CN116744313A - 一种应用于隧道的5g信号覆盖系统及方法、装置 - Google Patents

一种应用于隧道的5g信号覆盖系统及方法、装置 Download PDF

Info

Publication number
CN116744313A
CN116744313A CN202310655037.7A CN202310655037A CN116744313A CN 116744313 A CN116744313 A CN 116744313A CN 202310655037 A CN202310655037 A CN 202310655037A CN 116744313 A CN116744313 A CN 116744313A
Authority
CN
China
Prior art keywords
signal
frequency
band
tunnel
coverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310655037.7A
Other languages
English (en)
Inventor
邓华军
赵猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Kaixin Communication System Co ltd
Original Assignee
Guangzhou Kaixin Communication System Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Kaixin Communication System Co ltd filed Critical Guangzhou Kaixin Communication System Co ltd
Priority to CN202310655037.7A priority Critical patent/CN116744313A/zh
Publication of CN116744313A publication Critical patent/CN116744313A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开一种应用于隧道的5G信号覆盖系统、方法、装置,包括:无线接入单元、无线覆盖单元与天线单元;在下行链路中,无线接入单元用于接收隧道外基站发出的4G基站信号和/或5G基站信号,将所述4G基站信号和/或5G基站信号进行信号处理后,生成转发频段信号,通过天线单元发射;无线覆盖单元用于通过天线单元接收所述转发频段信号,将所述转发频段信号恢复为4G/5G射频信号;所述天线单元用于将所述4G/5G射频信号进行隧道内的信号覆盖;在上行链路中,天线单元接收将反向的信号通过下行链路的逆向过程回传至所述无线接入单元。本发明解决现有隧道信号覆盖中的问题,能够满足5G时代隧道内信号覆盖的要求。

Description

一种应用于隧道的5G信号覆盖系统及方法、装置
技术领域
本发明涉及通信技术领域,尤其涉及一种应用于隧道的5G信号覆盖系统及方法、装置。
背景技术
随着5G网络的大规模建设,越来越多室内外区域实现了5G信号的覆盖,为人们日常生活带来了极大便利。隧道作为一种特殊场景,又有更多特殊要求,如城市电力隧道,智能巡检机器人的出现,对隧道内5G信号的覆盖需求迫切;地铁施工隧道,人员定位、海量传感器信息回传、人员通信联络等,都对5G信号的覆盖提出了要求。但隧道场景由于安全性要求高、空间狭窄等特征,给隧道5G信号覆盖带来了较大难度,近几年,各运营商一直在积极探索各种隧道5G信号覆盖的方案。
目前,常见的一种隧道5G信号覆盖方案,是采用BBU(Building Base band Unit,基带处理单元)+RRU(RemoteRadio Unit,射频拉远单元)的覆盖方式,由于RRU都只能支持单频段5G信号,因此为了满足多家运营商5G信号的覆盖,就需要隧道中安装多台RRU,把多台RRU输出合路后,再输出至漏缆或天线进行覆盖。该方案采用多台RRU安装,不满足隧道内尽可能少设备的要求。另外,BBU和RRU之间通常采用光纤连接,在隧道内要铺设多条光纤,可靠性有较大问题,尤其是对于施工中隧道,隧道内施工车辆来回穿插,很容易损坏光纤,导致整个隧道内信号覆盖瘫痪。以上原因,导致BBU+RRU的覆盖方式满足不了隧道内对5G信号覆盖的高安全性要求,这种覆盖方式的缺点是占用空间大、成本高、可靠性低。
发明内容
根据本发明的一个方面,提供了一种应用于隧道的5G信号覆盖系统及方法、装置,解决现有隧道信号覆盖中的问题,能够满足5G时代隧道内信号覆盖的要求。
为解决上述技术问题,本发明第一方面公开了一种应用于隧道的5G信号覆盖系统,包括:无线接入单元、无线覆盖单元与天线单元;
在下行链路中,无线接入单元用于接收隧道外基站发出的4G基站信号和/或5G基站信号,将所述4G基站信号和/或5G基站信号进行信号处理后,生成转发频段信号,通过天线单元发射;
无线覆盖单元用于通过天线单元接收所述转发频段信号,将所述转发频段信号恢复为4G/5G射频信号;
所述天线单元用于将所述4G/5G射频信号进行隧道内的信号覆盖;
在上行链路中,天线单元接收将反向的信号通过下行链路的逆向过程回传至所述无线接入单元。
在一些实施方式中,还可以包括:所述无线接入单元包括增益/功率放大器与射频接收器、第一数字信号处理器、第一多频段合路器;
增益/功率放大器用于将所述4G基站信号或者5G基站信号转变为符合功率要求的4G信号和/或5G信号;
射频收发器用于将4G信号和/或5G信号转变为4G高速串行数字信号和/或5G高速串行数字信号;
第一数字信号处理器用于将所述4G高速串行数字信号和/或5G高速串行数字信号转变为4G基带信号和/或5G基带信号;
第一多频段合路器用于将所述4G信号和/或5G信号转变为同一路的转发频段信号。
在一些实施方式中,还可以包括:所述无线接入单元设置有GPS/北斗接收模块,所述GPS/北斗接收模块接收GPS/北斗频段的卫星信号,提取出参考PPS脉冲;无线接入单元根据内部参考频率与参考PPS脉冲的参考频率确定唯一参考频率。
在一些实施方式中,还可以包括:所述无线接入单元还设置有LoRa主机与合路器,所述LoRa主机输出LoRa频段信号,提取无线接入单元中监控模块的执行指令;所述第一数字信号处理模块内设有一波形数据发生器,输出CW波形数据,通过射频收发器产生特定参考频率的连续波信号;所述合路器将所述连续波信号与LoRa频段信号输出为参考频段信号。
在一些实施方式中,还可以包括:所述无线覆盖单元包括多频段分路器、增益/功率放大器与射频接收器、第二数字信号处理器、第二多频段合路器;
所述多频段分路器用于将所述转发频段信号分解为4G转发频率信号和/或5G转发频率信号;
增益/功率放大器用于将所述4G转发频率信号和/或5G转发频率信号转变为满足功率要求的4G转发频率信号和/或5G转发频率信号;或者,将4G射频信号和/或5G射频信号转变为满足功率要求的4G射频信号和/或5G射频信号;
射频收发器用于将4G转发频率信号和/或5G转发频率信号转变为4G高速串行数字信号和/或5G高速串行数字信号;或者,将4G基带信号和/或5G基带信号转变为4G射频信号和/或5G射频信号;
第二数字信号处理器用于将所述4G高速串行数字信号和/或5G高速串行数字信号转变为4G基带信号和/或5G基带信号;
第二多频段合路器用于将所述4G射频信号和/或5G射频信号转变为同一路的4G/5G射频信号。
在一些实施方式中,还可以包括:所述无线覆盖单元还包括分路器、LoRa从机;
所述分路器用于将参考频段信号分解成特定参考频率的连续波信号与LoRa频段信号;
LoRa从机解析LoRa频段信号,得到无线接入单元发出的执行指令,根据所述执行指令控制无线覆盖单元;
无线覆盖单元根据内部参考频率与特定参考频率的连续波信号的确定唯一参考频率。
在一些实施方式中,还可以包括:第一数字信号处理器、第二数字处理器包括数据解析器、数字滤波器、数据解析器用于将4G高速串行数字信号转变为4G基带信号;数字滤波器对经过子带增益调整的子带进行带外杂散抑制,得到带外杂散抑制后的4G基带信号;
所述第一数字信号处理器还包括子带增益调整器,子带增益调整器用于将4G基带信号按照运营商对应频段分为多个子带,进行子带增益调整,使各个子带功率达到功率平衡。
在一些实施方式中,还可以包括:所述无线覆盖单元、所述无线接入单元还包括时钟产生模块,所述时钟产生模块以所述唯一参考频率为基准,生成频率不同的多个时钟信号,使得所述无线覆盖单元、所述无线接入单元内部频率同步。
第二方面,公开了一种5G信号覆盖方法,应用于如上任一所述的应用于隧道的5G信号覆盖系统,本方法包括以下步骤:
在下行链路中,无线接入单元接收隧道外基站发出的4G基站信号或者5G基站信号,将所述4G基站信号和/或5G基站信号进行信号处理,生成由天线单元发射的转发频段信号;
无线覆盖单元通过天线单元接收所述转发频段信号,将所述转发频段信号恢复为4G/5G射频信号;
天线单元将4G/5G射频信号进行隧道内的信号覆盖;
在上行链路中,天线单元接收将反向的信号通过下行链路的逆向过程回传至所述无线接入单元。
第三方面,公开了一种5G信号覆盖装置,所述装置包括:
存储有可执行程序代码的存储器;
与所述存储器耦合的处理器;
所述处理器调用所述存储器中存储的所述可执行程序代码,执行如上所述的一种5G信号覆盖方法。
与现有技术相比,本发明的有益效果在于:
本发明提供了一种应用于隧道的5G信号覆盖系统及方法、装置,通过无线接入单元、无线覆盖单元与天线单元,实现了隧道外无线接入单元接收的4G基站信号和5G基站信号,下行输出到隧道内无线覆盖单元,并通过无线覆盖单元连接的天线单元实现对隧道内区域进行覆盖的全过程。同样,通过以上的逆向过程,也可以实现隧道内不同区域的手机信号,通过无线覆盖单元接收后,上行输出到隧道外无线接入单元,回传至隧道外的4G基站和5G基站,从而实现隧道内4G和5G信号覆盖的全过程。本申请克服了现有隧道覆盖中,已有产品方案存在的缺点,能够满足5G时代,对隧道内信号覆盖的要求。
附图说明
图1为本发明所提供的5G信号覆盖系统的结构示意图;
图2为本发明所提供的5G信号覆盖系统中无线接入单元的结构示意图;
图3为本发明所提供的5G信号覆盖系统中无线接入单元的流程示意图;
图4为本发明所提供的5G信号覆盖系统中无线覆盖单元的结构示意图;
图5为本发明所提供的5G信号覆盖系统中无线覆盖单元的流程示意图;
图6为本发明所提供的5G信号覆盖方法的流程示意图;
图7为本发明所提供的5G信号覆盖装置的结构示意图。
具体实施方式
为了更好地理解和实施,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
本发明的实施例公开了一种应用于隧道的5G信号覆盖系统,解决现有隧道信号覆盖中的问题,能够满足5G时代隧道内信号覆盖的要求。
如图1所示,本发明所提供的5G信号覆盖系统包括无线接入单元、无线覆盖单元与天线单元。在下行链路中,无线接入单元用于接收隧道外基站发出的4G基站信号和/或5G基站信号,将所述4G基站信号和/或5G基站信号进行信号处理后,生成转发频段信号。无线覆盖单元用于通过天线单元接收所述转发频段信号,将所述转发频段信号恢复为4G/5G射频信号所述天线单元用于将所述4G/5G射频信号进行隧道内的信号覆盖。在上行链路中,天线单元接收将反向的信号通过下行链路的逆向过程回传至所述无线接入单元。
请参阅图1,其中无线接入单元设置在隧道外部,接收外部基站或者其他通讯设备发出的对应频段的4G基站信号或者5G基站信号,并通过无线方式连接无线覆盖单元。一个无线接入单元同时可与不少于3个无线覆盖单元进行连接,以提高信号的覆盖范围。无线接入单元通常设在隧道口,与无线覆盖单元之间的距离保持在2km以内,以保持信号传输的稳定性。无线接入单元与无线覆盖单元之间或者两个无线覆盖单元之间的距离不固定,距离受限于中间传输频率的功率值,一般是100米~400米。实际使用中,建议是100米~300米之间。
其中,无线接入单元接收的4G基站信号一般为1800MHz或2100MHz频段的信号,而5G基站信号一般为700MHz或3500MHz频段的信号。无线接入单元在将把对应的1800MHz或2100MHz频段的4G信号变换为传输能力更强的200MHz频段;把700MHz或2600MHz或3500MHz频段的5G信号变换为传输能力更强的600MHz频段,以供无线覆盖单元接收。
更多的,无线接入单元内部设置有GPS/北斗接收模块,在接收外部对应频段的4G基站信号或者5G基站信号的同时,所述GPS/北斗接收模块接收GPS/北斗频段的卫星信号,提取出参考PPS脉,以得到参考频率。无线接入单元内部存在内部参考频率,无线接入单元根据内部参考频率与参考PPS脉冲的参考频率确定唯一参考频率,以时钟产生模块作为参考产生对应的时钟信号,使得无线接入单元内部频率同步。
所述无线接入单元内部设置有时钟产生模块,时钟产生模块则根据所述唯一参考频率,产生对应频率的时钟信号,以供无线接入单元内部各个芯片使用。该时钟信号与LoRa模块合路后,变为参考频段信号,通过天线单元发出。
所述无线接入单元如图2所示,包括增益/功率放大器与射频接收器、第一数字信号处理器、第一多频段合路器。其中增益/功率放大器包括下行增益放大器、下行功率放大器、上行功率放大器与上行增益放大器。增益/功率放大器用于将所述4G基站信号或者5G基站信号转变为符合功率要求的4G信号和/或5G信号。射频收发器用于将4G信号和/或5G信号转变为4G高速串行数字信号和/或5G高速串行数字信号;第一数字信号处理器用于将所述4G高速串行数字信号和/或5G高速串行数字信号转变为4G基带信号和/或5G基带信号;第一多频段合路器用于将所述4G信号和/或5G信号转变为同一路的转发频段信号。
进一步的,第一数字信号处理模块包括数据解析器、数字滤波器、子带增益调整器。4G高速串行数字信号与5G高速串行数据信号均设置有其对应的数字滤波器及数据解析器。其中,数据解析器包括下行数据解析器、上行数据解析器,数字滤波器包括上行数字滤波器与下行数据滤波器,其工作过程相同,仅上行与下行的区别。
对于4G高速串行数字信号,数据解析器将4G高速串行数字信号转变为4G基带信号,子带增益调整器将4G基带信号按照运营商对应频段分为多个子带,进行子带增益调整,使各个子带功率达到功率平衡;而数字滤波器对经过子带增益调整的子带进行带外杂散抑制,得到纯净的4G基带信号。而5G高速串行数字信号无需进行子带增益调整,数据解析器将5G高速串行数字信号转变为5G基带信号,而数字滤波器对经过子带增益调整的子带进行带外杂散抑制,得到带外杂散抑制后,即纯净的5G基带信号。
下面通过下行链路解释说明无线接入单元处理信号过程:
步骤S301、接收自隧道外的来自于4G基站信号和/或5G基站信号以及GPS/北斗频段的卫星信号。
无线接入单元通过天线单元接收来自隧道外的1800MHz频段或2100MHz任一频段的4G基站信号、700MHz或2600MHz或3500MHz任一频段的5G基站信号以及GPS/北斗频段的卫星信号。1800MHz频段或2100MHz任一频段的4G基站信号、700MHz或2600MHz或3500MHz任一频段的5G基站信号可以是各运营商的大功率基站(RRU)或者小功率基站(pRRU)空间发射的信号,GPS/北斗频段的卫星信号是所在隧道外对应频段的GPS/北斗信号。
步骤S302、将4G基站信号和/或5G基站信号通过下行增益放大器,得到功率适中的4G信号和/或5G信号。
4G基站信号或者5G基站信号分别通过针对各自信号的下行增益放大器,即图2中的下行增益放大器1与下行增益放大器2,将空间接收的微弱信号变为功率适中的4G信号和/或5G信号。具体的,下行增益放大器可以采用对应频段的低噪声放大管实现,如MXD8413A或LXK6037等。其中功率适中的4G信号和/或5G信号,具体的功率数值与对应频段的低噪声放大管以及后级射频收发器相关,在本实施例中设置为-10dBm。
步骤S303、功率适中的4G信号和/或5G信号分别通过对应的射频收发器,得到4G高速串行数字信号和/或5G高速串行数字信号。
功率适中的4G信号和/或5G信号分别进入对应的射频收发器,即图2中的射频收发器1与射频收发器3,由射频收发器转变为4G高速串行数字信号和/或5G高速串行数字信号。射频收发器采用集成混频、模数和数模转换等功能的器件实现,如ADRV9025等。
步骤S304、4G高速串行数字信号和/或5G高速串行数字信号进入第一数字信号处理模块后,得到4G基带信号和/或5G基带信号。
4G高速串行数字信号进入第一数字信号处理模块后,通过下行数据解析器,即图2中的下行数据解析器1,将4G高速串行数字信号变为4G基带信号,然后进入下行子带增益调整器,按照运营商对应频段,分为多个子带,然后对子带增益进行调整,使输入的各子带功率达到功率平衡。再进入下行数字滤波器进行带外杂散抑制后,变为纯净的4G基带信号。
而5G高速串行数字信号在进入第一数字信号处理模块后,通过下行数据解析器,即图2中的下行数据解析器2,将5G高速串行数字信号转变为5G基带信号,再通过下行数字滤波器进行带外杂散抑制,转变为纯净的5G基带信号。其中,下行数据解析器、下行子带增益调整器、下行数字滤波器可采用DSP或者FPGA实现,如XC7Z100。
步骤S305、4G基带信号和/或5G基带信号通过对应的射频收发器,得到不同转发频率的小功率4G信号和小功率5G信号。
4G基带信号和/或5G基带信号分别进入对应的射频收发器,如4G基带信号对应图2中的射频收发器2,5G基带信号进入图2中的射频收发器4,变为不同转发频率的小功率4G信号和小功率5G信号。由于4G信号与5G信号的频率都比较高,在隧道场景中传输距离上受到限制。若需要保持信号的稳定传输,需要保持信号的大功率,即需要产品功耗高、体积大,不适用于隧道内。因此,在本申请中,射频收发器的输出频率与隧道外的4G基站信号、5G基站信号频率不同。小功率4G信号和小功率5G信号设置为-15dBm。4G基带信号的射频收发器采用200MHz,5G基带信号的射频收发器采用600MHz,两个射频收发器采用集成混频、模数和数模转换等功能的器件实现,如ADRV9025等。
步骤S306、不同转发频率的小功率4G信号和小功率5G信号分别进入对应的下行功率放大器、多频段合路器,得到一路转发频段信号。
不同转发频率的小功率4G信号和小功率5G信号分别进入对应的下行功率放大器中,转变为功率放大的转发频率4G信号和/或5G信号,经过多频段合路器后,变成一路转发频段信号,即4G信号和/或5G信号,通过转发天线,发送至无线覆盖单元。具体实施时,下行功率放大器可以采用LDMOS或者GaN功放管实现,4G信号和/或5G信号放大后的功率值设置为37dBm。多频段合路器采用腔体实现即可。
在处理上述4G信号和/或5G信号的过程中,同时处理GPS/北斗频段的卫星信号。GPS/北斗频段的卫星信号进入无线接入单元的GPS/北斗接收模块,提取出参考PPS脉冲,以得到参考频率。无线接入单元内部的恒温晶振存在内部参考频率,无线接入单元通过射频开关进行切换,即从内部参考频率与参考PPS脉冲的参考频率中确定唯一参考频率,以时钟产生模块作为参考产生对应的时钟信号。恒温晶振OCXO1采用常规的OXCO器件即可,如BO2525L,射频开关采用通用的开关芯片即可,如PE4251。
唯一参考频率进入时钟产生模块,以唯一参考频率为基准,产生不同频率的多个时钟信号,以满足无线接入单元内所有芯片,如上述6个射频收发器、第一数字信号处理模块等6个器件时钟需求,确保无线接入单元内所有器件的频率是同步的。具体实施时,时钟产生模块可以采用AD9545芯片实现。
上行链路则为下行链路的逆向过程,在此不做赘述。
更多的,无线接入单元中第一数字信号处理模块内部还保存有波形产生器,保存有一组CW波形数据,通过射频收发器产生特定参考频率的小功率连续波信号,再通过功率放大器得到特定参考频率得到大功率连续波信号。小功率连续波信号的功率数值与采用的射频收发器相关,本申请设置为-15dBm,大功率值按照需求设置为37dBm。
另外,所述无线接入单元还设置有LoRa主机模块、监控模块,LoRa主机模块与监控模块相互通信,提取无线接入单元中监控模块的执行指令,输出LoRa频段信号与大功率连续波信号。将LoRa频段信号与大功率连续波信号通过合路器后,输出一路参考频段信号,通过天线单元输出,以供无线覆盖单元接收。
在本申请中,监控模块和LoRa模块通过RS485进行通信,LoRa工作频段可以采用433MHz,大功率连续波信号的输出功率23dBm,特定参考频率设置为122.88MHz。射频收发器采用集成混频、模数和数模转换等功能的器件实现,如ADRV9025等。合路器采用腔体实现即可,LoRa主机模块可以采用专用器件实现,如HLK-L06。监控模块可以采用DSP或ARM或MCU实现,如AM3352等。
无线覆盖单元用于通过天线单元接收所述无线接入单元发出的转发频段信号,将所述转发频段信号恢复为4G/5G射频信号。其中,所述无线覆盖单元如图4所示,包括多频段分路器、增益/功率放大器与射频接收器、第二数字信号处理器、第二多频段合路器。所述多频段分路器用于将所述转发频段信号分解为200MHz频段的4G转发频率信号和600MHz频段的5G转发频率信号。增益/功率放大器包括下行增益放大器、下行功率放大器、上行功率放大器、上行增益放大器,用于将所述4G转发频率信号和/或5G转发频率信号转变为满足功率要求的4G转发频率信号和/或5G转发频率信号,或者,将4G射频信号和/或5G射频信号转变为满足功率要求的4G射频信号和/或5G射频信号;射频收发器用于将4G转发频率信号和/或5G转发频率信号转变为4G高速串行数字信号和/或5G高速串行数字信号;或者,将4G基带信号和/或5G基带信号转变为4G射频信号和/或5G射频信号;第二数字信号处理器用于将所述4G高速串行数字信号和/或5G高速串行数字信号转变为4G基带信号和/或5G基带信号;第二多频段合路器用于将所述4G射频信号和/或5G射频信号转变为同一路的4G/5G射频信号。
进一步的,第二数字信号处理模块包括数据解析器、数字滤波器。4G高速串行数字信号与5G高速串行数据信号均设置有其对应的数字滤波器及数据解析器。其中,数据解析器包括下行数据解析器、上行数据解析器,数字滤波器包括上行数字滤波器与下行数据滤波器,其工作过程相同,仅上行与下行的区别。
对于4G高速串行数字信号,数据解析器将4G高速串行数字信号转变为4G基带信号,而数字滤波器对经过子带增益调整的子带进行带外杂散抑制,得到纯净的4G基带信号。5G高速串行数字信号与4G高速串行数字信号的处理过程相同,在此不做赘述。
下面通过下行链路解释说明无线覆盖单元处理信号过程:
步骤S501、接收来自无线接入单元的转发频段信号,由多频段分路器分解为4G转发频率信号和/或5G转发频率信号。
无线覆盖单元通过天线单元接收来自无线接入单元的转发频段信号,多频段分路器分解为4G转发频率信号和/或5G转发频率信号。具体实施时,分解的转发频率与步骤S305中转发频率保持一致,分别为200MHz频率和600MHz频率。
步骤S502、4G转发频率信号和/或5G转发频率信号通过下行增益放大器转变为功率适中的4G转发频率信号和5G转发频率信号。
其中4G转发频率信号和/或5G转发频率信号分别通过针对各自信号的下行增益放大器,即图4中的下行增益放大器3与下行增益放大器4,具体的,下行增益放大器可以采用对应频段的低噪声放大管实现,如MXD8413A或LXK6037等。其中功率适中的4G信号和/或5G信号,具体的功率数值与对应频段的低噪声放大管以及后级射频收发器相关,在本实施例中设置为-10dBm。
步骤S503、功率适中的4G转发频率信号和/或5G转发频率信号通过射频收发器,转变为4G高速串行数字信号和/或5G高速串行数字信号。
功率适中的4G信号和/或5G信号分别进入对应的射频收发器,即图4中的射频收发器6与射频收发器8,由射频收发器转变为4G高速串行数字信号和/或5G高速串行数字信号。射频收发器采用集成混频、模数和数模转换等功能的器件实现,如ADRV9025等。
步骤S504、4G高速串行数字信号和/或5G高速串行数字信号通过第二数字信号处理模块得到4G基带信号和/或5G基带信号。
4G高速串行数字信号进入第二数字信号处理模块后,通过下行数据解析器,即图4中的下行数据解析器3,再进入下行数字滤波器进行带外杂散抑制后,变为纯净的4G基带信号。
而5G高速串行数字信号在进入第二数字信号处理模块后,通过下行数据解析器,即图4中的下行数据解析器4,将5G高速串行数字信号转变为5G基带信号,再通过下行数字滤波器进行带外杂散抑制,转变为纯净的5G基带信号。其中,下行数据解析器、下行子带增益调整器、下行数字滤波器可采用DSP或者FPGA实现,如XC7Z100。
步骤S505、4G基带信号和/或5G基带信号通过对应的射频收发器,得到功率适中的4G射频信号和/或5G射频信号。
纯净的4G基带信号和/或5G基带信号分别进入对应的射频收发器,如4G基带信号对应图4中的射频收发器7,5G基带信号进入图4中的射频收发器8,变为功率适中的4G射频信号和/或5G射频信号。同时将两路射频信号设置与无线接收单元接收的4G基站信号和/或5G基站信号输出频率一致。射频收发器采用集成混频、模数和数模转换等功能的器件实现,如ADRV9025等。4G射频信号和5G射频信号频率分别为1800MHz频段或2100MHz任一频段和700MHz或2600MHz或3500MHz任一频段。这里功率适中的值与射频收发器相关,本发明设置为-15dBm。
步骤S506、功率适中的4G射频信号和/或5G射频信号分别进入对应的下行功率放大器、多频段合路器,得到4G/5G射频信号。
功率适中的4G射频信号和/或5G射频信号分别进入对应的下行功率放大器中,转变为功率放大的4G信号和/或5G信号,达到需要的功率值。再经过多频段合路器后,变成一路4G/5G射频信号,即4G信号和/或5G信号,通过无线覆盖单元外接的天线单元,对隧道内区域进行覆盖。具体实施时,下行功率放大器可以采用LDMOS或者GaN功放管实现,4G信号和/或5G信号放大后的功率值设置为37dBm。多频段合路器采用腔体实现即可。在本申请中,功率放大的4G信号和/或5G信号中,放大的功率值设置为40dBm。
所示无线覆盖单元还设置有分路器,LoRa从机模块、监控模块。无线覆盖单元还接收参考频段信号,所述分路器用于将参考频段信号分解成特定参考频率的连续波信号与LoRa频段信号。LoRa从机模块与监控模块相互通信,LoRa从机解析LoRa频段信号,得到无线接入单元发出的执行指令,根据所述执行指令控制无线覆盖单元。同时,LoRa从机模块将所述执行指令传输至监控模块,由监控模块传递至无线覆盖单元中的各个模块中。具体实施时,分路器采用腔体实现,LoRa从机模块可以采用专用器件实现,如HLK-L06。监控模块可以采用DSP或ARM或MCU实现,如AM3352等。
所述无线覆盖单元还设置有时钟产生模块,无线覆盖单元内部的恒温晶振存在内部参考频率,无线覆盖单元通过射频开关进行切换,即从内部参考频率与特定功率的连续波信号中确定唯一参考频率,以时钟产生模块作为参考产生对应的时钟信号,确保无线覆盖单元内所有器件的频率是同步的。恒温晶振OCXO2采用常规的OXCO器件即可,如BO2525L,射频开关采用通用的开关芯片即可,如PE4251。
上行链路则为下行链路的逆向过程,在此不做赘述。
值得注意的是,实际应用中,隧道内会有多个无线覆盖单元,完成上述过程,从而实现隧道内不同区域信号覆盖。
通过无线接入单元、无线覆盖单元与天线单元,实现了隧道外无线接入单元接收的4G基站信号和5G基站信号,下行输出到隧道内无线覆盖单元,并通过无线覆盖单元连接的天线单元实现对隧道内区域进行覆盖的全过程。同样,通过以上的逆向过程,也可以实现隧道内不同区域的手机信号,通过无线覆盖单元接收后,上行输出到隧道外无线接入单元,回传至隧道外的4G基站和5G基站,从而实现隧道内4G和5G信号覆盖的全过程。本申请克服了现有隧道覆盖中,已有产品方案存在的缺点,能够满足5G时代,对隧道内信号覆盖的要求。
本申请还提供了一种5G信号覆盖方法,应用于如上所述的应用于隧道的5G信号覆盖系统,本方法包括以下步骤:
步骤S601、在下行链路中,无线接入单元接收隧道外基站发出的4G基站信号或者5G基站信号,将所述4G基站信号和/或5G基站信号进行信号处理,生成由天线单元发射的转发频段信号;
步骤S602、无线覆盖单元通过天线单元接收所述转发频段信号,将所述转发频段信号恢复为4G/5G射频信号;
步骤S603、天线单元将4G/5G射频信号进行隧道内的信号覆盖;
在上行链路中,天线单元接收将反向的信号通过下行链路的逆向过程回传至所述无线接入单元。
该方法具体过程可参照上述实施例的描述,在此不进行赘述。
更多的,如图7所示,该装置可以包括:存储有可执行程序代码的存储器71;
与存储器71耦合的处理器72;
用于与其他设备或通信网络通信,接收或者发送网络消息的收发器73;
用于连接存储器71、处理器72、收发器73进行内部通信的总线74。
收发器73接收网络上传输过来的消息,通过总线74传递给处理器72,处理器72通过总线74调用存储器71中存储的可执行程序代码进行处理,并将处理结果通过总线74传递给收发器73发送,从而实现本申请实施例提供的方法。
本申请实施例还提供一种非暂时性机器可读存储介质,所述非暂时性机器可读存储介质上存储有可执行程序,当所述可执行程序被处理器运行时,使所述处理器执行如上述实施例提供的处理方法。存储有可执行程序代码的存储器71;
与存储器71耦合的处理器72;
处理器2调用存储器71中存储的可执行程序代码,用于执行所描述的虚拟化核心网的时间敏感实现方法。本发明实施例公开了一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,该计算机程序使得计算机执行所描述的一种5G信号覆盖方法。
本发明实施例公开了一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,且该计算机程序可操作来使计算机执行所描述的一种5G信号覆盖方法。
以上所描述的实施例仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,既可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施例的具体描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(ErasableProgrammable Read Only Memory,EPROM)、一次可编程只读存储器(One-timeProgrammable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(CompactDisc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器,或者能够用于携带或存储数据的计算机可读的任何其他介质。
最后应说明的是:本发明实施例公开的一种5G信号覆盖系统、方法、装置所揭露的仅为本发明较佳实施例而已,仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各项实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应的技术方案的本质脱离本发明各项实施例技术方案的精神和范围。

Claims (10)

1.一种应用于隧道的5G信号覆盖系统,其特征在于,包括:无线接入单元、无线覆盖单元与天线单元;
在下行链路中,无线接入单元用于接收隧道外基站发出的4G基站信号和/或5G基站信号,将所述4G基站信号和/或5G基站信号进行信号处理后,生成转发频段信号,通过天线单元发射;
无线覆盖单元用于通过天线单元接收所述转发频段信号,将所述转发频段信号恢复为4G/5G射频信号;
所述天线单元用于将所述4G/5G射频信号进行隧道内的信号覆盖;
在上行链路中,天线单元接收将反向的信号通过下行链路的逆向过程回传至所述无线接入单元。
2.根据权利要求1所述的应用于隧道的5G信号覆盖系统,其特征在于,所述无线接入单元包括增益/功率放大器与射频接收器、第一数字信号处理器、第一多频段合路器;
增益/功率放大器用于将所述4G基站信号或者5G基站信号转变为符合功率要求的4G信号和/或5G信号;
射频收发器用于将4G信号和/或5G信号转变为4G高速串行数字信号和/或5G高速串行数字信号;
第一数字信号处理器用于将所述4G高速串行数字信号和/或5G高速串行数字信号转变为4G基带信号和/或5G基带信号;
第一多频段合路器用于将所述4G信号和/或5G信号转变为同一路的转发频段信号。
3.根据权利要求2所述的应用于隧道的5G信号覆盖系统,其特征在于,所述无线接入单元设置有GPS/北斗接收模块,所述GPS/北斗接收模块接收GPS/北斗频段的卫星信号,提取出参考PPS脉冲;无线接入单元根据内部参考频率与参考PPS脉冲的参考频率确定唯一参考频率。
4.根据权利要求2所述的应用于隧道的5G信号覆盖系统,其特征在于,所述无线接入单元还设置有LoRa主机与合路器,所述LoRa主机输出LoRa频段信号,提取无线接入单元中监控模块的执行指令;所述第一数字信号处理模块内设有一波形数据发生器,输出CW波形数据,通过射频收发器产生特定参考频率的连续波信号;所述合路器将所述连续波信号与LoRa频段信号输出为参考频段信号。
5.根据权利要求1或2所述的应用于隧道的5G信号覆盖系统,其特征在于,所述无线覆盖单元包括多频段分路器、增益/功率放大器与射频接收器、第二数字信号处理器、第二多频段合路器;
所述多频段分路器用于将所述转发频段信号分解为4G转发频率信号和/或5G转发频率信号;
增益/功率放大器用于将所述4G转发频率信号和/或5G转发频率信号转变为满足功率要求的4G转发频率信号和/或5G转发频率信号;或者,将4G射频信号和/或5G射频信号转变为满足功率要求的4G射频信号和/或5G射频信号;
射频收发器用于将4G转发频率信号和/或5G转发频率信号转变为4G高速串行数字信号和/或5G高速串行数字信号;或者,将4G基带信号和/或5G基带信号转变为4G射频信号和/或5G射频信号;
第二数字信号处理器用于将所述4G高速串行数字信号和/或5G高速串行数字信号转变为4G基带信号和/或5G基带信号;
第二多频段合路器用于将所述4G射频信号和/或5G射频信号转变为同一路的4G/5G射频信号。
6.根据权利要求5所述的应用于隧道的5G信号覆盖系统,其特征在于,所述无线覆盖单元还包括分路器、LoRa从机;
所述分路器用于将参考频段信号分解成特定参考频率的连续波信号与LoRa频段信号;
LoRa从机解析LoRa频段信号,得到无线接入单元发出的执行指令,根据所述执行指令控制无线覆盖单元;
无线覆盖单元根据内部参考频率与特定参考频率的连续波信号的确定唯一参考频率。
7.根据权利要求5所述的应用于隧道的5G信号覆盖系统,其特征在于,第一数字信号处理器、第二数字处理器包括数据解析器、数字滤波器、数据解析器用于将4G高速串行数字信号转变为4G基带信号;数字滤波器对经过子带增益调整的子带进行带外杂散抑制,得到带外杂散抑制后的4G基带信号;
所述第一数字信号处理器还包括子带增益调整器,子带增益调整器用于将4G基带信号按照运营商对应频段分为多个子带,进行子带增益调整,使各个子带功率达到功率平衡。
8.根据权利要求6所述的应用于隧道的5G信号覆盖系统,其特征在于,所述无线覆盖单元、所述无线接入单元还包括时钟产生模块,所述时钟产生模块以所述唯一参考频率为基准,生成频率不同的多个时钟信号,使得所述无线覆盖单元、无线接入单元内部频率同步。
9.一种5G信号覆盖方法,其特征在于,应用于如权利要求1~8任一所述的应用于隧道的5G信号覆盖系统,本方法包括以下步骤:
在下行链路中,无线接入单元接收隧道外基站发出的4G基站信号或者5G基站信号,将所述4G基站信号和/或5G基站信号进行信号处理,生成由天线单元发射的转发频段信号;
无线覆盖单元通过天线单元接收所述转发频段信号,将所述转发频段信号恢复为4G/5G射频信号;
天线单元将4G/5G射频信号进行隧道内的信号覆盖;
在上行链路中,天线单元接收将反向的信号通过下行链路的逆向过程回传至所述无线接入单元。
10.一种5G信号覆盖装置,其特征在于,所述装置包括:
存储有可执行程序代码的存储器;
与所述存储器耦合的处理器;
所述处理器调用所述存储器中存储的所述可执行程序代码,执行如权利要求9任一项所述的一种5G信号覆盖方法。
CN202310655037.7A 2023-06-02 2023-06-02 一种应用于隧道的5g信号覆盖系统及方法、装置 Pending CN116744313A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310655037.7A CN116744313A (zh) 2023-06-02 2023-06-02 一种应用于隧道的5g信号覆盖系统及方法、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310655037.7A CN116744313A (zh) 2023-06-02 2023-06-02 一种应用于隧道的5g信号覆盖系统及方法、装置

Publications (1)

Publication Number Publication Date
CN116744313A true CN116744313A (zh) 2023-09-12

Family

ID=87907303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310655037.7A Pending CN116744313A (zh) 2023-06-02 2023-06-02 一种应用于隧道的5g信号覆盖系统及方法、装置

Country Status (1)

Country Link
CN (1) CN116744313A (zh)

Similar Documents

Publication Publication Date Title
EP2953283A2 (en) Method, apparatus, and radio remote unit for transmitting wireless base band data
CN111431584B (zh) 一种基于射频收发芯片模块的卫星移动通信终端
CN111343642A (zh) 一种5g信号射频变频分布系统
CN102882573A (zh) 多输入多输出的信号传输实现方法、装置及系统
CN111478731A (zh) 通信系统和通信方法
US6292652B1 (en) Repeater having frequency conversion
US20080137561A1 (en) Rf repeater used for time division duplexing and method thereof
JP3094221B2 (ja) コード分割多重方式基地局用の周期型ビーコン信号発生装置
CN203219304U (zh) 一种节能型多载波数字光纤微波远距离延伸系统
CN211128209U (zh) 多制式基站系统
CN220234976U (zh) 一种应用于隧道的5g信号覆盖系统及5g信号覆盖装置
CN116744313A (zh) 一种应用于隧道的5g信号覆盖系统及方法、装置
CN212302252U (zh) 一种灵巧式无人机全频谱干扰源产生系统
CN116321540A (zh) 一种飞机导航通信系统的分布式射频拉远方法和装置
CN214675198U (zh) 多频段无线扩展器和wifi通信系统
KR100337223B1 (ko) 다중 주파수 대역 광 중계 장치 및 방법
CN211509298U (zh) 一种5g信号射频变频分布系统
CN114401521A (zh) 一种变频通信传输方法和传输系统
CN2927565Y (zh) 一种基站子系统
US20050136849A1 (en) Method and apparatus for enhancing the call access rate in a communication system
CN102089987B (zh) 通信设备、失真补偿电路和失真补偿方法
CN108574497B (zh) 带有线性化技术的宽带发射方法、装置和系统
MXPA04010062A (es) Sistema de acceso y sistema de repetidores para gsm con intercambio espectral entre las bandas de frecuencia gsm de 900 y 1800 mhz.
KR20080074557A (ko) 마이크로웨이브 중계기
CN220935188U (zh) 一种无线接收宽频回传系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination