CN116739133A - Regional reed NDVI pattern simulation prediction method based on natural-social dual-drive analysis - Google Patents
Regional reed NDVI pattern simulation prediction method based on natural-social dual-drive analysis Download PDFInfo
- Publication number
- CN116739133A CN116739133A CN202310271499.9A CN202310271499A CN116739133A CN 116739133 A CN116739133 A CN 116739133A CN 202310271499 A CN202310271499 A CN 202310271499A CN 116739133 A CN116739133 A CN 116739133A
- Authority
- CN
- China
- Prior art keywords
- pattern
- ndvi
- model
- land
- reed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000014676 Phragmites communis Nutrition 0.000 title claims abstract description 66
- 238000004088 simulation Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000004458 analytical method Methods 0.000 title claims abstract description 13
- 238000011161 development Methods 0.000 claims abstract description 22
- 230000000694 effects Effects 0.000 claims abstract description 18
- 230000009977 dual effect Effects 0.000 claims abstract description 13
- 230000008859 change Effects 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 238000012360 testing method Methods 0.000 claims description 21
- 230000007246 mechanism Effects 0.000 claims description 17
- 238000007637 random forest analysis Methods 0.000 claims description 13
- 238000010586 diagram Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000012549 training Methods 0.000 claims description 10
- 238000001556 precipitation Methods 0.000 claims description 7
- 230000001364 causal effect Effects 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 5
- 238000011160 research Methods 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims description 3
- 239000002689 soil Substances 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 2
- 230000002159 abnormal effect Effects 0.000 claims 1
- 238000009933 burial Methods 0.000 claims 1
- 244000273256 Phragmites communis Species 0.000 description 11
- 239000003673 groundwater Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012732 spatial analysis Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- -1 silt Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/08—Probabilistic or stochastic CAD
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Life Sciences & Earth Sciences (AREA)
- Primary Health Care (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Agronomy & Crop Science (AREA)
- Animal Husbandry (AREA)
- Marine Sciences & Fisheries (AREA)
- Mining & Mineral Resources (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Development Economics (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及植被格局模拟调控技术领域,具体地说是一种基于自然–社会双驱动分析的区域芦苇NDVI格局模拟预测方法,考虑政策规划、社会发展、土地演变等社会要素对芦苇宏观格局分布的影响,又考虑自然条件对芦苇微观格局分布的影响,通过将自然因素与社会因素的驱动作用相结合,同时实现了多情景方案的模拟,克服了传统方法仅考虑自然驱动作用及模拟方案有限的局限性。
The invention relates to the technical field of vegetation pattern simulation and regulation. Specifically, it is a regional reed NDVI pattern simulation and prediction method based on natural-society dual-driven analysis, taking into account policy planning, social development, land evolution and other social factors on the distribution of the macro-reed pattern. It also considers the impact of natural conditions on the distribution of reed micro-patterns. By combining the driving effects of natural factors and social factors, it simultaneously realizes the simulation of multi-scenario programs, overcoming the traditional method that only considers the natural driving effects and has limited simulation options. limitation.
Description
技术领域Technical field
本发明涉及植被格局模拟调控技术领域,具体地说是一种基于自然–社会双驱动分析的区域芦苇NDVI格局模拟预测方法。The invention relates to the technical field of vegetation pattern simulation and regulation, specifically a method for simulating and predicting the regional reed NDVI pattern based on natural-society dual-driven analysis.
背景技术Background technique
植被是生态系统的重要组分,在维持其生态平衡和环境质量方面发挥着重要作用,对于生态环境破坏严重的生态系统而言,植被格局调控是修复其受损结构和功能的有效途径。然而,受气候变化和人为活动的双重干扰,植被生长状况受损,分布格局被侵占,不仅危及植被自身生存,更威胁生态环境健康。Vegetation is an important component of the ecosystem and plays an important role in maintaining its ecological balance and environmental quality. For ecosystems with serious ecological environment damage, vegetation pattern regulation is an effective way to repair their damaged structures and functions. However, due to the dual interference of climate change and human activities, vegetation growth has been damaged and distribution patterns have been encroached upon, which not only endangers the survival of the vegetation itself, but also threatens the health of the ecological environment.
芦苇由于生长时间长、分布范围广,且具有较强的净化水体能力,是植被格局调控的主要对象。归一化植被指数(NDVI)能排除外界因素的干扰作用,增强对植被变化的响应能力,常被用于反映区域植被的生长状况和分布情况。因此,准确识别自然及社会因素对芦苇NDVI格局的影响作用,模拟预测变化环境下芦苇NDVI格局的分布情况,对于植被格局调控及生态环境修复具有重要意义。Due to its long growth time, wide distribution range, and strong ability to purify water bodies, reeds are the main targets for vegetation pattern regulation. The Normalized Difference Vegetation Index (NDVI) can eliminate the interference of external factors and enhance the response ability to vegetation changes. It is often used to reflect the growth status and distribution of regional vegetation. Therefore, accurately identifying the influence of natural and social factors on the NDVI pattern of reed, and simulating and predicting the distribution of NDVI pattern of reed under changing environments are of great significance for vegetation pattern regulation and ecological environment restoration.
当前,国内外现有技术中常用的芦苇NDVI格局模拟方法有数理统计分析法和空间分析模型法:Currently, the reed NDVI pattern simulation methods commonly used in existing technologies at home and abroad include mathematical statistical analysis method and spatial analysis model method:
数理统计分析法基于NDVI与温度、降水自然驱动因子间的关系,利用多元线性回归法对NDVI变化进行预测。其虽涉及驱动机制,但仅考虑了自然因素的驱动作用,未涉及社会经济发展、开发利用活动人为因素的影响;且该方法仅适用于某几个点位、有限情景下的小样本量数据的研究,若要对区域空间内全部点位的NDVI进行多情景模拟需要耗费大量的时间,效率较低。The mathematical statistical analysis method is based on the relationship between NDVI and natural driving factors of temperature and precipitation, and uses multiple linear regression methods to predict changes in NDVI. Although it involves driving mechanisms, it only considers the driving effects of natural factors and does not involve the influence of human factors in socio-economic development and development and utilization activities; and this method is only applicable to small sample size data at certain points and limited scenarios. For research, it would take a lot of time to conduct multi-scenario simulations of NDVI at all points in the regional space, and the efficiency is low.
空间分析模型法基于NDVI空间转移矩阵,预测区域NDVI格局的变化,但其仅基于NDVI历史空间变化规律进行预测,未涉及驱动机制,难以对变化环境下NDVI的演变进行预测。The spatial analysis model method is based on the NDVI spatial transfer matrix to predict changes in the regional NDVI pattern. However, it only predicts based on the historical spatial change patterns of NDVI and does not involve the driving mechanism, making it difficult to predict the evolution of NDVI in a changing environment.
综上,当前区域芦苇NDVI格局的模拟预测方法具有以下局限性:In summary, the current simulation and prediction method of regional reed NDVI pattern has the following limitations:
1、未涉及NDVI变化的驱动机制,或仅考虑自然因素的驱动机制,未涉及社会经济因素的驱动作用。1. It does not involve the driving mechanism of NDVI changes, or only considers the driving mechanism of natural factors, and does not involve the driving role of socio-economic factors.
2、计算效率较低,无法快速、高效地对整个区域内的芦苇NDVI格局进行全面模拟预测。2. The calculation efficiency is low and it is impossible to quickly and efficiently conduct a comprehensive simulation and prediction of the reed NDVI pattern in the entire region.
3、由于对驱动机制考虑不完善且计算效率较低,当前的模拟方法能够考虑的变化环境和政策情景有限,且无法模拟社会经济发展和自然环境变化相组合的多重复合变化情景。3. Due to imperfect consideration of driving mechanisms and low computational efficiency, current simulation methods can consider limited changing environments and policy scenarios, and cannot simulate multiple composite change scenarios that combine socioeconomic development and natural environment changes.
因此,为了解决上述问题,本申请提出了一种基于自然–社会双驱动分析的区域芦苇NDVI格局模拟预测方法,填补该领域的空白,既考虑政策规划对芦苇宏观格局分布的影响,又考虑自然条件对芦苇微观格局分布的影响,从而实现考虑社会经济发展、自然气候变化的双重影响下的多情景区域芦苇NDVI格局模拟。Therefore, in order to solve the above problems, this application proposes a regional reed NDVI pattern simulation and prediction method based on natural-society dual-driven analysis to fill the gap in this field. It not only considers the impact of policy planning on the macroscopic pattern distribution of reed, but also considers the natural The influence of conditions on the distribution of reed micro-patterns can be realized to simulate the multi-scenario regional reed NDVI pattern taking into account the dual effects of socio-economic development and natural climate change.
发明内容Contents of the invention
本发明的目的是克服现有技术的不足,提供一种基于自然–社会双驱动分析的区域芦苇NDVI格局模拟预测方法,填补该领域的空白,既考虑政策规划对芦苇宏观格局分布的影响,又考虑自然条件对芦苇微观格局分布的影响,从而实现考虑社会经济发展、自然气候变化双重影响下的多情景区域芦苇NDVI格局模拟。为了达到上述目的,本发明提供一种基于自然–社会双驱动分析的区域芦苇NDVI格局模拟预测方法,包括以下步骤:The purpose of this invention is to overcome the shortcomings of the existing technology, provide a regional reed NDVI pattern simulation and prediction method based on natural-society dual-driven analysis, fill the gaps in this field, and not only consider the impact of policy planning on the macroscopic pattern distribution of reed, but also Taking into account the impact of natural conditions on the distribution of micro-patterns of reed, a multi-scenario regional reed NDVI pattern simulation is realized that takes into account the dual impacts of socioeconomic development and natural climate change. In order to achieve the above objectives, the present invention provides a regional reed NDVI pattern simulation and prediction method based on natural-society dual drive analysis, which includes the following steps:
S1,收集区域历史时期土地利用格局数据,识别土地利用类型和各地类的面积;收集同一历史时期社会、经济、水文、气候和环境数据;S1, collect regional land use pattern data in historical periods, identify land use types and the areas of each category; collect social, economic, hydrological, climate and environmental data in the same historical period;
S2,将整个社会经济–生态环境复合系统分为社会经济发展、用水需求、水质和地类面积需求四个模块,定性分析各模块内部及模块间变量的相互作用关系,绘制不同地类面积变化因果反馈回路图;S2, divide the entire socio-economic-ecological environment composite system into four modules: socio-economic development, water demand, water quality and land type area demand, qualitatively analyze the interaction relationship between variables within each module and between modules, and map the area changes of different land types Causal feedback loop diagram;
S3,定量分析变量间的作用关系方程式,并确定各变量的参数取值,建立区域地类面积需求系统动力学模型,通过社会经济系统和生态环境系统间的作用机制和反馈关系,体现自然因素和社会因素对地类面积变化,尤其是芦苇面积变化的双重驱动作用;S3. Quantitatively analyze the interaction equations between variables, determine the parameter values of each variable, and establish a regional land area demand system dynamics model to reflect natural factors through the interaction mechanism and feedback relationship between the socioeconomic system and the ecological environment system. and the dual driving effects of social factors on land type area changes, especially reed area changes;
S4,利用历史数据对S3构建的系统动力学模型进行参数率定,检验模型预测结果的有效性;S4, use historical data to calibrate the parameters of the system dynamics model constructed in S3, and test the validity of the model prediction results;
S5,根据未来政策规划和气候变化特征设计不同的变化情景,使用系统动力学模型预测区域未来不同情景下各地类的面积需求,基于不同社会发展、自然变化情景对地类面积变化的影响,开展多情景预测分析;S5: Design different change scenarios based on future policy planning and climate change characteristics, use system dynamics models to predict the area needs of various types of areas in the region under different scenarios in the future, and carry out research based on the impact of different social development and natural change scenarios on area changes of land types. Multi-scenario predictive analysis;
S6,收集区域土地利用格局变化驱动因子数据,因子数据包括地形要素、气象要素、土壤条件和区位位置;S6. Collect data on driving factors of regional land use pattern changes. Factor data includes terrain elements, meteorological elements, soil conditions and location;
S7,基于历史土地利用格局和格局变化驱动因子数据,结合相关研究、专家建议确定各地类在特定斑块单元出现的总概率,综合考虑自然条件和社会条件对地类空间格局变化的驱动机制,同时结合土地利用格局的空间变化规律;S7. Based on the historical land use pattern and pattern change driving factor data, combined with relevant research and expert suggestions, determine the total probability of each species appearing in specific patch units, and comprehensively consider the driving mechanisms of natural and social conditions on changes in the spatial pattern of land types. At the same time, combined with the spatial change laws of land use pattern;
S8,基于S7探究出的土地利用格局空间变化规律,使用FLUS模型构建区域土地利用空间格局分布模拟模型;S8, based on the spatial change rules of land use pattern explored in S7, use the FLUS model to build a regional land use spatial pattern distribution simulation model;
S9,利用历史数据对S8所构建的FLUS模型进行模拟精度检验,分析模拟格局和实际格局间的差异性,检验FLUS模型模拟结果的有效性;S9, use historical data to test the simulation accuracy of the FLUS model built in S8, analyze the difference between the simulated pattern and the actual pattern, and test the validity of the FLUS model simulation results;
S10,使用FLUS模型,结合S5得到的不同情景下各地类的面积需求,模拟不同情景下区域土地利用空间格局分布,并在此基础上进一步提取各情景下芦苇空间格局分布情况;S10, use the FLUS model, combined with the area requirements of each category under different scenarios obtained in S5, to simulate the spatial pattern distribution of regional land use under different scenarios, and on this basis, further extract the spatial pattern distribution of reeds under each scenario;
S11,收集历史NDVI和NDVI变化驱动因子数据;S11, collect historical NDVI and NDVI change driving factor data;
S12,剔除数据中的异常值后将有效数据集分为训练数据集、测试数据集和其他数据集;S12, after eliminating outliers in the data, the effective data set is divided into training data set, test data set and other data sets;
S13,分析历史NDVI数据与NDVI变化驱动因子数据间的相关性,确定区域NDVI变化的驱动机制;S13, analyze the correlation between historical NDVI data and NDVI change driving factor data, and determine the driving mechanism of regional NDVI changes;
S14,基于历史NDVI数据与NDVI变化驱动因子数据,使用随机森林算法构建NDVI预测模型,确定模型最优的参数值,使用训练数据集对模型进行训练,得到区域芦苇NDVI模拟随机森林模型;S14, based on historical NDVI data and NDVI change driving factor data, use the random forest algorithm to build an NDVI prediction model, determine the optimal parameter values of the model, use the training data set to train the model, and obtain a regional reed NDVI simulation random forest model;
S15,使用测试数据集和其他数据集对S14所构建的NDVI模拟随机森林模型的模拟性能进行测试,评估模型的预测精度是否满足要求;S15, use the test data set and other data sets to test the simulation performance of the NDVI simulated random forest model built in S14, and evaluate whether the prediction accuracy of the model meets the requirements;
S16,从S10得到的不同情景下芦苇空间格局分布的基础上,基于S5设计的未来温度、降水、地下水埋深参数,使用随机森林模型模拟预测不同情景下区域未来芦苇NDVI格局分布情况,在传统自然驱动机制的基础上结合政策规划、社会发展、土地演变社会要素的影响,体现了自然–社会对芦苇NDVI格局变化的双驱动作用。S16, based on the spatial pattern distribution of reeds under different scenarios obtained from S10, and based on the future temperature, precipitation, and groundwater depth parameters designed in S5, use the random forest model to simulate and predict the regional future reed NDVI pattern distribution under different scenarios. In the traditional Based on the natural driving mechanism, it combines the influence of policy planning, social development, and social factors of land evolution, reflecting the dual driving effects of nature and society on changes in the pattern of reed NDVI.
S9中,若模拟格局和实际格局间的Kappa系数大于0.6,则模型模拟效果显著,通过了有效性检验,Kappa系数的计算公式为:In S9, if the Kappa coefficient between the simulated pattern and the actual pattern is greater than 0.6, the model simulation effect is significant and has passed the validity test. The calculation formula of the Kappa coefficient is:
公式一: Formula 1:
公式二: Formula 2:
p0为总体分类精度,指正确分类的地类样本量在总样量的占比;ai为实际格局中第i类土地的面积;bi为模拟格局中第i类土地的面积;n为总样本量。p 0 is the overall classification accuracy, which refers to the proportion of correctly classified land type samples in the total sample size; a i is the area of the i-th type of land in the actual pattern; b i is the area of the i-th type of land in the simulated pattern; n is the total sample size.
S15中,选取决定系数R2作为模型模拟精度的评估指标,若R2大于0.5则认为模型的预测精度满足要求,通过了有效性检验,决定系数R2的计算公式为:In S15, the determination coefficient R 2 is selected as the evaluation index of the model simulation accuracy. If R 2 is greater than 0.5, the prediction accuracy of the model is considered to meet the requirements and has passed the validity test. The calculation formula of the determination coefficient R 2 is:
公式三: Formula three:
Xi和Yi分别为第i个样本的实际值和模拟值,n为样本数,为实际值的均值。本发明同现有技术相比,具备以下有益效果:X i and Y i are the actual value and simulated value of the i-th sample respectively, n is the number of samples, is the mean of the actual values. Compared with the prior art, the present invention has the following beneficial effects:
1.由于系统动力学模型能够清晰反映社会经济系统和生态环境系统间复杂、非线性、动态的作用机制和反馈回路,而FLUS模型能够在系统动力学模型模拟结果的基础上结合植被格局的空间变化规律,模拟不同自然变化和社会发展情景下区域芦苇空间格局的分布情况,成功将自然因素与社会因素的驱动作用相结合,同时实现了多情景方案的模拟,克服了传统方法仅考虑自然驱动作用及模拟方案有限的局限性。1. Because the system dynamics model can clearly reflect the complex, nonlinear, dynamic action mechanisms and feedback loops between the socioeconomic system and the ecological environment system, the FLUS model can combine the spatial vegetation pattern based on the simulation results of the system dynamics model. Change patterns, simulate the distribution of regional reed spatial patterns under different natural changes and social development scenarios, successfully combine the driving effects of natural factors and social factors, and simultaneously realize the simulation of multi-scenario programs, overcoming the traditional method that only considers natural driving forces The role and limitations of the simulation program are limited.
2.由于随机森林模型具有高效处理大样本量数据的优势,能够在芦苇空间格局模拟的基础上,结合NDVI变化的自然驱动机制,精确模拟区域每个点位的NDVI值,得到不同自然与政策情景下区域芦苇NDVI格局的分布情况,克服了传统方法计算时间长、模拟效率低、无法模拟整个区域的局限性。2. Because the random forest model has the advantage of efficiently processing large sample size data, it can accurately simulate the NDVI value of each point in the region based on the simulation of the spatial pattern of reeds and the natural driving mechanism of NDVI changes, and obtain different natural and policy results. The distribution of regional reed NDVI patterns under the scenario overcomes the limitations of traditional methods such as long calculation time, low simulation efficiency, and inability to simulate the entire region.
附图说明Description of drawings
图1为本发明的模拟预测方法流程示意图。Figure 1 is a schematic flow chart of the simulation prediction method of the present invention.
图2为本发明实施例白洋淀不同地类面积变化因果反馈回路社会经济发展模块示意图。Figure 2 is a schematic diagram of the socio-economic development module of the causal feedback loop of area changes of different land types in Baiyangdian according to the embodiment of the present invention.
图3为本发明实施例白洋淀不同地类面积变化因果反馈回路用水需求模块示意图。Figure 3 is a schematic diagram of the water demand module of the causal feedback loop for area changes in different land types in Baiyangdian according to the embodiment of the present invention.
图4为本发明实施例白洋淀不同地类面积变化因果反馈回路水质模块示意图。Figure 4 is a schematic diagram of the water quality module of the causal feedback loop for area changes in different land types in Baiyangdian according to the embodiment of the present invention.
图5为本发明实施例白洋淀不同地类面积变化因果反馈回路地类面积需求模块示意图。Figure 5 is a schematic diagram of the land area demand module of the cause and effect feedback loop for area changes of different land types in Baiyangdian according to the embodiment of the present invention.
图6为本发明实施例白洋淀不同地类面积变化因果反馈回路模型整体结构示意图。Figure 6 is a schematic diagram of the overall structure of the causal feedback loop model of Baiyangdian area changes in different land types according to the embodiment of the present invention.
图7为本发明实施例白洋淀2015年土地利用实际格局与模拟格局示意图。Figure 7 is a schematic diagram of the actual land use pattern and simulated pattern of Baiyangdian in 2015 according to the embodiment of the present invention.
图8为本发明实施例白洋淀2020年土地利用实际格局与模拟格局示意图。Figure 8 is a schematic diagram of the actual land use pattern and simulated pattern of Baiyangdian in 2020 according to the embodiment of the present invention.
图9为本发明实施例白洋淀2025年多情景下土地利用格局分布示意图。Figure 9 is a schematic diagram of the land use pattern distribution under multiple scenarios in Baiyangdian in 2025 according to the embodiment of the present invention.
图10为本发明实施例白洋淀2025年多情景下芦苇NDVI格局分布示意图。Figure 10 is a schematic diagram of the distribution of reed NDVI under multiple scenarios in Baiyangdian in 2025 according to the embodiment of the present invention.
具体实施方式Detailed ways
现结合附图对本发明做进一步描述。The present invention will now be further described with reference to the accompanying drawings.
参见图1~6,本发明提供一种基于自然–社会双驱动分析的区域芦苇NDVI格局模拟预测方法,以白洋淀湿地芦苇NDVI格局模拟作为实施案例,展示本发明的操作流程和实施效果:Referring to Figures 1 to 6, the present invention provides a regional reed NDVI pattern simulation and prediction method based on natural-society dual-driven analysis. The Baiyangdian Wetland reed NDVI pattern simulation is used as an implementation case to demonstrate the operation process and implementation effect of the present invention:
白洋淀位于河北省中部,是华北平原最大的浅水湖泊湿地,淀内遍布的沟壑将全淀划分多个大小不一、相互联系的淀泊,形成了芦苇台田、园田台地、村庄建筑、开阔水域相融合的特色土地利用格局。芦苇作为白洋淀湿地的典型植被,是植被格局修复的主要调控对象,因此需要模拟不同发展情景下白洋淀芦苇NDVI格局的变化与分布情况。Baiyangdian is located in the center of Hebei Province. It is the largest shallow lake wetland in the North China Plain. The ravines throughout the lake divide the entire lake into multiple interconnected lakes of different sizes, forming reed terraces, garden terraces, village buildings, and open water. Integrated characteristic land use pattern. As a typical vegetation in Baiyangdian wetland, reed is the main regulatory object for vegetation pattern restoration. Therefore, it is necessary to simulate the changes and distribution of reed NDVI pattern in Baiyangdian under different development scenarios.
如图1所示,将本发明应用至白洋淀湿地芦苇NDVI格局的模拟需遵循以下三部分内容共16个操作步骤,具体如下:As shown in Figure 1, applying the present invention to the simulation of the NDVI pattern of reeds in the Baiyangdian Wetland requires following three parts and a total of 16 operating steps, as follows:
一、白洋淀多情景下地类面积需求模拟:1. Simulation of land area demand under multiple scenarios in Baiyangdian:
(1)收集白洋淀2010、2015、2020年的土地利用格局数据,数据类型为30m栅格数据,可知白洋淀主要土地利用类型分为建筑用地、耕地、芦苇台田和水域四类,并统计每一期各地类的面积;收集白洋淀2010~2015年的社会(人口数量、人口出生率、人口减少率、人均粮食需求量、人均用水量)、经济(总GDP、工业GDP、每万元工业GDP用水量)、水文(湖泊水量、入淀水量、出淀水量、渗漏量、回用水量、补水量、生态用水量)、气候(气温、降水)、环境(入淀污染量、芦苇对污染的去除量)数据。(1) Collect the land use pattern data of Baiyangdian in 2010, 2015 and 2020. The data type is 30m raster data. It can be seen that the main land use types of Baiyangdian are divided into four categories: construction land, cultivated land, reed terrace fields and water areas, and statistics for each The area of each category in each period; collect the social (population, birth rate, population reduction rate, per capita food demand, per capita water consumption) and economic (total GDP, industrial GDP, water consumption per 10,000 yuan of industrial GDP) Baiyangdian from 2010 to 2015 ), hydrology (lake water volume, water entering the lake, water leaving the lake, leakage, recycled water, water replenishment, ecological water consumption), climate (temperature, precipitation), environment (pollution entering the lake, pollution removal by reeds quantity) data.
(2)根据白洋淀的特征,将整个白洋淀系统分为社会经济发展、用水需求、水质和地类面积需求四个模块,定性分析各模块内部及模块间变量的相互作用关系,绘制不同地类面积变化因果反馈回路图,如图2~图6所示;(2) Based on the characteristics of Baiyangdian, divide the entire Baiyangdian system into four modules: socioeconomic development, water demand, water quality, and land type area demand. Qualitatively analyze the interaction relationship between variables within each module and between modules, and draw the areas of different land types. Change cause and effect feedback loop diagram, as shown in Figure 2 to Figure 6;
(3)定量分析各变量间的作用关系方程式,并确定各变量的参数取值,如表1所示:(3) Quantitatively analyze the relationship equations between each variable, and determine the parameter values of each variable, as shown in Table 1:
表1白洋淀地类面积需求系统动力学模型关系式及参数设置Table 1 Baiyangdian Land Type Area Demand System Dynamics Model Relationship Expression and Parameter Settings
(4)以2010年为起始年,以2010年配套数据作为初始数据,其他参数设置如表1所示,设置模型时间步长为1年,模拟2015和2020年各地类的面积需求,同时与实际值进行对比,结果如表2所示。有效性检验结果表明,本发明所构建的系统动力学模型的预测相对误差范围为0.03%~5.59%,均在10%的可接受误差范围内,因此该模型预测性能良好。(4) Taking 2010 as the starting year and supporting data in 2010 as the initial data, other parameter settings are shown in Table 1. Set the model time step to 1 year to simulate the area demand of each category in 2015 and 2020. At the same time Compared with the actual values, the results are shown in Table 2. The validity test results show that the prediction relative error range of the system dynamics model constructed by the present invention is 0.03% to 5.59%, all within the acceptable error range of 10%, so the prediction performance of the model is good.
表2白洋淀地类面积需求系统动力学模型模拟结果与检验Table 2 Simulation results and verification of Baiyangdian land area demand system dynamics model
(5)社会经济发展方面,设置当前发展和生态移民两种情景,其中当前发展情景中社会经济参数维持2010~2020年水平,生态移民情景中假设白洋淀每年迁出60%的淀内人口。气候变化方面,参考CMIP6气候变化模式,选取SSP1-2.6(可持续发展)和SSP5-8.5(化石燃料驱动发展)两种模式,其中SSP1-2.6模式下每年气温升高0.01℃,降雨增加0.3mm;SSP5-8.5模式下每年气温升高0.06℃,降雨增加2.3mm。生态环境保护方面,参考白洋淀生态环境治理和保护规划,设置7.3m(生态水位)和7.5m(防洪安全水位)两种水位模式。基于以上情景变化,模拟白洋淀2025年各地类面积需求的变化,结果如表3和表4所示。(5) In terms of socioeconomic development, two scenarios are set: current development and ecological migration. In the current development scenario, the socioeconomic parameters remain at the 2010-2020 level. In the ecological migration scenario, it is assumed that 60% of Baiyangdian's population moves out every year. In terms of climate change, with reference to the CMIP6 climate change model, two models, SSP1-2.6 (sustainable development) and SSP5-8.5 (fossil fuel-driven development), were selected. Under the SSP1-2.6 model, the annual temperature increase is 0.01°C and the rainfall increases by 0.3mm. ; Under SSP5-8.5 mode, the annual temperature increase is 0.06℃ and the rainfall increases by 2.3mm. In terms of ecological environment protection, with reference to the Baiyangdian ecological environment management and protection plan, two water level modes are set, 7.3m (ecological water level) and 7.5m (flood control safety water level). Based on the above scenario changes, the changes in area demand of various types in Baiyangdian in 2025 are simulated. The results are shown in Tables 3 and 4.
表3当前发展背景下不同气候和水位情景中各地类2025年面积需求(×107m2)Table 3 Area requirements of various categories in 2025 under different climate and water level scenarios under the current development background (×10 7 m 2 )
表4生态移民背景下不同气候和水位情景中各地类2025年面积需求(×107m2)Table 4 Area requirements of various categories in 2025 under different climate and water level scenarios under the background of ecological migration (×10 7 m 2 )
二、白洋淀多情景下芦苇空间格局分布模拟:2. Simulation of reed spatial pattern distribution under multiple scenarios in Baiyangdian:
(6)收集白洋淀2010~2020年土地利用格局变化的驱动因子数据,包括DEM数据并提取坡度、坡向分布,气温和降雨数据,土壤表层的沙、淤泥、黏土、有机碳含量数据,安新县道路网矢量图并计算距道路距离图,白洋淀河网水系图并计算距河流距离图;以上数据均需处理成30m栅格数据,统一地理坐标系为GCS_WGS_1984,投影坐标系为WGS_1984_UTM_zone_50N。(6) Collect data on the driving factors of land use pattern changes in Baiyangdian from 2010 to 2020, including DEM data and extract slope and aspect distribution, temperature and rainfall data, sand, silt, clay, and organic carbon content data on the soil surface, Anxin County road network vector map and calculation of distance from roads, Baiyangdian river network map and calculation of distance from rivers; the above data need to be processed into 30m raster data, the unified geographical coordinate system is GCS_WGS_1984, and the projected coordinate system is WGS_1984_UTM_zone_50N.
(7)基于历史土地利用格局和格局变化驱动因子数据,使用FLUS模型中的人工神经网络模块,设置采样率为30/1000,隐藏层层数30,计算空间内每个特定斑块单元内各地类出现的概率;同时结合相关研究和专家建议,确定白洋淀地类转换的邻域因子参数和地类转换成本矩阵,分别如表5和表6所示。(7) Based on the historical land use pattern and pattern change driving factor data, use the artificial neural network module in the FLUS model, set the sampling rate to 30/1000, and the number of hidden layers to 30, to calculate the various locations in each specific patch unit in the space. The probability of class occurrence; at the same time, combined with relevant research and expert suggestions, the neighborhood factor parameters and land class conversion cost matrix of Baiyangdian land class conversion are determined, as shown in Table 5 and Table 6 respectively.
表5白洋淀土地利用格局变化FLUS模型邻域因子参数Table 5 Neighborhood factor parameters of the FLUS model of Baiyangdian land use pattern change
表6白洋淀地类转换成本矩阵Table 6 Baiyangdian land conversion cost matrix
(8)以2010年土地利用格局为基期数据,使用步骤(7)所计算的地类出现概率、邻域因子参数,同时设置模型最多迭代次数、加速因子、并行运行线程数分别为300、0.1和1,使用FLUS模型中的元胞自动机模块,模拟白洋淀2015和2020年的土地利用格局空间分布情况,结果如图7和图8所示。(8) Taking the 2010 land use pattern as the base period data, use the land type occurrence probability and neighborhood factor parameters calculated in step (7), and set the maximum number of iterations, acceleration factor, and parallel running threads of the model to 300 and 0.1 respectively. and 1. Use the cellular automaton module in the FLUS model to simulate the spatial distribution of land use patterns in Baiyangdian in 2015 and 2020. The results are shown in Figures 7 and 8.
(9)基于白洋淀2015和2020年实际的土地利用格局和步骤(8)所模拟的土地利用格局,计算Kappa系数以验证FLUS模型的模拟精度,结果显示,2015年土地利用格局总体模拟结果的Kappa系数为0.6338,其中,芦苇和水域模拟结果的Kappa系数分别为0.7260和0.6844;2020年总体模拟结果的Kappa系数为0.7163,其中,芦苇和水域模拟结果的Kappa系数分别为0.7856和0.7009。土地利用格局总体Kappa系数均大于0.6,芦苇Kappa系数均大于0.7,说明FLUS模型模拟结果显著。(9) Based on the actual land use pattern of Baiyangdian in 2015 and 2020 and the land use pattern simulated in step (8), the Kappa coefficient was calculated to verify the simulation accuracy of the FLUS model. The results showed that the Kappa of the overall simulation result of the land use pattern in 2015 was The coefficient is 0.6338, among which the Kappa coefficients of the reed and water simulation results are 0.7260 and 0.6844 respectively; the Kappa coefficient of the overall simulation results in 2020 is 0.7163, among which the Kappa coefficients of the reed and water simulation results are 0.7856 and 0.7009 respectively. The overall Kappa coefficient of land use pattern is greater than 0.6, and the Kappa coefficient of reed is greater than 0.7, indicating that the FLUS model simulation results are significant.
(10)使用步骤(8)所构建的FLUS模型,以2020年实际土地利用格局为基期数据,以步骤(5)所模拟的多情景下2025年白洋淀各地类面积需求为模拟目标,模拟各情景下2025年白洋淀土地利用格局分布情况,结果如图9所示,并在此基础上进一步提取各情景下芦苇的空间格局分布。(10) Use the FLUS model constructed in step (8), use the actual land use pattern in 2020 as the base period data, and use the 2025 Baiyangdian area demand of various types under the multiple scenarios simulated in step (5) as the simulation target to simulate each scenario The distribution of land use pattern in Baiyangdian in 2025 is shown in Figure 9. On this basis, the spatial pattern distribution of reeds under each scenario is further extracted.
三、白洋淀多情景下芦苇NDVI格局分布模拟:3. Simulation of reed NDVI pattern distribution under multiple scenarios in Baiyangdian:
(11)收集2010~2019年每年5月白洋淀芦苇NDVI数据;同时,收集2010~2019年的NDVI变化驱动因子数据,即每年1~4月的平均气温数据、1~4月的累计降雨量数据和地下水埋深数据,其中地下水埋深通过下式计算:(11) Collect Baiyangdian reed NDVI data from 2010 to 2019 in May each year; at the same time, collect NDVI change driving factor data from 2010 to 2019, that is, average temperature data from January to April each year, and cumulative rainfall data from January to April. and groundwater depth data, where the groundwater depth is calculated by the following formula:
GWD=HL-HW GWD=H L -H W
其中,GWD为芦苇台田地下水埋深(m);HL为陆面高程(m),即DEM数据;HW为白洋淀的平均水位(m)。Among them, GWD is the groundwater depth of the reed terrace (m); H L is the land surface elevation (m), that is, DEM data; H W is the average water level of Baiyangdian Lake (m).
(12)将2010~2019年共10期NDVI、气温、降水和地下水埋深数据统一为综合数据集,剔除原始数据中和插值计算过程中产生的异常值,采用随机采样的方式在有效数据对中抽取3%的数据对构成建模数据集,其他未被抽取到数据对构成其他数据集。对于建模数据集,随机抽取其中70%的数据构成训练数据集,剩下30%的数据构成测试数据集,用于机器学习模型的构建和测试。(12) Unify a total of 10 periods of NDVI, temperature, precipitation and groundwater depth data from 2010 to 2019 into a comprehensive data set, eliminate outliers generated in the original data and interpolation calculation process, and use random sampling to select valid data pairs. 3% of the data pairs are extracted to form the modeling data set, and the other data pairs that are not extracted form other data sets. For the modeling data set, 70% of the data are randomly selected to form the training data set, and the remaining 30% of the data form the test data set for the construction and testing of the machine learning model.
(13)基于步骤(12)预处理后的有效数据集,分析芦苇NDVI数据与气温、降水、地下水埋深数据间的相关性,验证各驱动因子对芦苇NDVI变化的驱动作用,结果表明,对于白洋淀芦苇而言,气温、降水和地下水埋深为影响其NDVI变化的关键驱动因子。(13) Based on the effective data set preprocessed in step (12), analyze the correlation between reed NDVI data and temperature, precipitation, and groundwater depth data, and verify the driving effect of each driving factor on the changes in reed NDVI. The results show that for For Baiyangdian reed, temperature, precipitation and groundwater depth are the key driving factors affecting its NDVI changes.
(14)基于步骤(12)预处理得到的训练数据集,使用随机森林算法构建白洋淀芦苇NDVI变化模拟模型,使用tuneRF遍历函数搜索最优算法参数取值,结果显示,当mtry取值为7时模型的预测精度最高,即设置mtry参数为7,使用训练数据集再次训练模型,得到最优白洋淀芦苇NDVI模拟模型。(14) Based on the training data set preprocessed in step (12), use the random forest algorithm to construct a Baiyangdian reed NDVI change simulation model, and use the tuneRF traversal function to search for optimal algorithm parameter values. The results show that when the value of mtry is 7 The model has the highest prediction accuracy, that is, setting the mtry parameter to 7, training the model again using the training data set, and obtaining the optimal Baiyangdian reed NDVI simulation model.
(15)使用测试数据集和其他数据集对步骤(14)所构建的NDVI模拟随机森林模型的模拟性能进行测试,计算在三个数据集中模型的决定系数(R2),结果显示,在训练集、测试集和其他集中模型的R2分别为0.9008、0.5233和0.5164,均大于0.5,说明模型预测性能良好,模拟结果有效。(15) Use the test data set and other data sets to test the simulation performance of the NDVI simulated random forest model constructed in step (14), and calculate the coefficient of determination (R 2 ) of the model in the three data sets. The results show that during training The R 2 of the set, test set and other set models are 0.9008, 0.5233 and 0.5164 respectively, all greater than 0.5, indicating that the model prediction performance is good and the simulation results are valid.
(16)在步骤(10)得到的不同情景下芦苇空间格局分布的基础上,使用步骤(14)构建的最优白洋淀芦苇NDVI模拟模型预测各情景下白洋淀2025年芦苇NDVI格局分布情况,结果如图10所示。(16) Based on the spatial pattern distribution of reeds under different scenarios obtained in step (10), use the optimal Baiyangdian reed NDVI simulation model constructed in step (14) to predict the NDVI pattern distribution of reeds in Baiyangdian in 2025 under each scenario. The results are as follows As shown in Figure 10.
由以上实施例可以看出,本发明所提出的基于自然–社会双驱动分析的区域芦苇NDVI格局模拟预测方法在系统动力学模型和FLUS模型构建过程中重点考虑了社会经济要素对芦苇空间格局分布的驱动作用,同时也兼顾了自然要素的驱动作用;而在随机森林模型建模中则继承了传统方法对自然驱动机制的考量,既吸纳了传统技术的优势,又在传统技术上进行了拓展。同时,由于系统动力学模型具有良好的多情景模拟优势,随机森林模型具有良好的大数据处理能力,本发明所提出的方法能在芦苇空间格局分布的基础上对每个斑块单元内的NDVI值进行模拟预测,从而实现了对全区域芦苇NDVI格局的模拟,突破了传统方法仅能模拟几个特定点位单元NDVI值的局限。It can be seen from the above examples that the regional reed NDVI pattern simulation and prediction method proposed by the present invention based on natural-society dual-driven analysis focuses on the impact of socioeconomic factors on the spatial pattern distribution of reeds during the construction of the system dynamics model and FLUS model. The driving role of natural elements is also taken into account; while the random forest model modeling inherits the traditional method of considering the natural driving mechanism, absorbing the advantages of traditional technology, and expanding on traditional technology. . At the same time, because the system dynamics model has good multi-scenario simulation advantages and the random forest model has good big data processing capabilities, the method proposed by the present invention can analyze the NDVI in each patch unit based on the spatial pattern distribution of reeds. The value is simulated and predicted, thereby realizing the simulation of the NDVI pattern of reed in the entire region, breaking through the limitation of traditional methods that can only simulate the NDVI value of a few specific point units.
以上仅是本发明的优选实施方式,只是用于帮助理解本申请的方法及其核心思想,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention, and are only used to help understand the method and its core idea of the present application. The protection scope of the present invention is not limited to the above-mentioned embodiments. All technical solutions that fall under the ideas of the present invention belong to the present invention. scope of protection. It should be pointed out that for those of ordinary skill in the art, several improvements and modifications may be made without departing from the principles of the present invention, and these improvements and modifications should also be regarded as the protection scope of the present invention.
本发明从整体上解决了现有技术中未涉及驱动机制,难以对变化环境下NDVI的演变进行预测,考虑因素较少,计算效率低,无法对目标区域内全部点位进行研究的问题,通过将自然因素与社会因素的驱动作用相结合,同时实现了多情景方案的模拟,克服了传统方法仅考虑自然驱动作用及模拟方案有限的局限性。The present invention overall solves the problems in the prior art that do not involve a driving mechanism, that it is difficult to predict the evolution of NDVI under a changing environment, that there are few factors to consider, that the calculation efficiency is low, and that all points in the target area cannot be studied. Combining the driving effects of natural factors and social factors, it simultaneously realizes the simulation of multi-scenario scenarios, overcoming the limitations of traditional methods that only consider the natural driving effects and limited simulation options.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310271499.9A CN116739133B (en) | 2023-03-20 | 2023-03-20 | Regional reed NDVI pattern simulation prediction method based on natural-social dual-drive analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310271499.9A CN116739133B (en) | 2023-03-20 | 2023-03-20 | Regional reed NDVI pattern simulation prediction method based on natural-social dual-drive analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116739133A true CN116739133A (en) | 2023-09-12 |
CN116739133B CN116739133B (en) | 2024-06-04 |
Family
ID=87910325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310271499.9A Active CN116739133B (en) | 2023-03-20 | 2023-03-20 | Regional reed NDVI pattern simulation prediction method based on natural-social dual-drive analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116739133B (en) |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104933289A (en) * | 2015-04-01 | 2015-09-23 | 北京师范大学 | Entrophication control technique from the perspective of complex system of social economy-ecological environment |
CN110598513A (en) * | 2019-05-24 | 2019-12-20 | 南京大学 | Urban development boundary prediction method based on SLUTH model |
RU2731388C1 (en) * | 2019-03-04 | 2020-09-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Государственный университет по землеустройству" | Method for integrated assessment of natural and anthropogenic ecosystems of diamond mining enterprises |
CN111814326A (en) * | 2020-07-02 | 2020-10-23 | 中国科学院东北地理与农业生态研究所 | A method for estimating aboveground biomass of swamp wetland reed |
CN112035584A (en) * | 2020-08-28 | 2020-12-04 | 北京清华同衡规划设计研究院有限公司 | Space planning scene simulation method and system |
CN112182951A (en) * | 2020-08-31 | 2021-01-05 | 广东工业大学 | A Land Use Planning Method Considering Multiple Uncertainties |
CN112487724A (en) * | 2020-12-11 | 2021-03-12 | 重庆邮电大学 | Urban dynamic expansion simulation method based on partition and improved CNN-CA model |
CN112907113A (en) * | 2021-03-18 | 2021-06-04 | 中国科学院地理科学与资源研究所 | Vegetation change cause identification method considering spatial correlation |
AU2021102457A4 (en) * | 2021-05-11 | 2021-07-01 | Jiangxi Agricultural University | High-resolution coupling simulation system and method for land use and forest landscape process |
KR20210084184A (en) * | 2019-12-26 | 2021-07-07 | 한국국토정보공사 | Planting location analysis device and method |
KR102277856B1 (en) * | 2020-04-29 | 2021-07-16 | 경희대학교 산학협력단 | Socio-hydrological system for supporting decisions on water resources policy and operating method thereof |
CN113298287A (en) * | 2021-04-02 | 2021-08-24 | 南京师范大学 | SDGs-oriented regional land demand sequence prediction method |
CN113435039A (en) * | 2021-06-25 | 2021-09-24 | 中国水利水电科学研究院 | Lake wetland landscape optimization method based on system dynamics |
CN114021829A (en) * | 2021-11-11 | 2022-02-08 | 东莞理工学院 | Land use pattern prediction and optimization method considering non-point source pollution control |
CN114881834A (en) * | 2022-06-08 | 2022-08-09 | 生态环境部南京环境科学研究所 | Method and system for analyzing driving relationship of urban group ecological system service |
CN114926022A (en) * | 2022-05-20 | 2022-08-19 | 慧谷人工智能研究院(南京)有限公司 | Ecological safety pattern construction method based on ecological environment space big data |
CN115374709A (en) * | 2022-08-29 | 2022-11-22 | 中山大学 | A land analysis method and system based on deep forest model and FLUS model |
CN115438855A (en) * | 2022-09-05 | 2022-12-06 | 河海大学 | A Method of Optimal Allocation of Land Utilization in Mountainous Cities |
US11594015B1 (en) * | 2022-07-26 | 2023-02-28 | Finite Carbon Corporation | Detecting changes in forest composition |
-
2023
- 2023-03-20 CN CN202310271499.9A patent/CN116739133B/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104933289A (en) * | 2015-04-01 | 2015-09-23 | 北京师范大学 | Entrophication control technique from the perspective of complex system of social economy-ecological environment |
RU2731388C1 (en) * | 2019-03-04 | 2020-09-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Государственный университет по землеустройству" | Method for integrated assessment of natural and anthropogenic ecosystems of diamond mining enterprises |
CN110598513A (en) * | 2019-05-24 | 2019-12-20 | 南京大学 | Urban development boundary prediction method based on SLUTH model |
KR20210084184A (en) * | 2019-12-26 | 2021-07-07 | 한국국토정보공사 | Planting location analysis device and method |
KR102277856B1 (en) * | 2020-04-29 | 2021-07-16 | 경희대학교 산학협력단 | Socio-hydrological system for supporting decisions on water resources policy and operating method thereof |
CN111814326A (en) * | 2020-07-02 | 2020-10-23 | 中国科学院东北地理与农业生态研究所 | A method for estimating aboveground biomass of swamp wetland reed |
CN112035584A (en) * | 2020-08-28 | 2020-12-04 | 北京清华同衡规划设计研究院有限公司 | Space planning scene simulation method and system |
CN112182951A (en) * | 2020-08-31 | 2021-01-05 | 广东工业大学 | A Land Use Planning Method Considering Multiple Uncertainties |
CN112487724A (en) * | 2020-12-11 | 2021-03-12 | 重庆邮电大学 | Urban dynamic expansion simulation method based on partition and improved CNN-CA model |
CN112907113A (en) * | 2021-03-18 | 2021-06-04 | 中国科学院地理科学与资源研究所 | Vegetation change cause identification method considering spatial correlation |
CN113298287A (en) * | 2021-04-02 | 2021-08-24 | 南京师范大学 | SDGs-oriented regional land demand sequence prediction method |
AU2021102457A4 (en) * | 2021-05-11 | 2021-07-01 | Jiangxi Agricultural University | High-resolution coupling simulation system and method for land use and forest landscape process |
CN113435039A (en) * | 2021-06-25 | 2021-09-24 | 中国水利水电科学研究院 | Lake wetland landscape optimization method based on system dynamics |
CN114021829A (en) * | 2021-11-11 | 2022-02-08 | 东莞理工学院 | Land use pattern prediction and optimization method considering non-point source pollution control |
CN114926022A (en) * | 2022-05-20 | 2022-08-19 | 慧谷人工智能研究院(南京)有限公司 | Ecological safety pattern construction method based on ecological environment space big data |
CN114881834A (en) * | 2022-06-08 | 2022-08-09 | 生态环境部南京环境科学研究所 | Method and system for analyzing driving relationship of urban group ecological system service |
US11594015B1 (en) * | 2022-07-26 | 2023-02-28 | Finite Carbon Corporation | Detecting changes in forest composition |
CN115374709A (en) * | 2022-08-29 | 2022-11-22 | 中山大学 | A land analysis method and system based on deep forest model and FLUS model |
CN115438855A (en) * | 2022-09-05 | 2022-12-06 | 河海大学 | A Method of Optimal Allocation of Land Utilization in Mountainous Cities |
Non-Patent Citations (1)
Title |
---|
郝晓敬;张红;徐小明;王荔;崔严;: "晋北地区土地利用覆被格局的演变与模拟", 生态学报, no. 01, 31 December 2020 (2020-12-31) * |
Also Published As
Publication number | Publication date |
---|---|
CN116739133B (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105205466B (en) | A kind of energy carbon emission amount remote sensing estimation method based on night lights image | |
Nan et al. | Impact analysis of climate change on water resources | |
Gao et al. | Landscape ecological security assessment based on projection pursuit in Pearl River Delta | |
CN102567635B (en) | Method for quantificationally distinguishing contributions of different factors in water cycle evolution process | |
CN110991262B (en) | Multi-bandwidth geographic weighted regression cellular automaton method for ecological service value prediction | |
CN108416686A (en) | A Classification Method of Eco-Geological Environment Based on Coal Resource Exploitation | |
Huang et al. | Modeling the impacts of drying trend scenarios on land systems in northern China using an integrated SD and CA model | |
KR20180116820A (en) | Assessment of water use vulnerability in the unit watersheds using TOPSIS approach with subjective and objective weights | |
CN102222313B (en) | Urban evolution simulation structure cell model processing method based on kernel principal component analysis (KPCA) | |
CN104156537A (en) | Cellular automaton urban growth simulating method based on random forest | |
CN117236674B (en) | Urban river network hydrodynamic force accurate regulation and control and water environment lifting method and system | |
CN108090624B (en) | An improved cellular automata for urban ecological security simulation and prediction method | |
CN117010274B (en) | An intelligent early warning method for harmful elements in groundwater based on integrated incremental learning | |
CN117688511A (en) | Multi-source satellite soil-water machine learning fusion method under action of geographic climate factors | |
CN112560215B (en) | Electric power line selection method based on deep reinforcement learning | |
CN106251014A (en) | Development of urban space based on SVM GCA simulation and Forecasting Methodology | |
CN111199298A (en) | Flood forecasting method and system based on neural network | |
CN114611832B (en) | Seawater intrusion prediction method based on Bayesian multi-model set pair analysis | |
Ajeeb et al. | The prediction of urban growth trends and patterns using spatio-temporal CA-MC model in Seremban Basin | |
Li et al. | Identification and countermeasures of limiting factors of regional sustainable development: a case study in the Pearl River Delta of China | |
Kovalchuk et al. | Towards ensemble simulation of complex systems | |
CN118095104B (en) | A method and system for rapid flood forecasting based on machine learning | |
Jin et al. | Integration of an improved transformer with physical models for the spatiotemporal simulation of urban flooding depths | |
CN116739133B (en) | Regional reed NDVI pattern simulation prediction method based on natural-social dual-drive analysis | |
CN117648878A (en) | Flood rapid evolution and flooding simulation method based on 1D-CNN algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |