状旁腺激素相关蛋白(PTHrP)
<400> 1
Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln
1 5 10 15
Asp Leu Arg Arg Arg Phe Phe Leu His His Leu Ile Ala Glu Ile His
20 25 30
Thr Ala Glu Ile Arg Ala Thr Ser Glu Val Ser Pro Asn Ser Lys Pro
35 40 45
Ser Pro Asn Thr Lys Asn His Pro Val Arg Phe Gly Ser Asp Asp Glu
50 55 60
Gly Arg Tyr Leu Thr Gln Glu Thr Asn Lys Val Glu Thr Tyr Lys Glu
65 70 75 80
Gln Pro Leu Lys Thr Pro
85
<210> 2
<211> 34
<212> PRT
<213> 人工序列
<220>
<223> 阿巴洛肽,一种PTHrP类似物
<220>
<221> 位点
<222> (29)..(29)
<223> 其中"X"是α-氨基异丁酸
<220>
<221> 位点
<222> (29)..(29)
<223> 其中"X"是α-氨基异丁酸
<400> 2
Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln
1 5 10 15
Asp Leu Arg Arg Arg Glu Leu Leu Glu Lys Leu Leu Xaa Lys Leu His
20 25 30
Thr Ala
<210> 3
<211> 56
<212> PRT
<213> 人工序列
<220>
<223> 具有10个谷氨酸残基的缀合物
<220>
<221> 位点
<222> (29)..(29)
<223> 其中"X"是甲基丙氨酸
<400> 3
Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln
1 5 10 15
Asp Leu Arg Arg Arg Glu Leu Leu Glu Lys Leu Leu Xaa Lys Leu His
20 25 30
Thr Ala Glu Ile Arg Ala Thr Ser Glu Val Ser Pro Asn Ser Glu Glu
35 40 45
Glu Glu Glu Glu Glu Glu Glu Glu
50 55
<210> 4
<211> 65
<212> PRT
<213> 人工序列
<220>
<223> 具有20个谷氨酸残基的缀合物
<220>
<221> 位点
<222> (29)..(29)
<223> 其中"X"是α-氨基异丁酸
<400> 4
Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln
1 5 10 15
Asp Leu Arg Arg Arg Glu Leu Leu Glu Lys Leu Leu Xaa Lys Leu His
20 25 30
Thr Ala Glu Ile Arg Ala Thr Ser Glu Val Ser Pro Asn Ser Glu Glu
35 40 45
Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu
50 55 60
Glu
65
<210> 5
<211> 42
<212> PRT
<213> 人工序列
<220>
<223> 具有10个谷氨酸残基的经修饰的肽激素缀合物
<220>
<221> MISC_特征
<222> (11)..(12)
<400> 5
His Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Arg Gly Ala Ser Gln
1 5 10 15
Arg Trp Thr Asp Tyr Gln Phe Phe Gly Val Pro Tyr Arg Pro Phe Asp
20 25 30
Pro Leu Val Ala Gln Ser Thr Ser Val Asp
35 40
<210> 6
<211> 11
<212> PRT
<213> 人工序列
<220>
<223> D10-酯-达沙替尼
<220>
<221> 位点
<222> (1)..(1)
<223> 其中"X"指示酯-达沙替尼
<400> 6
Xaa Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp
1 5 10
<210> 7
<211> 18
<212> PRT
<213> 人工序列
<220>
<223> 具有10个谷氨酸残基的缀合物
<220>
<221> MISC_特征
<222> (11)..(12)
<400> 7
His Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Arg Arg Glu Thr Ala
1 5 10 15
Trp Ala
<210> 8
<211> 18
<212> PRT
<213> 人工序列
<220>
<223> 其他信息:与10个谷氨酸残基缀合的ITGA
(ITGA5)
<220>
<221> MISC_特征
<222> (11)..(12)
<400> 8
His Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Arg Arg Glu Thr Ala
1 5 10 15
Trp Ala
<210> 9
<211> 26
<212> PRT
<213> 人工序列
<220>
<223> 具有10个谷氨酸残基的缀合物
<220>
<221> MISC_特征
<222> (11)..(12)
<400> 9
His Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Lys Leu Thr Trp Gln
1 5 10 15
Glu Leu Tyr Gln Leu Lys Tyr Lys Gly Ile
20 25
<210> 10
<211> 22
<212> PRT
<213> 人工序列
<220>
<223> 具有10个谷氨酸残基的缀合物
<220>
<221> MISC_特征
<222> (11)..(12)
<400> 10
His Asp Asp Asp Asp Asp Asp Asp Asp Asp Asp Arg Pro Lys Pro Gln
1 5 10 15
Gln Phe Phe Gly Leu Met
20
<210> 11
<211> 65
<212> PRT
<213> 人工序列
<220>
<223> 具有20个谷氨酸残基的缀合物
<220>
<221> misc_特征
<222> (29)..(29)
<223> Xaa可以是任意天然存在的氨基酸
<400> 11
Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln
1 5 10 15
Asp Leu Arg Arg Arg Glu Leu Leu Glu Lys Leu Leu Xaa Lys Leu His
20 25 30
Thr Ala Glu Ile Arg Ala Thr Ser Glu Val Ser Pro Asn Glu Glu Glu
35 40 45
Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu Glu
50 55 60
Glu
65
<210> 12
<211> 12
<212> PRT
<213> 人工序列
<220>
<223> 接头
<400> 12
Glu Ile Arg Ala Thr Ser Glu Val Ser Pro Asn Ser
1 5 10
<210> 13
<211> 56
<212> PRT
<213> 人工序列
<220>
<223> 具有10个谷氨酸残基的缀合物
<220>
<221> 位点
<222> (47)..(56)
<223> 其中47-56位的谷氨酸残基具有D-手性
<400> 13
Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Asn
1 5 10 15
Ser Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His
20 25 30
Asn Phe Val Ala Leu Gly Ala Pro Leu Ala Pro Arg Asp Ala Glu Glu
35 40 45
Glu Glu Glu Glu Glu Glu Glu Glu
50 55
<210> 14
<211> 56
<212> PRT
<213> 人工序列
<220>
<223> 具有10个谷氨酸残基的缀合物
<220>
<221> 位点
<222> (29)..(29)
<223> 其中"X"是甲基丙氨酸
<220>
<221> 位点
<222> (47)..(56)
<223> 其中47-56位的谷氨酸残基具有L-手性
<400> 14
Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln
1 5 10 15
Asp Leu Arg Arg Arg Glu Leu Leu Glu Lys Leu Leu Xaa Lys Leu His
20 25 30
Thr Ala Glu Ile Arg Ala Thr Ser Glu Val Ser Pro Asn Ser Glu Glu
35 40 45
Glu Glu Glu Glu Glu Glu Glu Glu
50 55
<210> 15
<211> 46
<212> PRT
<213> 人工序列
<220>
<223> 式(I)的具有X-Y部分的化合物
<220>
<221> 位点
<222> (29)..(29)
<223> 其中"X"是α-氨基异丁酸或甲基丙氨酸
<400> 15
Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly Lys Ser Ile Gln
1 5 10 15
Asp Leu Arg Arg Arg Glu Leu Leu Glu Lys Leu Leu Xaa Lys Leu His
20 25 30
Thr Ala Glu Ile Arg Ala Thr Ser Glu Val Ser Pro Asn Ser
35 40 45
<210> 16
<211> 8
<212> PRT
<213> 人工序列
<220>
<223> FGF2的肝素结合结构域
<400> 16
Tyr Lys Arg Ser Arg Tyr Thr Cys
1 5
<210> 17
<211> 39
<212> PRT
<213> 人工序列
<220>
<223> 垂体腺苷酸环化酶激活性多肽
<400> 17
His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Lys Gln
1 5 10 15
Met Ala Val Lys Lys Tyr Leu Ala Ala Val Leu Gly Lys Arg Tyr Lys
20 25 30
Gln Arg Val Lys Asn Lys Cys
35
<210> 18
<211> 15
<212> PRT
<213> 人工序列
<220>
<223> 趋化性隐蔽肽,源自III型胶原的CTX区域
<400> 18
Tyr Ile Ala Gly Val Gly Gly Glu Lys Ser Gly Gly Phe Tyr Cys
1 5 10 15
<210> 19
<211> 30
<212> PRT
<213> 人工序列
<220>
<223> 酪蛋白激酶2β链
<400> 19
Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys Lys
1 5 10 15
Ile Pro Val Gly Glu Ser Leu Lys Asp Leu Ile Asp Gln Cys
20 25 30
<210> 20
<211> 16
<212> PRT
<213> 人工序列
<220>
<223> 骨桥蛋白衍生的肽
<400> 20
Asp Val Asp Val Pro Asp Gly Arg Gly Asp Ser Leu Ala Tyr Gly Cys
1 5 10 15
<210> 21
<211> 21
<212> PRT
<213> 人工序列
<220>
<223> BMP-2片段
<400> 21
Lys Ile Pro Lys Ala Ser Ser Val Pro Thr Glu Leu Ser Ala Ile Ser
1 5 10 15
Thr Leu Tyr Leu Cys
20

Claims (50)

1.一种具有式(I)的结构的化合物
X-Y-Z
式(I),
或其药学上可接受的盐,
其中:
X是选自以下的骨合成代谢剂:甲状旁腺激素(PTH)或其衍生物或片段、PTH相关蛋白(PTHrP)或其衍生物或片段,以及阿巴洛肽或其衍生物或片段;
Y是不存在、可释放性接头或不可释放性接头;并且
Z是趋骨性配体。
2.根据权利要求1所述的化合物,其中X是包含SEQ ID NO:3的阿巴洛肽或其衍生物或片段,其中x是甲基丙氨酸并且“e”表示D-手性。
3.根据权利要求1所述的化合物,其中Z的所述趋骨性配体是包含至少11个氨基酸残基的酸性寡肽(AOP)。
4.根据权利要求3所述的化合物,其中所述AOP包含11至100个氨基酸残基。
5.根据权利要求1所述的化合物,其中X是选自以下的骨合成代谢剂:PTH或其具有骨合成代谢活性的衍生物或片段、PTHrP或其具有骨合成代谢活性的衍生物或片段,以及阿巴洛肽或其具有骨合成代谢活性的衍生物或片段。
6.根据前述权利要求中任一项所述的化合物,其中所述骨合成代谢剂是阿巴洛肽或其具有骨合成代谢活性的衍生物或片段。
7.根据权利要求1所述的化合物,其中Z是四环素、雷奈酸盐、钙螯合剂、金属螯合剂、双膦酸盐或AOP。
8.根据权利要求1、2、5或7中任一项所述的化合物,其中Z是选自单-双膦酸盐、三-双膦酸盐和聚-双膦酸盐的双膦酸盐。
9.根据权利要求1-5中任一项所述的化合物,其中Z是氨基酸残基的线性链。
10.根据权利要求1-5中任一项所述的化合物,其中Z是氨基酸残基的支化链。
11.根据权利要求1所述的化合物,其中Z是包含至少4个谷氨酸氨基酸残基或至少4个天冬氨酸氨基酸残基的AOP。
12.根据权利要求1、2、5和11中任一项所述的化合物,其中Z包含至少4个具有相同手性的氨基酸残基。
13.根据权利要求1、2、5和11中任一项所述的化合物,其中Z包含至少4个氨基酸残基并且这样的氨基酸残基中的至少4个具有D手性。
14.根据权利要求1、2、5和11中任一项所述的化合物,其中Z包含至少4个谷氨酸氨基酸残基、至少4个天冬氨酸氨基酸残基,或者至少4个谷氨酸氨基酸残基和至少4个天冬氨酸氨基酸残基。
15.根据权利要求1、2、5和11中任一项所述的化合物,其中Z包含4至20个D-谷氨酸氨基酸残基、4至20个D-天冬氨酸氨基酸残基,或4至20个D-谷氨酸氨基酸残基和4至20个D-天冬氨酸氨基酸残基。
16.根据权利要求1-5和11中任一项所述的化合物,其中Z包含谷氨酸氨基酸残基和天冬氨酸氨基酸残基的混合物。
17.根据权利要求1所述的化合物,其中Z包含至少15个重复D-谷氨酸氨基酸残基(DE15)或至少20个重复D-谷氨酸氨基酸残基(DE20)。
18.根据权利要求1、2、5和11中任一项所述的化合物,其中Z是DE10或DE20。
19.根据权利要求1、2、5和11中任一项所述的化合物,其中Z包含4至75个酸性氨基酸残基。
20.根据权利要求1、2、5和11中任一项所述的化合物,其中Z包含4至75个D-谷氨酸氨基酸残基。
21.根据权利要求1、2、5和11中任一项所述的化合物,其中Z包含8至30个酸性氨基酸残基。
22.根据权利要求1、2、5和11中任一项所述的化合物,其中Z包含8至30个D-谷氨酸氨基酸残基。
23.根据权利要求1、3-5、11和17中任一项所述的化合物,其中X是阿巴洛肽或其具有骨合成代谢活性的衍生物或片段并且Z是DE20。
24.根据权利要求1-5、11和17中任一项所述的化合物,其中Y是不可释放性接头。
25.根据权利要求1-5、11和17中任一项所述的化合物,其中Y是包含至少一个碳-碳键和/或至少一个酰胺键的不可释放性接头。
26.根据权利要求1-5、11和17中任一项所述的化合物,其中Y是可释放性接头。
27.根据权利要求1-5、11和17中任一项所述的化合物,其中Y是包含至少一个二硫键、至少一个酯和/或至少一个酰胺键的可释放性接头。
28.根据权利要求1所述的化合物,其中X是阿巴洛肽或其具有骨合成代谢活性的衍生物或片段,Y是不可释放性寡肽接头,并且Z是DE20。
29.根据权利要求1所述的化合物,其中X是阿巴洛肽或其具有骨合成代谢活性的衍生物或片段,Y是包含至少一个蛋白酶特异性酰胺键的可释放性寡肽接头,并且Z是DE20。
30.根据权利要求1所述的化合物,其中所述化合物与SEQ ID NO:3具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高。
31.根据权利要求1所述的化合物,其中所述化合物与SEQ ID NO:14具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高。
32.根据权利要求1所述的化合物,其中所述化合物与SEQ IDNO:4具有至少75%序列同一性或更高、至少85%序列同一性或更高、至少90%序列同一性或更高、或者至少95%序列同一性或更高。
33.一种药物组合物,包含前述权利要求中任一项所述的化合物或其药学上可接受的盐。
34.根据权利要求33所述的药物组合物,还包含药学上可接受的载体或赋形剂。
35.一种治疗有需要的患者的骨折的方法,所述方法包括向所述患者施用治疗有效量的权利要求1-32中任一项所述的化合物或权利要求33或34所述的药物组合物,从而治疗所述患者的所述骨折。
36.根据权利要求35所述的方法,其中所述患者易患骨折。
37.根据权利要求36所述的方法,其中所述患者患有选自糖尿病、骨质疏松、颌面损伤、颌面缺陷和颌面缺损的一种或多种共病。
38.根据权利要求37所述的方法,其中所述颌面损伤是颌面骨折。
39.根据权利要求35-37中任一项所述的方法,其中施用所述治疗有效量的前述权利要求中任一项所述的化合物或药物组合物是通过注射、胃肠外施用或肠内施用进行。
40.根据权利要求39所述的方法,其中所述注射是皮下的。
41.根据权利要求37所述的方法,还包括向所述患者施用第二疗法以治疗所述骨折或所述一种或多种共病。
42.根据权利要求41所述的方法,其中所述患者至少患有糖尿病并且施用所述第二疗法包括向所述患者施用治疗有效量的胰岛素。
43.根据权利要求41所述的方法,其中施用所述第二疗法包括将硬件或一种或多种治疗性化合物植入在骨折部位。
44.根据权利要求35所述的方法,其中所述治疗有效量的所述化合物或药物组合物包含在或介于0.01/kg患者体重至1mg/kg患者体重之间的化合物浓度。
45.根据权利要求35所述的方法,其中向所述患者施用治疗有效量的所述化合物或所述药物组合物在治疗过程期间重复1-800次。
46.根据权利要求35所述的方法,其中施用导致在施用所述治疗有效量的所述化合物或所述药物组合物后三周内减轻所述患者的疼痛。
47.一种促进有需要的患者的骨生长的方法,所述方法包括向所述患者施用治疗有效量的权利要求1-32中任一项所述的化合物或权利要求33或34所述的药物组合物,从而与治疗前相比使所述患者的骨中骨矿物质密度增大。
48.根据权利要求47所述的方法,其中所述患者患有骨质疏松。
49.根据权利要求48所述的方法,其中所述骨中增大的骨矿物质密度发生在骨折部位。
50.根据权利要求48所述的方法,其中所述骨中增大的骨矿物质密度发生在所述施用步骤前存在于所述骨上的一个或多个再吸收凹坑。
CN202180087681.8A 2020-10-26 2021-08-26 用于治疗骨折的化合物、组合物和使用方法 Pending CN116801900A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US63/105,669 2020-10-26
US202163193748P 2021-05-27 2021-05-27
US63/193,748 2021-05-27
PCT/US2021/047824 WO2022093373A1 (en) 2020-10-26 2021-08-26 Compounds,compositions and methods of use to treat bone fractures

Publications (1)

Publication Number Publication Date
CN116801900A true CN116801900A (zh) 2023-09-22

Family

ID=88048400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180087681.8A Pending CN116801900A (zh) 2020-10-26 2021-08-26 用于治疗骨折的化合物、组合物和使用方法

Country Status (1)

Country Link
CN (1) CN116801900A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118121760A (zh) * 2024-05-06 2024-06-04 四川大学 一种具有生物活性及粘附性的复合骨粉的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118121760A (zh) * 2024-05-06 2024-06-04 四川大学 一种具有生物活性及粘附性的复合骨粉的制备方法

Similar Documents

Publication Publication Date Title
DK2549276T3 (en) Reversible, covalent bonding of functional molecules
CN101432025B (zh) 肽-肽酶抑制剂结合物及其使用方法
US20230399374A1 (en) Compounds, Compositions and Methods of Use to Treat Bone Fractures
JP2023029957A (ja) 副甲状腺ホルモン受容体刺激を介する、骨折をターゲティングした骨再生
CN109789188A (zh) 具有低峰-谷比的pth化合物
TW200520770A (en) Glp-1 pharmaceutical compositions
Nielsen et al. Analysis of the bone fracture targeting properties of osteotropic ligands
JP6250536B2 (ja) Shkベースの薬学的組成物とその製造方法および使用方法
CN116801900A (zh) 用于治疗骨折的化合物、组合物和使用方法
AU2007313001B2 (en) Pegylated PTH as PTH receptor modulators and uses thereof
JPH06500798A (ja) 合成カルシトニンペプチド
WO2017212494A1 (en) Long-acting oxyntomodulin formulation and methods of producing and administering same
US20230390363A1 (en) Compounds, Compositions and Methods of Use to Treat Spinal Fusions
WO2016073435A1 (en) Conjugated polypeptides and uses thereof
JP5529014B2 (ja) 部位特異的なペグ化をされた直鎖状のサケカルシトニン類似体
CN116710068A (zh) 用于治疗脊柱融合的化合物、组合物和方法
PT2084183E (pt) Pth peguiladas como moduladores do receptor de pht e suas utilizaãžes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination