CN116754104A - 一种光纤光栅激光热场传感器及其应用方法 - Google Patents

一种光纤光栅激光热场传感器及其应用方法 Download PDF

Info

Publication number
CN116754104A
CN116754104A CN202311013014.2A CN202311013014A CN116754104A CN 116754104 A CN116754104 A CN 116754104A CN 202311013014 A CN202311013014 A CN 202311013014A CN 116754104 A CN116754104 A CN 116754104A
Authority
CN
China
Prior art keywords
fiber
laser
grating
thermal
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311013014.2A
Other languages
English (en)
Other versions
CN116754104B (zh
Inventor
宋志强
庄羽
尚盈
倪家升
张晓磊
赵庆超
杨元元
洪玉萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Institute of Shandong Academy of Science
Original Assignee
Laser Institute of Shandong Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Institute of Shandong Academy of Science filed Critical Laser Institute of Shandong Academy of Science
Priority to CN202311013014.2A priority Critical patent/CN116754104B/zh
Publication of CN116754104A publication Critical patent/CN116754104A/zh
Application granted granted Critical
Publication of CN116754104B publication Critical patent/CN116754104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/003Measuring quantity of heat for measuring the power of light beams, e.g. laser beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables

Abstract

本发明涉及热量测量技术领域,特别涉及一种光纤光栅激光热场传感器及其应用方法,半导体泵浦激光器经过波分复用器与均匀有源相移光纤光栅相连,均匀有源相移光纤光栅的后端熔接光热光纤,波分复用器的信号端连接光纤隔离器,光纤隔离器连接功率计或波长计。本发明的有益效果是:本发明的光纤光栅激光热场传感器是强度解调型传感器,相对波长解调灵敏度更高;利用光纤光栅激光器的剩余泵浦光作为光纤热线的激励源,仅在光纤光栅激光器后端熔接光热光纤构成,结构简单,可制作成探针传感器;易于通过改变封装材料和结构,调整传感器热容,适应不同灵敏度响应要求的热场变化检测。

Description

一种光纤光栅激光热场传感器及其应用方法
技术领域
本发明涉及热量测量技术领域,特别涉及一种光纤光栅激光热场传感器及其应用方法。
背景技术
光纤热线传感器具有动态响应快、抗干扰能力强、结构简单、测量距离远、适用场合多等很多独特的优势,已经成为光纤传感器领域一大研究热门。目前,常规的光纤热线传感器,一种是在倾斜光栅或长周期光栅外镀金属膜,利用光栅包层模辐照膜层发热构成光纤热线,另一种是在光热光纤上刻写光纤光栅,泵浦光加热光热光纤使得光栅波长变化构成。这些方法都是采用温度灵敏度较低(一般为10pm/℃)的光纤光栅作为传感元件,采用波长解调的方法进行温度场测量,限制了测量灵敏度的提升,无法适用于微弱变化的热场测量;在必须使用光纤光栅解调仪的同时,还需要额外的光源加热光纤热线,结构复杂且成本增加。
分布反馈光纤激光器是一种光纤光栅激光器,由刻写在有源光纤上的均匀相移光栅构成,具有极窄线宽和极强环境敏感性的特征,常通过波长相位解调的方式用作声波和振动信号传感器。光纤激光器优点之一是具有良好的散热性能,但反之温度场分布异常也会影响激光输出性能,尤其对短腔光纤光栅激光器。当光纤光栅激光器受外界温度场影响,光纤光栅周期均匀性改变时,会导致激光腔损耗变大,造成输出功率的明显下降。利用此特征,可以在光纤光栅激光器上连接光纤热线结构,构造成光纤激光热线式传感器,通过测量激光输出功率变化来反演环境热场变化。
为此,本申请设计了一种新型的光纤光栅激光热线式热场传感器。首先利用光纤热线在光纤光栅激光器上产生温度梯度,造成光纤光栅谐振腔啁啾效应,进而导致激光输出功率相对于常规状态明显降低。当外界气流或液流带走光纤热线热量时,温度梯度变小啁啾效应变弱,激光功率提高,通过测量激光功率变化反演环境热场变化。同时,通过测量激光波长信息,也可以直接测量所处环境温度情况。这为特殊工业生产过程和科研环境中对微弱热场变化的监测需求,提供了一种新的技术手段。
发明内容
本发明为了弥补现有技术中的不足,提供了一种光纤光栅激光热场传感器及其应用方法。
本发明是通过如下技术方案实现的:
一种光纤光栅激光热场传感器,包括均匀有源相移光纤光栅及连接在其后的光热光纤,所述均匀有源相移光纤光栅前端与波分复用器公共端相连,波分复用器泵浦端与半导体泵浦激光器相连,波分复用器的信号端连接光纤隔离器,光纤隔离器连接功率计或波长计,由此构成光纤光栅激光器结构;均匀有源相移光纤光栅的后端与光热光纤相连,构成光纤热线结构。
进一步地,为了更好的实现本发明,所述均匀有源相移光纤光栅在泵浦光作用下产生激光从波分复用器信号端经光纤隔离器输出,并由功率计或波长计测量记录;未被充分吸收的剩余泵浦光从均匀有源相移光纤光栅进入光热光纤,光热光纤吸收泵浦光后发热成为热源,热场会沿均匀有源相移光纤光栅按照热传导规律形成温度场梯度分布。
进一步地,为了更好的实现本发明,所述均匀有源相移光纤光栅为均匀掺铒相移光纤光栅,所述光热光纤为掺钴光纤,均匀掺铒相移光纤光栅和掺钴光纤共同封装在石英U型管中,构成光纤探针。
进一步地,为了更好的实现本发明,所述均匀有源相移光纤光栅可以是刻写在掺铒、镱、钬、铥等镧系稀土元素光纤上。
进一步地,为了更好的实现本发明,所述光热光纤可以是掺钴光纤及其他吸光发热型光纤。
进一步地,为了更好的实现本发明,所用半导体泵浦激光器为对应稀土元素激发波长和光热光纤敏感波长的激光器,所述波分复用器工作波长也与之对应。
进一步地,为了更好的实现本发明,在一定泵浦功率下,对光热光纤进行热场干扰,如将其放入气流或液流中,热量交换会使光纤热线及光纤光栅谐振腔热场梯度分布变弱,光纤光栅谐振腔热致啁啾效应相应减弱,激光输出功率趋于恢复到正常值。在此过程中,由功率计或波长计测量记录激光输出功率值和激光波长变化,进而可以反演推算光纤光栅激光热场传感器所处环境的热场变化,如气流速度、液流速度和液流温度等。
本发明的有益效果是:
本发明的光纤光栅激光热场传感器是强度解调型传感器,相对波长解调灵敏度更高;利用光纤光栅激光器的剩余泵浦光作为光纤热线的激励源,仅在光纤光栅激光器后端熔接光热光纤构成,结构简单,可制作成探针传感器;易于通过改变封装材料和结构,调整传感器热容,适应不同灵敏度响应要求的热场变化检测。
附图说明
图1为本发明的光纤光栅热场传感器结构示意图;
图2为本发明的光纤热线结构及其热梯度分布图;
图3为本发明的光纤光栅激光器输出功率随光栅啁啾率变化图。
图中,
1、半导体泵浦激光器,2、波分复用器,3、均匀有源相移光纤光栅,4、光纤隔离器,5、功率计或波长计,6、光热光纤。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1-图3为本发明的一种具体实施例,该实施例为一种掺铒分布反馈光纤激光热场传感器,980nm半导体泵浦激光器经980/1550波分复用器,与均匀掺铒相移光纤光栅相连,均匀掺铒相移光纤光栅在300mW泵浦光作用下产生约400uW 1550nm激光从波分复用器信号端经隔离器输出,进入功率计测量记录变化。约200mW未被吸收的剩余泵浦光从均匀掺铒相移光纤光栅进入1cm长掺钴光纤,掺钴光纤吸收泵浦光后发热成为热源,热场会沿均匀掺铒相移光纤光栅按照热传导规律形成温度场分布,如图2所示。均匀掺铒相移光纤光栅和掺钴光纤共同封装在石英U型管中,构成光纤探针。此时,受光纤光栅谐振腔热致啁啾效应调控,激光输出功率降至约100uW。
将光纤探针尾端放入待测气流环境,热量交换会使光纤热线温度降低,光纤光栅谐振腔热致啁啾效应相应减弱。气流速度越快,光纤热线散热越迅速,则光纤热线结构上的热场分布梯度越小,激光输出功率提高。通过测量激光输出功率变化,即可推算出光纤探针所处气流环境的气流流速。
不同泵浦功率下建立的热场梯度分布如图2所示,泵浦功率P1>P2>P3。在一定泵浦功率下,均匀有源相移光纤光栅会由于以图2所示的热场分布导致热致啁啾效应而不再是均匀光栅,周期性结构被破坏造成谐振腔损耗变大,激光输出功率降低。激光输出功率P与光纤光栅谐振腔的热致啁啾率C有对应关系,如图3所示,由此激光输出功率P也就与光热光纤构成的光纤热线温度有对应关系。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (4)

1.一种光纤光栅激光热场传感器,包括均匀有源相移光纤光栅(3)和光热光纤(6),其特征在于:
所述均匀有源相移光纤光栅(3)前端与波分复用器(2)公共端相连,波分复用器(2)泵浦端与半导体泵浦激光器(1)相连,波分复用器(2)的信号端连接光纤隔离器(4),光纤隔离器(4)连接功率计或波长计(5),由此构成光纤光栅激光器;均匀有源相移光纤光栅(3)的后端与光热光纤(6)熔接,构成光纤热线。
2.根据权利要求1所述的光纤光栅激光热场传感器,其特征在于:
所述均匀有源相移光纤光栅(3)在泵浦光作用下产生激光从波分复用器(2)信号端经光纤隔离器(4)输出,并由功率计或波长计(5)测量记录;未被充分吸收的剩余泵浦光从均匀有源相移光纤光栅(3)进入光热光纤(6),光热光纤(6)吸收泵浦光后发热成为热源,热场会沿均匀有源相移光纤光栅(3)按照热传导规律形成温度场梯度分布,导致光纤光栅激光谐振腔啁啾效应,进而导致所构成的光纤光栅激光器输出功率明显降低。
3.根据权利要求1所述的光纤光栅激光热场传感器,其特征在于:
所述均匀有源相移光纤光栅(3)为均匀掺铒相移光纤光栅,所述光热光纤(6)为掺钴光纤,均匀掺铒相移光纤光栅和掺钴光纤共同封装在石英U型管中,构成光纤探针。
4.一种光纤光栅激光热场传感器的应用方法,利用权利要求1-3任意一项所述的光纤光栅激光热场传感器,其特征在于,包括以下步骤:
S1,将光纤探针置于待测环境中,气流或液流造成的环境热交换会改变光纤探针中的光热光纤(6)的温度;
S2,光热光纤(6)的温度改变会影响均匀有源相移光纤光栅(3)上的温度场分布梯度,进而改变光纤光栅激光谐振腔的啁啾效应和光纤光栅激光器输出功率大小;
S3,由功率计或波长计(5)测量记录激光功率和波长数据变化,可测量待测环境热交换情况。
CN202311013014.2A 2023-08-14 2023-08-14 一种光纤光栅激光热场传感器及其应用方法 Active CN116754104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311013014.2A CN116754104B (zh) 2023-08-14 2023-08-14 一种光纤光栅激光热场传感器及其应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311013014.2A CN116754104B (zh) 2023-08-14 2023-08-14 一种光纤光栅激光热场传感器及其应用方法

Publications (2)

Publication Number Publication Date
CN116754104A true CN116754104A (zh) 2023-09-15
CN116754104B CN116754104B (zh) 2023-11-03

Family

ID=87955482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311013014.2A Active CN116754104B (zh) 2023-08-14 2023-08-14 一种光纤光栅激光热场传感器及其应用方法

Country Status (1)

Country Link
CN (1) CN116754104B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117007173A (zh) * 2023-10-07 2023-11-07 山东省科学院激光研究所 一种用于管道泄漏监测的光纤声波传感器

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803607A (en) * 1994-01-26 1998-09-08 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Method and apparatus for measurement of unsteady gas temperatures
US6018160A (en) * 1997-03-22 2000-01-25 British Aerospace Public Limited Company Apparatus for sensing temperature and/or strain in an object with optical fiber Bragg gratings
US20030142977A1 (en) * 2000-06-02 2003-07-31 Murgatroyd Ian John Apparatus for interrogating an optical signal
CN1540429A (zh) * 2003-10-30 2004-10-27 上海交通大学 光纤光栅增强的l波段双通掺铒光纤放大器
US20130014577A1 (en) * 2011-07-12 2013-01-17 The Hong Kong Polytechnic University Sensor for measuring flow speed of a fluid
CN102981019A (zh) * 2012-10-18 2013-03-20 中国计量学院 一种基于倾斜光纤布拉格光栅的光纤热线式风力计
CN103148902A (zh) * 2013-01-29 2013-06-12 中国计量学院 一种基于掺杂光纤光栅的光纤流量传感器
CN108414036A (zh) * 2018-03-19 2018-08-17 山东省科学院激光研究所 一种准分布式流速监测系统
EP3502629A1 (de) * 2017-12-20 2019-06-26 Innogy SE System und verfahren zur überwachung des anpressdrucks einer kraft- und/oder formschlüssigen verbindung
CN110398610A (zh) * 2019-08-29 2019-11-01 山东省科学院激光研究所 流速检测方法及光纤热线流速传感器探头
CN110579249A (zh) * 2019-09-17 2019-12-17 西北大学 一种基于掺钴多模光纤光栅热线式流量传感器及制造方法
CN113410736A (zh) * 2021-05-24 2021-09-17 华南理工大学 一种可调谐单频脉冲光纤激光器
CN114675053A (zh) * 2022-02-23 2022-06-28 广东工业大学 基于啁啾光纤光栅的强度解调型风速传感器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803607A (en) * 1994-01-26 1998-09-08 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Method and apparatus for measurement of unsteady gas temperatures
US6018160A (en) * 1997-03-22 2000-01-25 British Aerospace Public Limited Company Apparatus for sensing temperature and/or strain in an object with optical fiber Bragg gratings
US20030142977A1 (en) * 2000-06-02 2003-07-31 Murgatroyd Ian John Apparatus for interrogating an optical signal
CN1540429A (zh) * 2003-10-30 2004-10-27 上海交通大学 光纤光栅增强的l波段双通掺铒光纤放大器
US20130014577A1 (en) * 2011-07-12 2013-01-17 The Hong Kong Polytechnic University Sensor for measuring flow speed of a fluid
CN102981019A (zh) * 2012-10-18 2013-03-20 中国计量学院 一种基于倾斜光纤布拉格光栅的光纤热线式风力计
CN103148902A (zh) * 2013-01-29 2013-06-12 中国计量学院 一种基于掺杂光纤光栅的光纤流量传感器
EP3502629A1 (de) * 2017-12-20 2019-06-26 Innogy SE System und verfahren zur überwachung des anpressdrucks einer kraft- und/oder formschlüssigen verbindung
CN108414036A (zh) * 2018-03-19 2018-08-17 山东省科学院激光研究所 一种准分布式流速监测系统
CN110398610A (zh) * 2019-08-29 2019-11-01 山东省科学院激光研究所 流速检测方法及光纤热线流速传感器探头
CN110579249A (zh) * 2019-09-17 2019-12-17 西北大学 一种基于掺钴多模光纤光栅热线式流量传感器及制造方法
CN113410736A (zh) * 2021-05-24 2021-09-17 华南理工大学 一种可调谐单频脉冲光纤激光器
CN114675053A (zh) * 2022-02-23 2022-06-28 广东工业大学 基于啁啾光纤光栅的强度解调型风速传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GAO, SR 等: "All-optical fiber anemometer based on laser heated fiber Bragg gratings", OPTICS EXPRESS, vol. 19, no. 11, XP055927851, DOI: 10.1364/OE.19.010124 *
SAFFARI, P 等: "Microchanneled Chirped Fibre Bragg Gratings For Simultaneous Refractive Index and Temperature Measurements", OPTICAL SENSORS, vol. 7356 *
YONGKANG ZHANG 等: "Rare Earth-Doped Microfiber Bragg Grating Refractive Index Sensor With Self-Photothermal Manipulation", IEEE PHOTONICS JOURNAL, vol. 13, no. 3, XP011858365, DOI: 10.1109/JPHOT.2021.3081675 *
宋志强 等: "偏振耦合实现分布反馈光纤激光保偏输出", 山东科学, vol. 34, no. 6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117007173A (zh) * 2023-10-07 2023-11-07 山东省科学院激光研究所 一种用于管道泄漏监测的光纤声波传感器
CN117007173B (zh) * 2023-10-07 2024-01-30 山东省科学院激光研究所 一种用于管道泄漏监测的光纤声波传感器

Also Published As

Publication number Publication date
CN116754104B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN116754104B (zh) 一种光纤光栅激光热场传感器及其应用方法
US9557344B2 (en) Sensor for measuring flow speed of a fluid
US5332316A (en) Fiber optic systems for sensing temperature and other physical variables
Mandal et al. Bragg grating-based fiber-optic laser probe for temperature sensing
Dong et al. Compact anemometer using silver-coated fiber Bragg grating
Cashdollar et al. Fiber Bragg grating flow sensors powered by in-fiber light
Qi et al. All-fiber high temperature and refractive index sensor based on three microspheres array Michelson interferometer
CN103337783B (zh) 一种利用短腔光纤激光器的输出纵模测量温度的方法
JP3808689B2 (ja) 光学導波路デバイス
Dedyulin et al. Emerging technologies in the field of thermometry
Ahmad et al. Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser
US5090818A (en) Fiber optic systems for sensing temperature and other physical variables
CN208595984U (zh) 一种高灵敏度光纤温度传感器
JP2006502570A (ja) 平均波長の安定性が向上したEr添加超蛍光ファイバー光源
Shi et al. A High-resolution Liquid Level Sensor Based on Fabry-Perot Interferometer with Fiber Laser Intracavity Sensing
Harun et al. Fiber optic temperature sensors
Luo et al. Temperature-sensing scheme based on a passively mode-locked fiber laser via beat frequency demodulation
Li et al. Simultaneous measurement of refractive index and temperature based on reflective LPG-FBGs
Chen et al. Hot-wire Anemometer Based on Etched Fiber Bragg Grating Coated with Silver Film
Potter et al. Photosensitive and rare-earth doped ceramics for optical sensing: A review
Balliu et al. Improved Closed-Loop Slow-Light Temperature Sensor With Millidegree Resolution for Laser Cooling
Kidd et al. Interferometric fibre sensors for measurement of surface heat transfer rates on turbine blades
Cheng et al. Fiber-optic thermal anemometer based on metallic coated fiber Bragg grating
Popov et al. Narrow linewidth random laser based on short Er-doped artifice Rayleigh fiber
Zhuang et al. Study on the mechanism of fiber-optic hot-wire sensing based on DFB-FL thermally induced chirp effect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant