CN116763980A - 一种磷酸盐基药物缓释载体及其制备方法 - Google Patents

一种磷酸盐基药物缓释载体及其制备方法 Download PDF

Info

Publication number
CN116763980A
CN116763980A CN202310568631.2A CN202310568631A CN116763980A CN 116763980 A CN116763980 A CN 116763980A CN 202310568631 A CN202310568631 A CN 202310568631A CN 116763980 A CN116763980 A CN 116763980A
Authority
CN
China
Prior art keywords
parts
phosphate
based drug
release carrier
delivery vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310568631.2A
Other languages
English (en)
Other versions
CN116763980B (zh
Inventor
王兵兵
叶璨璟
安东
邱蜜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Qibin Pharmaceutical Material Technology Co ltd
Original Assignee
Hunan Qibin Pharmaceutical Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Qibin Pharmaceutical Material Technology Co ltd filed Critical Hunan Qibin Pharmaceutical Material Technology Co ltd
Priority to CN202310568631.2A priority Critical patent/CN116763980B/zh
Publication of CN116763980A publication Critical patent/CN116763980A/zh
Application granted granted Critical
Publication of CN116763980B publication Critical patent/CN116763980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/02Phosphate cements
    • C04B12/025Phosphates of ammonium or of the alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00181Mixtures specially adapted for three-dimensional printing (3DP), stereo-lithography or prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及无机材料领域,尤其是涉及一种磷酸盐基药物缓释载体及其制备方法。本发明通过原料调整,选用3D打印方法,制备得到孔径集中于200‑300μm的缓释载体,孔径更为合理,缓释效果更佳,且原料成本低,工艺流程简单。

Description

一种磷酸盐基药物缓释载体及其制备方法
技术领域
本发明涉及无机材料领域,尤其是涉及一种磷酸盐基药物缓释载体及其制备方法。
背景技术
磷酸镁水泥是一种早强、快凝的胶凝材料,其水化产物胶粘性好,且生物相容性好,因此常备用作骨水泥。磷酸镁水泥主要由氧化镁、磷酸盐和液相组成,基于酸碱中和反应生成磷酸镁盐。
磷酸镁水泥作为医用材料需要有一定的孔隙,多孔结构有利于组织生长和营养成分的渗入,也可进行药物负载达到缓释,虽然磷酸镁水泥固化体本身为多孔结构,但是其孔多为纳米级,自身并无法满足孔隙要求,因此常常采用人工法进行造孔。
多孔磷酸镁水泥已有部分研究,但研究并不广泛,现有技术CN108863290A公开以明胶和壳聚糖制备了一种微球材料,具有控制药物释放、延长药物疗效的作用,从而提高药物的稳定性,降低药物的不良反应,同时其自身具有抗炎作用,明胶-壳聚糖微球生物相容性好,明胶-壳聚糖微球/磷酸钙骨水泥在体液环境中时,微球溶化成液体,明胶和壳聚糖会以液体状态缓慢析出,使整个支架被明胶和壳聚糖包裹,CN108379666A则公开一种明胶微球/磷酸镁基骨水泥药物缓释载体及其制备方法,先制备1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐交联的载药明胶微球;再将所得载药明胶微球与磷酸镁基骨水泥粉相混合均匀,再与磷酸镁基骨水泥液相调和固化,得到所述的明胶微球/磷酸镁基骨水泥药物缓释载体,然而,两者需采用特殊原料,成本高,制备工艺相对复杂。
3D打印技术是一种以数字模型文件为基础,运用可粘合材料,通过逐层打印方式来构造物体的技术,它与传统的去除材料加工技术不同,因此又称为添加制造,与传统制造方式相比,3D打印技术无需设计模具,建造速度快,单个实物制作费用低,并可大量节省原材料,目前3D打印技术在生物工程与医学领域也进行了应用,提供了更多的材料制造解决方案。现有技术CN113233887A公开一种可控多孔磷酸钙支架及其制备方法,所述磷酸钙支架的成分包括钙磷陶瓷和磷酸钙骨水泥,所述磷酸钙支架上设置有孔结构,所述孔结构包括宏孔结构、微孔结构和通孔结构,所述磷酸钙支架包括晶体结构,所述晶体结构之间设置有通孔结构,所述磷酸钙支架的外形根据患者缺损部位进行匹配设计,通过改进了牺牲材料的制备方法,选用精度更高的3D打印技术,可以制备出更加复杂多样的孔结构,CN110694109A提供一种复合载药高分子微球的磷酸钙骨水泥支架,其制备方法包括以下步骤:采用微乳液法制备载药的可降解高分子微球;配制粘结剂溶液;将载药高分子微球、磷酸钙骨水泥粉末和粘结剂溶液混合,获得混合浆料;将设计的多孔支架三维模型输入到三维打印设备机;将步骤S2配制的混合浆料置于三维打印机的料筒中,从打印机的喷头挤出的纤维根据设计的模型进行堆叠,得到多孔样品;将多孔样品置于20-80℃、相对湿度为90%-100%的环境中养护1-14天,然后干燥,得到复合载药高分子微球的磷酸钙骨水泥支架,CN112245656A通过可设计钙源及镁源比例,结合三维设计软件,选择打印模型并调整打印参数,旨在构建出不同含镁量的可用于3D打印的磷酸钙镁骨水泥复合支架,具备药物缓释功能及促血管化潜力,CN109437826A公开一种可3D打印的磷酸镁骨水泥及其制备方法和应用,所述骨水泥包含烧结氧化镁,磷酸二氢盐,聚戊二酸丙二醇酯,聚己内酯,缓凝剂、水。但是,上述方法同样存在制备工艺复杂,原材料价格昂贵的缺陷,并且,制备得到的磷酸镁水泥孔径分步不合理不可控,限制了药物缓释效果。
发明内容
本发明为解决上述现有技术中的问题,公开一种磷酸镁水泥基药物缓释载体,通过原料调整,选用3D打印方法,制备得到孔径集中于200-300μm的缓释载体,孔径更为合理,缓释效果更佳,且原料成本低,工艺流程简单。
具体的,本发明磷酸盐基药物缓释载体,由以下重量份原料经3D打印制备而成:
重烧氧化镁200-300份,
烧结氧化镁50-100份,
磷酸二氢钾150-300份,
碳酸锌40-60份,
硼砂15-30份,
双氧水30-50份,
磷酸二氢铵10-30份,
水200-250份。
优选的,磷酸盐基药物缓释载体由以下重量份原料经3D打印制备而成:
重烧氧化镁220-280份,
烧结氧化镁60-100份,
磷酸二氢钾160-290份,
碳酸锌40-55份,
硼砂20-30份,
双氧水34-50份,
磷酸二氢铵10-25份,
水210-240份。
优选的,所述重烧氧化镁由碳酸镁经煅烧、粉磨制成。更优选的,所述煅烧为1500-1550℃煅烧1-3h,所述粉磨为粉磨至比表面积制成4-5m2/g。
优选的,所述烧结氧化镁由碳酸镁经烧结、细磨制成。更优选的,所述烧结为1300-1350℃烧结1-3h,所述细磨为细磨至比表面积制成5-6m2/g。
本发明磷酸镁水泥选用重烧氧化镁、烧结氧化镁和磷酸二氢钾作为主要原料,磷酸镁水泥所用氧化镁一般采用重烧氧化镁,氧化镁的选用对磷酸镁水泥凝结时间、力学性能具有重要影响,本发明由于采用3D打印方法进行成型,为满足浆料挤出和堆叠效果,且同时兼顾气泡对成型效果的影响,本发明研究表明,采用重烧氧化镁和烧结氧化镁作为活性氧化镁,利用不同煅烧温度和细度对氧化镁水化活性和水化进程的影响,可满足多孔磷酸镁水泥3D打印施工和后期力学性能的要求。
本发明采用硼砂作为调凝剂,对磷酸镁水泥浆料凝结时间进行调控。碳酸锌的添加可提高多孔缓释载体的力学性能,提高气泡分布均匀性,降低气泡造成的力学性能下降。
优选的,所述碳酸镁为分析纯。
优选的,所述双氧水质量浓度为20-30%。本发明采用化学发泡法引入气泡,不同品种发泡剂在磷酸镁水泥中引入的气泡是不同的,本发明研究发现,200-300μm气孔更有利于磷酸镁水泥对药物的存储和缓释,经过大量实验研究,本发明采用双氧水作为发泡剂,无毒且不会引入杂质,为控制双氧水在磷酸镁水泥中的发泡均匀性和气泡大小,并结合3D打印工艺要求,本发明添加少量磷酸二氢铵,铵根离子可对双氧水在磷酸镁水泥中的发泡过程进行调控,实现平稳发泡,气泡均匀,制备合理孔径的气泡,满足3D打印成型要求,磷酸根也可为磷酸镁水泥水化提供磷酸根。
优选的,所述水为去离子水。
本发明还涉及上述磷酸盐基药物缓释载体的制备方法,具体的,包括如下步骤:
1)按重量份称取各原料,备用,
2)将重烧氧化镁、烧结氧化镁、磷酸二氢钾、碳酸锌、硼砂混合均匀,得干料,
3)将磷酸二氢铵与水混合均匀,得液料,
4)将干料与液料混合均匀后,倒入双氧水迅速搅拌均匀后静置5-10min后,利用3D打印机喷头挤出,得到层叠体,
5)将层叠体进行养护、破碎、筛分,得到缓释载体。
本发明利用3D打印工艺制备得到多孔磷酸镁水泥层叠体,进行养护后可根据药物粒径要求进行破碎、筛分,简单高效,成本低。
此外,本发明还涉及上述磷酸盐基药物缓释载体在药物缓释中的应用。
具体实施方式
对本发明磷酸镁水泥进行气孔孔径、抗压强度进行测试,其中气孔孔径测试采用氮吸附法绘制气孔孔径曲线,以200-300μm孔径在总气泡中占比作为结果,抗压强度为利用养护后层叠体的7d抗压强度。
实验过程中重烧氧化镁由分析纯碳酸镁经1550℃煅烧2h、粉磨至比表面积4.6m2/g,烧结氧化镁由分析纯碳酸镁经1300℃烧结2h、细磨至比表面积5.5m2/g,双氧水浓度为30%,水为去离子水。
实施例1
磷酸盐基药物缓释载体由以下重量份原料经3D打印制备而成:重烧氧化镁230份,烧结氧化镁90份,磷酸二氢钾200份,碳酸锌50份,硼砂23份,双氧水39份,磷酸二氢铵15份,水220份。
经检测,磷酸镁水泥浆料3D打印成型效果良好,层叠体无坍塌现象,抗压强度9.5MPa,200-300μm孔径在总气泡中占比96.6%。
实施例2
磷酸盐基药物缓释载体由以下重量份原料经3D打印制备而成:重烧氧化镁260份,烧结氧化镁80份,磷酸二氢钾260份,碳酸锌40份,硼砂25份,双氧水40份,磷酸二氢铵20份,水230份。
经检测,磷酸镁水泥浆料3D打印成型效果良好,层叠体无坍塌现象,抗压强度10.2MPa,200-300μm孔径在总气泡中占比98.3%。
对比例1
缓释载体,原料为:重烧氧化镁340份,磷酸二氢钾260份,碳酸锌40份,硼砂25份,双氧水40份,磷酸二氢铵20份,水230份。
经检测,磷酸镁水泥浆料3D打印成型塌模严重,无法进行3D打印制作。
对比例2
缓释载体,原料为:重烧氧化镁280份,烧结氧化镁100份,磷酸二氢钾260份,硼砂25份,双氧水40份,磷酸二氢铵20份,水230份。
经检测,磷酸镁水泥浆料3D打印成型效果一般,层叠体无大面积坍塌现象,抗压强度5.2MPa,200-300μm孔径在总气泡中占比63.7%。
对比例3
缓释载体,原料为:重烧氧化镁260份,烧结氧化镁80份,磷酸二氢钾260份,碳酸锌40份,硼砂25份,十二烷基苯磺酸钠40份,磷酸二氢铵20份,水230份。
经检测,磷酸镁水泥浆料3D打印成型塌模严重,无法进行3D打印制作。
对比例4
缓释载体,原料为:重烧氧化镁260份,烧结氧化镁80份,磷酸二氢钾280份,碳酸锌40份,硼砂25份,双氧水40份,水230份。
经检测,磷酸镁水泥浆料3D打印成型塌模严重,无法进行3D打印制作。
最后应说明的是:以上各实施方式仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施方式对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施方式技术方案的范围。

Claims (10)

1.一种磷酸盐基药物缓释载体,其特征在于,由以下重量份原料经3D打印制备而成:
重烧氧化镁200-300份,
烧结氧化镁50-100份,
磷酸二氢钾150-300份,
碳酸锌40-60份,
硼砂15-30份,
双氧水30-50份,
磷酸二氢铵10-30份,
水200-250份。
2.根据权利要求1所述磷酸盐基药物缓释载体,其特征在于,由以下重量份原料经3D打印制备而成:
重烧氧化镁220-280份,
烧结氧化镁60-100份,
磷酸二氢钾160-290份,
碳酸锌40-55份,
硼砂20-30份,
双氧水34-50份,
磷酸二氢铵10-25份,
水210-240份。
3.根据权利要求1所述磷酸盐基药物缓释载体,其特征在于,所述重烧氧化镁由碳酸镁经煅烧、粉磨制成。
4.根据权利要求3所述磷酸盐基药物缓释载体,其特征在于,所述煅烧为1500-1550℃煅烧1-3h,所述粉磨为粉磨至比表面积制成4-5m2/g。
5.根据权利要求1所述磷酸盐基药物缓释载体,其特征在于,所述烧结氧化镁由碳酸镁经烧结、细磨制成。
6.根据权利要求5所述磷酸盐基药物缓释载体,其特征在于,所述烧结为1300-1350℃烧结1-3h,所述细磨为细磨至比表面积制成5-6m2/g。
7.根据权利要求3-6任一所述磷酸盐基药物缓释载体,其特征在于,所述碳酸镁为分析纯。
8.根据权利要求1所述磷酸盐基药物缓释载体,其特征在于,所述双氧水质量浓度为20-30%。
9.根据权利要求1所述磷酸盐基药物缓释载体,其特征在于,所述水为去离子水。
10.根据权利要求1-9任一所述磷酸盐基药物缓释载体的制备方法,其特征在于,包括如下步骤:
1)按重量份称取各原料,备用,
2)将重烧氧化镁、烧结氧化镁、磷酸二氢钾、碳酸锌、硼砂混合均匀,得干料,
3)将磷酸二氢铵与水混合均匀,得液料,
4)将干料与液料混合均匀后,倒入双氧水迅速搅拌均匀后静置5-10min后,利用3D打印机喷头挤出,得到层叠体,
5)将层叠体进行养护、破碎、筛分,得到缓释载体。
CN202310568631.2A 2023-05-19 2023-05-19 一种磷酸盐基药物缓释载体及其制备方法 Active CN116763980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310568631.2A CN116763980B (zh) 2023-05-19 2023-05-19 一种磷酸盐基药物缓释载体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310568631.2A CN116763980B (zh) 2023-05-19 2023-05-19 一种磷酸盐基药物缓释载体及其制备方法

Publications (2)

Publication Number Publication Date
CN116763980A true CN116763980A (zh) 2023-09-19
CN116763980B CN116763980B (zh) 2024-06-25

Family

ID=87992047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310568631.2A Active CN116763980B (zh) 2023-05-19 2023-05-19 一种磷酸盐基药物缓释载体及其制备方法

Country Status (1)

Country Link
CN (1) CN116763980B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278677A (ja) * 2000-03-31 2001-10-10 Asahi Fiber Glass Co Ltd 無機発泡体成形物の製造方法
CN1471388A (zh) * 2000-08-31 2004-01-28 ˹����ҩƷ���ô�˾ 磨制颗粒
US20050252419A1 (en) * 2004-03-30 2005-11-17 Mabey Michael J Lightweight composite materials and methods
CN101125223A (zh) * 2007-09-27 2008-02-20 天津大学 磷酸钙骨水泥/壳聚糖-明胶复合多孔支架的制备方法
US20110020419A1 (en) * 2006-02-17 2011-01-27 Huipin Yuan Osteoinductive calcium phosphates
CN102515824A (zh) * 2011-11-30 2012-06-27 南京航空航天大学 一种超轻泡沫水泥混凝土及其制备方法
DE102015202277B3 (de) * 2015-02-09 2016-04-28 Morgan Advanced Materials Haldenwanger GmbH Verfahren zur Herstellung von aufgeschäumten keramischen Werkstoffen sowie dadurch herstellbarer keramischer Schaum
CN108298944A (zh) * 2018-05-11 2018-07-20 重庆大学 一种磷酸盐水泥泡沫混凝土及其制备方法
CN109437826A (zh) * 2018-11-29 2019-03-08 广州润虹医药科技股份有限公司 一种可3d打印的磷酸镁骨水泥及其制备方法和应用
CN109574619A (zh) * 2018-11-29 2019-04-05 中建西部建设股份有限公司 一种磷酸镁发泡水泥的制备方法
KR102338597B1 (ko) * 2021-08-04 2021-12-15 송지연 디엔계 고무 라텍스 함유 폴리머 개질제로 개질된 고기능성 초속경 및 조강 시멘트 콘크리트 조성물 및 이를 이용한 도로포장 시공방법
CN115286275A (zh) * 2022-08-17 2022-11-04 盐城工学院 一种适用于磷酸镁水泥体系的缓凝抗水剂
CN115970062A (zh) * 2023-03-22 2023-04-18 泽田(山东)药业有限公司 一种骨水泥基药物缓释载体及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278677A (ja) * 2000-03-31 2001-10-10 Asahi Fiber Glass Co Ltd 無機発泡体成形物の製造方法
CN1471388A (zh) * 2000-08-31 2004-01-28 ˹����ҩƷ���ô�˾ 磨制颗粒
US20050252419A1 (en) * 2004-03-30 2005-11-17 Mabey Michael J Lightweight composite materials and methods
US20110020419A1 (en) * 2006-02-17 2011-01-27 Huipin Yuan Osteoinductive calcium phosphates
CN101125223A (zh) * 2007-09-27 2008-02-20 天津大学 磷酸钙骨水泥/壳聚糖-明胶复合多孔支架的制备方法
CN102515824A (zh) * 2011-11-30 2012-06-27 南京航空航天大学 一种超轻泡沫水泥混凝土及其制备方法
DE102015202277B3 (de) * 2015-02-09 2016-04-28 Morgan Advanced Materials Haldenwanger GmbH Verfahren zur Herstellung von aufgeschäumten keramischen Werkstoffen sowie dadurch herstellbarer keramischer Schaum
CN108298944A (zh) * 2018-05-11 2018-07-20 重庆大学 一种磷酸盐水泥泡沫混凝土及其制备方法
CN109437826A (zh) * 2018-11-29 2019-03-08 广州润虹医药科技股份有限公司 一种可3d打印的磷酸镁骨水泥及其制备方法和应用
CN109574619A (zh) * 2018-11-29 2019-04-05 中建西部建设股份有限公司 一种磷酸镁发泡水泥的制备方法
KR102338597B1 (ko) * 2021-08-04 2021-12-15 송지연 디엔계 고무 라텍스 함유 폴리머 개질제로 개질된 고기능성 초속경 및 조강 시멘트 콘크리트 조성물 및 이를 이용한 도로포장 시공방법
CN115286275A (zh) * 2022-08-17 2022-11-04 盐城工学院 一种适用于磷酸镁水泥体系的缓凝抗水剂
CN115970062A (zh) * 2023-03-22 2023-04-18 泽田(山东)药业有限公司 一种骨水泥基药物缓释载体及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LU BING: "Study of MgO-activated slag as a cementless material for sustainable spray-based 3D printing", JOURNAL OF CLEANER PRODUCTION, vol. 258, 10 June 2020 (2020-06-10), pages 120671 *
刘奎周: "利用H2O2发泡和碳化养护改善RMFC的固碳、力学和保温隔热性能", 材料导报, vol. 37, no. 23, 3 January 2023 (2023-01-03), pages 33 - 40 *
李振弘: "TFT-LCD行业ITO和Cu/Mo薄膜刻蚀液性能研究", 中国优秀硕士学位论文全文数据库, 15 February 2021 (2021-02-15), pages 136 - 136 *

Also Published As

Publication number Publication date
CN116763980B (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
Raja et al. A simultaneous 3D printing process for the fabrication of bioceramic and cell-laden hydrogel core/shell scaffolds with potential application in bone tissue regeneration
Zhang et al. Porous bioceramics produced by inkjet 3D printing: Effect of printing ink formulation on the ceramic macro and micro porous architectures control
CN109400200B (zh) 一种宏观与微观结构皆可控的羟基磷灰石多孔陶瓷及其制备方法和应用
CN115970062B (zh) 一种骨水泥基药物缓释载体及其制备方法
Duan et al. Encapsulation and release of biomolecules from Ca–P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sintering
CN101956091B (zh) 一种凝胶注模-自蔓延高温合成制备钛合金材料的方法
CN110538346B (zh) 多孔纳米羟基磷灰石缓释凝胶制备方法
Kang et al. Mechanical and biological evaluation of lattice structured hydroxyapatite scaffolds produced via stereolithography additive manufacturing
WO2014066884A1 (en) Silk-based fabrication techniques to prepare high strength calcium phosphate ceramic scaffolds
CN104826171A (zh) 一种多尺度仿生人工骨支架的增材制造方法
CN109498844B (zh) 一种低成本制备高复合孔隙率骨组织支架材料的方法
CN109400179B (zh) 一种制备宏观与微观结构皆可控的材料的方法
CN109809811B (zh) 一种纳米/微米多级孔结构的生物活性陶瓷支架及其制备方法
CN105311673A (zh) 3d打印介孔生物活性玻璃改性的生物陶瓷支架及其制备方法和用途
CN104606712A (zh) 一种具有贯通孔结构的仿生生物陶瓷及其制备方法和应用
Peng et al. Preparation of highly porous interconnected poly (lactic acid) scaffolds based on a novel dynamic elongational flow procedure
Cardon et al. Design and fabrication methods for biocomposites
CN113101410A (zh) 一种具有均匀中孔的三维连通多级孔结构的磷酸三钙支架及其制备方法和应用
Zhao et al. 3D printing of well dispersed electrospun PLGA fiber toughened calcium phosphate scaffolds for osteoanagenesis
Cidonio et al. 3D printing of biphasic inks: beyond single-scale architectural control
NL2023794B1 (en) Porous Nano-hydroxyapatite Microsphere with High Porosity and a Preparation Method Thereof
Roozbahani et al. Dexamethasone loaded Laponite®/porous calcium phosphate cement for treatment of bone defects
Zhang et al. Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing
CN116763980B (zh) 一种磷酸盐基药物缓释载体及其制备方法
Ge et al. Mechanical properties and biocompatibility of MgO/Ca3 (PO4) 2 composite ceramic scaffold with high MgO content based on digital light processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant