CN116769017A - MART-1 (27-35) epitope specific T cell receptor and application thereof - Google Patents

MART-1 (27-35) epitope specific T cell receptor and application thereof Download PDF

Info

Publication number
CN116769017A
CN116769017A CN202210234400.3A CN202210234400A CN116769017A CN 116769017 A CN116769017 A CN 116769017A CN 202210234400 A CN202210234400 A CN 202210234400A CN 116769017 A CN116769017 A CN 116769017A
Authority
CN
China
Prior art keywords
seq
ser
leu
gly
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210234400.3A
Other languages
Chinese (zh)
Inventor
徐曲苗
梁艳玲
朱琳楠
王飞
董旋
王凯
顾颖
侯勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BGI Shenzhen Co Ltd
Original Assignee
BGI Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BGI Shenzhen Co Ltd filed Critical BGI Shenzhen Co Ltd
Priority to CN202210234400.3A priority Critical patent/CN116769017A/en
Publication of CN116769017A publication Critical patent/CN116769017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

The invention belongs to the technical field of biology, and particularly relates to a T cell receptor capable of specifically recognizing MART-1 (27-35) epitope and related application thereof. By using the T cell receptor of the invention, cells carrying MART-1 (27-35) antigen peptide can be effectively killed, thereby realizing the treatment of melanoma.

Description

MART-1 (27-35) epitope specific T cell receptor and application thereof
Technical Field
The invention belongs to the technical field of biology, and particularly relates to a MART-1 (27-35) epitope specific T cell receptor and application thereof.
Background
Melanoma, also known as malignant melanoma, is a type of malignant tumor derived from melanocytes, and is commonly found in the skin, mucous membranes, the choroid of the eye, and other sites. Melanoma is the tumor species with the highest degree of malignancy of the skin, and is prone to distant metastasis. Among asians and colored ethnicities, melanoma of the primary skin accounts for 50% to 70%, and excessive ultraviolet irradiation in the european white race is one of clear causes. Ultraviolet light can cause skin burn and induce DNA mutation, thereby inducing melanoma. In addition, photosensitive skin, those with a high family history of moles or dysplasias are all high risk groups. The incidence of acromelamas in asia and africa is very small and the etiology is still unknown.
Tumor-associated antigens are normal, non-mutated self-proteins that are selectively expressed or overexpressed on cancer, and can be targeted epitopes for tumor immunotherapy. MART-1 (melanoma antigen recognized by T cells 1) antigenic peptides are known to be expressed on melanoma and healthy melanocytes in skin, eyes and ears, to be low-expressed on endometrium, ovary, lymph node and testis, and to be high-expressed in melanoma cells. MART-1 is highly expressed, for example, in uveal melanoma lesions (uveal melana lesions). MART-1 is therefore a very good epitope for immunotherapy of melanoma. Furthermore, melan-A can also be used for detection of vascular smooth muscle lipoma protein and mRNA levels. Melan-A/MART-1 26-35 (EAAGIGILTV) epitope of decapeptides and Melan-A/MART-1 27-35 (LAGIGILTV) anti-nonapeptideThe pro-epitope is the two major epitopes of MART-1. The nonapeptide has been shown to have strong immunodominance and has been shown to be specific for CD8 + Cytolytic T Lymphocytes (CTLs) most commonly recognize peptides. DMF4 and DMF 5T cell receptor (TCR) that have been identified so far recognize the same MART-1:27-35 epitopes, and has cross-reactivity. In clinical trials, the therapeutic approach of adoptive transfer of MART-1F5 TCR engineered peripheral blood mononuclear cells resulted in good results with tumor regression reaching 69%. Another clinical response showed that 6 out of 20 patients treated with DMF5 TCR (30%) experienced an objective anti-tumor response as defined by RECIST criteria. Therefore, the development of an adoptive therapy method for anti-MART-1 TCR genetically engineered lymphocytes has important significance and promotion effect on the immunotherapy of tumors, particularly melanoma.
Therefore, there is a need in the art to develop an anti-MART-1 TCR genetically engineered lymphocyte adoptive therapy for effectively treating melanoma.
Disclosure of Invention
As described above, the present invention aims to provide an adoptive therapeutic method for anti-MART-1 TCR genetically engineered lymphocytes to effectively treat melanoma.
Accordingly, in a first aspect, the present invention provides a T Cell Receptor (TCR) that specifically recognizes an epitope of MART-1 (27-35), comprising an alpha chain comprising three complementarity determining regions CDR1 alpha, CDR2 alpha and CDR3 alpha, and a beta chain comprising three complementarity determining regions CDR1 beta, CDR2 beta and CDR3 beta, and the amino acid sequences of CDR1 alpha, CDR2 alpha, CDR3 alpha, CDR1 beta, CDR2 beta and CDR3 beta being as shown in SEQ ID NO:1-6, SEQ ID NO:7-12, SEQ ID NO:13-18 or SEQ ID NO:19-24, respectively, or being a variant having at least one amino acid change as compared to said amino acid sequences and retaining the ability to specifically recognize an epitope of MART-1 (27-35).
In one embodiment, the alpha chain variable region comprises the amino acid sequence shown as SEQ ID NO. 25, SEQ ID NO. 33, SEQ ID NO. 41 or SEQ ID NO. 49 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 25, SEQ ID NO. 33, SEQ ID NO. 41 or SEQ ID NO. 49.
In one embodiment, the β chain variable region comprises the amino acid sequence shown as SEQ ID NO. 26, SEQ ID NO. 34, SEQ ID NO. 42 or SEQ ID NO. 50 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 26, SEQ ID NO. 34, SEQ ID NO. 42 or SEQ ID NO. 50.
In one embodiment, the alpha chain variable region and the beta chain variable region are each linked to a constant region. In a preferred embodiment, the amino acid sequence of the constant region linked to the alpha chain variable region is as shown in SEQ ID NO. 57. In yet another preferred embodiment, the amino acid sequence of the constant region linked to the β chain variable region is as shown in SEQ ID NO. 58.
In one embodiment, each of the α chain and the β chain is further fused to a signal peptide. In a preferred embodiment, the amino acid sequence of the signal peptide fused to the alpha chain is shown in SEQ ID NO 27, SEQ ID NO 35, SEQ ID NO 43 or SEQ ID NO 51. In yet another preferred embodiment, the amino acid sequence of the signal peptide fused to the β chain is as shown in SEQ ID NO. 28, SEQ ID NO. 36, SEQ ID NO. 44 or SEQ ID NO. 52.
In one embodiment, the alpha chain fused to the signal peptide and the beta chain fused to the signal peptide are linked together via a 2A peptide, such as a P2A peptide. In a preferred embodiment, the amino acid sequence of the T Cell Receptor (TCR) is as shown in SEQ ID NO. 29, SEQ ID NO. 37, SEQ ID NO. 45 or SEQ ID NO. 53.
In a second aspect, the invention provides a nucleic acid molecule encoding a T Cell Receptor (TCR) of the first aspect of the invention.
In one embodiment, the alpha chain variable region of the T Cell Receptor (TCR) is encoded by the nucleic acid sequence set forth in SEQ ID NO. 30, SEQ ID NO. 38, SEQ ID NO. 46 or SEQ ID NO. 54 or a degenerate sequence thereof.
In one embodiment, the beta chain variable region of the T Cell Receptor (TCR) is encoded by the nucleic acid sequence set forth in SEQ ID NO. 31, SEQ ID NO. 39, SEQ ID NO. 47 or SEQ ID NO. 55 or a degenerate sequence thereof.
In one embodiment, the T Cell Receptor (TCR) is encoded by the nucleic acid sequence set forth in SEQ ID NO. 32, SEQ ID NO. 40, SEQ ID NO. 48 or SEQ ID NO. 56 or a degenerate sequence thereof.
In a third aspect, the present invention provides a vector comprising a nucleic acid molecule of the second aspect of the invention.
In one embodiment, the vector is a viral vector such as a retroviral vector, a lentiviral vector, an adenoviral vector, or an adeno-associated viral expression vector.
In a fourth aspect, the invention provides an effector cell comprising a T cell receptor of the first aspect of the invention, a nucleic acid molecule of the second aspect of the invention, or a vector of the third aspect of the invention.
In one embodiment, the cells are T cells, natural killer cells, human embryonic stem cells, lymphoid progenitor cells, and/or T cell precursors, such as cytotoxic T cells, helper T cells, natural killer T cells, and suppressor T cells.
In a fifth aspect, the invention provides a method of killing a melanoma cell comprising contacting the T cell receptor of the first aspect of the invention or the effector cell of the fourth aspect of the invention with a melanoma cell.
In a preferred embodiment, the melanoma cells are MART-1 positive, HLA:A0201 typed melanoma cells.
In a sixth aspect, the invention provides a method of treating melanoma comprising administering to a patient suffering from melanoma a T cell receptor according to the first aspect of the invention or an effector cell according to the fourth aspect of the invention.
In a preferred embodiment, the melanoma is MART-1 positive, HLA:A0201 typed melanoma.
In a seventh aspect, the invention provides the use of a T cell receptor of the first aspect of the invention, a nucleic acid molecule of the second aspect of the invention, a vector of the third aspect of the invention, or an effector cell of the fourth aspect of the invention in the manufacture of a medicament for the treatment of melanoma.
In a preferred embodiment, the melanoma is MART-1 positive, HLA:A0201 typed melanoma.
In an eighth aspect, the invention provides a kit comprising a T cell receptor of the first aspect of the invention, a nucleic acid molecule of the second aspect of the invention, a vector of the third aspect of the invention, or an effector cell of the fourth aspect of the invention.
By using the T cell receptor of the invention, cells carrying MART-1 (27-35) antigen peptide can be effectively killed, thereby realizing the treatment of melanoma.
Drawings
In order to more clearly illustrate the examples of the invention or the technical solutions of the prior art, the drawings which are required to be used in the examples are briefly described below, it being evident that the drawings in the following description are only a part of examples of the invention and that other embodiments can be obtained according to these drawings without inventive effort for a person skilled in the art.
FIG. 1 shows the results of MART-1 specific T cell function detection by Elispot.
FIG. 2 shows the results of sorting specific T cells by MART-1 tetramer flow cytometry.
FIG. 3 shows the clonotype ratio and Top 10 TCR. Alpha. And. Beta. Chain pairing information for each clonotype in single cell V (D) J sequencing results.
FIG. 4 shows a TCR lentiviral shuttle plasmid vector construction map.
FIG. 5 shows the results of TCR-T build positive rate detection.
FIG. 6 shows the results of Elispot detection of MART-1 specific T cell function.
FIG. 7 shows the results of detection of TCR3 TCR-T cytokine secretion by flow cytometry analysis.
FIG. 8 shows the results of detection of TCR4-T cytokine secretion by flow cytometry analysis.
FIG. 9 shows the results of detection of TCR-T killing of target cells by flow cytometry analysis.
Detailed Description
The present invention will now be described more fully hereinafter. It will be apparent that the described embodiments are only some, but not all, embodiments of the invention. All other embodiments that can be obtained by a person skilled in the art based on the embodiments of the present invention are within the scope of the present invention.
As described above, the present invention aims to provide an adoptive therapeutic method for anti-MART-1 TCR genetically engineered lymphocytes to effectively treat melanoma.
Accordingly, in a first aspect, the present invention provides a T Cell Receptor (TCR) which specifically recognizes an epitope of MART-1 (27-35).
As is known in the art, a T Cell Receptor (TCR) is a specific receptor present on the surface of T cells and responsible for recognizing antigens presented by the Major Histocompatibility Complex (MHC). T Cell Receptors (TCRs) are heterodimers, consisting of two distinct subunits, of which 95% are composed of alpha and beta chains and 5% are composed of gamma and delta chains, and this ratio varies as a result of ontogeny or disease. For the α and β chains, each can be further divided into Variable region (V region), constant region (C region), transmembrane region and cytoplasmic region, wherein V region is a key site for specific recognition of antigen peptide/histocompatibility antigen complex (MHC). The V regions (vα and vβ) in turn each have three hypervariable regions CDR1, CDR2, CDR3, with the greatest variation in CDR3, which directly determines the antigen binding specificity of the TCR.
MART-1, chinese, is called T cell recognized melanoma antigen 1, a tumor associated antigen cloned from melanoma cell lines. It was found that amino acids 27-35 of MART-1 are epitopes on the tumor associated antigen and the amino acid sequence is LAGIGILTV.
The T Cell Receptor (TCR) of the invention is a T Cell Receptor (TCR) specifically recognizing an epitope of MART-1 (27-35), comprising an alpha chain comprising three complementarity determining regions CDR1 alpha, CDR2 alpha and CDR3 alpha, and a beta chain comprising three complementarity determining regions CDR1 beta, CDR2 beta and CDR3 beta, and having amino acid sequences of CDR1 alpha, CDR2 alpha, CDR3 alpha, CDR1 beta, CDR2 beta and CDR3 beta as shown in SEQ ID NO:1-6, SEQ ID NO:7-12, SEQ ID NO:13-18 or SEQ ID NO:19-24, respectively, or being a variant having at least one amino acid change as compared to said amino acid sequences and retaining the ability to specifically recognize an epitope of MART-1 (27-35).
The "at least one amino acid change" may be one, two or three amino acid changes, and the "amino acid change" may be a conservative substitution of an amino acid (conservative substitution). By "conservative substitution" is meant that one amino acid in a protein is replaced by another, chemically similar amino acid, e.g., a polar (nonpolar) amino acid replaces another polar (nonpolar) amino acid. Conservative substitutions generally do not alter or only slightly alter the nature of the protein. Common conservative substitutions include: the aromatic amino acids phenylalanine (Phe), tryptophan (Trp) and tyrosine (Tyr), the hydrophobic amino acids leucine (Leu), isoleucine (Ile) and valine (Val), the polar amino acids glutamine (Gln) and asparagine (Asn), the basic amino acids lysine (Lys), arginine (Arg) and histidine (His), the acidic amino acids aspartic acid (Asp) and glutamic acid (Glu), and the hydroxy amino acids serine (Ser) and threonine (Thr).
As described above, the α and β chains that make up the T Cell Receptor (TCR) each include a variable region (V region), where the V region is a critical site for specific recognition of the antigenic peptide/histocompatibility antigen complex (MHC). In the present invention, the alpha chain variable region comprising a T Cell Receptor (TCR) of the invention may comprise the amino acid sequence shown as SEQ ID NO. 25, SEQ ID NO. 33, SEQ ID NO. 41 or SEQ ID NO. 49 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 25, SEQ ID NO. 33, SEQ ID NO. 41 or SEQ ID NO. 49, and the beta chain variable region may comprise the amino acid sequence shown as SEQ ID NO. 26, SEQ ID NO. 34, SEQ ID NO. 42 or SEQ ID NO. 50 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 26, SEQ ID NO. 34, SEQ ID NO. 42 or SEQ ID NO. 50.
Herein, the expression "at least 80% sequence identity" means that the variant sequence has at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, even 100% sequence identity compared to the reference sequence.
Preferably, the alpha chain variable region comprising a T Cell Receptor (TCR) of the invention may comprise the amino acid sequence shown in SEQ ID NO. 25 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 25, and the beta chain variable region may comprise the amino acid sequence shown in SEQ ID NO. 26 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 26. This TCR receptor is also referred to herein as TCR1.
Preferably, the alpha chain variable region comprising a T Cell Receptor (TCR) of the invention may comprise the amino acid sequence shown in SEQ ID NO. 33 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 33 and the beta chain variable region may comprise the amino acid sequence shown in SEQ ID NO. 34 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 34. The TCR receptor is also referred to herein as TCR2.
Preferably, the alpha chain variable region comprising a T Cell Receptor (TCR) of the invention may comprise the amino acid sequence shown in SEQ ID NO. 41 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 41, and the beta chain variable region may comprise the amino acid sequence shown in SEQ ID NO. 42 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 42. This TCR receptor is also referred to herein as TCR3.
Preferably, the alpha chain variable region comprising a T Cell Receptor (TCR) of the invention may comprise the amino acid sequence shown in SEQ ID NO. 49 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 49 and the beta chain variable region may comprise the amino acid sequence shown in SEQ ID NO. 50 or an amino acid sequence having at least 80% sequence identity to SEQ ID NO. 50. This TCR receptor is also referred to herein as TCR4.
As described above, T Cell Receptors (TCRs) contain constant regions in addition to variable regions. Thus, the α chain variable region and the β chain variable region can each be linked to a constant region to effectively increase the expression efficiency of the exogenous T cell receptor. The constant region may have the same species source as the variable region, or may have a different species source, but preferably has a different species source; for example, the constant region is derived from a mouse. Preferably, the amino acid sequence of the constant region linked to the alpha chain variable region is as shown in SEQ ID NO. 57. Preferably, the amino acid sequence of the constant region linked to the β chain variable region is as shown in SEQ ID NO. 58.
In addition, in some cases, the alpha and beta chains may each be further fused to a signal peptide for directing the transfer of the newly synthesized alpha and beta chains to the secretory pathway. The signal peptide is typically a peptide chain of 5-30 amino acids in length. As an example, the amino acid sequence of the signal peptide fused to the alpha chain of the T Cell Receptor (TCR) of the invention is shown in SEQ ID NO 27, SEQ ID NO 35, SEQ ID NO 43 or SEQ ID NO 51, and the amino acid sequence of the signal peptide fused to the beta chain of the T Cell Receptor (TCR) of the invention is shown in SEQ ID NO 28, SEQ ID NO 36, SEQ ID NO 44 or SEQ ID NO 52.
Preferably, the alpha chain variable region shown in SEQ ID NO. 25 is fused to the signal peptide shown in SEQ ID NO. 27 and the beta chain variable region shown in SEQ ID NO. 26 is fused to SEQ ID NO. 28.
Preferably, the alpha chain variable region shown in SEQ ID NO. 33 is fused to the signal peptide shown in SEQ ID NO. 35 and the beta chain variable region shown in SEQ ID NO. 34 is fused to the signal peptide shown in SEQ ID NO. 36.
Preferably, the alpha chain variable region shown in SEQ ID NO. 41 is fused to the signal peptide shown in SEQ ID NO. 43, and the beta chain variable region shown in SEQ ID NO. 42 is fused to the signal peptide shown in SEQ ID NO. 44.
Preferably, the alpha chain variable region shown in SEQ ID NO. 49 is fused to the signal peptide shown in SEQ ID NO. 51, and the beta chain variable region shown in SEQ ID NO. 50 is fused to the signal peptide shown in SEQ ID NO. 52.
Furthermore, the alpha and beta chains may be linked together by a 2A peptide, such as a P2A peptide, optionally by a 2A peptide, such as a P2A peptide.
The 2A peptide is a short peptide of viral origin, approximately 18-25 amino acids in length, and is commonly referred to as a "self-cleaving" peptide, which allows the production of multiple proteins from a single transcript. The 2A peptide does not completely "self-cleave" but rather works by allowing the ribosome to skip synthesis of glycine and proline peptide bonds at the C-terminus of the 2A element, ultimately resulting in separation of the 2A sequence end and downstream products. There are four commonly used 2A peptides, P2A, T2A, E a and F2A, respectively, derived from four different viruses. The P2A peptide is a typical self-cleaving polypeptide derived from porcine teschovirus (Porcine teschovirus, PTV, a picornavirus), the cleavage efficiency of the 2A peptide is high, the balance of the expression of the upstream and downstream genes is good, so that in the process of in vivo translation in eukaryotes, folded 2A causes steric hindrance to ribosomal peptide groups, and the nucleophilic attack of Pro-tRNA amino groups cannot be completed, thus 2A-ester bonds cannot be formed, and therefore cleavage can occur between the 19 th amino acid and the 20 th amino acid, an upstream protein fused with the tail of the 2A polypeptide is released, a fusion protein with 2A is formed, and at the same time, the ribose can continue to translate the downstream protein, and a complete downstream protein with one proline at the N end is formed.
As an example, the T Cell Receptor (TCR) of the invention may have an amino acid sequence as shown in SEQ ID NO. 29, SEQ ID NO. 37, SEQ ID NO. 45 or SEQ ID NO. 53, respectively.
In a second aspect, the invention provides a nucleic acid molecule encoding a T Cell Receptor (TCR) of the first aspect of the invention.
The nucleic acid molecules may encode respective Complementarity Determining Regions (CDRs) of the α and β chain variable regions of a T Cell Receptor (TCR), e.g., CDR1 α, CDR2 α, CDR3 α, CDR1 β, CDR2 β and CDR3 β as shown in SEQ ID NO 1-6, SEQ ID NO 7-12, SEQ ID NO 13-18 or SEQ ID NO 19-24, respectively. By way of example, the nucleic acid molecule may comprise the nucleotide sequence shown in SEQ ID NOS: 65-70 or a degenerate sequence thereof for encoding CDR1 alpha, CDR2 alpha, CDR3 alpha, CDR1 beta, CDR2 beta and CDR3 beta in TCR 1. By way of example, the nucleic acid molecule may comprise the nucleotide sequence shown in SEQ ID NOS: 71-76 or degenerate sequences thereof for encoding CDR1 alpha, CDR2 alpha, CDR3 alpha, CDR1 beta, CDR2 beta and CDR3 beta in TCR 2. By way of example, the nucleic acid molecule may comprise the nucleotide sequence shown in SEQ ID NOS 77-82 or a degenerate sequence thereof for encoding CDR1α, CDR2α, CDR3α, CDR1β, CDR2β and CDR3β in TCR 3. By way of example, the nucleic acid molecule may comprise the nucleotide sequence shown in SEQ ID NOS: 83-88 or a degenerate sequence thereof for encoding CDR1 alpha, CDR2 alpha, CDR3 alpha, CDR1 beta, CDR2 beta and CDR3 beta in TCR 4.
The nucleic acid molecules may encode T Cell Receptor (TCR) alpha and beta chain variable regions. As an example, the nucleic acid molecule may comprise the nucleic acid sequence shown as SEQ ID NO. 30, SEQ ID NO. 38, SEQ ID NO. 46 or SEQ ID NO. 54 or a degenerate sequence thereof for encoding the alpha chain of the T Cell Receptor (TCR) of the invention. As an example, the nucleic acid molecule may comprise the nucleic acid sequence shown as SEQ ID NO. 31, SEQ ID NO. 39, SEQ ID NO. 47 or SEQ ID NO. 55 or a degenerate sequence thereof for encoding the beta chain of the T Cell Receptor (TCR) of the invention. It will be appreciated that in some cases, the nucleic acid molecule may comprise both of the above-described nucleic acid sequences encoding tcra and tcrp, respectively, or degenerate sequences thereof. As an example, the nucleic acid molecule may comprise the nucleic acid sequence shown as SEQ ID NO. 32, SEQ ID NO. 40, SEQ ID NO. 48 or SEQ ID NO. 56 or a degenerate sequence thereof for encoding a T Cell Receptor (TCR) of the invention.
The nucleic acid molecule may also encode a constant region linked to an alpha and/or beta chain variable region, e.g., a constant region linked to an alpha variable region as shown in SEQ ID NO:57, and/or a constant region linked to a beta variable region as shown in SEQ ID NO: 58.
The nucleic acid molecule may also encode a signal peptide fused to an alpha and/or beta chain, for example, a signal peptide for an alpha chain as shown in SEQ ID NO 27, SEQ ID NO 35, SEQ ID NO 43, or SEQ ID NO 51, and/or a signal peptide for a beta chain as shown in SEQ ID NO 28, SEQ ID NO 36, SEQ ID NO 44, or SEQ ID NO 52.
In a third aspect, the present invention provides a vector comprising a nucleic acid molecule of the second aspect of the invention.
Vector (Vector) refers to a self-replicating DNA molecule capable of transferring a DNA fragment (gene of interest) into a recipient cell in a genetically engineered recombinant DNA technology, wherein a piece of DNA is excised without affecting its replication, and can be used to replace or insert exogenous (gene of interest) DNA to bring the DNA of interest into a host cell. Commonly used vectors are plasmids, phages, viruses and the like. In the present invention, the vector may express the T Cell Receptor (TCR) of the present invention, or an α or β chain thereof, or a fusion protein thereof fused to a signal peptide, or the like. The vector may be a viral vector, for example, a retrovirus vector, a lentivirus vector, an adenovirus vector, or an adeno-associated virus expression vector, but is not limited thereto. Any vector that can be used to express the protein of the invention can be used in the present invention.
In a fourth aspect, the invention provides an effector cell. Effector cells (effector cells) generally refer to immune cells involved in clearing foreign antigens and performing effector functions in immune responses, such as plasma cells, cytotoxic T cells, NK cells, APSC multipotent cells, mast cells, etc.
In the present invention, the effector cell may comprise the T cell receptor of the first aspect of the invention, the nucleic acid molecule of the second aspect of the invention, or the vector of the third aspect of the invention.
As an example, the cells may be T cells, natural killer cells, human embryonic stem cells, lymphoprogenitor cells, and/or T cell precursor cells, and the T cells may be cytotoxic T cells, helper T cells, natural killer T cells, and suppressor T cells, but are not limited thereto.
In a fifth aspect, the invention provides a method of killing a melanoma cell comprising contacting the T cell receptor of the first aspect of the invention or the effector cell of the fifth aspect of the invention with a melanoma cell.
In this context, the term "killing melanoma cells" refers to the effect of the T cell receptor or effector cells of the invention on being able to partially or fully eliminate the melanoma cells after contact with the melanoma cells. In the present invention, the melanoma cells may include in-vivo and ex-vivo melanoma cells, and the method may be used for therapeutic purposes, but also for non-therapeutic purposes such as scientific research purposes, etc. Furthermore, preferably, the melanoma cells are MART-1 positive, HLA:A0201 typed melanoma cells.
In a sixth aspect, the application provides a method of treating melanoma comprising administering to a patient suffering from melanoma a T cell receptor according to the first aspect of the application or an effector cell according to the fourth aspect of the application. Preferably, the method of the application for treating melanoma is particularly suitable for treating MART-1 positive, HLA:A0201-type melanoma.
In a seventh aspect, the application provides the use of a T cell receptor of the first aspect of the application, a nucleic acid molecule of the second aspect of the application, a vector of the third aspect of the application, or an effector cell of the fourth aspect of the application in the manufacture of a medicament for the treatment of melanoma. Preferably, the melanoma is MART-1 positive, HLA:A0201 typed melanoma.
As demonstrated in the examples section of the present application, the T cell receptor of the present application or effector cells carrying the T cell receptor, upon contact with melanoma cells, can bind to and kill the melanoma cells while secreting cytokines such as α -tumor necrosis factor, γ -interferon, etc. Thus, the T cell receptor or the effector cell carrying the T cell receptor can be used for effectively treating melanoma or preparing medicines for treating melanoma.
In an eighth aspect, the invention provides a kit comprising a T cell receptor of the first aspect of the invention, a nucleic acid molecule of the second aspect of the invention, a vector of the third aspect of the invention, or an effector cell of the fourth aspect of the invention.
By using the T cell receptor of the invention, cells carrying MART-1 (27-35) antigen peptide can be effectively killed, thereby realizing the treatment of melanoma.
Examples will be provided below to better understand the present invention. It should be understood that the invention is not limited to the following specific embodiments; modifications and improvements may be made to the invention without departing from the spirit and scope of the invention, and remain within the scope of the invention.
In addition, the experimental methods used in the following examples are all conventional methods unless otherwise specified; the test materials used in the examples described below, unless otherwise specified, were purchased from conventional biochemical reagent stores. The quantitative tests in the following examples were all set up in triplicate and the results averaged.
Examples
Example 1 Induction and functional detection of MART-1 (27-35) specific T cells
Collecting 50-100ml HLA-A 0201 typed healthy human peripheral blood, centrifuging at 200g to obtain lower blood cells, adding a corresponding volume of Ficoll separating liquid after being resuspended by PBS, sucking out a mononuclear cell layer by a suction pipe after density gradient centrifugation, transferring the mononuclear cell layer into a centrifuge tube, centrifuging after being resuspended by sterile PBS, repeatedly washing for one time, and removing redundant Ficoll separating liquid and platelets to obtain peripheral blood mononuclear cells.
Separation of CD14 Using magnetic beads + Monocytes (dendritic cell (DC) precursor cells) and CD8 + T cells. CD8 + T cell cryopreservation, CD14 + Monocytes were induced for 3 days by Granulocyte-macrophage colony stimulating factor (Granulocyte-macrophage Colony Stimulating Factor, GM-CSF) in combination with Interleukin-4 (IL-4), induced to differentiate into immature DC cells, and then added with cytokines that promote maturation of the DC cells to differentiate the DC cells into mature DC cells, and then added with MART-1 (27-35) (LAGIGILTV) antigen polypeptide and the DC cells were co-cultured to prepare mature DC cells loaded with MART-1 (27-35) antigen.
Resuscitation CD8 1 day in advance + T cells, according to DC: CD8 + T cells at a density of 1:6-1:8 were seeded into cell culture plates, cultured in T009 medium containing IL-21 for 3 days, and then exchanged with medium containing IL-2, IL-7 and IL-15 to induce MART-1 specific CD8 + T cell expansion. In the culturing process, cell liquid is changed every 3 days, IL-2, IL-7 and IL-15 are properly supplemented, and cell state is observed, and MART-1 specific CD8 is obtained by enlarging culture + The T-cell population of the cell,and to perform an Elispot for functional detection. For details of Elispot, see example 6 below.
FIG. 1 shows the results of MART-1 specific T cell function detection by Elispot. As shown in FIG. 1, compared to the control group (control group MART-1 specific T cells reacted with T2-loaded unrelated polypeptides), the experimental group MART-1 antigen polypeptide specific T cells can efficiently recognize T2-loaded polypeptides (target cells) and secrete IFN-gamma, demonstrating that this population of cells is functional.
Example 2 MART-1 specific T cell sorting
Cells positive for function verified by Elispot were obtained and counted, and the number of cells taken out for flow sorting was 1×10 6 Tube, add 1ml PBS to resuspend, centrifuge at 4℃500g, 5min, carefully discard supernatant, add 200. Mu.l PBS to resuspend; MART-1 tetramer (10. Mu.l/ml) was added to the tube for staining, mixed well and reacted at 4℃for 30min; after the reaction time, 1ml of PBS was added for resuspension, centrifuged at 500g for 5min at 4℃and the supernatant carefully discarded, 200. Mu.l of PBS was added for resuspension, and the mixture was placed on ice for flow detection; after flow loading, specific T cells against MART-1 (27-35) antigenic peptides were selected for subsequent single cell sequencing.
FIG. 2 shows the results of sorting specific T cells by MART-1 tetramer flow cytometry. As shown, T cells stimulated with MART-1 (27-35) antigen polypeptide antigen can detect 4.84% of positive tumor-specific T cells with tetramers, with the black boxes shown as sorted populations of cells of interest.
Example 3, 10X Genomics-based high throughput single cell TCR V (D) J full length sequencing droplet microfluidic technology based on the GemCode platform of 10X Genomics gel beads (beads), the positive single cell suspension obtained in example 2, a reverse transcription reaction system, and oil were passed together through an extremely fine channel to yield tiny droplets of water-in-oil. Separate oil droplets containing one Gel bead, one cell and a reverse transcription reaction system, namely GEMS (Gel Beads-In-Emulsions) can be isolated. The GEMS themselves are separate spaces, each containing a unique Barcoded bead. Each read carries a different tag sequence (Barcode) primer for labeling the transcriptome of each single cell, and the source cells of each read can be tracked after a later analysis. The hundreds of thousands of droplets generated can be collected in a single tube for reverse transcription reaction to generate a full-length cDNA product, enrichment of target fragments is carried out twice, TCR fragment amplification is carried out by using TCR specific primers (primers in a 10X Genomics high-throughput single-cell TCR V (D) J full-length sequencing kit), V (D) J fragments are enriched from the cDNA amplified product, and V (D) J library construction and sequencing are carried out.
FIG. 3 shows the paired TCR alpha and TCR beta sequence information for MART-1 specific T cells. Based on TCR cloning frequency, the inventors synthesized the 4 highest frequency paired TCR α and TCR β genes, i.e., cloototype 1-4, for subsequent functional validation.
EXAMPLE 4 construction of MART-1 specific TCR lentiviral shuttle plasmid vector
The problem of mismatch of the exogenous TCR transferred into T cells with the endogenous TCR can affect the expression of the exogenous TCR on T cells. Studies have reported that linking the variable region of the transferred TCR with the constant region of mice can effectively increase the expression efficiency of the exogenous TCR (Foley KC et al (2017) Mol Ther: oncolytics 5:105-115). Based on the 4 most frequent MART-1 specific TCRs obtained in sequencing, their αβ variable region sequences were fused to the mouse α constant region (SEQ ID NO: 57) and β2 constant region (SEQ ID NO: 58), respectively, to give TCR α and TCR β chains, and the TCR β and TCR α chains were linked with the P2A sequence (GSGATNFSLLKQAGDVEENPGP) of the internal self-cleaving porcine teschovirus, as shown in FIG. 4. The inventors placed tcrp before the P2A sequence because tcrp was longer than tcrp, placing the tcrp gene before the P2A sequence facilitated TCR expression and assembly. The inventors cloned the codon-optimized exogenous TCR gene fragments (SEQ ID NO: 32, SEQ ID NO:40, SEQ ID NO:48, SEQ ID NO: 56) between BamHI and EcoRI cleavage sites of pRRLSIN.cPPT.PGK-GFP.WPRE lentiviral shuttle plasmid vector (purchased from Addgene) by means of restriction ligation (BamHI and EcoRI restriction enzyme cleavage) after gene synthesis, and replaced EGFP gene in the vector with TCR gene.
Example 5 preparation of MART-1 specific TCR transduced T cells (TCR-T)
TCR transduction of T cells is achieved by infecting human T cells with a lentiviral vector carrying the TCR gene of interest. Briefly, lentiviral shuttle plasmids carrying the TCR gene of interest and secondary lentiviral packaging plasmids (PsPAX 2, pmd2.G, available from Addgene) were transferred into 293T cells by Polyethylenimine (PEI) transfection, and replication-defective lentiviruses were released into the supernatant, which was collected 48-72 hours after transfection and concentrated by ultracentrifugation. The concentrated lentiviruses were subjected to titer assays and T cells of the 0201 type isolated from PBMC were infected at a MOI (Multiplicity of infection ). The transduced cells were expanded 24 hours after infection with media containing IL-2, IL-7, IL-15 cytokines. TCR expression positivity was detected 3-5 days post infection with anti-murine tcrp constant region antibodies and tetramer staining.
FIG. 5 shows the results of TCR-T build positive rate detection. The inventors named TCR1, TCR2, TCR3 and TCR4 in the order of higher cloning frequency, respectively, tested TCR-T construct positive rate using mouse TCR beta antibody after lentiviral infection, as shown in the results of FIG. 5, and subsequently tested the function of TCR-T constructed from these 4 TCR sequences.
Example 6 TCR transduced T cell function assay
To confirm that the TCR-T cells prepared in the present invention have antigen-specific activity, the present inventors conducted T cell function experiments under antigen stimulation.
1) Detection of TCR-T secretion of IFN-gamma cytokines by ELISPot
The enzyme-linked immunosorbent spot (ELISPot) assay is a detection method for quantitatively measuring the cytokine secretion frequency of single cells. The detection principle is that the cytokine produced by T lymphocyte after specific antigen stimulation is captured by the specific monoclonal antibody coated on the membrane. The captured cytokine was bound to a secondary antibody that labels alkaline phosphatase, developed via a 5-bromo-4-chloro-3-indole-phosphate/azocyclotetrazole (BCIP/NBT) substrate, and purple spots appearing at the bottom of the wells represent cytokine-producing cells.
The specific experimental procedure is as follows:
target cells were prepared on the first day: HLA-0201-typed T2 cells (purchased from ATCC) were counted, the required number of cells was removed, centrifuged at 400g for 5min at room temperature and resuspended in serum-free IMDM medium.
Target cells carry antigen polypeptides: the appropriate well plate and loading volume were determined based on the number of cells removed, and MART-1 (27-35) epitope polypeptide was formulated to 10. Mu.g/. Mu.l, added to the loading volume at 1000X, resuspended, and incubated at 37℃at 5% CO 2 Incubator culture for 4 hours. Control groups loaded with no polypeptide but dimethyl sulfoxide (Dimethyl sulfoxide, DMSO) were also set.
Preparation of effector cells (TCR transduced T cells): effector cells were counted, desired cells were removed, centrifuged at 300g for 10min at room temperature, resuspended in 2% bovine serum T009 medium, and placed on ice.
Washing the plate: when the antigen load was left for 45min, the reaction well plate in the Human IFN-. Gamma.ELISPot.kit (Mabtech) was removed from the ultra clean bench, PBS was added, the wells were then left to stand for 30 seconds, the liquid was removed, after five repetitions of this action, 10% Fetal Bovine Serum (FBS) RPMI 1640 medium was added at 100. Mu.l/well, at 37℃with 5% CO 2 Incubator incubate for 30min.
Sample adding: after the antigen loading time was over, T2 cells in the well plate were purged with 2% bovine serum T009 medium, centrifuged at 400g for 5min at room temperature, resuspended and counted with 2% bovine serum T009 medium, and brought to the corresponding concentration. After 50. Mu.l/well of effector cells were added to the reaction well plate, 50. Mu.l/well of target cell suspension, 20000 effector cells/well, 5000 target cells/well were added. Placing in 37 ℃ and 5% CO 2 Incubator culture for 16-48h.
After the incubation time, the rest of the experimental procedure was performed according to the ELISpot kit instructions.
FIG. 6 shows the results of MART-1 specific T cell function detection by Elispot. As can be seen from the figure, TCR3 and TCR4 TCR-T cells effectively recognized T2 cells loaded with MART-1 (27-35) epitope polypeptide (experimental group in the figure) and secreted IFN- γ, demonstrating that TCR3 and TCR4, the 2 population of TCRT cells, are functional, compared to the control group (control group MART-1TCR-T cells reacted with DMSO-only T2 cells).
2) Detection of TCR-T cytokine secretion by flow assays
Intracellular flow assays are methods for detecting cytokine secretion from different cell subsets using anti-cytokine antibodies in combination with cell surface or intracellular specific subset markers.
The specific experimental procedure is as follows:
resting effector cells on the first day (TCR-T): the desired effector cells were removed, centrifuged, resuspended in cytokine-free medium, plated into corresponding well plates and allowed to rest for 24-48 hours.
The following day the target cells are loaded with antigen polypeptide: t2 cells were counted, the desired number of cells was removed, centrifuged at 400g for 5min and resuspended in 10% bovine serum IMDM medium. Determining proper pore plate and loading volume according to the number of the removed cells, preparing MART-1 epitope polypeptide into 10 mug/μl, adding into the loading volume according to 1000X, re-suspending, and mixing at 37deg.C with 5% CO 2 Incubator culture overnight. Meanwhile, a control group loaded with no polypeptide and DMSO alone was set.
The third day effector cells were co-cultured with the target cells: after the antigen loading time was over, T2 cells in the well plate were purged with 2% bovine serum T009 medium, centrifuged at 400g for 5min at room temperature, resuspended in 2% bovine serum T009 medium, counted and adjusted to the corresponding concentration. Effector cells were counted, desired cells were removed, centrifuged at 300g for 10min at room temperature, resuspended in 2% bovine serum T009 medium, counted, and the concentration adjusted. After adding effector cells at 500. Mu.l/well to a 12-well plate, 500. Mu.l/well of target cell suspension was added, 7.5X10 s per well 5 Target cells, 3X 10 6 The effector cells were placed in 5% CO at 37 ℃ 2 Incubator incubates for 4-6h.
Flow-through dyeing: the co-incubated cells were collected from the well plate, centrifuged, resuspended in 200 μl PBS, surface stained with tetramer, fixed-plated using cell fixing/plating kit (BD), pipeted as necessary for staining, and stained with the corresponding cytokine antibody.
FIGS. 7 and 8 show the detection of TCR-T cytokine secretion by flow assays. As shown, TCR-T cells of TCR3 (FIG. 7) and TCR4 (FIG. 8) are able to efficiently recognize T2 cells loaded with MART-1 (27-35) epitope polypeptides and secrete IFN-gamma (interferon gamma) and TNF-alpha (tumor necrosis factor alpha) compared to the control group (control group MART-1TCR-T cells reacted with T2 cells plus DMSO only), demonstrating that the 2 population of TCR-T cells are functional. The results of the flow assay and cytokine secretion statistics are shown in fig. 7 and 8.
3) Detection of killing of target cells by TCR-T by flow analysis
The detection of cell killing effect by flow analysis is simpler, more convenient and faster than the traditional isotope labeling method. The principle is that the target cells are fluorescently marked by using hydroxy fluorescein diacetate succinimidyl ester (5, 6-carboxyfluorescein diacetate, succinimidyl ester, CFSE), and then the target cells are incubated with the effector cells, and then the activity rate of the target cells is detected, so that the killing function of the effector cells is reflected.
The specific experimental procedure is as follows:
target cells load antigen polypeptide on the first day: t2 cells were counted, the desired number of cells was removed, centrifuged at 400g for 5min and resuspended in 10% bovine serum IMDM medium. Determining appropriate well plate and loading volume according to the number of cells removed, preparing MART-1 epitope polypeptide into 10 μg/μl, adding 1000X into the loading volume, re-suspending, and mixing at 37deg.C with 5% CO 2 Incubator culture overnight. Meanwhile, a control group loaded with no polypeptide and DMSO alone was set.
The following day effector cells were co-cultured with target cells: after the antigen loading time is over, CFSE fluorescent dye is added into target cells, the target cells are stained for 30 minutes, 10% bovine serum IMDM culture medium is added for cleaning, excessive dye is removed through centrifugation, then culture medium is added for resuspension cleaning, centrifugation is carried out at room temperature of 400g and 5min, and after centrifugation, 5% bovine serum AIM-V culture medium is used for resuspension, counting is carried out, and the concentration is adjusted to the corresponding concentration. Effector cells were counted, desired cells were removed, centrifuged at 300g for 10min at room temperature, resuspended in 2% bovine serum T009 medium, counted and concentration adjusted. After adding effector cells at 200. Mu.l/well to a 48-well plate, 200. Mu.l/well of target cell suspension was added, 5X 10 per well 4 The number of target cells to be treated is,1×10 6 the effector cells were placed in 5% CO at 37 ℃ 2 Incubator incubates for 4-6h.
Flow analysis: after incubation, the well plate was placed on ice, and Propidium Iodide (PI) dye was added before flow loading, and thoroughly dispersed and mixed. Flow-through assay fluorescence signals were collected in Fluorescein Isothiocyanate (FITC) and phycoerythrin-texas red (PE-texas red) channels.
Figure 9 shows the statistical results of detection of TCR-cell killing of target cells by flow-through analysis. As shown, these 4 MART-1TCR-T cells can efficiently recognize T2 cells loaded with MART-1 (27-35) epitope polypeptides and have specific killing effects compared to the control group (control group MART-1TCR-T cells reacted with T2 cells plus DMSO only).
The above is only a preferred embodiment of the present invention, but is not limited thereto. Any modification, equivalent replacement, improvement, etc. of the present invention within the spirit and principle of the present invention should be included in the protection scope of the present invention.
The sequence is briefly described:
sequence list:
SED ID NO 1: TCR1 CDR1 alpha amino acid sequence: NSASQS
SED ID NO 2: TCR1 CDR2 alpha amino acid sequence: vYSSGN
SED ID NO 3: TCR1 CDR3 alpha amino acid sequence: VADSGGGADGLT
SED ID NO 4: TCR1 CDR1 β amino acid sequence: SGHDN
SED ID NO 5: TCR1 CDR2 β amino acid sequence: fVKESK
SED ID NO 6: TCR1 CDR3 β amino acid sequence: ASSHQGLGTEAF
SED ID NO 7: TCR2 CDR1 alpha amino acid sequence: SIFNT
SED ID NO 8: TCR2 CDR2 alpha amino acid sequence: LYKAGEL
SED ID NO 9: TCR2 CDR3 alpha amino acid sequence: AGKNTDKLI
SED ID NO 10: TCR2 CDR1 β amino acid sequence: MDHEN
SED ID NO 11: TCR2 CDR2 β amino acid sequence: SYDVKM
SED ID NO 12: TCR2 CDR3 β amino acid sequence: ASSFPLLGGYT
SED ID NO 13: TCR3 CDR1 alpha amino acid sequence: DRVSQS (digital video signal system)
SED ID NO 14: TCR3 CDR2 alpha amino acid sequence: IYSNGD
SEQ ID NO. 15: TCR3 CDR3 a amino acid sequence: AVSGGGYSTLT
SED ID NO 16: TCR3 CDR1 β amino acid sequence: LGHDT
SED ID NO 17: TCR3 CDR2 β amino acid sequence: YNNKEL
SED ID NO 18: TCR3 CDR3 β amino acid sequence: ASSWGTDTQY
SED ID NO 19: TCR4 CDR1 alpha amino acid sequence: NSAFQY
SED ID NO 20: TCR4 CDR2 alpha amino acid sequence: tysgn
SED ID NO. 21: TCR4 CDR3 alpha amino acid sequence: AMSFMSSGSARQLT
SED ID NO. 22: TCR4 CDR1 β amino acid sequence: MDHEN
SED ID NO 23: TCR4 CDR2 β amino acid sequence: SYDVKM
SED ID NO 24: TCR4 CDR3 β amino acid sequence: ASTFTSSYNSPLH
SEQ ID NO. 25: TCR1 alpha variable region amino acid sequence
RKEVEQDPGPFNVPEGATVAFNCTYSNSASQSFFWYRQDCRKEPKLLMSVYSSGNEDGRFTAQ LNRASQYISLLIRDSKLSDSATYLCVADSGGGADGLTFGKGTHLIIQP
SEQ ID NO. 26: TCR 1. Beta. Variable region amino acid sequence
EAGVTQFPSHSVIEKGQTVTLRCDPISGHDNLYWYRRVMGKEIKFLLHFVKESKQDESGMPNN RFLAERTGGTYSTLKVQPAELEDSGVYFCASSHQGLGTEAFFGQGTRLTVV
SEQ ID NO. 27: signal peptide sequences for TCR1 alpha variable region amino acid sequences
MMISLRVLLVILWLQLSWVWSQ
SEQ ID NO. 28: signal peptide sequences for the amino acid sequence of the TCR1 beta variable region
MVSRLLSLVSLCLLGAKHI
SEQ ID NO. 29: amino acid sequence of TCR1 expression element
MVSRLLSLVSLCLLGAKHIEAGVTQFPSHSVIEKGQTVTLRCDPISGHDNLYWYRRVMGKEIKF LLHFVKESKQDESGMPNNRFLAERTGGTYSTLKVQPAELEDSGVYFCASSHQGLGTEAFFGQG TRLTVVEDLRNVTPPKVSLFEPSKAEIANKQKATLVCLARGFFPDHVELSWWVNGKEVHSGVS TDPQAYKESNYSYCLSSRLRVSATFWHNPRNHFRCQVQFHGLSEEDKWPEGSPKPVTQNISAE AWGRADCGITSASYHQGVLSATILYEILLGKATLYAVLVSGLVLMAMVKKKNSRAKRSGSGA TNFSLLKQAGDVEENPGPMMISLRVLLVILWLQLSWVWSQRKEVEQDPGPFNVPEGATVAFNC TYSNSASQSFFWYRQDCRKEPKLLMSVYSSGNEDGRFTAQLNRASQYISLLIRDSKLSDSATYL CVADSGGGADGLTFGKGTHLIIQPDIQNPEPAVYQLKDPRSQDSTLCLFTDFDSQINVPKTMES GTFITDKTVLDMKAMDSKSNGAIAWSNQTSFTCQDIFKETNATYPSSDVPCDATLTEKSFETDM NLNFQNLSVMGLRILLLKVAGFNLLMTLRLWSS
SEQ ID NO. 30: TCR1 alpha variable region nucleic acid sequences
AGGAAGGAGGTGGAGCAGGACCCCGGACCTTTCAATGTGCCAGAGGGCGCCACCGTGGCC TTTAACTGCACATACTCCAATTCTGCCAGCCAGTCCTTCTTTTGGTATCGGCAGGATTGTAG AAAGGAGCCCAAGCTGCTGATGAGCGTGTACTCCTCTGGAAACGAGGACGGCCGGTTCAC CGCACAGCTGAATAGAGCCTCCCAGTACATCTCTCTGCTGATCAGGGACAGCAAGCTGTCT GATAGCGCCACATATCTGTGCGTGGCAGATTCCGGAGGAGGAGCAGACGGCCTGACCTTTG GCAAGGGCACACACCTGATCATCCAGCCC
SEQ ID NO. 31: TCR 1. Beta. Variable region nucleic acid sequences
GAGGCAGGAGTGACCCAGTTCCCATCCCACTCTGTGATCGAGAAGGGCCAGACCGTGACA CTGAGATGTGATCCCATCTCCGGCCACGACAACCTGTACTGGTATCGGAGAGTGATGGGCA AGGAGATCAAGTTCCTGCTGCACTTTGTGAAGGAGTCTAAGCAGGATGAGAGCGGCATGCC TAACAATAGGTTCCTGGCAGAGAGGACCGGAGGAACATACTCTACCCTGAAGGTGCAGCC AGCAGAGCTGGAGGACAGCGGCGTGTATTTTTGCGCAAGCTCCCACCAGGGACTGGGAAC CGAGGCCTTCTTTGGCCAGGGCACAAGGCTGACCGTGGTG
SEQ ID NO. 32: construction of TCR1 into nucleic acid sequences contained in lentiviral vectors
ATGGTGAGCCGGCTGCTGAGCCTGGTGTCCCTGTGCCTGCTGGGAGCAAAGCACATCGAGG CAGGAGTGACCCAGTTCCCATCCCACTCTGTGATCGAGAAGGGCCAGACCGTGACACTGAG ATGTGATCCCATCTCCGGCCACGACAACCTGTACTGGTATCGGAGAGTGATGGGCAAGGAG ATCAAGTTCCTGCTGCACTTTGTGAAGGAGTCTAAGCAGGATGAGAGCGGCATGCCTAACA ATAGGTTCCTGGCAGAGAGGACCGGAGGAACATACTCTACCCTGAAGGTGCAGCCAGCAG AGCTGGAGGACAGCGGCGTGTATTTTTGCGCAAGCTCCCACCAGGGACTGGGAACCGAGG CCTTCTTTGGCCAGGGCACAAGGCTGACCGTGGTGGAGGATCTGCGCAACGTGACACCCCC TAAGGTGTCCCTGTTCGAGCCATCTAAGGCCGAGATCGCCAATAAGCAGAAGGCCACCCTG GTGTGCCTGGCAAGGGGCTTCTTTCCCGATCACGTGGAGCTGAGCTGGTGGGTGAACGGCA AGGAGGTGCACTCTGGCGTGAGCACCGACCCTCAGGCCTACAAGGAGTCCAATTACTCTTA TTGCCTGTCTAGCAGGCTGCGCGTGTCCGCCACATTTTGGCACAACCCCAGGAATCACTTCC GCTGTCAGGTGCAGTTTCACGGCCTGAGCGAGGAGGATAAGTGGCCTGAGGGCTCCCCAA AGCCAGTGACCCAGAATATCTCTGCCGAGGCATGGGGAAGAGCAGACTGCGGAATCACAA GCGCCTCCTATCACCAGGGCGTGCTGAGCGCCACCATCCTGTACGAGATCCTGCTGGGCAA GGCCACACTGTATGCCGTGCTGGTGTCCGGCCTGGTGCTGATGGCCATGGTGAAGAAGAAG AACTCTAGGGCAAAGAGATCTGGCAGCGGAGCAACCAATTTCAGCCTGCTGAAGCAGGCA GGCGACGTGGAGGAGAACCCTGGACCAATGATGATCTCCCTGAGGGTGCTGCTGGTCATCC TGTGGCTGCAGCTGTCTTGGGTGTGGAGCCAGAGGAAGGAGGTGGAGCAGGACCCCGGAC CTTTCAATGTGCCAGAGGGCGCCACCGTGGCCTTTAACTGCACATACTCCAATTCTGCCAGC CAGTCCTTCTTTTGGTATCGGCAGGATTGTAGAAAGGAGCCCAAGCTGCTGATGAGCGTGT ACTCCTCTGGAAACGAGGACGGCCGGTTCACCGCACAGCTGAATAGAGCCTCCCAGTACAT CTCTCTGCTGATCAGGGACAGCAAGCTGTCTGATAGCGCCACATATCTGTGCGTGGCAGAT TCCGGAGGAGGAGCAGACGGCCTGACCTTTGGCAAGGGCACACACCTGATCATCCAGCCC GACATCCAGAACCCAGAGCCCGCCGTGTATCAGCTGAAGGACCCTCGCAGCCAGGATAGC ACCCTGTGCCTGTTCACAGACTTTGATAGCCAGATCAATGTGCCTAAGACCATGGAGTCCG GCACATTCATCACCGACAAGACAGTGCTGGATATGAAGGCCATGGACTCCAAGTCTAACGG CGCCATCGCCTGGAGCAATCAGACCTCCTTCACATGCCAGGATATCTTTAAGGAGACCAAC GCCACATACCCTAGCTCCGACGTGCCATGTGATGCCACCCTGACAGAGAAGTCCTTCGAGA CCGACATGAACCTGAATTTTCAGAACCTGTCTGTGATGGGCCTGAGAATCCTGCTGCTGAA GGTGGCCGGCTTTAATCTGCTGATGACACTGAGACTGTGGTCTAGCTGA
SEQ ID NO. 33: TCR2 alpha variable region amino acid sequence
NQSPQSMFIQEGEDVSMNCTSSSIFNTWLWYKQDPGEGPVLLIALYKAGELTSNGRLTAQFGIT RKDSFLNISASIPSDVGIYFCAGKNTDKLIFGTGTRLQVFP
SEQ ID NO. 34: TCR2 beta variable region amino acid sequences
DVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLGLRLIYFSYDVKMKEKGDIPE GYSVSREKKERFSLILESASTNQTSMYLCASSFPLLGGYTFGSGTRLTVV
SEQ ID NO. 35: signal peptide sequences for TCR2 alpha variable region amino acid sequences
MLLEHLLIILWMQLTWVSGQQL
SEQ ID NO. 36: signal peptide sequences for TCR2 beta variable region amino acid sequences
MGIRLLCRVAFCFLAVGLV
SEQ ID NO. 37: amino acid sequence of TCR2 expression element
MGIRLLCRVAFCFLAVGLVDVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLG LRLIYFSYDVKMKEKGDIPEGYSVSREKKERFSLILESASTNQTSMYLCASSFPLLGGYTFGSGT RLTVVEDLRNVTPPKVSLFEPSKAEIANKQKATLVCLARGFFPDHVELSWWVNGKEVHSGVST DPQAYKESNYSYCLSSRLRVSATFWHNPRNHFRCQVQFHGLSEEDKWPEGSPKPVTQNISAEA WGRADCGITSASYHQGVLSATILYEILLGKATLYAVLVSGLVLMAMVKKKNSRAKRSGSGAT NFSLLKQAGDVEENPGPMLLEHLLIILWMQLTWVSGQQLNQSPQSMFIQEGEDVSMNCTSSSIF NTWLWYKQDPGEGPVLLIALYKAGELTSNGRLTAQFGITRKDSFLNISASIPSDVGIYFCAGKN TDKLIFGTGTRLQVFPDIQNPEPAVYQLKDPRSQDSTLCLFTDFDSQINVPKTMESGTFITDKTV LDMKAMDSKSNGAIAWSNQTSFTCQDIFKETNATYPSSDVPCDATLTEKSFETDMNLNFQNLS VMGLRILLLKVAGFNLLMTLRLWSS
SEQ ID NO. 38: TCR2 alpha variable region nucleic acid sequences
AATCAGTCTCCCCAGAGCATGTTCATCCAGGAGGGCGAGGACGTGAGCATGAACTGTACCA GCTCCTCTATCTTTAATACATGGCTGTGGTACAAGCAGGACCCCGGAGAGGGACCCGTGCT GCTGATCGCCCTGTATAAGGCAGGAGAGCTGACAAGCAACGGCCGGCTGACCGCACAGTT CGGAATCACAAGAAAGGATTCCTTTCTGAATATCAGCGCCTCCATCCCCTCTGACGTGGGC ATCTACTTCTGCGCCGGCAAGAACACCGATAAGCTGATCTTCGGCACCGGCACACGGCTGC AGGTGTTTCCC
SEQ ID NO. 39: TCR 2. Beta. Variable region nucleic acid sequences
GACGTGAAGGTGACCCAGAGCTCCCGGTACCTGGTGAAGAGAACAGGCGAGAAGGTGTTC CTGGAGTGCGTGCAGGACATGGATCACGAGAACATGTTTTGGTATAGGCAGGACCCCGGA CTGGGACTGAGACTGATCTACTTCTCCTATGATGTGAAGATGAAGGAGAAGGGCGACATCC CAGAGGGCTACTCCGTGTCTAGGGAGAAGAAGGAGCGGTTCAGCCTGATCCTGGAGAGCG CCTCCACCAATCAGACAAGCATGTACCTGTGCGCCTCTAGCTTCCCACTGCTGGGCGGCTAT ACCTTTGGCAGCGGCACCAGGCTGACAGTGGTG
SEQ ID NO. 40: TCR2 construction into a lentiviral vector comprising a nucleic acid sequence:
ATGGGCATCCGGCTGCTGTGCAGAGTGGCCTTCTGTTTTCTGGCCGTGGGCCTGGTGGACGT GAAGGTGACCCAGAGCTCCCGGTACCTGGTGAAGAGAACAGGCGAGAAGGTGTTCCTGGA GTGCGTGCAGGACATGGATCACGAGAACATGTTTTGGTATAGGCAGGACCCCGGACTGGG ACTGAGACTGATCTACTTCTCCTATGATGTGAAGATGAAGGAGAAGGGCGACATCCCAGAG GGCTACTCCGTGTCTAGGGAGAAGAAGGAGCGGTTCAGCCTGATCCTGGAGAGCGCCTCCA CCAATCAGACAAGCATGTACCTGTGCGCCTCTAGCTTCCCACTGCTGGGCGGCTATACCTTT GGCAGCGGCACCAGGCTGACAGTGGTGGAGGACCTGCGCAACGTGACACCCCCTAAGGTG TCTCTGTTCGAGCCCAGCAAGGCCGAGATCGCCAATAAGCAGAAGGCCACCCTGGTGTGCC TGGCAAGGGGCTTCTTTCCTGACCACGTGGAGCTGTCCTGGTGGGTGAACGGCAAGGAGGT GCACTCCGGCGTGTCTACCGATCCACAGGCCTACAAGGAGAGCAATTACTCCTATTGCCTG TCCTCTCGGCTGAGAGTGAGCGCCACATTTTGGCACAACCCAAGGAATCACTTCCGCTGTC AGGTGCAGTTTCACGGCCTGTCCGAGGAGGACAAGTGGCCAGAGGGCTCTCCAAAGCCAG TGACCCAGAACATCAGCGCCGAGGCATGGGGAAGGGCAGATTGCGGCATCACATCTGCCA GCTATCACCAGGGCGTGCTGAGCGCCACCATCCTGTACGAGATCCTGCTGGGCAAGGCCAC ACTGTATGCCGTGCTGGTGTCCGGCCTGGTGCTGATGGCCATGGTGAAGAAGAAGAACTCT AGGGCAAAGCGGAGCGGCTCTGGAGCAACCAATTTCAGCCTGCTGAAGCAGGCAGGCGAC GTGGAGGAGAACCCTGGACCAATGCTGCTGGAGCACCTGCTGATCATCCTGTGGATGCAGC TGACCTGGGTGTCCGGCCAGCAGCTGAATCAGTCTCCCCAGAGCATGTTCATCCAGGAGGG CGAGGACGTGAGCATGAACTGTACCAGCTCCTCTATCTTTAATACATGGCTGTGGTACAAG CAGGACCCCGGAGAGGGACCCGTGCTGCTGATCGCCCTGTATAAGGCAGGAGAGCTGACA AGCAACGGCCGGCTGACCGCACAGTTCGGAATCACAAGAAAGGATTCCTTTCTGAATATCA GCGCCTCCATCCCCTCTGACGTGGGCATCTACTTCTGCGCCGGCAAGAACACCGATAAGCT GATCTTCGGCACCGGCACACGGCTGCAGGTGTTTCCCGATATCCAGAATCCCGAGCCTGCC GTGTATCAGCTGAAGGACCCTAGATCCCAGGATAGCACCCTGTGCCTGTTCACCGACTTTG ATAGCCAGATCAACGTGCCTAAGACCATGGAGTCCGGCACCTTTATCACAGACAAGACCGT GCTGGATATGAAGGCCATGGACTCTAAGAGCAACGGCGCCATCGCCTGGAGCAATCAGAC ATCCTTCACCTGCCAGGACATCTTTAAGGAGACAAATGCCACCTACCCTAGCTCCGACGTG CCATGTGATGCCACCCTGACAGAGAAGTCCTTCGAGACCGATATGAACCTGAATTTTCAGA ACCTGTCTGTGATGGGCCTGAGAATCCTGCTGCTGAAGGTGGCCGGCTTCAATCTGCTGAT GACACTGCGCCTGTGGTCTAGCTGA
SEQ ID NO. 41: amino acid sequence of TCR3 alpha variable region
QKEVEQNSGPLSVPEGAIASLNCTYSDRVSQSFFWYRQYSGKSPELIMSIYSNGDKEDGRFTAQ LNKASQYVSLLIRDSQPSDSATYLCAVSGGGYSTLTFGKGTMLLVSP
SEQ ID NO. 42: TCR3 beta variable region amino acid sequences
DTAVSQTPKYLVTQMGNDKSIKCEQNLGHDTMYWYKQDSKKFLKIMFSYNNKELIINETVPNR FSPKSPDKAHLNLHINSLELGDSAVYFCASSWGTDTQYFGPGTRLTVL
SEQ ID NO. 43: signal peptide sequences for the amino acid sequence of the TCR3 alpha variable region
MMKSLRVLLVILWLQLSWVWSQ
SEQ ID NO. 44: signal peptide sequences for TCR3 beta variable region amino acid sequences
MGCRLLCCVVFCLLQAGPL
SEQ ID NO. 45: amino acid sequence of TCR3 expression element
MGCRLLCCVVFCLLQAGPLDTAVSQTPKYLVTQMGNDKSIKCEQNLGHDTMYWYKQDSKKF LKIMFSYNNKELIINETVPNRFSPKSPDKAHLNLHINSLELGDSAVYFCASSWGTDTQYFGPGTR LTVLEDLRNVTPPKVSLFEPSKAEIANKQKATLVCLARGFFPDHVELSWWVNGKEVHSGVSTD PQAYKESNYSYCLSSRLRVSATFWHNPRNHFRCQVQFHGLSEEDKWPEGSPKPVTQNISAEAW GRADCGITSASYHQGVLSATILYEILLGKATLYAVLVSGLVLMAMVKKKNSRAKRSGSGATNF SLLKQAGDVEENPGPMMKSLRVLLVILWLQLSWVWSQQKEVEQNSGPLSVPEGAIASLNCTYS DRVSQSFFWYRQYSGKSPELIMSIYSNGDKEDGRFTAQLNKASQYVSLLIRDSQPSDSATYLCA VSGGGYSTLTFGKGTMLLVSPDIQNPEPAVYQLKDPRSQDSTLCLFTDFDSQINVPKTMESGTFI TDKTVLDMKAMDSKSNGAIAWSNQTSFTCQDIFKETNATYPSSDVPCDATLTEKSFETDMNLN FQNLSVMGLRILLLKVAGFNLLMTLRLWSS
SEQ ID NO. 46: TCR3 alpha variable region nucleic acid sequences
ATGATGAAATCCTTGAGAGTTTTACTAGTGATCCTGTGGCTTCAGTTGAGCTGGGTTTGGAG CCAACAGAAGGAGGTGGAGCAGAATTCTGGACCCCTCAGTGTTCCAGAGGGAGCCATTGC CTCTCTCAACTGCACTTACAGTGACCGAGTTTCCCAGTCCTTCTTCTGGTACAGACAATATT CTGGGAAAAGCCCTGAGTTGATAATGTCCATATACTCCAATGGTGACAAAGAAGATGGAA GGTTTACAGCACAGCTCAATAAAGCCAGCCAGTATGTTTCTCTGCTCATCAGAGACTCCCA GCCCAGTGATTCAGCCACCTACCTCTGTGCCGTGAGCGGTGGAGGATACAGCACCCTCACC TTTGGGAAGGGGACTATGCTTCTAGTCTCTCCA
SEQ ID NO. 47: TCR 3. Beta. Variable region nucleic acid sequences
ATGGGCTGCAGGCTCCTCTGCTGTGTGGTCTTCTGCCTCCTCCAAGCAGGTCCCTTGGACAC AGCTGTTTCCCAGACTCCAAAATACCTGGTCACACAGATGGGAAACGACAAGTCCATTAAA TGTGAACAAAATCTGGGCCATGATACTATGTATTGGTATAAACAGGACTCTAAGAAATTTC TGAAGATAATGTTTAGCTACAATAATAAGGAGCTCATTATAAATGAAACAGTTCCAAATCG CTTCTCACCTAAATCTCCAGACAAAGCTCACTTAAATCTTCACATCAATTCCCTGGAGCTTG GTGACTCTGCTGTGTATTTCTGTGCCAGCAGTTGGGGCACAGACACGCAGTATTTTGGCCCA GGCACCCGGCTGACAGTGCTC
SEQ ID NO. 48: construction of TCR3 into nucleic acid sequences contained in lentiviral vectors
ATGGGCTGCAGGCTGCTGTGCTGCGTGGTGTTCTGCCTGCTGCAGGCAGGACCACTGGATA CAGCCGTGAGCCAGACCCCCAAGTACCTGGTGACACAGATGGGCAACGACAAGTCCATCA AGTGCGAGCAGAATCTGGGCCACGATACCATGTACTGGTATAAGCAGGACTCCAAGAAGT TCCTGAAGATCATGTTCTCTTACAACAATAAGGAGCTGATCATCAACGAGACCGTGCCTAA TCGCTTCAGCCCAAAGTCCCCCGATAAGGCCCACCTGAACCTGCACATCAATAGCCTGGAG CTGGGCGATTCCGCCGTGTACTTCTGCGCCAGCTCCTGGGGCACCGACACACAGTATTTTG GACCAGGAACCAGGCTGACAGTGCTGGAGGACCTGCGCAACGTGACACCCCCTAAGGTGT CTCTGTTTGAGCCAAGCAAGGCCGAGATCGCCAATAAGCAGAAGGCCACCCTGGTGTGCCT GGCAAGGGGCTTCTTTCCCGATCACGTGGAGCTGAGCTGGTGGGTGAACGGCAAGGAGGT GCACTCTGGCGTGAGCACAGACCCTCAGGCCTACAAGGAGTCCAATTACTCTTATTGCCTG TCTAGCCGGCTGAGAGTGTCCGCCACCTTCTGGCACAACCCCCGGAATCACTTCAGATGTC AGGTGCAGTTTCACGGCCTGAGCGAGGAGGATAAGTGGCCTGAGGGCTCCCCAAAGCCCG TGACACAGAACATCTCTGCCGAGGCATGGGGAAGGGCAGACTGCGGAATCACCTCTGCCA GCTATCACCAGGGCGTGCTGAGCGCCACAATCCTGTACGAGATCCTGCTGGGCAAGGCCAC CCTGTATGCCGTGCTGGTGTCTGGCCTGGTGCTGATGGCCATGGTGAAGAAGAAGAACAGC AGGGCAAAGCGGAGCGGCTCTGGAGCCACCAATTTTTCCCTGCTGAAGCAGGCCGGCGAT GTGGAGGAGAATCCTGGCCCAATGATGAAGAGCCTGAGAGTGCTGCTGGTCATCCTGTGGC TGCAGCTGAGCTGGGTGTGGTCCCAGCAGAAGGAGGTGGAGCAGAACTCTGGACCTCTGA GCGTGCCAGAGGGAGCAATCGCCTCTCTGAATTGTACATACAGCGACCGGGTGAGCCAGTC CTTCTTTTGGTACAGACAGTATAGCGGCAAGTCCCCAGAGCTGATCATGTCTATCTACAGC AACGGCGACAAGGAGGATGGCCGGTTCACCGCCCAGCTGAATAAGGCCTCCCAGTACGTG AGCCTGCTGATCAGAGACAGCCAGCCCTCTGATAGCGCCACATACCTGTGCGCCGTGTCCG GAGGAGGATATTCTACCCTGACATTTGGCAAGGGCACCATGCTGCTGGTGTCCCCTGACAT CCAGAACCCCGAGCCTGCCGTGTACCAGCTGAAGGACCCAAGATCCCAGGATAGCACCCT GTGCCTGTTCACCGACTTTGATAGCCAGATCAATGTGCCCAAGACCATGGAGTCCGGCACC TTCATCACAGACAAGACCGTGCTGGATATGAAGGCCATGGACTCCAAGTCTAACGGCGCCA TCGCCTGGAGCAATCAGACATCCTTCACCTGCCAGGATATCTTTAAGGAGACAAACGCCAC CTATCCCTCCTCTGACGTGCCTTGTGATGCCACCCTGACAGAGAAGTCTTTCGAGACAGAC ATGAACCTGAATTTTCAGAACCTGTCCGTGATGGGCCTGAGAATCCTGCTGCTGAAGGTGG CCGGCTTTAATCTGCTGATGACCCTGCGCCTGTGGAGCTCCTGA
SEQ ID NO. 49: TCR4 alpha variable region amino acid sequence
QKEVEQDPGPLSVPEGAIVSLNCTYSNSAFQYFMWYRQYSRKGPELLMYTYSSGNKEDGRFTA QVDKSSKYISLFIRDSQPSDSATYLCAMSFMSSGSARQLTFGSGTQLTVLP
SEQ ID NO. 50: TCR 4. Beta. Variable region amino acid sequence
DVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLGLRLIYFSYDVKMKEKGDIPE GYSVSREKKERFSLILESASTNQTSMYLCASTFTSSYNSPLHFGNGTRLTVT
SEQ ID NO. 51: signal peptide sequences for TCR4 alpha variable region amino acid sequences
MMKSLRVLLVILWLQLSWVWSQ
SEQ ID NO. 52: signal peptide sequences for TCR4 beta variable region amino acid sequences
MGIRLLCRVAFCFLAVGLV
SEQ ID NO. 53:amino acid sequence of TCR4 expression element
MGIRLLCRVAFCFLAVGLVDVKVTQSSRYLVKRTGEKVFLECVQDMDHENMFWYRQDPGLG LRLIYFSYDVKMKEKGDIPEGYSVSREKKERFSLILESASTNQTSMYLCASTFTSSYNSPLHFGN GTRLTVTEDLRNVTPPKVSLFEPSKAEIANKQKATLVCLARGFFPDHVELSWWVNGKEVHSGV STDPQAYKESNYSYCLSSRLRVSATFWHNPRNHFRCQVQFHGLSEEDKWPEGSPKPVTQNISAE AWGRADCGITSASYHQGVLSATILYEILLGKATLYAVLVSGLVLMAMVKKKNSRAKRSGSGA TNFSLLKQAGDVEENPGPMMKSLRVLLVILWLQLSWVWSQQKEVEQDPGPLSVPEGAIVSLNC TYSNSAFQYFMWYRQYSRKGPELLMYTYSSGNKEDGRFTAQVDKSSKYISLFIRDSQPSDSAT YLCAMSFMSSGSARQLTFGSGTQLTVLPDIQNPEPAVYQLKDPRSQDSTLCLFTDFDSQINVPK TMESGTFITDKTVLDMKAMDSKSNGAIAWSNQTSFTCQDIFKETNATYPSSDVPCDATLTEKSF ETDMNLNFQNLSVMGLRILLLKVAGFNLLMTLRLWSS
SEQ ID NO. 54: TCR4 alpha variable region nucleic acid sequences
ATGATGAAATCCTTGAGAGTTTTACTGGTGATCCTGTGGCTTCAGTTAAGCTGGGTTTGGAG CCAACAGAAGGAGGTGGAGCAGGATCCTGGACCACTCAGTGTTCCAGAGGGAGCCATTGT TTCTCTCAACTGCACTTACAGCAACAGTGCTTTTCAATACTTCATGTGGTACAGACAGTATT CCAGAAAAGGCCCTGAGTTGCTGATGTACACATACTCCAGTGGTAACAAAGAAGATGGAA GGTTTACAGCACAGGTCGATAAATCCAGCAAGTATATCTCCTTGTTCATCAGAGACTCACA GCCCAGTGATTCAGCCACCTACCTCTGTGCAATGAGCTTCATGTCTTCTGGTTCTGCAAGGC AACTGACCTTTGGATCTGGGACACAATTGACTGTTTTACCT
SEQ ID NO. 55: TCR 4. Beta. Variable region nucleic acid sequences
ATGGGAATCAGGCTCCTCTGTCGTGTGGCCTTTTGTTTCCTGGCTGTAGGCCTCGTAGATGT GAAAGTAACCCAGAGCTCGAGATATCTAGTCAAAAGGACGGGAGAGAAAGTTTTTCTGGA ATGTGTCCAGGATATGGACCATGAAAATATGTTCTGGTATCGACAAGACCCAGGTCTGGGG CTACGGCTGATCTATTTCTCATATGATGTTAAAATGAAAGAAAAAGGAGATATTCCTGAGG GGTACAGTGTCTCTAGAGAGAAGAAGGAGCGCTTCTCCCTGATTCTGGAGTCCGCCAGCAC CAACCAGACATCTATGTACCTCTGTGCCAGCACCTTTACCAGCTCCTATAATTCACCCCTCC ACTTTGGGAACGGGACCAGGCTCACTGTGACA
SEQ ID NO. 56: construction of TCR4 into nucleic acid sequences contained in lentiviral vectors
ATGGGCATCCGGCTGCTGTGCAGAGTGGCCTTCTGTTTTCTGGCCGTGGGCCTGGTGGATGT GAAGGTGACACAGAGCTCCAGGTACCTGGTGAAGCGCACCGGCGAGAAGGTGTTCCTGGA GTGCGTGCAGGACATGGATCACGAGAACATGTTTTGGTATAGGCAGGACCCTGGACTGGG ACTGAGGCTGATCTACTTCAGCTATGATGTGAAGATGAAGGAGAAGGGCGACATCCCAGA GGGCTACTCCGTGTCTCGGGAGAAGAAGGAGAGATTTTCCCTGATCCTGGAGAGCGCCTCC ACCAATCAGACAAGCATGTACCTGTGCGCCTCCACCTTCACATCTAGCTATAACAGCCCTCT GCACTTTGGCAATGGCACACGGCTGACCGTGACAGAGGATCTGAGAAACGTGACCCCCCCT AAGGTGTCCCTGTTCGAGCCCTCTAAGGCCGAGATCGCCAATAAGCAGAAGGCCACCCTGG TGTGCCTGGCAAGGGGCTTCTTTCCTGATCACGTGGAGCTGTCCTGGTGGGTGAACGGCAA GGAGGTGCACAGCGGCGTGTCCACAGACCCACAGGCCTACAAGGAGTCTAATTACAGCTA TTGCCTGTCCTCTCGGCTGAGAGTGAGCGCCACCTTTTGGCACAACCCAAGGAATCACTTCC GCTGTCAGGTGCAGTTTCACGGCCTGTCTGAGGAGGATAAGTGGCCAGAGGGCAGCCCAA AGCCAGTGACACAGAACATCTCCGCCGAGGCATGGGGAAGGGCAGACTGCGGCATCACCT CTGCCAGCTATCACCAGGGCGTGCTGTCCGCCACAATCCTGTACGAGATCCTGCTGGGCAA GGCCACCCTGTATGCCGTGCTGGTGTCCGGCCTGGTGCTGATGGCCATGGTGAAGAAGAAG AACTCTAGGGCAAAGCGGAGCGGCTCTGGAGCAACCAATTTCAGCCTGCTGAAGCAGGCA GGCGATGTGGAGGAGAACCCTGGACCAATGATGAAGTCCCTGAGAGTGCTGCTGGTCATCC TGTGGCTGCAGCTGAGCTGGGTGTGGTCCCAGCAGAAGGAGGTGGAGCAGGACCCCGGAC CTCTGAGCGTGCCAGAGGGAGCAATCGTGTCCCTGAACTGTACCTACAGCAATTCCGCCTT CCAGTACTTCATGTGGTACCGGCAGTATAGCAGAAAGGGCCCTGAGCTGCTGATGTACACA TATAGCTCCGGCAATAAGGAGGATGGCCGGTTCACCGCCCAGGTGGACAAGTCTAGCAAG TACATCTCTCTGTTTATCAGAGACAGCCAGCCATCTGATAGCGCCACATATCTGTGCGCCAT GTCCTTCATGTCCTCTGGCTCTGCCAGGCAGCTGACCTTTGGCAGCGGAACCCAGCTGACA GTGCTGCCAGACATCCAGAACCCAGAGCCCGCCGTGTACCAGCTGAAGGACCCTCGCTCCC AGGATAGCACCCTGTGCCTGTTCACCGACTTTGATTCTCAGATCAATGTGCCCAAGACCAT GGAGAGCGGCACCTTCATCACAGACAAGACCGTGCTGGATATGAAGGCCATGGACTCCAA GTCTAACGGCGCCATCGCCTGGTCTAATCAGACAAGCTTCACCTGCCAGGATATCTTTAAG GAGACAAACGCCACCTACCCTAGCTCCGACGTGCCATGTGATGCCACCCTGACAGAGAAGT CCTTCGAGACAGACATGAACCTGAATTTTCAGAACCTGTCTGTGATGGGCCTGAGAATCCT GCTGCTGAAGGTGGCCGGCTTTAATCTGCTGATGACCCTGCGCCTGTGGTCTAGCTGA
SEQ ID NO. 57: constant region amino acid sequence linked to TCR1 alpha variable region
DIQNPEPAVYQLKDPRSQDSTLCLFTDFDSQINVPKTMESGTFITDKTVLDMKAMDSKSNGAIA WSNQTSFTCQDIFKETNATYPSSDVPCDATLTEKSFETDMNLNFQNLSVMGLRILLLKVAGFNL LMTLRLWSS
SEQ ID NO. 58: constant region amino acid sequence linked to TCR 1. Beta. Variable region
EDLRNVTPPKVSLFEPSKAEIANKQKATLVCLARGFFPDHVELSWWVNGKEVHSGVSTDPQAY KESNYSYCLSSRLRVSATFWHNPRNHFRCQVQFHGLSEEDKWPEGSPKPVTQNISAEAWGRAD CGITSASYHQGVLSATILYEILLGKATLYAVLVSGLVLMAMVKKKNS
SEQ ID NO 59: CDR1 a nucleotide sequence of TCR 1: AATTCTGCCAGCCAGTCC
SEQ ID NO. 60: CDR2 a nucleotide sequence of TCR 1: GTGTACTCCTCTGGAAAC
SEQ ID NO. 61: CDR3 a nucleotide sequence of TCR 1:
GTGGCAGATTCCGGAGGAGGAGCAGACGGCCTGACC
SEQ ID NO. 62: CDR1 β nucleotide sequence of TCR 1: TCCGGCCACGACAAC
SEQ ID NO. 63: CDR2 β nucleotide sequence of TCR 1: TTTGTGAAGGAGTCTAAG
SEQ ID NO. 64: CDR3 β nucleotide sequence of TCR 1:
GCAAGCTCCCACCAGGGACTGGGAACCGAGGCCTTC
SEQ ID NO. 65: CDR1 a nucleotide sequence of TCR 2: TCTATCTTTAATACA
SEQ ID NO. 66: CDR2 a nucleotide sequence of TCR 2: CTGTATAAGGCAGGAGAGCTG
SEQ ID NO. 67: CDR3 a nucleotide sequence of TCR 2: GCCGGCAAGAACACCGATAAGCTGATC
SEQ ID NO. 68: CDR1 β nucleotide sequence of TCR 2: ATGGATCACGAGAAC
SEQ ID NO. 69: CDR2 β nucleotide sequence of TCR 2: TCCTATGATGTGAAGATG
SEQ ID NO. 70: CDR3 β nucleotide sequence of TCR 2: GCCTCTAGCTTCCCACTGCTGGGCGGCTATACC
SEQ ID NO. 71: CDR1 a nucleotide sequence of TCR 3: GACCGGGTGAGCCAGTCC
SEQ ID NO. 72: CDR2 a nucleotide sequence of TCR 3: ATCTACAGCAACGGCGAC
SEQ ID NO. 73: CDR3 a nucleotide sequence of TCR 3: GCCGTGTCCGGAGGAGGATATTCTACCCTGACA
SEQ ID NO. 74: CDR1 β nucleotide sequence of TCR 3: CTGGGCCACGATACC
SEQ ID NO. 75: CDR2 β nucleotide sequence of TCR 3: TACAACAATAAGGAGCTG
SEQ ID NO. 76: CDR3 β nucleotide sequence of TCR 3: GCCAGCTCCTGGGGCACCGACACACAGTAT
SEQ ID NO. 77: CDR1 a nucleotide sequence of TCR 4: AATTCCGCCTTCCAGTAC
SEQ ID NO. 78: CDR2 a nucleotide sequence of TCR 4: ACATATAGCTCCGGCAAT
SEQ ID NO. 79: CDR3 a nucleotide sequence of TCR 4:
GCCATGTCCTTCATGTCCTCTGGCTCTGCCAGGCAGCTGACC
SEQ ID NO. 80: CDR1 β nucleotide sequence of TCR 4: ATGGATCACGAGAAC
SEQ ID NO. 81: CDR2 β nucleotide sequence of TCR 4: AGCTATGATGTGAAGATG
SEQ ID NO. 82: CDR3 β nucleotide sequence of TCR 4:
GCCTCCACCTTCACATCTAGCTATAACAGCCCTCTGCAC。
sequence listing
<110> Shenzhen Hua institute of great life science
<120> MART-1 (27-35) epitope specific T cell receptor and uses thereof
<141> 2022-03-01
<160> 82
<170> SIPOSequenceListing 1.0
<210> 1
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 1
Asn Ser Ala Ser Gln Ser
1 5
<210> 2
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 2
Val Tyr Ser Ser Gly Asn
1 5
<210> 3
<211> 12
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 3
Val Ala Asp Ser Gly Gly Gly Ala Asp Gly Leu Thr
1 5 10
<210> 4
<211> 5
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 4
Ser Gly His Asp Asn
1 5
<210> 5
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 5
Phe Val Lys Glu Ser Lys
1 5
<210> 6
<211> 12
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 6
Ala Ser Ser His Gln Gly Leu Gly Thr Glu Ala Phe
1 5 10
<210> 7
<211> 5
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 7
Ser Ile Phe Asn Thr
1 5
<210> 8
<211> 7
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 8
Leu Tyr Lys Ala Gly Glu Leu
1 5
<210> 9
<211> 9
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 9
Ala Gly Lys Asn Thr Asp Lys Leu Ile
1 5
<210> 10
<211> 5
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 10
Met Asp His Glu Asn
1 5
<210> 11
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 11
Ser Tyr Asp Val Lys Met
1 5
<210> 12
<211> 11
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 12
Ala Ser Ser Phe Pro Leu Leu Gly Gly Tyr Thr
1 5 10
<210> 13
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 13
Asp Arg Val Ser Gln Ser
1 5
<210> 14
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 14
Ile Tyr Ser Asn Gly Asp
1 5
<210> 15
<211> 11
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 15
Ala Val Ser Gly Gly Gly Tyr Ser Thr Leu Thr
1 5 10
<210> 16
<211> 5
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 16
Leu Gly His Asp Thr
1 5
<210> 17
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 17
Tyr Asn Asn Lys Glu Leu
1 5
<210> 18
<211> 10
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 18
Ala Ser Ser Trp Gly Thr Asp Thr Gln Tyr
1 5 10
<210> 19
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 19
Asn Ser Ala Phe Gln Tyr
1 5
<210> 20
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 20
Thr Tyr Ser Ser Gly Asn
1 5
<210> 21
<211> 14
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 21
Ala Met Ser Phe Met Ser Ser Gly Ser Ala Arg Gln Leu Thr
1 5 10
<210> 22
<211> 5
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 22
Met Asp His Glu Asn
1 5
<210> 23
<211> 6
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 23
Ser Tyr Asp Val Lys Met
1 5
<210> 24
<211> 13
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 24
Ala Ser Thr Phe Thr Ser Ser Tyr Asn Ser Pro Leu His
1 5 10
<210> 25
<211> 111
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 25
Arg Lys Glu Val Glu Gln Asp Pro Gly Pro Phe Asn Val Pro Glu Gly
1 5 10 15
Ala Thr Val Ala Phe Asn Cys Thr Tyr Ser Asn Ser Ala Ser Gln Ser
20 25 30
Phe Phe Trp Tyr Arg Gln Asp Cys Arg Lys Glu Pro Lys Leu Leu Met
35 40 45
Ser Val Tyr Ser Ser Gly Asn Glu Asp Gly Arg Phe Thr Ala Gln Leu
50 55 60
Asn Arg Ala Ser Gln Tyr Ile Ser Leu Leu Ile Arg Asp Ser Lys Leu
65 70 75 80
Ser Asp Ser Ala Thr Tyr Leu Cys Val Ala Asp Ser Gly Gly Gly Ala
85 90 95
Asp Gly Leu Thr Phe Gly Lys Gly Thr His Leu Ile Ile Gln Pro
100 105 110
<210> 26
<211> 114
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 26
Glu Ala Gly Val Thr Gln Phe Pro Ser His Ser Val Ile Glu Lys Gly
1 5 10 15
Gln Thr Val Thr Leu Arg Cys Asp Pro Ile Ser Gly His Asp Asn Leu
20 25 30
Tyr Trp Tyr Arg Arg Val Met Gly Lys Glu Ile Lys Phe Leu Leu His
35 40 45
Phe Val Lys Glu Ser Lys Gln Asp Glu Ser Gly Met Pro Asn Asn Arg
50 55 60
Phe Leu Ala Glu Arg Thr Gly Gly Thr Tyr Ser Thr Leu Lys Val Gln
65 70 75 80
Pro Ala Glu Leu Glu Asp Ser Gly Val Tyr Phe Cys Ala Ser Ser His
85 90 95
Gln Gly Leu Gly Thr Glu Ala Phe Phe Gly Gln Gly Thr Arg Leu Thr
100 105 110
Val Val
<210> 27
<211> 22
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 27
Met Met Ile Ser Leu Arg Val Leu Leu Val Ile Leu Trp Leu Gln Leu
1 5 10 15
Ser Trp Val Trp Ser Gln
20
<210> 28
<211> 19
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 28
Met Val Ser Arg Leu Leu Ser Leu Val Ser Leu Cys Leu Leu Gly Ala
1 5 10 15
Lys His Ile
<210> 29
<211> 603
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 29
Met Val Ser Arg Leu Leu Ser Leu Val Ser Leu Cys Leu Leu Gly Ala
1 5 10 15
Lys His Ile Glu Ala Gly Val Thr Gln Phe Pro Ser His Ser Val Ile
20 25 30
Glu Lys Gly Gln Thr Val Thr Leu Arg Cys Asp Pro Ile Ser Gly His
35 40 45
Asp Asn Leu Tyr Trp Tyr Arg Arg Val Met Gly Lys Glu Ile Lys Phe
50 55 60
Leu Leu His Phe Val Lys Glu Ser Lys Gln Asp Glu Ser Gly Met Pro
65 70 75 80
Asn Asn Arg Phe Leu Ala Glu Arg Thr Gly Gly Thr Tyr Ser Thr Leu
85 90 95
Lys Val Gln Pro Ala Glu Leu Glu Asp Ser Gly Val Tyr Phe Cys Ala
100 105 110
Ser Ser His Gln Gly Leu Gly Thr Glu Ala Phe Phe Gly Gln Gly Thr
115 120 125
Arg Leu Thr Val Val Glu Asp Leu Arg Asn Val Thr Pro Pro Lys Val
130 135 140
Ser Leu Phe Glu Pro Ser Lys Ala Glu Ile Ala Asn Lys Gln Lys Ala
145 150 155 160
Thr Leu Val Cys Leu Ala Arg Gly Phe Phe Pro Asp His Val Glu Leu
165 170 175
Ser Trp Trp Val Asn Gly Lys Glu Val His Ser Gly Val Ser Thr Asp
180 185 190
Pro Gln Ala Tyr Lys Glu Ser Asn Tyr Ser Tyr Cys Leu Ser Ser Arg
195 200 205
Leu Arg Val Ser Ala Thr Phe Trp His Asn Pro Arg Asn His Phe Arg
210 215 220
Cys Gln Val Gln Phe His Gly Leu Ser Glu Glu Asp Lys Trp Pro Glu
225 230 235 240
Gly Ser Pro Lys Pro Val Thr Gln Asn Ile Ser Ala Glu Ala Trp Gly
245 250 255
Arg Ala Asp Cys Gly Ile Thr Ser Ala Ser Tyr His Gln Gly Val Leu
260 265 270
Ser Ala Thr Ile Leu Tyr Glu Ile Leu Leu Gly Lys Ala Thr Leu Tyr
275 280 285
Ala Val Leu Val Ser Gly Leu Val Leu Met Ala Met Val Lys Lys Lys
290 295 300
Asn Ser Arg Ala Lys Arg Ser Gly Ser Gly Ala Thr Asn Phe Ser Leu
305 310 315 320
Leu Lys Gln Ala Gly Asp Val Glu Glu Asn Pro Gly Pro Met Met Ile
325 330 335
Ser Leu Arg Val Leu Leu Val Ile Leu Trp Leu Gln Leu Ser Trp Val
340 345 350
Trp Ser Gln Arg Lys Glu Val Glu Gln Asp Pro Gly Pro Phe Asn Val
355 360 365
Pro Glu Gly Ala Thr Val Ala Phe Asn Cys Thr Tyr Ser Asn Ser Ala
370 375 380
Ser Gln Ser Phe Phe Trp Tyr Arg Gln Asp Cys Arg Lys Glu Pro Lys
385 390 395 400
Leu Leu Met Ser Val Tyr Ser Ser Gly Asn Glu Asp Gly Arg Phe Thr
405 410 415
Ala Gln Leu Asn Arg Ala Ser Gln Tyr Ile Ser Leu Leu Ile Arg Asp
420 425 430
Ser Lys Leu Ser Asp Ser Ala Thr Tyr Leu Cys Val Ala Asp Ser Gly
435 440 445
Gly Gly Ala Asp Gly Leu Thr Phe Gly Lys Gly Thr His Leu Ile Ile
450 455 460
Gln Pro Asp Ile Gln Asn Pro Glu Pro Ala Val Tyr Gln Leu Lys Asp
465 470 475 480
Pro Arg Ser Gln Asp Ser Thr Leu Cys Leu Phe Thr Asp Phe Asp Ser
485 490 495
Gln Ile Asn Val Pro Lys Thr Met Glu Ser Gly Thr Phe Ile Thr Asp
500 505 510
Lys Thr Val Leu Asp Met Lys Ala Met Asp Ser Lys Ser Asn Gly Ala
515 520 525
Ile Ala Trp Ser Asn Gln Thr Ser Phe Thr Cys Gln Asp Ile Phe Lys
530 535 540
Glu Thr Asn Ala Thr Tyr Pro Ser Ser Asp Val Pro Cys Asp Ala Thr
545 550 555 560
Leu Thr Glu Lys Ser Phe Glu Thr Asp Met Asn Leu Asn Phe Gln Asn
565 570 575
Leu Ser Val Met Gly Leu Arg Ile Leu Leu Leu Lys Val Ala Gly Phe
580 585 590
Asn Leu Leu Met Thr Leu Arg Leu Trp Ser Ser
595 600
<210> 30
<211> 333
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 30
aggaaggagg tggagcagga ccccggacct ttcaatgtgc cagagggcgc caccgtggcc 60
tttaactgca catactccaa ttctgccagc cagtccttct tttggtatcg gcaggattgt 120
agaaaggagc ccaagctgct gatgagcgtg tactcctctg gaaacgagga cggccggttc 180
accgcacagc tgaatagagc ctcccagtac atctctctgc tgatcaggga cagcaagctg 240
tctgatagcg ccacatatct gtgcgtggca gattccggag gaggagcaga cggcctgacc 300
tttggcaagg gcacacacct gatcatccag ccc 333
<210> 31
<211> 342
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 31
gaggcaggag tgacccagtt cccatcccac tctgtgatcg agaagggcca gaccgtgaca 60
ctgagatgtg atcccatctc cggccacgac aacctgtact ggtatcggag agtgatgggc 120
aaggagatca agttcctgct gcactttgtg aaggagtcta agcaggatga gagcggcatg 180
cctaacaata ggttcctggc agagaggacc ggaggaacat actctaccct gaaggtgcag 240
ccagcagagc tggaggacag cggcgtgtat ttttgcgcaa gctcccacca gggactggga 300
accgaggcct tctttggcca gggcacaagg ctgaccgtgg tg 342
<210> 32
<211> 1812
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 32
atggtgagcc ggctgctgag cctggtgtcc ctgtgcctgc tgggagcaaa gcacatcgag 60
gcaggagtga cccagttccc atcccactct gtgatcgaga agggccagac cgtgacactg 120
agatgtgatc ccatctccgg ccacgacaac ctgtactggt atcggagagt gatgggcaag 180
gagatcaagt tcctgctgca ctttgtgaag gagtctaagc aggatgagag cggcatgcct 240
aacaataggt tcctggcaga gaggaccgga ggaacatact ctaccctgaa ggtgcagcca 300
gcagagctgg aggacagcgg cgtgtatttt tgcgcaagct cccaccaggg actgggaacc 360
gaggccttct ttggccaggg cacaaggctg accgtggtgg aggatctgcg caacgtgaca 420
ccccctaagg tgtccctgtt cgagccatct aaggccgaga tcgccaataa gcagaaggcc 480
accctggtgt gcctggcaag gggcttcttt cccgatcacg tggagctgag ctggtgggtg 540
aacggcaagg aggtgcactc tggcgtgagc accgaccctc aggcctacaa ggagtccaat 600
tactcttatt gcctgtctag caggctgcgc gtgtccgcca cattttggca caaccccagg 660
aatcacttcc gctgtcaggt gcagtttcac ggcctgagcg aggaggataa gtggcctgag 720
ggctccccaa agccagtgac ccagaatatc tctgccgagg catggggaag agcagactgc 780
ggaatcacaa gcgcctccta tcaccagggc gtgctgagcg ccaccatcct gtacgagatc 840
ctgctgggca aggccacact gtatgccgtg ctggtgtccg gcctggtgct gatggccatg 900
gtgaagaaga agaactctag ggcaaagaga tctggcagcg gagcaaccaa tttcagcctg 960
ctgaagcagg caggcgacgt ggaggagaac cctggaccaa tgatgatctc cctgagggtg 1020
ctgctggtca tcctgtggct gcagctgtct tgggtgtgga gccagaggaa ggaggtggag 1080
caggaccccg gacctttcaa tgtgccagag ggcgccaccg tggcctttaa ctgcacatac 1140
tccaattctg ccagccagtc cttcttttgg tatcggcagg attgtagaaa ggagcccaag 1200
ctgctgatga gcgtgtactc ctctggaaac gaggacggcc ggttcaccgc acagctgaat 1260
agagcctccc agtacatctc tctgctgatc agggacagca agctgtctga tagcgccaca 1320
tatctgtgcg tggcagattc cggaggagga gcagacggcc tgacctttgg caagggcaca 1380
cacctgatca tccagcccga catccagaac ccagagcccg ccgtgtatca gctgaaggac 1440
cctcgcagcc aggatagcac cctgtgcctg ttcacagact ttgatagcca gatcaatgtg 1500
cctaagacca tggagtccgg cacattcatc accgacaaga cagtgctgga tatgaaggcc 1560
atggactcca agtctaacgg cgccatcgcc tggagcaatc agacctcctt cacatgccag 1620
gatatcttta aggagaccaa cgccacatac cctagctccg acgtgccatg tgatgccacc 1680
ctgacagaga agtccttcga gaccgacatg aacctgaatt ttcagaacct gtctgtgatg 1740
ggcctgagaa tcctgctgct gaaggtggcc ggctttaatc tgctgatgac actgagactg 1800
tggtctagct ga 1812
<210> 33
<211> 105
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 33
Asn Gln Ser Pro Gln Ser Met Phe Ile Gln Glu Gly Glu Asp Val Ser
1 5 10 15
Met Asn Cys Thr Ser Ser Ser Ile Phe Asn Thr Trp Leu Trp Tyr Lys
20 25 30
Gln Asp Pro Gly Glu Gly Pro Val Leu Leu Ile Ala Leu Tyr Lys Ala
35 40 45
Gly Glu Leu Thr Ser Asn Gly Arg Leu Thr Ala Gln Phe Gly Ile Thr
50 55 60
Arg Lys Asp Ser Phe Leu Asn Ile Ser Ala Ser Ile Pro Ser Asp Val
65 70 75 80
Gly Ile Tyr Phe Cys Ala Gly Lys Asn Thr Asp Lys Leu Ile Phe Gly
85 90 95
Thr Gly Thr Arg Leu Gln Val Phe Pro
100 105
<210> 34
<211> 112
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 34
Asp Val Lys Val Thr Gln Ser Ser Arg Tyr Leu Val Lys Arg Thr Gly
1 5 10 15
Glu Lys Val Phe Leu Glu Cys Val Gln Asp Met Asp His Glu Asn Met
20 25 30
Phe Trp Tyr Arg Gln Asp Pro Gly Leu Gly Leu Arg Leu Ile Tyr Phe
35 40 45
Ser Tyr Asp Val Lys Met Lys Glu Lys Gly Asp Ile Pro Glu Gly Tyr
50 55 60
Ser Val Ser Arg Glu Lys Lys Glu Arg Phe Ser Leu Ile Leu Glu Ser
65 70 75 80
Ala Ser Thr Asn Gln Thr Ser Met Tyr Leu Cys Ala Ser Ser Phe Pro
85 90 95
Leu Leu Gly Gly Tyr Thr Phe Gly Ser Gly Thr Arg Leu Thr Val Val
100 105 110
<210> 35
<211> 22
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 35
Met Leu Leu Glu His Leu Leu Ile Ile Leu Trp Met Gln Leu Thr Trp
1 5 10 15
Val Ser Gly Gln Gln Leu
20
<210> 36
<211> 19
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 36
Met Gly Ile Arg Leu Leu Cys Arg Val Ala Phe Cys Phe Leu Ala Val
1 5 10 15
Gly Leu Val
<210> 37
<211> 595
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 37
Met Gly Ile Arg Leu Leu Cys Arg Val Ala Phe Cys Phe Leu Ala Val
1 5 10 15
Gly Leu Val Asp Val Lys Val Thr Gln Ser Ser Arg Tyr Leu Val Lys
20 25 30
Arg Thr Gly Glu Lys Val Phe Leu Glu Cys Val Gln Asp Met Asp His
35 40 45
Glu Asn Met Phe Trp Tyr Arg Gln Asp Pro Gly Leu Gly Leu Arg Leu
50 55 60
Ile Tyr Phe Ser Tyr Asp Val Lys Met Lys Glu Lys Gly Asp Ile Pro
65 70 75 80
Glu Gly Tyr Ser Val Ser Arg Glu Lys Lys Glu Arg Phe Ser Leu Ile
85 90 95
Leu Glu Ser Ala Ser Thr Asn Gln Thr Ser Met Tyr Leu Cys Ala Ser
100 105 110
Ser Phe Pro Leu Leu Gly Gly Tyr Thr Phe Gly Ser Gly Thr Arg Leu
115 120 125
Thr Val Val Glu Asp Leu Arg Asn Val Thr Pro Pro Lys Val Ser Leu
130 135 140
Phe Glu Pro Ser Lys Ala Glu Ile Ala Asn Lys Gln Lys Ala Thr Leu
145 150 155 160
Val Cys Leu Ala Arg Gly Phe Phe Pro Asp His Val Glu Leu Ser Trp
165 170 175
Trp Val Asn Gly Lys Glu Val His Ser Gly Val Ser Thr Asp Pro Gln
180 185 190
Ala Tyr Lys Glu Ser Asn Tyr Ser Tyr Cys Leu Ser Ser Arg Leu Arg
195 200 205
Val Ser Ala Thr Phe Trp His Asn Pro Arg Asn His Phe Arg Cys Gln
210 215 220
Val Gln Phe His Gly Leu Ser Glu Glu Asp Lys Trp Pro Glu Gly Ser
225 230 235 240
Pro Lys Pro Val Thr Gln Asn Ile Ser Ala Glu Ala Trp Gly Arg Ala
245 250 255
Asp Cys Gly Ile Thr Ser Ala Ser Tyr His Gln Gly Val Leu Ser Ala
260 265 270
Thr Ile Leu Tyr Glu Ile Leu Leu Gly Lys Ala Thr Leu Tyr Ala Val
275 280 285
Leu Val Ser Gly Leu Val Leu Met Ala Met Val Lys Lys Lys Asn Ser
290 295 300
Arg Ala Lys Arg Ser Gly Ser Gly Ala Thr Asn Phe Ser Leu Leu Lys
305 310 315 320
Gln Ala Gly Asp Val Glu Glu Asn Pro Gly Pro Met Leu Leu Glu His
325 330 335
Leu Leu Ile Ile Leu Trp Met Gln Leu Thr Trp Val Ser Gly Gln Gln
340 345 350
Leu Asn Gln Ser Pro Gln Ser Met Phe Ile Gln Glu Gly Glu Asp Val
355 360 365
Ser Met Asn Cys Thr Ser Ser Ser Ile Phe Asn Thr Trp Leu Trp Tyr
370 375 380
Lys Gln Asp Pro Gly Glu Gly Pro Val Leu Leu Ile Ala Leu Tyr Lys
385 390 395 400
Ala Gly Glu Leu Thr Ser Asn Gly Arg Leu Thr Ala Gln Phe Gly Ile
405 410 415
Thr Arg Lys Asp Ser Phe Leu Asn Ile Ser Ala Ser Ile Pro Ser Asp
420 425 430
Val Gly Ile Tyr Phe Cys Ala Gly Lys Asn Thr Asp Lys Leu Ile Phe
435 440 445
Gly Thr Gly Thr Arg Leu Gln Val Phe Pro Asp Ile Gln Asn Pro Glu
450 455 460
Pro Ala Val Tyr Gln Leu Lys Asp Pro Arg Ser Gln Asp Ser Thr Leu
465 470 475 480
Cys Leu Phe Thr Asp Phe Asp Ser Gln Ile Asn Val Pro Lys Thr Met
485 490 495
Glu Ser Gly Thr Phe Ile Thr Asp Lys Thr Val Leu Asp Met Lys Ala
500 505 510
Met Asp Ser Lys Ser Asn Gly Ala Ile Ala Trp Ser Asn Gln Thr Ser
515 520 525
Phe Thr Cys Gln Asp Ile Phe Lys Glu Thr Asn Ala Thr Tyr Pro Ser
530 535 540
Ser Asp Val Pro Cys Asp Ala Thr Leu Thr Glu Lys Ser Phe Glu Thr
545 550 555 560
Asp Met Asn Leu Asn Phe Gln Asn Leu Ser Val Met Gly Leu Arg Ile
565 570 575
Leu Leu Leu Lys Val Ala Gly Phe Asn Leu Leu Met Thr Leu Arg Leu
580 585 590
Trp Ser Ser
595
<210> 38
<211> 315
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 38
aatcagtctc cccagagcat gttcatccag gagggcgagg acgtgagcat gaactgtacc 60
agctcctcta tctttaatac atggctgtgg tacaagcagg accccggaga gggacccgtg 120
ctgctgatcg ccctgtataa ggcaggagag ctgacaagca acggccggct gaccgcacag 180
ttcggaatca caagaaagga ttcctttctg aatatcagcg cctccatccc ctctgacgtg 240
ggcatctact tctgcgccgg caagaacacc gataagctga tcttcggcac cggcacacgg 300
ctgcaggtgt ttccc 315
<210> 39
<211> 336
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 39
gacgtgaagg tgacccagag ctcccggtac ctggtgaaga gaacaggcga gaaggtgttc 60
ctggagtgcg tgcaggacat ggatcacgag aacatgtttt ggtataggca ggaccccgga 120
ctgggactga gactgatcta cttctcctat gatgtgaaga tgaaggagaa gggcgacatc 180
ccagagggct actccgtgtc tagggagaag aaggagcggt tcagcctgat cctggagagc 240
gcctccacca atcagacaag catgtacctg tgcgcctcta gcttcccact gctgggcggc 300
tatacctttg gcagcggcac caggctgaca gtggtg 336
<210> 40
<211> 1788
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 40
atgggcatcc ggctgctgtg cagagtggcc ttctgttttc tggccgtggg cctggtggac 60
gtgaaggtga cccagagctc ccggtacctg gtgaagagaa caggcgagaa ggtgttcctg 120
gagtgcgtgc aggacatgga tcacgagaac atgttttggt ataggcagga ccccggactg 180
ggactgagac tgatctactt ctcctatgat gtgaagatga aggagaaggg cgacatccca 240
gagggctact ccgtgtctag ggagaagaag gagcggttca gcctgatcct ggagagcgcc 300
tccaccaatc agacaagcat gtacctgtgc gcctctagct tcccactgct gggcggctat 360
acctttggca gcggcaccag gctgacagtg gtggaggacc tgcgcaacgt gacaccccct 420
aaggtgtctc tgttcgagcc cagcaaggcc gagatcgcca ataagcagaa ggccaccctg 480
gtgtgcctgg caaggggctt ctttcctgac cacgtggagc tgtcctggtg ggtgaacggc 540
aaggaggtgc actccggcgt gtctaccgat ccacaggcct acaaggagag caattactcc 600
tattgcctgt cctctcggct gagagtgagc gccacatttt ggcacaaccc aaggaatcac 660
ttccgctgtc aggtgcagtt tcacggcctg tccgaggagg acaagtggcc agagggctct 720
ccaaagccag tgacccagaa catcagcgcc gaggcatggg gaagggcaga ttgcggcatc 780
acatctgcca gctatcacca gggcgtgctg agcgccacca tcctgtacga gatcctgctg 840
ggcaaggcca cactgtatgc cgtgctggtg tccggcctgg tgctgatggc catggtgaag 900
aagaagaact ctagggcaaa gcggagcggc tctggagcaa ccaatttcag cctgctgaag 960
caggcaggcg acgtggagga gaaccctgga ccaatgctgc tggagcacct gctgatcatc 1020
ctgtggatgc agctgacctg ggtgtccggc cagcagctga atcagtctcc ccagagcatg 1080
ttcatccagg agggcgagga cgtgagcatg aactgtacca gctcctctat ctttaataca 1140
tggctgtggt acaagcagga ccccggagag ggacccgtgc tgctgatcgc cctgtataag 1200
gcaggagagc tgacaagcaa cggccggctg accgcacagt tcggaatcac aagaaaggat 1260
tcctttctga atatcagcgc ctccatcccc tctgacgtgg gcatctactt ctgcgccggc 1320
aagaacaccg ataagctgat cttcggcacc ggcacacggc tgcaggtgtt tcccgatatc 1380
cagaatcccg agcctgccgt gtatcagctg aaggacccta gatcccagga tagcaccctg 1440
tgcctgttca ccgactttga tagccagatc aacgtgccta agaccatgga gtccggcacc 1500
tttatcacag acaagaccgt gctggatatg aaggccatgg actctaagag caacggcgcc 1560
atcgcctgga gcaatcagac atccttcacc tgccaggaca tctttaagga gacaaatgcc 1620
acctacccta gctccgacgt gccatgtgat gccaccctga cagagaagtc cttcgagacc 1680
gatatgaacc tgaattttca gaacctgtct gtgatgggcc tgagaatcct gctgctgaag 1740
gtggccggct tcaatctgct gatgacactg cgcctgtggt ctagctga 1788
<210> 41
<211> 111
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 41
Gln Lys Glu Val Glu Gln Asn Ser Gly Pro Leu Ser Val Pro Glu Gly
1 5 10 15
Ala Ile Ala Ser Leu Asn Cys Thr Tyr Ser Asp Arg Val Ser Gln Ser
20 25 30
Phe Phe Trp Tyr Arg Gln Tyr Ser Gly Lys Ser Pro Glu Leu Ile Met
35 40 45
Ser Ile Tyr Ser Asn Gly Asp Lys Glu Asp Gly Arg Phe Thr Ala Gln
50 55 60
Leu Asn Lys Ala Ser Gln Tyr Val Ser Leu Leu Ile Arg Asp Ser Gln
65 70 75 80
Pro Ser Asp Ser Ala Thr Tyr Leu Cys Ala Val Ser Gly Gly Gly Tyr
85 90 95
Ser Thr Leu Thr Phe Gly Lys Gly Thr Met Leu Leu Val Ser Pro
100 105 110
<210> 42
<211> 111
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 42
Asp Thr Ala Val Ser Gln Thr Pro Lys Tyr Leu Val Thr Gln Met Gly
1 5 10 15
Asn Asp Lys Ser Ile Lys Cys Glu Gln Asn Leu Gly His Asp Thr Met
20 25 30
Tyr Trp Tyr Lys Gln Asp Ser Lys Lys Phe Leu Lys Ile Met Phe Ser
35 40 45
Tyr Asn Asn Lys Glu Leu Ile Ile Asn Glu Thr Val Pro Asn Arg Phe
50 55 60
Ser Pro Lys Ser Pro Asp Lys Ala His Leu Asn Leu His Ile Asn Ser
65 70 75 80
Leu Glu Leu Gly Asp Ser Ala Val Tyr Phe Cys Ala Ser Ser Trp Gly
85 90 95
Thr Asp Thr Gln Tyr Phe Gly Pro Gly Thr Arg Leu Thr Val Leu
100 105 110
<210> 43
<211> 22
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 43
Met Met Lys Ser Leu Arg Val Leu Leu Val Ile Leu Trp Leu Gln Leu
1 5 10 15
Ser Trp Val Trp Ser Gln
20
<210> 44
<211> 19
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 44
Met Gly Cys Arg Leu Leu Cys Cys Val Val Phe Cys Leu Leu Gln Ala
1 5 10 15
Gly Pro Leu
<210> 45
<211> 600
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 45
Met Gly Cys Arg Leu Leu Cys Cys Val Val Phe Cys Leu Leu Gln Ala
1 5 10 15
Gly Pro Leu Asp Thr Ala Val Ser Gln Thr Pro Lys Tyr Leu Val Thr
20 25 30
Gln Met Gly Asn Asp Lys Ser Ile Lys Cys Glu Gln Asn Leu Gly His
35 40 45
Asp Thr Met Tyr Trp Tyr Lys Gln Asp Ser Lys Lys Phe Leu Lys Ile
50 55 60
Met Phe Ser Tyr Asn Asn Lys Glu Leu Ile Ile Asn Glu Thr Val Pro
65 70 75 80
Asn Arg Phe Ser Pro Lys Ser Pro Asp Lys Ala His Leu Asn Leu His
85 90 95
Ile Asn Ser Leu Glu Leu Gly Asp Ser Ala Val Tyr Phe Cys Ala Ser
100 105 110
Ser Trp Gly Thr Asp Thr Gln Tyr Phe Gly Pro Gly Thr Arg Leu Thr
115 120 125
Val Leu Glu Asp Leu Arg Asn Val Thr Pro Pro Lys Val Ser Leu Phe
130 135 140
Glu Pro Ser Lys Ala Glu Ile Ala Asn Lys Gln Lys Ala Thr Leu Val
145 150 155 160
Cys Leu Ala Arg Gly Phe Phe Pro Asp His Val Glu Leu Ser Trp Trp
165 170 175
Val Asn Gly Lys Glu Val His Ser Gly Val Ser Thr Asp Pro Gln Ala
180 185 190
Tyr Lys Glu Ser Asn Tyr Ser Tyr Cys Leu Ser Ser Arg Leu Arg Val
195 200 205
Ser Ala Thr Phe Trp His Asn Pro Arg Asn His Phe Arg Cys Gln Val
210 215 220
Gln Phe His Gly Leu Ser Glu Glu Asp Lys Trp Pro Glu Gly Ser Pro
225 230 235 240
Lys Pro Val Thr Gln Asn Ile Ser Ala Glu Ala Trp Gly Arg Ala Asp
245 250 255
Cys Gly Ile Thr Ser Ala Ser Tyr His Gln Gly Val Leu Ser Ala Thr
260 265 270
Ile Leu Tyr Glu Ile Leu Leu Gly Lys Ala Thr Leu Tyr Ala Val Leu
275 280 285
Val Ser Gly Leu Val Leu Met Ala Met Val Lys Lys Lys Asn Ser Arg
290 295 300
Ala Lys Arg Ser Gly Ser Gly Ala Thr Asn Phe Ser Leu Leu Lys Gln
305 310 315 320
Ala Gly Asp Val Glu Glu Asn Pro Gly Pro Met Met Lys Ser Leu Arg
325 330 335
Val Leu Leu Val Ile Leu Trp Leu Gln Leu Ser Trp Val Trp Ser Gln
340 345 350
Gln Lys Glu Val Glu Gln Asn Ser Gly Pro Leu Ser Val Pro Glu Gly
355 360 365
Ala Ile Ala Ser Leu Asn Cys Thr Tyr Ser Asp Arg Val Ser Gln Ser
370 375 380
Phe Phe Trp Tyr Arg Gln Tyr Ser Gly Lys Ser Pro Glu Leu Ile Met
385 390 395 400
Ser Ile Tyr Ser Asn Gly Asp Lys Glu Asp Gly Arg Phe Thr Ala Gln
405 410 415
Leu Asn Lys Ala Ser Gln Tyr Val Ser Leu Leu Ile Arg Asp Ser Gln
420 425 430
Pro Ser Asp Ser Ala Thr Tyr Leu Cys Ala Val Ser Gly Gly Gly Tyr
435 440 445
Ser Thr Leu Thr Phe Gly Lys Gly Thr Met Leu Leu Val Ser Pro Asp
450 455 460
Ile Gln Asn Pro Glu Pro Ala Val Tyr Gln Leu Lys Asp Pro Arg Ser
465 470 475 480
Gln Asp Ser Thr Leu Cys Leu Phe Thr Asp Phe Asp Ser Gln Ile Asn
485 490 495
Val Pro Lys Thr Met Glu Ser Gly Thr Phe Ile Thr Asp Lys Thr Val
500 505 510
Leu Asp Met Lys Ala Met Asp Ser Lys Ser Asn Gly Ala Ile Ala Trp
515 520 525
Ser Asn Gln Thr Ser Phe Thr Cys Gln Asp Ile Phe Lys Glu Thr Asn
530 535 540
Ala Thr Tyr Pro Ser Ser Asp Val Pro Cys Asp Ala Thr Leu Thr Glu
545 550 555 560
Lys Ser Phe Glu Thr Asp Met Asn Leu Asn Phe Gln Asn Leu Ser Val
565 570 575
Met Gly Leu Arg Ile Leu Leu Leu Lys Val Ala Gly Phe Asn Leu Leu
580 585 590
Met Thr Leu Arg Leu Trp Ser Ser
595 600
<210> 46
<211> 399
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 46
atgatgaaat ccttgagagt tttactagtg atcctgtggc ttcagttgag ctgggtttgg 60
agccaacaga aggaggtgga gcagaattct ggacccctca gtgttccaga gggagccatt 120
gcctctctca actgcactta cagtgaccga gtttcccagt ccttcttctg gtacagacaa 180
tattctggga aaagccctga gttgataatg tccatatact ccaatggtga caaagaagat 240
ggaaggttta cagcacagct caataaagcc agccagtatg tttctctgct catcagagac 300
tcccagccca gtgattcagc cacctacctc tgtgccgtga gcggtggagg atacagcacc 360
ctcacctttg ggaaggggac tatgcttcta gtctctcca 399
<210> 47
<211> 390
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 47
atgggctgca ggctcctctg ctgtgtggtc ttctgcctcc tccaagcagg tcccttggac 60
acagctgttt cccagactcc aaaatacctg gtcacacaga tgggaaacga caagtccatt 120
aaatgtgaac aaaatctggg ccatgatact atgtattggt ataaacagga ctctaagaaa 180
tttctgaaga taatgtttag ctacaataat aaggagctca ttataaatga aacagttcca 240
aatcgcttct cacctaaatc tccagacaaa gctcacttaa atcttcacat caattccctg 300
gagcttggtg actctgctgt gtatttctgt gccagcagtt ggggcacaga cacgcagtat 360
tttggcccag gcacccggct gacagtgctc 390
<210> 48
<211> 1803
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 48
atgggctgca ggctgctgtg ctgcgtggtg ttctgcctgc tgcaggcagg accactggat 60
acagccgtga gccagacccc caagtacctg gtgacacaga tgggcaacga caagtccatc 120
aagtgcgagc agaatctggg ccacgatacc atgtactggt ataagcagga ctccaagaag 180
ttcctgaaga tcatgttctc ttacaacaat aaggagctga tcatcaacga gaccgtgcct 240
aatcgcttca gcccaaagtc ccccgataag gcccacctga acctgcacat caatagcctg 300
gagctgggcg attccgccgt gtacttctgc gccagctcct ggggcaccga cacacagtat 360
tttggaccag gaaccaggct gacagtgctg gaggacctgc gcaacgtgac accccctaag 420
gtgtctctgt ttgagccaag caaggccgag atcgccaata agcagaaggc caccctggtg 480
tgcctggcaa ggggcttctt tcccgatcac gtggagctga gctggtgggt gaacggcaag 540
gaggtgcact ctggcgtgag cacagaccct caggcctaca aggagtccaa ttactcttat 600
tgcctgtcta gccggctgag agtgtccgcc accttctggc acaacccccg gaatcacttc 660
agatgtcagg tgcagtttca cggcctgagc gaggaggata agtggcctga gggctcccca 720
aagcccgtga cacagaacat ctctgccgag gcatggggaa gggcagactg cggaatcacc 780
tctgccagct atcaccaggg cgtgctgagc gccacaatcc tgtacgagat cctgctgggc 840
aaggccaccc tgtatgccgt gctggtgtct ggcctggtgc tgatggccat ggtgaagaag 900
aagaacagca gggcaaagcg gagcggctct ggagccacca atttttccct gctgaagcag 960
gccggcgatg tggaggagaa tcctggccca atgatgaaga gcctgagagt gctgctggtc 1020
atcctgtggc tgcagctgag ctgggtgtgg tcccagcaga aggaggtgga gcagaactct 1080
ggacctctga gcgtgccaga gggagcaatc gcctctctga attgtacata cagcgaccgg 1140
gtgagccagt ccttcttttg gtacagacag tatagcggca agtccccaga gctgatcatg 1200
tctatctaca gcaacggcga caaggaggat ggccggttca ccgcccagct gaataaggcc 1260
tcccagtacg tgagcctgct gatcagagac agccagccct ctgatagcgc cacatacctg 1320
tgcgccgtgt ccggaggagg atattctacc ctgacatttg gcaagggcac catgctgctg 1380
gtgtcccctg acatccagaa ccccgagcct gccgtgtacc agctgaagga cccaagatcc 1440
caggatagca ccctgtgcct gttcaccgac tttgatagcc agatcaatgt gcccaagacc 1500
atggagtccg gcaccttcat cacagacaag accgtgctgg atatgaaggc catggactcc 1560
aagtctaacg gcgccatcgc ctggagcaat cagacatcct tcacctgcca ggatatcttt 1620
aaggagacaa acgccaccta tccctcctct gacgtgcctt gtgatgccac cctgacagag 1680
aagtctttcg agacagacat gaacctgaat tttcagaacc tgtccgtgat gggcctgaga 1740
atcctgctgc tgaaggtggc cggctttaat ctgctgatga ccctgcgcct gtggagctcc 1800
tga 1803
<210> 49
<211> 114
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 49
Gln Lys Glu Val Glu Gln Asp Pro Gly Pro Leu Ser Val Pro Glu Gly
1 5 10 15
Ala Ile Val Ser Leu Asn Cys Thr Tyr Ser Asn Ser Ala Phe Gln Tyr
20 25 30
Phe Met Trp Tyr Arg Gln Tyr Ser Arg Lys Gly Pro Glu Leu Leu Met
35 40 45
Tyr Thr Tyr Ser Ser Gly Asn Lys Glu Asp Gly Arg Phe Thr Ala Gln
50 55 60
Val Asp Lys Ser Ser Lys Tyr Ile Ser Leu Phe Ile Arg Asp Ser Gln
65 70 75 80
Pro Ser Asp Ser Ala Thr Tyr Leu Cys Ala Met Ser Phe Met Ser Ser
85 90 95
Gly Ser Ala Arg Gln Leu Thr Phe Gly Ser Gly Thr Gln Leu Thr Val
100 105 110
Leu Pro
<210> 50
<211> 114
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 50
Asp Val Lys Val Thr Gln Ser Ser Arg Tyr Leu Val Lys Arg Thr Gly
1 5 10 15
Glu Lys Val Phe Leu Glu Cys Val Gln Asp Met Asp His Glu Asn Met
20 25 30
Phe Trp Tyr Arg Gln Asp Pro Gly Leu Gly Leu Arg Leu Ile Tyr Phe
35 40 45
Ser Tyr Asp Val Lys Met Lys Glu Lys Gly Asp Ile Pro Glu Gly Tyr
50 55 60
Ser Val Ser Arg Glu Lys Lys Glu Arg Phe Ser Leu Ile Leu Glu Ser
65 70 75 80
Ala Ser Thr Asn Gln Thr Ser Met Tyr Leu Cys Ala Ser Thr Phe Thr
85 90 95
Ser Ser Tyr Asn Ser Pro Leu His Phe Gly Asn Gly Thr Arg Leu Thr
100 105 110
Val Thr
<210> 51
<211> 22
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 51
Met Met Lys Ser Leu Arg Val Leu Leu Val Ile Leu Trp Leu Gln Leu
1 5 10 15
Ser Trp Val Trp Ser Gln
20
<210> 52
<211> 19
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 52
Met Gly Ile Arg Leu Leu Cys Arg Val Ala Phe Cys Phe Leu Ala Val
1 5 10 15
Gly Leu Val
<210> 53
<211> 606
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 53
Met Gly Ile Arg Leu Leu Cys Arg Val Ala Phe Cys Phe Leu Ala Val
1 5 10 15
Gly Leu Val Asp Val Lys Val Thr Gln Ser Ser Arg Tyr Leu Val Lys
20 25 30
Arg Thr Gly Glu Lys Val Phe Leu Glu Cys Val Gln Asp Met Asp His
35 40 45
Glu Asn Met Phe Trp Tyr Arg Gln Asp Pro Gly Leu Gly Leu Arg Leu
50 55 60
Ile Tyr Phe Ser Tyr Asp Val Lys Met Lys Glu Lys Gly Asp Ile Pro
65 70 75 80
Glu Gly Tyr Ser Val Ser Arg Glu Lys Lys Glu Arg Phe Ser Leu Ile
85 90 95
Leu Glu Ser Ala Ser Thr Asn Gln Thr Ser Met Tyr Leu Cys Ala Ser
100 105 110
Thr Phe Thr Ser Ser Tyr Asn Ser Pro Leu His Phe Gly Asn Gly Thr
115 120 125
Arg Leu Thr Val Thr Glu Asp Leu Arg Asn Val Thr Pro Pro Lys Val
130 135 140
Ser Leu Phe Glu Pro Ser Lys Ala Glu Ile Ala Asn Lys Gln Lys Ala
145 150 155 160
Thr Leu Val Cys Leu Ala Arg Gly Phe Phe Pro Asp His Val Glu Leu
165 170 175
Ser Trp Trp Val Asn Gly Lys Glu Val His Ser Gly Val Ser Thr Asp
180 185 190
Pro Gln Ala Tyr Lys Glu Ser Asn Tyr Ser Tyr Cys Leu Ser Ser Arg
195 200 205
Leu Arg Val Ser Ala Thr Phe Trp His Asn Pro Arg Asn His Phe Arg
210 215 220
Cys Gln Val Gln Phe His Gly Leu Ser Glu Glu Asp Lys Trp Pro Glu
225 230 235 240
Gly Ser Pro Lys Pro Val Thr Gln Asn Ile Ser Ala Glu Ala Trp Gly
245 250 255
Arg Ala Asp Cys Gly Ile Thr Ser Ala Ser Tyr His Gln Gly Val Leu
260 265 270
Ser Ala Thr Ile Leu Tyr Glu Ile Leu Leu Gly Lys Ala Thr Leu Tyr
275 280 285
Ala Val Leu Val Ser Gly Leu Val Leu Met Ala Met Val Lys Lys Lys
290 295 300
Asn Ser Arg Ala Lys Arg Ser Gly Ser Gly Ala Thr Asn Phe Ser Leu
305 310 315 320
Leu Lys Gln Ala Gly Asp Val Glu Glu Asn Pro Gly Pro Met Met Lys
325 330 335
Ser Leu Arg Val Leu Leu Val Ile Leu Trp Leu Gln Leu Ser Trp Val
340 345 350
Trp Ser Gln Gln Lys Glu Val Glu Gln Asp Pro Gly Pro Leu Ser Val
355 360 365
Pro Glu Gly Ala Ile Val Ser Leu Asn Cys Thr Tyr Ser Asn Ser Ala
370 375 380
Phe Gln Tyr Phe Met Trp Tyr Arg Gln Tyr Ser Arg Lys Gly Pro Glu
385 390 395 400
Leu Leu Met Tyr Thr Tyr Ser Ser Gly Asn Lys Glu Asp Gly Arg Phe
405 410 415
Thr Ala Gln Val Asp Lys Ser Ser Lys Tyr Ile Ser Leu Phe Ile Arg
420 425 430
Asp Ser Gln Pro Ser Asp Ser Ala Thr Tyr Leu Cys Ala Met Ser Phe
435 440 445
Met Ser Ser Gly Ser Ala Arg Gln Leu Thr Phe Gly Ser Gly Thr Gln
450 455 460
Leu Thr Val Leu Pro Asp Ile Gln Asn Pro Glu Pro Ala Val Tyr Gln
465 470 475 480
Leu Lys Asp Pro Arg Ser Gln Asp Ser Thr Leu Cys Leu Phe Thr Asp
485 490 495
Phe Asp Ser Gln Ile Asn Val Pro Lys Thr Met Glu Ser Gly Thr Phe
500 505 510
Ile Thr Asp Lys Thr Val Leu Asp Met Lys Ala Met Asp Ser Lys Ser
515 520 525
Asn Gly Ala Ile Ala Trp Ser Asn Gln Thr Ser Phe Thr Cys Gln Asp
530 535 540
Ile Phe Lys Glu Thr Asn Ala Thr Tyr Pro Ser Ser Asp Val Pro Cys
545 550 555 560
Asp Ala Thr Leu Thr Glu Lys Ser Phe Glu Thr Asp Met Asn Leu Asn
565 570 575
Phe Gln Asn Leu Ser Val Met Gly Leu Arg Ile Leu Leu Leu Lys Val
580 585 590
Ala Gly Phe Asn Leu Leu Met Thr Leu Arg Leu Trp Ser Ser
595 600 605
<210> 54
<211> 408
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 54
atgatgaaat ccttgagagt tttactggtg atcctgtggc ttcagttaag ctgggtttgg 60
agccaacaga aggaggtgga gcaggatcct ggaccactca gtgttccaga gggagccatt 120
gtttctctca actgcactta cagcaacagt gcttttcaat acttcatgtg gtacagacag 180
tattccagaa aaggccctga gttgctgatg tacacatact ccagtggtaa caaagaagat 240
ggaaggttta cagcacaggt cgataaatcc agcaagtata tctccttgtt catcagagac 300
tcacagccca gtgattcagc cacctacctc tgtgcaatga gcttcatgtc ttctggttct 360
gcaaggcaac tgacctttgg atctgggaca caattgactg ttttacct 408
<210> 55
<211> 399
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 55
atgggaatca ggctcctctg tcgtgtggcc ttttgtttcc tggctgtagg cctcgtagat 60
gtgaaagtaa cccagagctc gagatatcta gtcaaaagga cgggagagaa agtttttctg 120
gaatgtgtcc aggatatgga ccatgaaaat atgttctggt atcgacaaga cccaggtctg 180
gggctacggc tgatctattt ctcatatgat gttaaaatga aagaaaaagg agatattcct 240
gaggggtaca gtgtctctag agagaagaag gagcgcttct ccctgattct ggagtccgcc 300
agcaccaacc agacatctat gtacctctgt gccagcacct ttaccagctc ctataattca 360
cccctccact ttgggaacgg gaccaggctc actgtgaca 399
<210> 56
<211> 1821
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 56
atgggcatcc ggctgctgtg cagagtggcc ttctgttttc tggccgtggg cctggtggat 60
gtgaaggtga cacagagctc caggtacctg gtgaagcgca ccggcgagaa ggtgttcctg 120
gagtgcgtgc aggacatgga tcacgagaac atgttttggt ataggcagga ccctggactg 180
ggactgaggc tgatctactt cagctatgat gtgaagatga aggagaaggg cgacatccca 240
gagggctact ccgtgtctcg ggagaagaag gagagatttt ccctgatcct ggagagcgcc 300
tccaccaatc agacaagcat gtacctgtgc gcctccacct tcacatctag ctataacagc 360
cctctgcact ttggcaatgg cacacggctg accgtgacag aggatctgag aaacgtgacc 420
ccccctaagg tgtccctgtt cgagccctct aaggccgaga tcgccaataa gcagaaggcc 480
accctggtgt gcctggcaag gggcttcttt cctgatcacg tggagctgtc ctggtgggtg 540
aacggcaagg aggtgcacag cggcgtgtcc acagacccac aggcctacaa ggagtctaat 600
tacagctatt gcctgtcctc tcggctgaga gtgagcgcca ccttttggca caacccaagg 660
aatcacttcc gctgtcaggt gcagtttcac ggcctgtctg aggaggataa gtggccagag 720
ggcagcccaa agccagtgac acagaacatc tccgccgagg catggggaag ggcagactgc 780
ggcatcacct ctgccagcta tcaccagggc gtgctgtccg ccacaatcct gtacgagatc 840
ctgctgggca aggccaccct gtatgccgtg ctggtgtccg gcctggtgct gatggccatg 900
gtgaagaaga agaactctag ggcaaagcgg agcggctctg gagcaaccaa tttcagcctg 960
ctgaagcagg caggcgatgt ggaggagaac cctggaccaa tgatgaagtc cctgagagtg 1020
ctgctggtca tcctgtggct gcagctgagc tgggtgtggt cccagcagaa ggaggtggag 1080
caggaccccg gacctctgag cgtgccagag ggagcaatcg tgtccctgaa ctgtacctac 1140
agcaattccg ccttccagta cttcatgtgg taccggcagt atagcagaaa gggccctgag 1200
ctgctgatgt acacatatag ctccggcaat aaggaggatg gccggttcac cgcccaggtg 1260
gacaagtcta gcaagtacat ctctctgttt atcagagaca gccagccatc tgatagcgcc 1320
acatatctgt gcgccatgtc cttcatgtcc tctggctctg ccaggcagct gacctttggc 1380
agcggaaccc agctgacagt gctgccagac atccagaacc cagagcccgc cgtgtaccag 1440
ctgaaggacc ctcgctccca ggatagcacc ctgtgcctgt tcaccgactt tgattctcag 1500
atcaatgtgc ccaagaccat ggagagcggc accttcatca cagacaagac cgtgctggat 1560
atgaaggcca tggactccaa gtctaacggc gccatcgcct ggtctaatca gacaagcttc 1620
acctgccagg atatctttaa ggagacaaac gccacctacc ctagctccga cgtgccatgt 1680
gatgccaccc tgacagagaa gtccttcgag acagacatga acctgaattt tcagaacctg 1740
tctgtgatgg gcctgagaat cctgctgctg aaggtggccg gctttaatct gctgatgacc 1800
ctgcgcctgt ggtctagctg a 1821
<210> 57
<211> 137
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 57
Asp Ile Gln Asn Pro Glu Pro Ala Val Tyr Gln Leu Lys Asp Pro Arg
1 5 10 15
Ser Gln Asp Ser Thr Leu Cys Leu Phe Thr Asp Phe Asp Ser Gln Ile
20 25 30
Asn Val Pro Lys Thr Met Glu Ser Gly Thr Phe Ile Thr Asp Lys Thr
35 40 45
Val Leu Asp Met Lys Ala Met Asp Ser Lys Ser Asn Gly Ala Ile Ala
50 55 60
Trp Ser Asn Gln Thr Ser Phe Thr Cys Gln Asp Ile Phe Lys Glu Thr
65 70 75 80
Asn Ala Thr Tyr Pro Ser Ser Asp Val Pro Cys Asp Ala Thr Leu Thr
85 90 95
Glu Lys Ser Phe Glu Thr Asp Met Asn Leu Asn Phe Gln Asn Leu Ser
100 105 110
Val Met Gly Leu Arg Ile Leu Leu Leu Lys Val Ala Gly Phe Asn Leu
115 120 125
Leu Met Thr Leu Arg Leu Trp Ser Ser
130 135
<210> 58
<211> 173
<212> PRT
<213> Artificial Sequence (Artificial sequence)
<400> 58
Glu Asp Leu Arg Asn Val Thr Pro Pro Lys Val Ser Leu Phe Glu Pro
1 5 10 15
Ser Lys Ala Glu Ile Ala Asn Lys Gln Lys Ala Thr Leu Val Cys Leu
20 25 30
Ala Arg Gly Phe Phe Pro Asp His Val Glu Leu Ser Trp Trp Val Asn
35 40 45
Gly Lys Glu Val His Ser Gly Val Ser Thr Asp Pro Gln Ala Tyr Lys
50 55 60
Glu Ser Asn Tyr Ser Tyr Cys Leu Ser Ser Arg Leu Arg Val Ser Ala
65 70 75 80
Thr Phe Trp His Asn Pro Arg Asn His Phe Arg Cys Gln Val Gln Phe
85 90 95
His Gly Leu Ser Glu Glu Asp Lys Trp Pro Glu Gly Ser Pro Lys Pro
100 105 110
Val Thr Gln Asn Ile Ser Ala Glu Ala Trp Gly Arg Ala Asp Cys Gly
115 120 125
Ile Thr Ser Ala Ser Tyr His Gln Gly Val Leu Ser Ala Thr Ile Leu
130 135 140
Tyr Glu Ile Leu Leu Gly Lys Ala Thr Leu Tyr Ala Val Leu Val Ser
145 150 155 160
Gly Leu Val Leu Met Ala Met Val Lys Lys Lys Asn Ser
165 170
<210> 59
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 59
aattctgcca gccagtcc 18
<210> 60
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 60
gtgtactcct ctggaaac 18
<210> 61
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 61
gtggcagatt ccggaggagg agcagacggc ctgacc 36
<210> 62
<211> 15
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 62
tccggccacg acaac 15
<210> 63
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 63
tttgtgaagg agtctaag 18
<210> 64
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 64
gcaagctccc accagggact gggaaccgag gccttc 36
<210> 65
<211> 15
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 65
tctatcttta ataca 15
<210> 66
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 66
ctgtataagg caggagagct g 21
<210> 67
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 67
gccggcaaga acaccgataa gctgatc 27
<210> 68
<211> 15
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 68
atggatcacg agaac 15
<210> 69
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 69
tcctatgatg tgaagatg 18
<210> 70
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 70
gcctctagct tcccactgct gggcggctat acc 33
<210> 71
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 71
gaccgggtga gccagtcc 18
<210> 72
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 72
atctacagca acggcgac 18
<210> 73
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 73
gccgtgtccg gaggaggata ttctaccctg aca 33
<210> 74
<211> 15
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 74
ctgggccacg atacc 15
<210> 75
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 75
tacaacaata aggagctg 18
<210> 76
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 76
gccagctcct ggggcaccga cacacagtat 30
<210> 77
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 77
aattccgcct tccagtac 18
<210> 78
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 78
acatatagct ccggcaat 18
<210> 79
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 79
gccatgtcct tcatgtcctc tggctctgcc aggcagctga cc 42
<210> 80
<211> 15
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 80
atggatcacg agaac 15
<210> 81
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 81
agctatgatg tgaagatg 18
<210> 82
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial sequence)
<400> 82
gcctccacct tcacatctag ctataacagc cctctgcac 39

Claims (17)

1. A T Cell Receptor (TCR) that specifically recognizes a MART-1 (27-35) epitope, comprising an alpha chain and a beta chain, wherein the alpha chain comprises three complementarity determining regions CDR1 alpha, CDR2 alpha and CDR3 alpha, the beta chain comprises three complementarity determining regions CDR1 beta, CDR2 beta and CDR3 beta, and the amino acid sequences of CDR1 alpha, CDR2 alpha, CDR3 alpha, CDR1 beta, CDR2 beta and CDR3 beta are shown as SEQ ID NOs 1-6, 7-12, 13-18 or 19-24, respectively, or are variants having at least one amino acid change compared to the amino acid sequences and retaining the ability to specifically recognize a MART-1 (27-35) epitope.
2. The T Cell Receptor (TCR) according to claim 1, wherein the alpha chain variable region comprises the amino acid sequence shown in SEQ ID No. 25, SEQ ID No. 33, SEQ ID No. 41 or SEQ ID No. 49 or an amino acid sequence having at least 80% sequence identity to SEQ ID No. 25, SEQ ID No. 33, SEQ ID No. 41 or SEQ ID No. 49.
3. The T Cell Receptor (TCR) according to claim 1 or 2, wherein the β chain variable region comprises the amino acid sequence shown in SEQ ID No. 26, SEQ ID No. 34, SEQ ID No. 42 or SEQ ID No. 50 or an amino acid sequence having at least 80% sequence identity to SEQ ID No. 26, SEQ ID No. 34, SEQ ID No. 42 or SEQ ID No. 50.
4. A T Cell Receptor (TCR) according to any one of claims 1-3, wherein the alpha chain variable region and the beta chain variable region are each linked to a constant region; preferably, the amino acid sequence of the constant region linked to the alpha chain variable region is as shown in SEQ ID NO. 57; preferably, the amino acid sequence of the constant region linked to the β chain variable region is as shown in SEQ ID NO. 58.
5. The T Cell Receptor (TCR) of any one of claims 1-4, wherein the alpha chain and the beta chain are each further fused to a signal peptide; preferably, the amino acid sequence of the signal peptide fused with the alpha chain is shown as SEQ ID NO. 27, SEQ ID NO. 35, SEQ ID NO. 43 or SEQ ID NO. 51; preferably, the amino acid sequence of the signal peptide fused to the beta chain is shown as SEQ ID NO. 28, SEQ ID NO. 36, SEQ ID NO. 44 or SEQ ID NO. 52.
6. The T cell receptor of claim 5, wherein the alpha chain fused to the signal peptide and the beta chain fused to the signal peptide are linked together via a 2A peptide, such as a P2A peptide; preferably, the amino acid sequence of the T Cell Receptor (TCR) is shown as SEQ ID NO. 29, SEQ ID NO. 37, SEQ ID NO. 45 or SEQ ID NO. 53.
7. A nucleic acid molecule encoding the T Cell Receptor (TCR) of any one of claims 1-6.
8. The nucleic acid molecule of claim 7, wherein the alpha chain variable region of the T Cell Receptor (TCR) is encoded by the nucleic acid sequence set forth in SEQ ID No. 30, SEQ ID No. 38, SEQ ID No. 46 or SEQ ID No. 54, or degenerate sequences thereof.
9. The nucleic acid molecule of claim 7 or 8, wherein the β chain variable region of the T Cell Receptor (TCR) is encoded by the nucleic acid sequence set forth in SEQ ID No. 31, SEQ ID No. 39, SEQ ID No. 47 or SEQ ID No. 55, or degenerate sequences thereof.
10. The nucleic acid molecule of any one of claims 7-9, wherein the T Cell Receptor (TCR) is encoded by the nucleic acid sequence set forth in SEQ ID No. 32, SEQ ID No. 40, SEQ ID No. 48 or SEQ ID No. 56, or degenerate sequences thereof.
11. A vector comprising the nucleic acid molecule of any one of claims 7-10; preferably, the vector is a viral vector such as a retroviral vector, a lentiviral vector, an adenoviral vector or an adeno-associated viral expression vector.
12. An effector cell comprising the T cell receptor of any one of claims 1-6, the nucleic acid molecule of any one of claims 7-10, or the vector of claim 11.
13. The effector cell of claim 12, wherein the cell is a T cell, a natural killer cell, a human embryonic stem cell, a lymphoid progenitor cell, and/or a T cell precursor cell, such as a cytotoxic T cell, a helper T cell, a natural killer T cell, and a suppressor T cell.
14. A method of killing a melanoma cell comprising contacting the T cell receptor of any one of claims 1-6 or the effector cell of claim 12 or 13 with a melanoma cell; preferably, the melanoma cells are MART-1 positive, HLA:A0201 typed melanoma cells.
15. A method of treating melanoma comprising administering the T cell receptor of any one of claims 1-6 or the effector cell of claim 12 or 13 to a patient with melanoma; preferably, the melanoma is MART-1 positive, HLA:A0201 typed melanoma.
16. Use of the T cell receptor of any one of claims 1-6, the nucleic acid molecule of any one of claims 7-10, the vector of claim 11, or the effector cell of claim 12 or 13 in the manufacture of a medicament for the treatment of melanoma; preferably, the melanoma is MART-1 positive, HLA:A0201 typed melanoma.
17. A kit comprising the T cell receptor of any one of claims 1-6, the nucleic acid molecule of any one of claims 7-10, the vector of claim 11, or the effector cell of claim 12 or 13.
CN202210234400.3A 2022-03-10 2022-03-10 MART-1 (27-35) epitope specific T cell receptor and application thereof Pending CN116769017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210234400.3A CN116769017A (en) 2022-03-10 2022-03-10 MART-1 (27-35) epitope specific T cell receptor and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210234400.3A CN116769017A (en) 2022-03-10 2022-03-10 MART-1 (27-35) epitope specific T cell receptor and application thereof

Publications (1)

Publication Number Publication Date
CN116769017A true CN116769017A (en) 2023-09-19

Family

ID=87990116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210234400.3A Pending CN116769017A (en) 2022-03-10 2022-03-10 MART-1 (27-35) epitope specific T cell receptor and application thereof

Country Status (1)

Country Link
CN (1) CN116769017A (en)

Similar Documents

Publication Publication Date Title
US11597755B2 (en) TCR and peptides
Chaux et al. Identification of five MAGE-A1 epitopes recognized by cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1
CA2906587C (en) Compositions and methods for use of recombinant t cell receptors for direct recognition of tumor antigen
WO2019096115A1 (en) Isolated t-cell receptor, cell modified by same, coding nucleic acids, expression vector, preparation method, pharmaceutical composition, and applications
GB2611498A (en) Method
JP2017522859A (en) T cell receptor specific for glypican 3 and its use for immunotherapy of hepatocellular carcinoma
Schultz et al. A MAGE‐3 peptide recognized on HLA‐B35 and HLA‐A1 by cytolytic T lymphocytes
JP2017505621A (en) Methods and compositions for producing cells expressing a T cell receptor
CN112204133A (en) CAR NK cells
CN113121676B (en) Specific T cell receptor targeting cytomegalovirus antigen and application thereof
CN114230658A (en) Novel coronavirus-specific T cell receptor and uses thereof
EP3478711B1 (en) Herv-e reactive t cell receptors and methods of use
Lorenz et al. Unbiased identification of T-cell receptors targeting immunodominant peptide–MHC complexes for T-cell receptor immunotherapy
CN105950662B (en) A kind of replication defective recombinant slow virus CAR-T transgene carrier targeting CD22 and its construction method and application
CN113195527A (en) TCR and peptide
Dudaniec et al. Generation of Epstein-Barr virus antigen-specific T cell receptors recognizing immunodominant epitopes of LMP1, LMP2A, and EBNA3C for immunotherapy
CN116769017A (en) MART-1 (27-35) epitope specific T cell receptor and application thereof
US11718827B2 (en) LRFFT2 cell
CN108424458A (en) Target the Chimeric antigen receptor and application thereof of NY-ESO-1
CN111286512A (en) Chimeric antigen receptor targeting humanized tyrosine kinase orphan receptor 1 and uses thereof
TWI835730B (en) Tcr and peptides
CN117003855B (en) T cell receptor and application thereof
CN110172480B (en) Double-antigen epitope fusion gene recombinant lentiviral vector, antigen presenting cell and CTL cell as well as construction method and application thereof
US20240100162A1 (en) Mage-b2-specific t-cell receptors
WO2023064899A1 (en) Compositions and methods for use of recombinant t cell receptors against claudin 6

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication