CN116763357A - An in-body navigation method for intravascular ultrasound probe - Google Patents
An in-body navigation method for intravascular ultrasound probe Download PDFInfo
- Publication number
- CN116763357A CN116763357A CN202310664960.7A CN202310664960A CN116763357A CN 116763357 A CN116763357 A CN 116763357A CN 202310664960 A CN202310664960 A CN 202310664960A CN 116763357 A CN116763357 A CN 116763357A
- Authority
- CN
- China
- Prior art keywords
- ivus
- mpi
- subsystem
- probe
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002608 intravascular ultrasound Methods 0.000 title claims abstract description 76
- 239000000523 sample Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 239000011248 coating agent Substances 0.000 claims abstract description 10
- 238000000576 coating method Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 10
- 230000005284 excitation Effects 0.000 claims description 18
- 238000002604 ultrasonography Methods 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 8
- 230000002792 vascular Effects 0.000 claims description 6
- 241001465754 Metazoa Species 0.000 claims description 5
- 238000002583 angiography Methods 0.000 claims description 4
- 230000005865 ionizing radiation Effects 0.000 abstract description 8
- 230000006378 damage Effects 0.000 abstract description 6
- 239000006249 magnetic particle Substances 0.000 abstract description 5
- 230000001575 pathological effect Effects 0.000 abstract description 4
- 208000019553 vascular disease Diseases 0.000 abstract description 2
- 239000003550 marker Substances 0.000 abstract 1
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000012285 ultrasound imaging Methods 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 208000014387 congenital coronary artery anomaly Diseases 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 201000011639 coronary artery anomaly Diseases 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0891—Clinical applications for diagnosis of blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4245—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2068—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Vascular Medicine (AREA)
- Robotics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本发明公开了一种基于磁粒子成像(Magneticparticleimaging,MPI)技术的血管内超声(IVUS)探头在体导航方法。本发明利用MPI对超顺磁性材料的快速成像方法,使用MPI技术导航带有磁性标记物的血管内IVUS探头实现无电离辐射伤害的血管内探测。实现本发明所述方法的装置由改造的IVUS子系统、MPI子系统和控制子系统组成。IVUS探头的端点或其它可用于标记探头位置的部位被涂上超顺磁性涂层,通过MPI子系统对探头标记物的实时成像,实现对IVUS探头的准确定位和血管内导航。控制子系统不仅控制MPI子系统和IVUS子系统的成像过程,也实时地处理MPI子系统和IVUS子系统的探测信号,并用以显示MPI和IVUS的影像,以便直观有效地导航IVUS探头的。本发明所述方法可实现无电离辐射伤害的IVUS血管探测,在血管疾病病理研究中有潜在应用价值。The invention discloses an intravascular ultrasound (IVUS) probe in-body navigation method based on magnetic particle imaging (Magneticparticle Imaging, MPI) technology. The present invention utilizes MPI's rapid imaging method for superparamagnetic materials, and uses MPI technology to navigate intravascular IVUS probes with magnetic markers to achieve intravascular detection without ionizing radiation damage. The device for implementing the method of the present invention consists of a modified IVUS subsystem, an MPI subsystem and a control subsystem. The endpoint of the IVUS probe or other parts that can be used to mark the position of the probe are coated with a superparamagnetic coating, and the MPI subsystem performs real-time imaging of the probe marker to achieve accurate positioning of the IVUS probe and intravascular navigation. The control subsystem not only controls the imaging process of the MPI subsystem and IVUS subsystem, but also processes the detection signals of the MPI subsystem and IVUS subsystem in real time, and is used to display the MPI and IVUS images in order to intuitively and effectively navigate the IVUS probe. The method of the present invention can realize IVUS blood vessel detection without ionizing radiation damage, and has potential application value in pathological research of vascular diseases.
Description
技术领域Technical field
本发明属于组织成像领域,具体涉及一种基于磁粒子成像技术的血管内超声探头导航方法。The invention belongs to the field of tissue imaging, and specifically relates to an intravascular ultrasound probe navigation method based on magnetic particle imaging technology.
背景技术Background technique
血管内超声(IVUS)是将超声换能器置于血管内并从血管内部进行超声成像的技术。与其它血管内成像方式相比,IVUS成像提供了足够的空间分辨率和成像深度,可以精确地显示冠状动脉异常。IVUS图像提供的动脉壁影像包含了形态学和病理学特征,可以用于评估血管官腔面积、斑块大小、分布和组成成分等,因此,IVUS被广泛用于心血管疾病病理研究及临床诊断。在心血管疾病病理研究中,实验动物模型(如:大鼠、兔子、猪等)需要被注射碘造影剂,然后使用X射线探测IVUS探头在血管中的位置并依此对IVUS探头进行导航。然而,X射线的照射会对实验操作人员以及动物造成伤害,提高其白血病、甲状腺恶性肿瘤等癌症的发病率。Intravascular ultrasound (IVUS) is a technology that places an ultrasound transducer inside a blood vessel and performs ultrasound imaging from inside the blood vessel. Compared with other intravascular imaging modalities, IVUS imaging provides sufficient spatial resolution and imaging depth to accurately display coronary artery abnormalities. The arterial wall images provided by IVUS images include morphological and pathological characteristics, which can be used to evaluate vessel lumen area, plaque size, distribution and composition. Therefore, IVUS is widely used in pathological research and clinical diagnosis of cardiovascular diseases. In the study of cardiovascular disease pathology, experimental animal models (such as rats, rabbits, pigs, etc.) need to be injected with iodinated contrast agents, and then use X-rays to detect the position of the IVUS probe in the blood vessel and navigate the IVUS probe accordingly. However, X-ray exposure can cause harm to experimental operators and animals, and increase the incidence of cancers such as leukemia and thyroid malignant tumors.
MPI是利用超顺磁性物质(如超顺磁性氧化铁颗粒,SPIO)在变化磁场中的非线性响应定量探测该物质空间分布的技术。MPI具有:成像速度快、无成像深度限制、高敏度和成像过程中无电离辐射等优点。基于磁粒子成像技术实施IVUS探头的血管内导航可实现无电离辐射的IVUS成像,从而在使用IVUS进行血管疾病病理研究过程中,可以避免电离辐射对实验操作人员和实验动物的伤害。MPI is a technology that utilizes the nonlinear response of superparamagnetic substances (such as superparamagnetic iron oxide particles, SPIO) in changing magnetic fields to quantitatively detect the spatial distribution of the substance. MPI has the advantages of fast imaging speed, no imaging depth limit, high sensitivity, and no ionizing radiation during the imaging process. The implementation of intravascular navigation of IVUS probes based on magnetic particle imaging technology can achieve IVUS imaging without ionizing radiation, thereby avoiding the harm of ionizing radiation to experimental operators and experimental animals during the use of IVUS for pathological research on vascular diseases.
发明内容Contents of the invention
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。The following is an overview of the topics described in detail in this article. This summary is not intended to limit the scope of the claims.
为了在无电离辐射伤害的条件下完成IVUS探头的血管内导航,本发明提供一种基于磁粒子成像(MPI)技术的IVUS探头在体导航方法。通过MPI的血管造影可视化血管分布及病灶位置,同时使用MPI探测并定位涂有超顺磁性涂层的在体IVUS探头,实现MPI对血管内IVUS探头直观且无电离辐射地导航;In order to complete the intravascular navigation of the IVUS probe without ionizing radiation damage, the present invention provides an IVUS probe in-body navigation method based on magnetic particle imaging (MPI) technology. Visualize the blood vessel distribution and lesion location through MPI angiography, and use MPI to detect and position the in-vivo IVUS probe coated with superparamagnetic coating to achieve intuitive and ionizing radiation-free navigation of the intravascular IVUS probe by MPI;
本发明的一个目的在于提出一种基于MPI技术的IVUS探头在体导航系统;One purpose of the present invention is to propose an IVUS probe in-body navigation system based on MPI technology;
本发明的基于MPI技术的IVUS探头在体导航系统包括:IVUS子系统、MPI子系统和IVUS与MPI控制子系统。The IVUS probe in-body navigation system based on MPI technology of the present invention includes: IVUS subsystem, MPI subsystem and IVUS and MPI control subsystem.
IVUS子系统包括:超声探头、发射电路、接收电路和导管;The IVUS subsystem includes: ultrasound probe, transmitting circuit, receiving circuit and catheter;
所述超声探头包含超声换能器;所述超声探头表面涂有超顺磁性涂层材料,用以MPI子系统对所述超声探头的探测与定位;The ultrasonic probe includes an ultrasonic transducer; the surface of the ultrasonic probe is coated with a superparamagnetic coating material for detection and positioning of the ultrasonic probe by the MPI subsystem;
在本发明的一个实例中,所述的超顺磁性涂层材料的制备方法为:将聚乙烯醇(PVA)溶液加热并搅拌12小时以上;该溶液冷却到室温后,加入二甲基亚砜(dimethylsulfoxide)和超顺磁性氧化铁(SPIO),并在室温下搅拌;然后,将反应的混合溶液进行透析,并将透析液与异丙醇混合;使用磁体分离该混合溶液中的含铁物质与不含铁的杂质;最后,将分离的含铁部分掺入到清漆中;In one example of the present invention, the preparation method of the superparamagnetic coating material is: heating and stirring the polyvinyl alcohol (PVA) solution for more than 12 hours; after the solution is cooled to room temperature, dimethyl sulfoxide is added (dimethylsulfoxide) and superparamagnetic iron oxide (SPIO), and stir at room temperature; then, the reaction mixed solution is dialyzed, and the dialysate is mixed with isopropyl alcohol; a magnet is used to separate the iron-containing substances in the mixed solution with non-iron impurities; finally, the separated iron-containing fraction is incorporated into the varnish;
所述发射电路激励所述超声探头向被检测动物的血管管腔和管壁发射超声波;The transmitting circuit excites the ultrasonic probe to transmit ultrasonic waves to the vascular lumen and wall of the animal being detected;
所述接收电路控制所述超声探头接收由所述血管管腔和管壁返回的超声波的回波,获得超声回波信号;The receiving circuit controls the ultrasonic probe to receive the echo of the ultrasonic wave returned from the lumen and wall of the blood vessel to obtain an ultrasonic echo signal;
所述导管将超声探头送入血管内,并到达目标探测位置;The catheter sends the ultrasound probe into the blood vessel and reaches the target detection position;
MPI子系统包括:信号发生器、功率放大器、共振电路、带通滤波器、第一永磁体、第二永磁体、第一扫描线圈、第二扫描线圈、第三扫描线圈、第四扫描线圈、激励线圈、接收线圈、信号放大器和低通滤波器;其中,第一永磁体和第二永磁体同极相向放置,在接收线圈中心位置产生无磁场点,用于编码超顺磁性物质的空间位置;信号发生器产生1个高频的正弦交流电和2个低频的正弦交流电,并分别通过功率放大器放大,高频交流电先后通过共振电路和带通滤波器进入激励线圈产生高频的激励磁场,用于激励超顺磁性物质的非线性响应信号;第一扫描线圈和第三扫描线圈串联,接入低频的正弦交流电,用于无磁场点在水平方向的扫描;第二扫描线圈和第四扫描线圈串联,接入低频的正弦交流电,用于无磁场点在垂直方向的扫描;接收线圈放置在两个永磁体之间,用以探测超顺磁性物质在无磁场点处对激励磁场的非线性响应;该非线性响应产生的感应电流通过信号放大器放大,并经过陷波滤波器和低通滤波器后,被数据采集卡采集;陷波滤波器用以降低激励频率的信号噪音;低通滤波器用以降低高频的信号噪音;The MPI subsystem includes: signal generator, power amplifier, resonant circuit, bandpass filter, first permanent magnet, second permanent magnet, first scan coil, second scan coil, third scan coil, fourth scan coil, Excitation coil, receiving coil, signal amplifier and low-pass filter; among them, the first permanent magnet and the second permanent magnet are placed with the same polarity facing each other to generate a non-magnetic field point at the center of the receiving coil, which is used to encode the spatial position of the superparamagnetic substance. ; The signal generator generates one high-frequency sinusoidal alternating current and two low-frequency sinusoidal alternating currents, which are amplified by power amplifiers respectively. The high-frequency alternating current enters the excitation coil through the resonance circuit and the band-pass filter to generate a high-frequency excitation magnetic field. It is used to excite the nonlinear response signal of superparamagnetic substances; the first scanning coil and the third scanning coil are connected in series and connected to low-frequency sinusoidal alternating current for scanning of non-magnetic field points in the horizontal direction; the second scanning coil and the fourth scanning coil Series connection, connected to low-frequency sinusoidal alternating current, used to scan the non-magnetic field point in the vertical direction; the receiving coil is placed between two permanent magnets to detect the nonlinear response of superparamagnetic material to the excitation magnetic field at the non-magnetic field point. ; The induced current generated by the nonlinear response is amplified by the signal amplifier, and is collected by the data acquisition card after passing through the notch filter and low-pass filter; the notch filter is used to reduce the signal noise at the excitation frequency; the low-pass filter is used to Reduce high-frequency signal noise;
IVUS与MPI控制子系统包括:终端电脑和多通道数据采集卡;The IVUS and MPI control subsystem includes: terminal computer and multi-channel data acquisition card;
所述多通道数据采集卡包括至少2个接收通道和1个触发输出通道;其中,2个接收通道分别用以接收MPI子系统中的接收线圈探测信号和IVUS子系统中的超声探头探测信号;触发输出通道用以向IVUS子系统发出触发信号,实现对IVUS子系统的精准控制;The multi-channel data acquisition card includes at least 2 receiving channels and 1 trigger output channel; wherein, the 2 receiving channels are used to receive the receiving coil detection signal in the MPI subsystem and the ultrasonic probe detection signal in the IVUS subsystem respectively; The trigger output channel is used to send trigger signals to the IVUS subsystem to achieve precise control of the IVUS subsystem;
所述终端电脑对所述超声回波信号进行处理,以获得并显示被检测动物的血管超声图像;The terminal computer processes the ultrasonic echo signal to obtain and display the vascular ultrasound image of the animal being detected;
在本发明的一个实例中,所述的MPI子系统中的信号发生器通过集成在IVUS与MPI控制子系统中的数据采集卡上的3个模拟输出通道实现,以便同步控制;In one example of the present invention, the signal generator in the MPI subsystem is implemented through three analog output channels integrated on the data acquisition card in the IVUS and MPI control subsystems for synchronous control;
在本发明的一个实例中,数据采集卡接收到来自终端电脑的调控指令后,集成在数据采集卡上的3个信号发生器在指定的频率与振幅上,分别发出1个高频的激发电流和2个低频的扫描电流;同时,触发输出通道向IVUS子系统发出触发信号;IVUS子系统接收到触发信号后开始激励探头并产生超声波;2个接收通道同步开始分别采集MPI与IVUS子系统的探测信号;采集的信号储存到电脑缓存中等待图像重建;In one example of the present invention, after the data acquisition card receives the control instruction from the terminal computer, the three signal generators integrated on the data acquisition card respectively send out a high-frequency excitation current at the specified frequency and amplitude. and 2 low-frequency scanning currents; at the same time, the trigger output channel sends a trigger signal to the IVUS subsystem; after receiving the trigger signal, the IVUS subsystem begins to excite the probe and generate ultrasonic waves; the two receiving channels simultaneously start to collect the data of the MPI and IVUS subsystems respectively. Detect signals; the collected signals are stored in the computer cache and await image reconstruction;
所述的IVUS图像重建为标准的超声成像信号和图像处理流程,此处不再赘述;The IVUS image reconstruction is a standard ultrasound imaging signal and image processing process, which will not be described again here;
所述的MPI图像重建为常见的X space或系统矩阵重建方法,此处不再赘述;The MPI image reconstruction is a common X space or system matrix reconstruction method, which will not be described again here;
本发明的另一个目的在于提供一种基于MPI技术的IVUS探头在体导航方法,包含以下步骤:Another object of the present invention is to provide an IVUS probe in-body navigation method based on MPI technology, which includes the following steps:
步骤1,将探头通过导管放入到血管内,并让探头处在MPI子系统的成像视野中;Step 1: Place the probe into the blood vessel through the catheter and place the probe in the imaging field of view of the MPI subsystem;
步骤2,开始进行IVUS子系统的实时成像;并且,通过MPI成像技术进行血管造影以及血管内IVUS探头的超顺磁性涂层信号的探测;Step 2: Start real-time imaging of the IVUS subsystem; and use MPI imaging technology to detect angiography and the superparamagnetic coating signal of the intravascular IVUS probe;
步骤3:使用步骤2得到的MPI信号进行三维图像重建,同时获得血管影像和IVUS探头所在位置;Step 3: Use the MPI signal obtained in step 2 to perform three-dimensional image reconstruction, and obtain the vascular image and the location of the IVUS probe at the same time;
步骤4:基于步骤3中获得的血管影像和IVUS探头所在的即时空间位置,将IVUS探头导航至血管目标探测位置;Step 4: Based on the blood vessel image obtained in step 3 and the real-time spatial position of the IVUS probe, navigate the IVUS probe to the blood vessel target detection position;
在本发明的一个实例中,所述血管造影方法为:将稀释的SPIO溶液注入到血管中,使用MPI子系统中的高频正弦交变磁场激励SPIO粒子,通过MPI子系统的接收线圈接收SPIO在交变磁场中的非线性响应信号,再通过MPI子系统的空间扫描实现SPIO的空间定位;经过MPI子系统的图像重建后,血管中的SPIO被MPI影像追踪,SPIO溶液在血管中的流动轨迹即为血管影像;In one example of the present invention, the angiography method is: inject dilute SPIO solution into the blood vessel, use the high-frequency sinusoidal alternating magnetic field in the MPI subsystem to excite the SPIO particles, and receive the SPIO through the receiving coil of the MPI subsystem The nonlinear response signal in the alternating magnetic field is then used to realize the spatial positioning of SPIO through the spatial scanning of the MPI subsystem; after image reconstruction by the MPI subsystem, the SPIO in the blood vessel is tracked by the MPI image, and the flow of SPIO solution in the blood vessel The trajectory is the blood vessel image;
本发明的优点:该方法可在无电离辐射(无X射线)的情况下实现对IVUS探头的在体导航,避免了IVUS使用过程中电离辐射对实验操作人员和实验动物的伤害。Advantages of the present invention: This method can realize in-body navigation of the IVUS probe without ionizing radiation (no X-rays), and avoids harm to experimental operators and experimental animals caused by ionizing radiation during IVUS use.
附图说明Description of drawings
图1是一种基于MPI技术的IVUS探头在体导航系统的一个实施的示意图;Figure 1 is a schematic diagram of an implementation of an IVUS probe in-body navigation system based on MPI technology;
图2是本发明的基于MPI技术的IVUS探头在体导航系统的结构框图;Figure 2 is a structural block diagram of the IVUS probe in-body navigation system based on MPI technology of the present invention;
图3是本发明的基于MPI技术的IVUS探头在体导航系统的控制子系统与集成在该子系统中的MPI信号发生器的结构框图。Figure 3 is a structural block diagram of the control subsystem of the IVUS probe in-body navigation system based on MPI technology of the present invention and the MPI signal generator integrated in the subsystem.
具体实施方式Detailed ways
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。基于本发明中描述的本发明实施例,技术人员在没有付出创造性劳动的情况下所得到的所有其他实施例都应落入本发明的保护范围之内。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。The present application will be further described in detail below in conjunction with the accompanying drawings and examples. It can be understood that the specific embodiments described here are only used to explain the relevant invention, but not to limit the invention. Based on the embodiments of the present invention described in the present invention, all other embodiments obtained by skilled persons without exerting creative efforts should fall within the protection scope of the present invention. It should also be noted that, for convenience of description, only the parts related to the invention are shown in the drawings.
如图1和2所示,本实施例的基于MPI技术的IVUS探头在体导航系统包括:IVUS子系统、MPI子系统和控制子系统;As shown in Figures 1 and 2, the IVUS probe in-body navigation system based on MPI technology in this embodiment includes: IVUS subsystem, MPI subsystem and control subsystem;
如图1所示,IVUS子系统包括:超声探头105、发射电路101、接收电路103和导管104。除此之外,还可以包括发射/接收选择开关102。As shown in Figure 1, the IVUS subsystem includes: an ultrasound probe 105, a transmitting circuit 101, a receiving circuit 103 and a catheter 104. In addition, a transmit/receive selection switch 102 may also be included.
超声探头105是任意用于血管内超声检测的探头。其中,超声探头105声头部分可以是多个超声换能器组成的阵列,如围绕导管轴线的圆形阵列;超声换能器用于根据激励电信号发射超声波束,或将接收到的超声回波转换为电信号,从而实现超声探测波的产生以及回波信号的接收;超声探头105端点位置的表面涂有超顺磁性涂层材料,用以MPI子系统对所述超声探头的探测与定位;The ultrasound probe 105 is any probe used for intravascular ultrasound detection. Among them, the acoustic head part of the ultrasonic probe 105 can be an array composed of multiple ultrasonic transducers, such as a circular array surrounding the axis of the catheter; the ultrasonic transducer is used to transmit an ultrasonic beam according to the excitation electrical signal, or to transmit the received ultrasonic echo Convert to electrical signals to achieve the generation of ultrasonic detection waves and the reception of echo signals; the surface of the endpoint position of the ultrasonic probe 105 is coated with a superparamagnetic coating material, which is used by the MPI subsystem to detect and position the ultrasonic probe;
导管104用于将超声探头105送入血管内,并连接超声探头105与发射/接收选择开关102;The catheter 104 is used to send the ultrasound probe 105 into the blood vessel and connect the ultrasound probe 105 to the transmit/receive selection switch 102;
发射电路101用于根据控制子系统的控制产生发射序列,发射序列用于控制单个或多个超声换能器向组织发射超声波。The transmitting circuit 101 is used to generate a transmitting sequence according to the control of the control subsystem, and the transmitting sequence is used to control a single or multiple ultrasonic transducers to transmit ultrasonic waves to the tissue.
接收电路103用于接收从探头105处传回的超声回波的电信号,并将该超声回波信号送入控制子系统中。The receiving circuit 103 is used to receive the electrical signal of the ultrasonic echo transmitted back from the probe 105, and send the ultrasonic echo signal to the control subsystem.
如图1所示,MPI子系统包括:第一扫描线圈106、第一永磁体107、第二扫描线圈108、激励线圈109、第三扫描线圈110、第四扫描线圈111、第二永磁体112、和接收线圈113;其中,第一永磁体107和第二永磁体112同极相向放置,在接收线圈113中心位置产生无磁场点,用于编码超顺磁性物质的空间位置;第一扫描线圈106和第三扫描线圈110串联,接入低频的正弦交流电,用于无磁场点在水平方向的扫描;第二扫描线圈108和第四扫描线圈111串联,接入低频的正弦交流电,用于无磁场点在垂直方向的扫描;激励线圈109接入高频的正弦交流电,用于激励超顺磁性物质的非线性响应信号;接收线圈113用于接收超顺磁性物质的响应信号。As shown in Figure 1, the MPI subsystem includes: a first scan coil 106, a first permanent magnet 107, a second scan coil 108, an excitation coil 109, a third scan coil 110, a fourth scan coil 111, and a second permanent magnet 112 , and the receiving coil 113; wherein, the first permanent magnet 107 and the second permanent magnet 112 are placed with the same polarity facing each other, generating a non-magnetic field point at the center of the receiving coil 113, which is used to encode the spatial position of the superparamagnetic material; the first scanning coil The second scanning coil 108 and the fourth scanning coil 111 are connected in series and connected to low-frequency sinusoidal alternating current for horizontal scanning of magnetic field-free points. The magnetic field points are scanned in the vertical direction; the excitation coil 109 is connected to a high-frequency sinusoidal alternating current to excite the nonlinear response signal of the superparamagnetic material; the receiving coil 113 is used to receive the response signal of the superparamagnetic material.
如图3所示,控制子系统包括:终端电脑PC和多通道数据采集卡DAQ;其中,终端电脑连接至多通道数据采集卡DAQ;多通道数据采集卡DAQ包括第一模拟接收通道IO0、第二模拟接收通道IO1和触发输出通道Tri,还可以包括第一至第三模拟输出通道AO0~IO2;触发输出通道Tri连接至IVUS发射电路的触发端,用以IVUS子系统与MPI子系统同步运行的调控;第一模拟接收通道IO0和第二模拟接收通道IO1分别与MPI子系统的接收线圈113和IVUS子系统的接收电路103相连,分别用以接收MPI接收线圈信号和IVUS探头探测信号;第一至第三模拟输出通道AO0~IO2用为MPI子系统的信号发生器;第一至第三模拟输出通道AO0~IO2分别连接至MPI子系统的功率放大器,分别用以产生MPI激励线圈、MPI的Y轴扫描线圈和MPI的Z轴扫描线圈的正弦交流电;多通道数据采集卡DAQ接收到来自终端电脑PC的调控指令后,第一至第三模拟输出通道AO0~IO2在指定的频率与振幅上,分别发出1个高频的激发电流和2个低频的扫描电流;第一模拟接收通道IO0和第二模拟接收通道IO1同步开始分别采集MPI与IVUS子系统的信号;采集的信号储存到终端电脑PC缓存中等待图像重建。As shown in Figure 3, the control subsystem includes: terminal computer PC and multi-channel data acquisition card DAQ; among them, the terminal computer is connected to the multi-channel data acquisition card DAQ; the multi-channel data acquisition card DAQ includes the first analog receiving channel IO0, the second The analog receiving channel IO1 and the trigger output channel Tri can also include the first to third analog output channels AO0 ~ IO2; the trigger output channel Tri is connected to the trigger end of the IVUS transmitting circuit for the synchronous operation of the IVUS subsystem and the MPI subsystem. Control; the first analog receiving channel IO0 and the second analog receiving channel IO1 are respectively connected to the receiving coil 113 of the MPI subsystem and the receiving circuit 103 of the IVUS subsystem, and are respectively used to receive the MPI receiving coil signal and the IVUS probe detection signal; first The third analog output channels AO0 ~ IO2 are used as signal generators of the MPI subsystem; the first to third analog output channels AO0 ~ IO2 are connected to the power amplifiers of the MPI subsystem respectively, and are used to generate MPI excitation coils and MPI signals respectively. Sinusoidal alternating current of the Y-axis scanning coil and the Z-axis scanning coil of MPI; after the multi-channel data acquisition card DAQ receives the control command from the terminal computer PC, the first to third analog output channels AO0~IO2 operate at the specified frequency and amplitude , sending out one high-frequency excitation current and two low-frequency scanning currents respectively; the first analog receiving channel IO0 and the second analog receiving channel IO1 start to simultaneously collect the signals of the MPI and IVUS subsystems respectively; the collected signals are stored in the terminal computer Waiting for image reconstruction in PC cache.
本实施例的基于MPI技术的IVUS探头在体导航,包括以下步骤:The in-body navigation of the IVUS probe based on MPI technology in this embodiment includes the following steps:
(1)将探头105通过导管104放入到血管内,并让探头处在MPI子系统的成像视野中;同时,开始进行IVUS子系统的实时成像;(1) Place the probe 105 into the blood vessel through the catheter 104, and place the probe in the imaging field of view of the MPI subsystem; at the same time, start real-time imaging of the IVUS subsystem;
(2)将稀释的SPIO溶液注入到血管中,使用MPI子系统中的高频正弦交变磁场同时激励SPIO粒子和血管内探头105的超顺磁性涂层,并通过接收线圈113同时接收SPIO和探头105的超顺磁性涂层在交变磁场中的非线性响应信号;低频的正弦交流电接入到第一扫描线圈106和第三扫描线圈110中,产生水平方向的交变磁场,实现水平方向无磁场点的扫描;低频的正弦交流电接入到第二扫描线圈108和第四扫描线圈111中,产生垂直方向的交变磁场,实现垂直方向无磁场点的扫描;MPI子系统中的激励线圈109、第一扫描线圈106、第二扫描线圈108、第三扫描线圈110和第四扫描线圈111产生的磁场相互结合,实现无磁场点的空间扫描与超顺磁性物质的非线性响应信号的激励;(2) Inject the diluted SPIO solution into the blood vessel, use the high-frequency sinusoidal alternating magnetic field in the MPI subsystem to simultaneously excite the SPIO particles and the superparamagnetic coating of the intravascular probe 105, and simultaneously receive the SPIO and The nonlinear response signal of the superparamagnetic coating of the probe 105 in the alternating magnetic field; low-frequency sinusoidal alternating current is connected to the first scanning coil 106 and the third scanning coil 110 to generate a horizontal alternating magnetic field to realize the horizontal direction Scanning of points without a magnetic field; low-frequency sinusoidal alternating current is connected to the second scanning coil 108 and the fourth scanning coil 111 to generate an alternating magnetic field in the vertical direction to achieve scanning of points without a magnetic field in the vertical direction; the excitation coil in the MPI subsystem 109. The magnetic fields generated by the first scanning coil 106, the second scanning coil 108, the third scanning coil 110 and the fourth scanning coil 111 are combined with each other to realize spatial scanning of magnetic field-free points and excitation of nonlinear response signals of superparamagnetic substances. ;
(3):使用接受线圈113在(2)中测得的响应信号,通过标准的MPI系统矩阵图像重建方法实现MPI子系统的三维图像重建,从而同时获得血管影像和探头105所在位置;(3): Use the response signal measured by the receiving coil 113 in (2) to realize the three-dimensional image reconstruction of the MPI subsystem through the standard MPI system matrix image reconstruction method, thereby obtaining the blood vessel image and the position of the probe 105 at the same time;
(4):基于步骤(3)中获得的血管影像和探头105所在的即时空间位置,将IVUS探头105导航至血管目标探测位置。(4): Based on the blood vessel image obtained in step (3) and the real-time spatial position of the probe 105, navigate the IVUS probe 105 to the blood vessel target detection position.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210699349.3A CN115089216A (en) | 2022-06-20 | 2022-06-20 | An in vivo navigation method for an intravascular ultrasound probe |
CN2022106993493 | 2022-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116763357A true CN116763357A (en) | 2023-09-19 |
Family
ID=83293175
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210699349.3A Pending CN115089216A (en) | 2022-06-20 | 2022-06-20 | An in vivo navigation method for an intravascular ultrasound probe |
CN202310664960.7A Pending CN116763357A (en) | 2022-06-20 | 2023-06-07 | An in-body navigation method for intravascular ultrasound probe |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210699349.3A Pending CN115089216A (en) | 2022-06-20 | 2022-06-20 | An in vivo navigation method for an intravascular ultrasound probe |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN115089216A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117572309A (en) * | 2023-10-20 | 2024-02-20 | 暨南大学附属第一医院(广州华侨医院) | Magnetic particle spectrometer, quantitative method and storage medium based on harmonic phase deflection |
-
2022
- 2022-06-20 CN CN202210699349.3A patent/CN115089216A/en active Pending
-
2023
- 2023-06-07 CN CN202310664960.7A patent/CN116763357A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117572309A (en) * | 2023-10-20 | 2024-02-20 | 暨南大学附属第一医院(广州华侨医院) | Magnetic particle spectrometer, quantitative method and storage medium based on harmonic phase deflection |
CN117572309B (en) * | 2023-10-20 | 2024-04-09 | 暨南大学附属第一医院(广州华侨医院) | Magnetic particle spectrometer based on harmonic phase deflection, quantification method and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN115089216A (en) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6430498B2 (en) | System and method for mapping of ultrasonic shear wave elastography measurements | |
JP6994494B2 (en) | Elastography measurement system and its method | |
Fenster et al. | Three-dimensional ultrasound scanning | |
Leotta et al. | Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging | |
JP5530592B2 (en) | Storage method of imaging parameters | |
US20160095573A1 (en) | Ultrasonic diagnostic apparatus | |
CN102805621A (en) | Magnetic, acoustic and electric imaging system and imaging method | |
Curiel et al. | Progress in multimodality imaging: truly simultaneous ultrasound and magnetic resonance imaging | |
US9949723B2 (en) | Image processing apparatus, medical image apparatus and image fusion method for the medical image | |
JP3878462B2 (en) | Diagnostic imaging support system | |
US12345784B2 (en) | Portable handheld magnetic particle imaging | |
CN1168625A (en) | Medical diagnosis, treatment and imaging systems | |
US20100286526A1 (en) | Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus and ultrasonic image processing method | |
JP2014028132A (en) | Ultrasonic diagnostic apparatus and correction method for image data | |
JP6316995B2 (en) | Ultrasonic diagnostic apparatus and image data correction method | |
Tang et al. | Simultaneous ultrasound and MRI system for breast biopsy: compatibility assessment and demonstration in a dual modality phantom | |
CN116763357A (en) | An in-body navigation method for intravascular ultrasound probe | |
Lin et al. | A dual-modal imaging method combining ultrasound and electromagnetism for simultaneous measurement of tissue elasticity and electrical conductivity | |
US9591969B2 (en) | Patient positioning device, and medical imaging method and apparatus employing same | |
JP6176818B2 (en) | Ultrasonic diagnostic apparatus and coordinate conversion program | |
JP2003135458A (en) | Ultrasonic probe, ultrasonic imaging apparatus and imaging method | |
JP2009066409A (en) | Method and system for collecting a volume of interest based on position information | |
CN101672904B (en) | Probe for portable nuclear magnetic resonance (NMR) vessel detector | |
JP2022500136A (en) | Systems and methods for tracking tools in ultrasound images | |
CN201492418U (en) | Probes for MRI systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |