CN116738185B - An AI algorithm construction method for smart farming - Google Patents

An AI algorithm construction method for smart farming Download PDF

Info

Publication number
CN116738185B
CN116738185B CN202310881962.1A CN202310881962A CN116738185B CN 116738185 B CN116738185 B CN 116738185B CN 202310881962 A CN202310881962 A CN 202310881962A CN 116738185 B CN116738185 B CN 116738185B
Authority
CN
China
Prior art keywords
breeding
algorithm
preset
target
species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310881962.1A
Other languages
Chinese (zh)
Other versions
CN116738185A (en
Inventor
陈丽园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huiliantong Industrial Supply Chain Digital Technology Xiamen Co ltd
Original Assignee
Huiliantong Industrial Supply Chain Digital Technology Xiamen Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huiliantong Industrial Supply Chain Digital Technology Xiamen Co ltd filed Critical Huiliantong Industrial Supply Chain Digital Technology Xiamen Co ltd
Priority to CN202310881962.1A priority Critical patent/CN116738185B/en
Publication of CN116738185A publication Critical patent/CN116738185A/en
Application granted granted Critical
Publication of CN116738185B publication Critical patent/CN116738185B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Business, Economics & Management (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The application discloses an AI algorithm construction method for intelligent cultivation, which comprises the following steps: determining a first cultivation parameter and a first AI algorithm corresponding to the first cultivation parameter; determining a second cultivation parameter and a second AI algorithm corresponding to the second cultivation parameter; determining a third cultivation parameter and a third AI algorithm corresponding to the third cultivation parameter; the third AI algorithm is configured to determine the third cultivation parameter based on the first cultivation parameter and/or the second cultivation parameter, the third cultivation parameter being a cultivation parameter based on the environmental dimension and/or the artificial dimension; and constructing a target AI algorithm based on the first AI algorithm, the second AI algorithm, the third AI algorithm, the target culture variety and the target parameter relationship. The method can improve the adaptation degree of the AI algorithm and intelligent cultivation, and improve the accuracy and applicability of the AI algorithm.

Description

一种用于智慧养殖的AI算法构建方法An AI algorithm construction method for smart farming

技术领域Technical field

本申请是关于智慧养殖技术领域,特别是关于一种用于智慧养殖的AI算法构建方法。This application is about the field of smart farming technology, especially about an AI algorithm construction method for smart farming.

背景技术Background technique

随着智慧养殖的发展,越来越来多的养殖行业融入了智慧养殖。在养殖行业中,智慧养殖可以通过AI(Artificial Intelligence,人工智能)算法,对养殖数据进行分析;或者预测养殖数据;或者预测养殖参数等,以节省大量的人工成本。With the development of smart farming, more and more farming industries have integrated smart farming. In the breeding industry, smart breeding can use AI (Artificial Intelligence, artificial intelligence) algorithms to analyze breeding data; or predict breeding data; or predict breeding parameters, etc., to save a lot of labor costs.

目前,在涉及到AI算法的智能养殖技术中,通常针对一项养殖品种;或者特定的养殖环境制定特殊的AI算法;也就是,一个AI算法针对一个养殖场景,该AI算法为从提供的大量AI算法中选择的算法。这种方式,AI算法与智慧养殖的场景的适配度并不是很高,进而该AI算法的准确性和应用性较差。At present, in the intelligent breeding technology involving AI algorithms, special AI algorithms are usually developed for a breeding species or a specific breeding environment; that is, an AI algorithm is targeted at a breeding scene, and the AI algorithm provides a large number of The algorithm chosen among the AI algorithms. In this way, the adaptability of the AI algorithm to smart farming scenarios is not very high, resulting in poor accuracy and applicability of the AI algorithm.

发明内容Contents of the invention

本申请的目的在于提供一种用于智慧养殖的AI算法构建方法,其能够提高AI算法与智慧养殖的适配度,以及提高AI算法的准确性和应用性。The purpose of this application is to provide an AI algorithm construction method for smart farming, which can improve the adaptability of the AI algorithm to smart farming, as well as improve the accuracy and applicability of the AI algorithm.

为实现上述目的,本申请的实施例提供了一种用于智慧养殖的AI算法构建方法,包括:确定第一养殖参数和所述第一养殖参数对应的第一AI算法;所述第一AI算法用于基于目标养殖数据确定所述第一养殖参数,所述第一养殖参数为环境维度的养殖参数;确定第二养殖参数和所述第二养殖参数对应的第二AI算法;所述第二AI算法用于基于所述目标养殖数据确定所述第二养殖参数,所述第二养殖参数为人工维度的养殖参数;确定第三养殖参数和所述第三养殖参数对应的第三AI算法;所述第三AI算法用于基于所述第一养殖参数和/或所述第二养殖参数确定所述第三养殖参数,所述第三养殖参数为基于所述环境维度和/或所述人工维度的养殖参数;基于所述第一AI算法、所述第二AI算法、所述第三AI算法、目标养殖品种和目标参数关系,构建目标AI算法;所述目标AI算法用于确定所述目标养殖品种的养殖参数,所述目标参数关系表示为:;其中,/>代表所述第一养殖参数,/>代表所述第二养殖参数,/>代表所述第三养殖参数,/>代表第一权重,/>代表第二权重,代表第一影响值,/>代表第二影响值,/>代表第三影响值,/>代表预设影响值。To achieve the above purpose, embodiments of the present application provide an AI algorithm construction method for smart farming, which includes: determining a first farming parameter and a first AI algorithm corresponding to the first farming parameter; the first AI The algorithm is used to determine the first breeding parameter based on the target breeding data, and the first breeding parameter is the breeding parameter of the environmental dimension; determine the second breeding parameter and the second AI algorithm corresponding to the second breeding parameter; the third The second AI algorithm is used to determine the second breeding parameter based on the target breeding data, and the second breeding parameter is an artificial dimension breeding parameter; determine the third breeding parameter and the third AI algorithm corresponding to the third breeding parameter ; The third AI algorithm is used to determine the third breeding parameter based on the first breeding parameter and/or the second breeding parameter, and the third breeding parameter is based on the environmental dimension and/or the Artificial dimension breeding parameters; based on the first AI algorithm, the second AI algorithm, the third AI algorithm, the target breeding species and the target parameter relationship, a target AI algorithm is constructed; the target AI algorithm is used to determine the The breeding parameters of the target breeding species are described, and the relationship between the target parameters is expressed as: ;Among them,/> Represents the first breeding parameter,/> Represents the second breeding parameter,/> Represents the third breeding parameter,/> Represents the first weight,/> represents the second weight, Represents the first influence value,/> Represents the second influence value,/> Represents the third influence value,/> Represents the default influence value.

在一种可能的实施方式中,所述确定第一养殖参数和所述第一养殖参数对应的第一AI算法,包括:获取多个第一预设养殖参数;所述多个第一预设养殖参数均为环境维度的养殖参数;确定所述多个第一预设养殖参数对所述目标养殖品种的直接影响值;确定所述多个第一预设养殖参数对所述目标养殖品种的间接影响值;所述间接影响值基于所述多个第一预设养殖参数对所述目标养殖品种的第一关联养殖品种的直接影响值确定;所述第一关联养殖品种的养殖环境与所述目标养殖品种的养殖环境之间的相似度大于第一预设相似度;基于对所述目标养殖品种的直接影响值和对所述目标养殖品种的间接影响值,确定所述多个第一预设养殖参数的整合影响值;基于所述整合影响值,从所述多个第一预设养殖参数中,确定出所述第一养殖参数。In a possible implementation, the determination of the first breeding parameter and the first AI algorithm corresponding to the first breeding parameter includes: obtaining a plurality of first preset breeding parameters; the plurality of first preset The breeding parameters are all breeding parameters of the environmental dimension; determine the direct impact value of the plurality of first preset breeding parameters on the target breeding species; determine the impact of the plurality of first preset breeding parameters on the target breeding species. Indirect influence value; the indirect influence value is determined based on the direct influence value of the plurality of first preset breeding parameters on the first associated breeding species of the target breeding species; the relationship between the breeding environment of the first associated breeding species and the The similarity between the breeding environments of the target cultured species is greater than the first preset similarity; based on the direct impact value on the target cultured species and the indirect impact value on the target cultured species, determine the plurality of first The integrated influence value of the preset breeding parameters; based on the integrated influence value, the first breeding parameter is determined from the plurality of first preset breeding parameters.

在一种可能的实施方式中,所述确定第一养殖参数和所述第一养殖参数对应的第一AI算法,包括:获取多个第一预设AI算法;所述多个第一预设AI算法分别对应不同的养殖品种;从所述多个第一预设AI算法中确定出所述第一AI算法;其中,所述第一AI算法在所述多个第一预设AI算法中,所对应的养殖品种的数量最高,且所对应的养殖品种的养殖环境符合预设养殖环境条件。In a possible implementation, determining the first breeding parameter and the first AI algorithm corresponding to the first breeding parameter includes: obtaining a plurality of first preset AI algorithms; the plurality of first preset AI algorithms AI algorithms respectively correspond to different breeding species; the first AI algorithm is determined from the plurality of first preset AI algorithms; wherein the first AI algorithm is among the plurality of first preset AI algorithms. , the number of corresponding breeding species is the highest, and the breeding environment of the corresponding breeding species meets the preset breeding environment conditions.

在一种可能的实施方式中,所述确定第二养殖参数和所述第二养殖参数对应的第二AI算法,包括:获取多个第二预设养殖参数;所述多个第二预设养殖参数均为人工维度的养殖参数;确定所述多个第二预设养殖参数对所述目标养殖品种的直接影响值;确定所述多个第二预设养殖参数对所述目标养殖品种的间接影响值;所述间接影响值基于所述多个第二预设养殖参数对所述目标养殖品种的第二关联养殖品种的直接影响值确定;所述第二关联养殖品种的人工养殖条件与所述目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;基于对所述目标养殖品种的直接影响值和对所述目标养殖品种的间接影响值,确定所述多个第二预设养殖参数的整合影响值;基于所述整合影响值,从所述多个第二预设养殖参数中,确定出所述第二养殖参数。In a possible implementation, the determination of the second breeding parameter and the second AI algorithm corresponding to the second breeding parameter includes: obtaining a plurality of second preset breeding parameters; the plurality of second preset The breeding parameters are all artificial dimension breeding parameters; determine the direct impact value of the plurality of second preset breeding parameters on the target breeding species; determine the impact of the plurality of second preset breeding parameters on the target breeding species. Indirect influence value; the indirect influence value is determined based on the direct influence value of the plurality of second preset breeding parameters on the second associated breeding species of the target breeding species; the artificial breeding conditions of the second associated breeding species are The similarity between the artificial breeding conditions of the target cultured species is greater than the second preset similarity; based on the direct impact value on the target cultured species and the indirect impact value on the target cultured species, the plurality of The integrated influence value of the second preset breeding parameter; based on the integrated influence value, the second breeding parameter is determined from the plurality of second preset breeding parameters.

在一种可能的实施方式中,所述确定第二养殖参数和所述第二养殖参数对应的第二AI算法,包括:获取多个第二预设AI算法;所述多个第二预设AI算法分别对应不同的养殖品种;从所述多个第二预设AI算法中确定出所述第二AI算法;其中,所述第二AI算法在所述多个第二预设AI算法中,所对应的养殖品种的数量最高,且所对应的养殖品种的人工养殖条件符合预设人工养殖条件。In a possible implementation, determining the second breeding parameter and the second AI algorithm corresponding to the second breeding parameter includes: obtaining a plurality of second preset AI algorithms; the plurality of second preset AI algorithms AI algorithms respectively correspond to different breeding species; the second AI algorithm is determined from the plurality of second preset AI algorithms; wherein the second AI algorithm is among the plurality of second preset AI algorithms. , the number of the corresponding breeding species is the highest, and the artificial breeding conditions of the corresponding breeding species meet the preset artificial breeding conditions.

在一种可能的实施方式中,所述确定第三养殖参数和所述第三养殖参数对应的第三AI算法,包括:获取多个第三预设养殖参数;所述多个第三预设养殖参数为基于所述第一预设养殖参数和/或所述第二预设养殖参数确定的养殖参数;确定所述多个第三预设养殖参数对所述目标养殖品种的直接影响值;确定所述多个第三预设养殖参数对所述目标养殖品种的间接影响值;所述间接影响值基于所述多个第一预设养殖参数对所述目标养殖品种的第三关联养殖品种的直接影响值确定;所述第三关联养殖品种的养殖环境与所述目标养殖品种的养殖环境之间的相似度大于第一预设相似度,和/或所述第三关联品种的人工养殖条件与所述目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;基于对所述目标养殖品种的直接影响值和对所述目标养殖品种的间接影响值,确定所述多个第三预设养殖参数的整合影响值;基于所述整合影响值,从所述多个第三预设养殖参数中,确定出所述第三养殖参数。In a possible implementation, the determination of the third breeding parameter and the third AI algorithm corresponding to the third breeding parameter includes: obtaining a plurality of third preset breeding parameters; the plurality of third preset breeding parameters The breeding parameters are breeding parameters determined based on the first preset breeding parameters and/or the second preset breeding parameters; determining the direct impact value of the plurality of third preset breeding parameters on the target breeding species; Determine the indirect influence value of the plurality of third preset breeding parameters on the target breeding species; the indirect influence value is based on the third associated breeding species of the target breeding species on the plurality of first preset breeding parameters. The direct influence value is determined; the similarity between the breeding environment of the third related breeding species and the breeding environment of the target breeding species is greater than the first preset similarity, and/or the artificial breeding of the third related species The similarity between the conditions and the artificial breeding conditions of the target cultured species is greater than the second preset similarity; based on the direct impact value on the target cultured species and the indirect impact value on the target cultured species, the determination of the The integrated influence value of a plurality of third preset breeding parameters; based on the integrated influence value, the third breeding parameter is determined from the plurality of third preset breeding parameters.

在一种可能的实施方式中,所述确定第三养殖参数和所述第三养殖参数对应的第三AI算法,包括:获取多个第三预设AI算法;所述多个第三预设AI算法分别对应不同的养殖品种;从所述多个第三预设AI算法中确定出所述第三AI算法;其中,所述第三AI算法在所述多个第三预设AI算法中,所对应的养殖品种的数量最高,所对应的养殖品种的养殖环境符合预设养殖环境条件,和/或所对应的养殖品种的人工养殖条件符合预设人工养殖条件。In a possible implementation, determining the third breeding parameter and the third AI algorithm corresponding to the third breeding parameter includes: obtaining a plurality of third preset AI algorithms; the plurality of third preset AI algorithms AI algorithms respectively correspond to different breeding species; the third AI algorithm is determined from the plurality of third preset AI algorithms; wherein the third AI algorithm is among the plurality of third preset AI algorithms. , the number of the corresponding breeding species is the highest, the breeding environment of the corresponding breeding species meets the preset breeding environment conditions, and/or the artificial breeding conditions of the corresponding breeding species meet the preset artificial breeding conditions.

在一种可能的实施方式中,所述基于所述第一AI算法、所述第二AI算法、所述第三AI算法、目标养殖品种和目标参数关系,构建目标AI算法,包括:基于所述目标参数关系,确定所述第一AI算法、所述第二AI算法和所述第三AI算法的连接关系;该连接关系用于指示各个AI算法的输入和输出之间的关系;基于所述连接关系,对所述第一AI算法、所述第二AI算法和所述第三AI算法进行连接,构建初始的目标AI算法;基于所述目标养殖品种对应的预设AI算法和所述初始的目标AI算法,确定所述目标AI算法。In a possible implementation, constructing a target AI algorithm based on the first AI algorithm, the second AI algorithm, the third AI algorithm, target breeding species, and target parameter relationships includes: based on the The target parameter relationship is used to determine the connection relationship between the first AI algorithm, the second AI algorithm and the third AI algorithm; the connection relationship is used to indicate the relationship between the input and output of each AI algorithm; based on the According to the connection relationship described above, the first AI algorithm, the second AI algorithm and the third AI algorithm are connected to construct an initial target AI algorithm; based on the preset AI algorithm corresponding to the target breeding species and the Initial target AI algorithm, determine the target AI algorithm.

在一种可能的实施方式中,所述基于所述目标养殖品种对应的预设AI算法和所述初始的目标AI算法,确定所述目标AI算法,包括:确定所述预设AI算法对应的输入参数和输出参数中是否包括所述第一养殖参数、所述第二养殖参数和所述第三养殖参数中的至少一项养殖参数;若是,判断所述预设AI算法是否与所述第一AI算法、所述第二AI算法和所述第三AI算法中的至少一项AI算法之间具有关联关系;若是,基于所述初始的目标AI算法确定所述目标AI算法;若否,基于所述预设AI算法对所述初始的目标AI算法进行调整,基于调整的AI算法确定所述目标AI算法。In a possible implementation, determining the target AI algorithm based on the preset AI algorithm corresponding to the target breeding species and the initial target AI algorithm includes: determining the preset AI algorithm corresponding to Whether the input parameters and output parameters include at least one of the first breeding parameter, the second breeding parameter and the third breeding parameter; if so, determine whether the preset AI algorithm is consistent with the third breeding parameter. There is an association relationship between at least one AI algorithm among an AI algorithm, the second AI algorithm and the third AI algorithm; if yes, determine the target AI algorithm based on the initial target AI algorithm; if not, The initial target AI algorithm is adjusted based on the preset AI algorithm, and the target AI algorithm is determined based on the adjusted AI algorithm.

在一种可能的实施方式中,所述用于智慧养殖的AI算法构建方法还包括:获取样本养殖数据;基于所述样本养殖数据和所述目标AI算法,确定第一样本养殖参数;基于所述样本养殖数据和预设的智慧养殖模型,确定第二样本养殖参数;所述预设的智慧养殖模型对应的模型算法与所述目标AI算法不同;基于所述第一样本养殖参数、所述第二样本养殖参数和所述样本养殖参数对应的真实养殖参数,对所述目标AI算法和所述预设的智慧养殖模型进行优化。In a possible implementation, the AI algorithm construction method for smart farming further includes: obtaining sample farming data; determining first sample farming parameters based on the sample farming data and the target AI algorithm; The sample farming data and the preset smart farming model determine the second sample farming parameters; the model algorithm corresponding to the preset smart farming model is different from the target AI algorithm; based on the first sample farming parameters, The second sample breeding parameters and the real breeding parameters corresponding to the sample breeding parameters optimize the target AI algorithm and the preset smart breeding model.

与现有技术相比,本申请实施例提供的用于智慧养殖的AI算法构建方法,一方面,针对不同类型的养殖参数,分别确定对应的AI算法,可以提高AI算法的多样性,在AI算法的多样性更高的基础上,无论是AI算法的准确性,还是与智慧场景的适配度,均相应提高。另一方面,基于多个AI算法,结合各个AI算法对应的输入对象之间的关系,整合构建目标AI算法,使得构建的目标AI算法与目标养殖品种的适配度提高。进而,在适配度和准确性提高的基础上,AI算法的应用性也相应提高。因此,该用于智慧养殖的AI算法构建方法,能够提高AI算法与智慧养殖的适配度,以及提高AI算法的准确性和应用性。Compared with the existing technology, the AI algorithm construction method for smart farming provided by the embodiments of this application can, on the one hand, determine corresponding AI algorithms for different types of farming parameters, which can improve the diversity of AI algorithms. On the basis of higher diversity of algorithms, both the accuracy of the AI algorithm and its adaptability to smart scenarios have been improved accordingly. On the other hand, based on multiple AI algorithms, combined with the relationship between the input objects corresponding to each AI algorithm, the target AI algorithm is integrated and constructed, so that the fitness of the built target AI algorithm and the target breeding species is improved. Furthermore, on the basis of improved adaptability and accuracy, the applicability of AI algorithms has also been improved accordingly. Therefore, the AI algorithm construction method for smart farming can improve the adaptability of the AI algorithm to smart farming, as well as improve the accuracy and applicability of the AI algorithm.

附图说明Description of the drawings

图1是根据本申请一实施方式的用于智慧养殖的AI算法构建方法的流程图;Figure 1 is a flow chart of an AI algorithm construction method for smart farming according to an embodiment of the present application;

图2是根据本申请一实施方式的AI算法连接关系示意图;Figure 2 is a schematic diagram of the connection relationship of the AI algorithm according to an embodiment of the present application;

图3是根据本申请一实施方式的用于智慧养殖的AI算法构建装置的结构示意图;Figure 3 is a schematic structural diagram of an AI algorithm construction device for smart farming according to an embodiment of the present application;

图4是根据本申请一实施方式的终端设备的结构示意图。Figure 4 is a schematic structural diagram of a terminal device according to an embodiment of the present application.

具体实施方式Detailed ways

下面结合附图,对本申请的具体实施方式进行详细描述,但应当理解本申请的保护范围并不受具体实施方式的限制。The specific embodiments of the present application will be described in detail below with reference to the accompanying drawings, but it should be understood that the protection scope of the present application is not limited by the specific embodiments.

除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。Unless expressly stated otherwise, throughout the specification and claims, the term "comprises" or its variations such as "comprises" or "comprising" will be understood to include the stated elements or components, and to Other elements or other components are not excluded.

本申请实施例提供的技术方案可以应用于智慧养殖场景中,在这些智慧养殖场景中,通过AI(Artificial Intelligence,人工智能)算法,对养殖数据进行分析;或者预测养殖数据;或者预测养殖参数等,以节省大量的人工成本。The technical solutions provided by the embodiments of this application can be applied to smart farming scenarios. In these smart farming scenarios, AI (Artificial Intelligence, artificial intelligence) algorithms are used to analyze farming data; or to predict farming data; or to predict farming parameters, etc. , to save a lot of labor costs.

以及,在不同的智慧养殖场景中,针对养殖环境、养殖品种等的区别,所涉及的智慧养殖项可能对应变化。从而,针对不同的智慧养殖场景,可以设计不同的AI算法,以使这些AI算法可以适用到这些场景中。And, in different smart farming scenarios, the smart farming items involved may change accordingly due to differences in farming environments, farming species, etc. Therefore, different AI algorithms can be designed for different smart farming scenarios so that these AI algorithms can be applied to these scenarios.

目前,针对这些智慧养殖场景中,已经产生了大量的AI算法,这些AI算法,通常针对一项养殖品种;或者特定的养殖环境制定特殊的AI算法;也就是,一个AI算法针对一个养殖场景。At present, a large number of AI algorithms have been produced for these smart farming scenarios. These AI algorithms are usually targeted at a farming species; or a special AI algorithm is developed for a specific farming environment; that is, one AI algorithm is targeted at a farming scenario.

从而,导致这些大量的AI算法不能得到有效的应用,使得AI算法与智慧养殖的场景的适配度并不是很高,进而该AI算法的准确性和应用性较差。As a result, these large numbers of AI algorithms cannot be effectively applied, making the AI algorithm not very suitable for smart farming scenarios, and thus the accuracy and applicability of the AI algorithm are poor.

基于此,本申请的实施例提供一种用于智慧养殖的AI算法构建方法,一方面,针对不同类型的养殖参数,分别确定对应的AI算法,可以提高AI算法的多样性,在AI算法的多样性更高的基础上,无论是AI算法的准确性,还是与智慧场景的适配度,均相应提高。另一方面,基于多个AI算法,结合各个AI算法对应的输入对象之间的关系,整合构建目标AI算法,使得构建的目标AI算法与目标养殖品种的适配度提高。Based on this, embodiments of this application provide an AI algorithm construction method for smart farming. On the one hand, determining corresponding AI algorithms for different types of farming parameters can improve the diversity of AI algorithms. On the basis of higher diversity, both the accuracy of the AI algorithm and its adaptability to smart scenarios have been improved accordingly. On the other hand, based on multiple AI algorithms, combined with the relationship between the input objects corresponding to each AI algorithm, the target AI algorithm is integrated and constructed, so that the fitness of the built target AI algorithm and the target breeding species is improved.

接下来请参照图1,为本申请的实施例提供的用于智慧养殖的AI算法构建方法的流程图,该构建方法包括:Next, please refer to Figure 1, which is a flow chart of an AI algorithm construction method for smart farming provided by an embodiment of the present application. The construction method includes:

步骤101,确定第一养殖参数和第一养殖参数对应的第一AI算法。其中,第一AI算法用于基于目标养殖数据确定第一养殖参数,第一养殖参数为环境维度的养殖参数。Step 101: Determine the first breeding parameter and the first AI algorithm corresponding to the first breeding parameter. Among them, the first AI algorithm is used to determine the first breeding parameter based on the target breeding data, and the first breeding parameter is the breeding parameter of the environmental dimension.

在一些实施例中,目标养殖数据可以视为第一AI算法的输入数据,而第一养殖参数的具体数值可以视为第一AI算法的输出数据,从而,第一AI算法可以基于目标养殖数据确定第一养殖参数的值。In some embodiments, the target breeding data can be regarded as the input data of the first AI algorithm, and the specific values of the first breeding parameters can be regarded as the output data of the first AI algorithm. Therefore, the first AI algorithm can be based on the target breeding data. Determine the value of the first breeding parameter.

在一些实施例中,第一养殖参数为环境维度的养殖参数,环境维度可以理解为环境因素影响。例如:养殖温度、养殖湿度等均可以视为环境维度的养殖参数。In some embodiments, the first breeding parameter is a breeding parameter in an environmental dimension, and the environmental dimension can be understood as the influence of environmental factors. For example: breeding temperature, breeding humidity, etc. can be regarded as breeding parameters in the environmental dimension.

在一些实施例中,目标养殖数据可以是预期的目标养殖品种的养殖数据,例如:养殖数量、养殖周期等。In some embodiments, the target breeding data may be the breeding data of the expected target breeding species, such as: breeding quantity, breeding cycle, etc.

作为一种可选的实施方式,步骤101包括:获取多个第一预设养殖参数;多个第一预设养殖参数均为环境维度的养殖参数;确定多个第一预设养殖参数对目标养殖品种的直接影响值;确定多个第一预设养殖参数对目标养殖品种的间接影响值;间接影响值基于多个第一预设养殖参数对目标养殖品种的第一关联养殖品种的直接影响值确定;第一关联养殖品种的养殖环境与目标养殖品种的养殖环境之间的相似度大于第一预设相似度;基于对目标养殖品种的直接影响值和对目标养殖品种的间接影响值,确定多个第一预设养殖参数的整合影响值;基于整合影响值,从多个第一预设养殖参数中,确定出第一养殖参数。As an optional implementation manner, step 101 includes: obtaining a plurality of first preset breeding parameters; the plurality of first preset breeding parameters are all breeding parameters of the environmental dimension; determining the relationship between the plurality of first preset breeding parameters and the target The direct impact value of the cultured species; determine the indirect impact value of multiple first preset culture parameters on the target culture species; the indirect impact value is based on the direct impact of the multiple first preset culture parameters on the first associated culture species of the target culture species. The value is determined; the similarity between the breeding environment of the first associated breeding species and the breeding environment of the target breeding species is greater than the first preset similarity; based on the direct impact value on the target breeding species and the indirect impact value on the target breeding species, Determine the integrated influence value of the plurality of first preset breeding parameters; determine the first breeding parameter from the plurality of first preset breeding parameters based on the integrated influence value.

在一些实施例中,确定第一养殖参数,可以理解为从多个可选的环境维度下的养殖参数项中,确定出与目标养殖品种对应的养殖参数项。In some embodiments, determining the first breeding parameter can be understood as determining the breeding parameter item corresponding to the target breeding species from the breeding parameter items in multiple optional environmental dimensions.

在一些实施例中,多个第一预设养殖参数可以为预设的环境维度下的多个养殖参数,这多个养殖参数与目标养殖品种可能具有关系,也可能不具有关系,所以需要进一步确定是否可以应用于目标养殖品种。In some embodiments, the plurality of first preset breeding parameters may be multiple breeding parameters under preset environmental dimensions. These multiple breeding parameters may or may not have a relationship with the target breeding species, so further steps are required. Determine whether it can be applied to the target cultured species.

在一些实施例中,多个第一预设养殖参数对目标养殖品种的直接影响值,可以根据目标养殖品种对应的历史养殖参数确定。若目标养殖品种对应的历史养殖参数中包括某个第一预设养殖参数,则该第一预设养殖参数对目标养殖品种可对应有一个影响值(例如90,最高为100)。若目标养殖品种对应的历史养殖参数中包括某个第一预设养殖参数的相关养殖参数,则该第一预设养殖参数对目标养殖品种可对应有一个影响值(例如70,最高为100)。若均不属于上述的情况,则对应的影响值可以为0-50之间,最高同样为100。In some embodiments, the direct impact value of the plurality of first preset breeding parameters on the target breeding species can be determined based on the historical breeding parameters corresponding to the target breeding species. If the historical breeding parameters corresponding to the target breeding species include a certain first preset breeding parameter, then the first preset breeding parameter can have an impact value (for example, 90, up to 100) on the target breeding species. If the historical breeding parameters corresponding to the target breeding species include related breeding parameters of a certain first preset breeding parameter, then the first preset breeding parameter can have an impact value on the target breeding species (for example, 70, up to 100). . If none of the above conditions apply, the corresponding impact value can be between 0 and 50, with the highest value also being 100.

在一些实施例中,第一关联养殖品种的养殖环境与目标养殖品种的养殖环境之间的相似度大于第一预设相似度;其中,第一预设相似度可以根据不同的应用场景进行设置,例如可以是百分之九十。例如:鱼塘养殖环境与淡水养殖环境的相似度可以达到百分之八十。In some embodiments, the similarity between the breeding environment of the first associated cultured species and the culture environment of the target cultured species is greater than the first preset similarity; wherein, the first preset similarity can be set according to different application scenarios. , for example, it can be ninety percent. For example, the similarity between fish pond culture environment and freshwater culture environment can reach 80%.

在一些实施例中,养殖环境之间的相似度,可以根据养殖环境的湿度、温度、主要物质等这些数据进行确定。In some embodiments, the similarity between breeding environments can be determined based on data such as humidity, temperature, and main substances of the breeding environment.

在一些实施例中,基于对目标养殖品种的直接影响值和间接影响值,可以按照预设的权重值,进行加权整合,所确定的影响值为整合影响值。In some embodiments, based on the direct impact value and indirect impact value on the target culture species, weighted integration can be performed according to the preset weight value, and the determined impact value is the integrated impact value.

进一步地,基于整合影响值,可以将整合影响值大于预设影响值的第一预设养殖参数,确定为第一养殖参数。其中,预设影响值可以根据不同的应用场景设定,例如可以为85,最高为100。Further, based on the integrated influence value, the first preset breeding parameter whose integrated influence value is greater than the preset influence value can be determined as the first breeding parameter. Among them, the preset influence value can be set according to different application scenarios, for example, it can be 85 and the highest is 100.

作为一种可选的实施方式,步骤101还包括:获取多个第一预设AI算法;多个第一预设AI算法分别对应不同的养殖品种;从多个第一预设AI算法中确定出第一AI算法;其中,第一AI算法在多个第一预设AI算法中,所对应的养殖品种的数量最高,且所对应的养殖品种的养殖环境符合预设养殖环境条件。As an optional implementation, step 101 also includes: obtaining a plurality of first preset AI algorithms; the plurality of first preset AI algorithms respectively corresponding to different breeding species; and determining from the plurality of first preset AI algorithms. A first AI algorithm is generated; among the plurality of first preset AI algorithms, the first AI algorithm corresponds to the highest number of breeding species, and the breeding environment of the corresponding breeding species meets the preset breeding environment conditions.

在一些实施例中,多个第一预设AI算法可以理解为对应不同的养殖品种,且能够适用于第一养殖参数的确定的算法,为预先已经配置好的算法。In some embodiments, the plurality of first preset AI algorithms can be understood as algorithms corresponding to different breeding species and applicable to the determination of the first breeding parameters, which are algorithms that have been configured in advance.

在一些实施例中,每个第一预设AI算法可以对应一个养殖品种,也可以对应多个养殖品种,在此不作限定。In some embodiments, each first preset AI algorithm may correspond to one breeding species or may correspond to multiple breeding species, which is not limited here.

进一步地,从多个第一预设AI算法中,确定出第一AI算法。在一些实施例中,可以先从中确定出所对应的养殖品种的数量最高的AI算法,再从这些AI算法中确定出养殖品种的养殖环境符合预设养殖环境条件的AI算法。Further, a first AI algorithm is determined from a plurality of first preset AI algorithms. In some embodiments, the AI algorithm with the highest number of corresponding breeding species can be determined first, and then the AI algorithm whose breeding environment of the breeding species meets the preset breeding environment conditions can be determined from these AI algorithms.

可以理解,预设养殖环境条件,可以是目标养殖品种对应的养殖环境条件,该条件中可以限定目标养殖品种所需的最低要求的养殖环境的相关数据。It can be understood that the preset breeding environment conditions can be the breeding environment conditions corresponding to the target breeding species, and the relevant data of the minimum required breeding environment required by the target breeding species can be defined in the conditions.

步骤102,确定第二养殖参数和第二养殖参数对应的第二AI算法。其中,第二AI算法用于基于目标养殖数据确定第二养殖参数,第二养殖参数为人工维度的养殖参数。Step 102: Determine the second breeding parameter and the second AI algorithm corresponding to the second breeding parameter. Among them, the second AI algorithm is used to determine the second breeding parameter based on the target breeding data, and the second breeding parameter is an artificial dimension breeding parameter.

在一些实施例中,目标养殖数据可以视为第二AI算法的输入数据,而第二养殖参数的具体数值可以视为第二AI算法的输出数据,从而,第二AI算法可以基于目标养殖数据确定第一养殖参数的值。In some embodiments, the target breeding data can be regarded as the input data of the second AI algorithm, and the specific values of the second breeding parameters can be regarded as the output data of the second AI algorithm. Therefore, the second AI algorithm can be based on the target breeding data. Determine the value of the first breeding parameter.

在一些实施例中,第二养殖参数为人工维度的养殖参数,人工维度可以理解为人工因素影响。例如:人工喂养时间、人工捕捞次数、人工捕捞数量等均可以视为人工维度的养殖参数。In some embodiments, the second breeding parameter is a breeding parameter with an artificial dimension, and the artificial dimension can be understood as the influence of artificial factors. For example: artificial feeding time, number of artificial fishing, number of artificial fishing, etc. can all be regarded as breeding parameters in the artificial dimension.

作为一种可选的实施方式,步骤102包括:获取多个第二预设养殖参数;多个第二预设养殖参数均为人工维度的养殖参数;确定多个第二预设养殖参数对目标养殖品种的直接影响值;确定多个第二预设养殖参数对目标养殖品种的间接影响值;间接影响值基于多个第二预设养殖参数对目标养殖品种的第二关联养殖品种的直接影响值确定;第二关联养殖品种的人工养殖条件与目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;基于对目标养殖品种的直接影响值和对目标养殖品种的间接影响值,确定多个第二预设养殖参数的整合影响值;基于整合影响值,从多个第二预设养殖参数中,确定出第二养殖参数。As an optional implementation, step 102 includes: obtaining a plurality of second preset breeding parameters; the plurality of second preset breeding parameters are all artificial-dimensional breeding parameters; and determining the relationship between the plurality of second preset breeding parameters and the target The direct impact value of the cultured species; determine the indirect impact value of multiple second preset culture parameters on the target culture species; the indirect impact value is based on the direct impact of the multiple second preset culture parameters on the second associated culture species of the target culture species. The value is determined; the similarity between the artificial breeding conditions of the second associated breeding species and the artificial breeding conditions of the target breeding species is greater than the second preset similarity; based on the direct impact value on the target breeding species and the indirect impact on the target breeding species value to determine the integrated influence value of the plurality of second preset breeding parameters; based on the integrated influence value, determine the second breeding parameter from the plurality of second preset breeding parameters.

在一些实施例中,确定第二养殖参数,可以理解为从多个可选的人工维度下的养殖参数项中,确定出与目标养殖品种对应的养殖参数项。In some embodiments, determining the second breeding parameter can be understood as determining the breeding parameter item corresponding to the target breeding species from the breeding parameter items under multiple optional artificial dimensions.

在一些实施例中,多个第二预设养殖参数可以为预设的人工维度下的多个养殖参数,这多个养殖参数与目标养殖品种可能具有关系,也可能不具有关系,所以需要进一步确定是否可以应用于目标养殖品种。In some embodiments, the plurality of second preset breeding parameters may be multiple breeding parameters under preset artificial dimensions. These multiple breeding parameters may or may not have a relationship with the target breeding species, so further steps are required. Determine whether it can be applied to the target cultured species.

在一些实施例中,多个第二预设养殖参数对目标养殖品种的直接影响值,可以根据目标养殖品种对应的历史养殖参数确定。若目标养殖品种对应的历史养殖参数中包括某个第二预设养殖参数,则该第二预设养殖参数对目标养殖品种可对应有一个影响值(例如90,最高为100)。若目标养殖品种对应的历史养殖参数中包括某个第二预设养殖参数的相关养殖参数,则该第二预设养殖参数对目标养殖品种可对应有一个影响值(例如70,最高为100)。若均不属于上述的情况,则对应的影响值可以为0-50之间,最高同样为100。In some embodiments, the direct impact value of the plurality of second preset breeding parameters on the target breeding species can be determined based on the historical breeding parameters corresponding to the target breeding species. If the historical breeding parameters corresponding to the target breeding species include a certain second preset breeding parameter, then the second preset breeding parameter can have an impact value (for example, 90, up to 100) on the target breeding species. If the historical breeding parameters corresponding to the target breeding species include related breeding parameters of a second preset breeding parameter, then the second preset breeding parameter can have an impact value on the target breeding species (for example, 70, up to 100). . If none of the above conditions apply, the corresponding impact value can be between 0 and 50, with the highest value also being 100.

在一些实施例中,第二关联养殖品种的人工养殖条件与目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;其中,第二预设相似度可以根据不同的应用场景进行设置,例如可以是百分之九十。In some embodiments, the similarity between the artificial breeding conditions of the second associated breeding species and the artificial breeding conditions of the target breeding species is greater than the second preset similarity; wherein the second preset similarity can be based on different application scenarios. Make a setting, maybe ninety percent, for example.

在一些实施例中,人工养殖条件之间的相似度,可以根据人工养殖条件中所涉及的各项数据进行确定。In some embodiments, the similarity between artificial breeding conditions can be determined based on various data involved in the artificial breeding conditions.

在一些实施例中,基于对目标养殖品种的直接影响值和间接影响值,可以按照预设的权重值,进行加权整合,所确定的影响值为整合影响值。In some embodiments, based on the direct impact value and indirect impact value on the target culture species, weighted integration can be performed according to the preset weight value, and the determined impact value is the integrated impact value.

进一步地,基于整合影响值,可以将整合影响值大于预设影响值的第二预设养殖参数,确定为第二养殖参数。其中,预设影响值可以根据不同的应用场景设定,例如可以为85,最高为100。Further, based on the integrated influence value, the second preset breeding parameter whose integrated influence value is greater than the preset influence value can be determined as the second breeding parameter. Among them, the preset influence value can be set according to different application scenarios, for example, it can be 85 and the highest is 100.

作为一种可选的实施方式,步骤还包括:获取多个第二预设AI算法;多个第二预设AI算法分别对应不同的养殖品种;从多个第二预设AI算法中确定出第二AI算法;其中,第二AI算法在多个第二预设AI算法中,所对应的养殖品种的数量最高,且所对应的养殖品种的人工养殖条件符合预设人工养殖条件。As an optional implementation, the steps further include: obtaining a plurality of second preset AI algorithms; the plurality of second preset AI algorithms respectively corresponding to different breeding species; and determining from the plurality of second preset AI algorithms The second AI algorithm; among the plurality of second preset AI algorithms, the second AI algorithm has the highest number of corresponding breeding species, and the artificial breeding conditions of the corresponding breeding species meet the preset artificial breeding conditions.

在一些实施例中,多个第二预设AI算法可以理解为对应不同的养殖品种,且能够适用于第二养殖参数的确定的算法,为预先已经配置好的算法。In some embodiments, multiple second preset AI algorithms can be understood as algorithms that correspond to different breeding species and are applicable to the determination of second breeding parameters, and are algorithms that have been configured in advance.

在一些实施例中,每个第二预设AI算法可以对应一个养殖品种,也可以对应多个养殖品种,在此不作限定。In some embodiments, each second preset AI algorithm may correspond to one breeding species or may correspond to multiple breeding species, which is not limited here.

进一步地,从多个第二预设AI算法中,确定出第二AI算法。在一些实施例中,可以先从中确定出所对应的养殖品种的数量最高的AI算法,再从这些AI算法中确定出养殖品种的人工养殖条件符合预设人工养殖条件的AI算法。Further, a second AI algorithm is determined from a plurality of second preset AI algorithms. In some embodiments, the AI algorithm with the highest number of corresponding cultured species can be first determined, and then the AI algorithm whose artificial breeding conditions of the cultured species meet the preset artificial breeding conditions can be determined from these AI algorithms.

可以理解,预设人工养殖条件,可以是目标养殖品种对应的人工养殖条件,该条件中可以限定目标养殖品种所需的最低要求的人工养殖条件的相关数据。It can be understood that the preset artificial breeding conditions can be artificial breeding conditions corresponding to the target breeding species, and the relevant data of the minimum artificial breeding conditions required for the target breeding species can be defined in the conditions.

步骤103,确定第三养殖参数和第三养殖参数对应的第三AI算法。其中,第三AI算法用于基于第一养殖参数和/或第二养殖参数确定第三养殖参数,第三养殖参数为基于环境维度和/或人工维度的养殖参数。Step 103: Determine the third breeding parameter and the third AI algorithm corresponding to the third breeding parameter. Wherein, the third AI algorithm is used to determine the third breeding parameter based on the first breeding parameter and/or the second breeding parameter, and the third breeding parameter is a breeding parameter based on the environmental dimension and/or the artificial dimension.

在一些实施例中,第一养殖参数和/或第二养殖参数可以视为第三AI算法的输入数据,而第三养殖参数的具体数值可以视为第三AI算法的输出数据,从而,第三AI算法可以基于第二养殖参数和/或第二养殖参数确定第三养殖参数的值。In some embodiments, the first breeding parameter and/or the second breeding parameter can be regarded as the input data of the third AI algorithm, and the specific value of the third breeding parameter can be regarded as the output data of the third AI algorithm, so that the third AI algorithm The three AI algorithms may determine the value of the third breeding parameter based on the second breeding parameter and/or the second breeding parameter.

在一些实施例中,第三养殖参数为基于环境维度和/或人工维度的养殖参数,基于环境维度和/或人工维度,可以理解为受两种维度影响;或者仅受其中一种维度影响。例如:养殖周期,为基于环境维度和人工维度的养殖参数。In some embodiments, the third breeding parameter is a breeding parameter based on environmental dimensions and/or artificial dimensions. Based on environmental dimensions and/or artificial dimensions, it can be understood that it is affected by two dimensions; or is affected by only one of the dimensions. For example: the breeding cycle is a breeding parameter based on the environmental dimension and the artificial dimension.

进而,针对第三养殖参数来说,可能需要利用第一养殖参数和第二养殖参数确定。Furthermore, the third breeding parameter may need to be determined using the first breeding parameter and the second breeding parameter.

作为一种可选的实施方式,步骤103包括:获取多个第三预设养殖参数;多个第三预设养殖参数为基于第一预设养殖参数和/或第二预设养殖参数确定的养殖参数;确定多个第三预设养殖参数对目标养殖品种的直接影响值;确定多个第三预设养殖参数对目标养殖品种的间接影响值;间接影响值基于多个第一预设养殖参数对目标养殖品种的第三关联养殖品种的直接影响值确定;第三关联养殖品种的养殖环境与目标养殖品种的养殖环境之间的相似度大于第一预设相似度,和/或第三关联品种的人工养殖条件与目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;基于对目标养殖品种的直接影响值和对目标养殖品种的间接影响值,确定多个第三预设养殖参数的整合影响值;基于整合影响值,从多个第三预设养殖参数中,确定出第三养殖参数。As an optional implementation, step 103 includes: obtaining a plurality of third preset breeding parameters; the plurality of third preset breeding parameters are determined based on the first preset breeding parameters and/or the second preset breeding parameters. Breeding parameters; determine the direct impact value of multiple third preset breeding parameters on the target breeding species; determine the indirect impact value of multiple third preset breeding parameters on the target breeding species; the indirect impact value is based on multiple first preset breeding The direct impact value of the parameters on the third associated breeding species of the target breeding species is determined; the similarity between the breeding environment of the third associated breeding species and the breeding environment of the target breeding species is greater than the first preset similarity, and/or the third The similarity between the artificial breeding conditions of the related species and the artificial breeding conditions of the target breeding species is greater than the second preset similarity; based on the direct impact value on the target breeding species and the indirect impact value on the target breeding species, multiple third The integrated influence value of the three preset breeding parameters; based on the integrated influence value, the third breeding parameter is determined from a plurality of third preset breeding parameters.

在一些实施例中,确定第三养殖参数,可以理解为从多个可选的基于环境维度和/或人工维度的养殖参数项中,确定出与目标养殖品种对应的养殖参数项。In some embodiments, determining the third breeding parameter can be understood as determining the breeding parameter item corresponding to the target breeding species from a plurality of optional breeding parameter items based on environmental dimensions and/or artificial dimensions.

在一些实施例中,多个第三预设养殖参数基于第一预设养殖参数和/或第二预设养殖参数确定的养殖参数;可以根据第一预设养殖参数对应的环境维度与第二预设养殖参数对应的人工维度之间的维度关联性,确定出多个第三预设养殖参数。In some embodiments, the plurality of third preset breeding parameters are breeding parameters determined based on the first preset breeding parameters and/or the second preset breeding parameters; the environmental dimensions corresponding to the first preset breeding parameters and the second preset breeding parameters may be used. The dimensional correlation between the artificial dimensions corresponding to the preset breeding parameters determines a plurality of third preset breeding parameters.

在一些实施例中,多个第三预设养殖参数对目标养殖品种的直接影响值,可以根据目标养殖品种对应的历史养殖参数确定。若目标养殖品种对应的历史养殖参数中包括某个第三预设养殖参数,则该第三预设养殖参数对目标养殖品种可对应有一个影响值(例如90,最高为100)。若目标养殖品种对应的历史养殖参数中包括某个第三预设养殖参数的相关养殖参数,则该第三预设养殖参数对目标养殖品种可对应有一个影响值(例如70,最高为100)。若均不属于上述的情况,则对应的影响值可以为0-50之间,最高同样为100。In some embodiments, the direct impact value of the plurality of third preset breeding parameters on the target breeding species can be determined based on the historical breeding parameters corresponding to the target breeding species. If the historical breeding parameters corresponding to the target breeding species include a third preset breeding parameter, then the third preset breeding parameter can have an impact value (for example, 90, up to 100) on the target breeding species. If the historical breeding parameters corresponding to the target breeding species include related breeding parameters of a third preset breeding parameter, then the third preset breeding parameter can have an impact value on the target breeding species (for example, 70, up to 100). . If none of the above conditions apply, the corresponding impact value can be between 0 and 50, with the highest value also being 100.

在一些实施例中,第三关联养殖品种的养殖环境与目标养殖品种的养殖环境之间的相似度大于第一预设相似度,和/或第三关联品种的人工养殖条件与目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;其中,第一预设相似度和第二预设相似度可以参照前述的实施例介绍。In some embodiments, the similarity between the breeding environment of the third associated breeding species and the breeding environment of the target breeding species is greater than the first preset similarity, and/or the artificial breeding conditions of the third associated species are similar to those of the target breeding species. The similarity between artificial breeding conditions is greater than the second preset similarity; wherein, the first preset similarity and the second preset similarity can be introduced with reference to the foregoing embodiments.

在一些实施例中,基于对目标养殖品种的直接影响值和间接影响值,可以按照预设的权重值,进行加权整合,所确定的影响值为整合影响值。In some embodiments, based on the direct impact value and indirect impact value on the target culture species, weighted integration can be performed according to the preset weight value, and the determined impact value is the integrated impact value.

进一步地,基于整合影响值,可以将整合影响值大于预设影响值的第三预设养殖参数,确定为第三养殖参数。其中,预设影响值可以根据不同的应用场景设定,例如可以为85,最高为100。Further, based on the integrated influence value, the third preset breeding parameter whose integrated influence value is greater than the preset influence value can be determined as the third breeding parameter. Among them, the preset influence value can be set according to different application scenarios, for example, it can be 85 and the highest is 100.

作为一种可选的实施方式,步骤103还包括:获取多个第三预设AI算法;多个第三预设AI算法分别对应不同的养殖品种;从多个第三预设AI算法中确定出第三AI算法;其中,第三AI算法在多个第三预设AI算法中,所对应的养殖品种的数量最高,所对应的养殖品种的养殖环境符合预设养殖环境条件,和/或所对应的养殖品种的人工养殖条件符合预设人工养殖条件。As an optional implementation, step 103 also includes: obtaining a plurality of third preset AI algorithms; the plurality of third preset AI algorithms respectively corresponding to different breeding species; and determining from the plurality of third preset AI algorithms. A third AI algorithm is generated; among the plurality of third preset AI algorithms, the third AI algorithm has the highest number of corresponding breeding species, and the breeding environment of the corresponding breeding species meets the preset breeding environment conditions, and/or The artificial breeding conditions of the corresponding breeding species meet the preset artificial breeding conditions.

在一些实施例中,多个第三预设AI算法可以理解为对应不同的养殖品种,且能够适用于第三养殖参数的确定的算法,为预先已经配置好的算法。In some embodiments, the plurality of third preset AI algorithms can be understood as algorithms that correspond to different breeding species and are applicable to the determination of the third breeding parameters, and are algorithms that have been configured in advance.

在一些实施例中,每个第三预设AI算法可以对应一个养殖品种,也可以对应多个养殖品种,在此不作限定。In some embodiments, each third preset AI algorithm may correspond to one breeding species or may correspond to multiple breeding species, which is not limited here.

进一步地,从多个第三预设AI算法中,确定出第三AI算法。在一些实施例中,可以先从中确定出所对应的养殖品种的数量最高的AI算法,再从这些AI算法中确定出养殖品种的人工养殖条件符合预设人工养殖条件的AI算法,最后再从这些AI算法出确定出养殖品种的养殖环境符合预设养殖环境条件的AI算法。Further, a third AI algorithm is determined from a plurality of third preset AI algorithms. In some embodiments, the AI algorithm with the highest number of corresponding breeding species can be determined first, and then the AI algorithm whose artificial breeding conditions of the breeding species meet the preset artificial breeding conditions can be determined from these AI algorithms, and finally from these AI algorithms The AI algorithm determines that the breeding environment of the breeding species meets the preset breeding environment conditions.

在本申请的实施例中,第一预设AI算法、第二预设AI算法和第三预设AI算法,可以是从本领域的成熟算法中选择的算法;也可以是根据具体的应用场景,所设计的人工智能算法。In the embodiments of this application, the first preset AI algorithm, the second preset AI algorithm, and the third preset AI algorithm can be algorithms selected from mature algorithms in the field; they can also be based on specific application scenarios. , the artificial intelligence algorithm designed.

例如,对于第一预设AI算法,可以针对多个养殖品种,分别进行AI算法的训练、调参、优化等,得到符合条件的第一预设AI算法。也就是说,上述的三种算法,其形式、获取方式,在本申请实施例不作限定。For example, for the first preset AI algorithm, AI algorithm training, parameter adjustment, optimization, etc. can be performed separately for multiple breeding species to obtain the first preset AI algorithm that meets the conditions. That is to say, the above three algorithms, their forms and acquisition methods are not limited in the embodiments of this application.

步骤104,基于第一AI算法、第二AI算法、第三AI算法、目标养殖品种和目标参数关系,构建目标AI算法。其中,目标参数关系为第一养殖参数、第二养殖参数和第三养殖参数之间的关系,目标AI算法用于确定目标养殖品种的养殖参数。Step 104: Construct a target AI algorithm based on the relationship between the first AI algorithm, the second AI algorithm, the third AI algorithm, the target breeding species and the target parameters. Among them, the target parameter relationship is the relationship between the first breeding parameter, the second breeding parameter and the third breeding parameter, and the target AI algorithm is used to determine the breeding parameters of the target breeding species.

在一些实施例中,目标参数关系表示为:;其中,/>代表第一养殖参数,/>代表第二养殖参数,/>代表第三养殖参数,/>代表第一权重,/>代表第二权重,/>代表第一影响值,/>代表第二影响值,/>代表第三影响值,/>代表预设影响值。In some embodiments, the target parameter relationship is expressed as: ;Among them,/> Represents the first breeding parameter,/> Represents the second breeding parameter,/> Represents the third breeding parameter,/> Represents the first weight,/> Represents the second weight,/> Represents the first influence value,/> Represents the second influence value,/> Represents the third influence value,/> Represents the default influence value.

在一些实施例中,第一权重、第二权重,可以结合不同的应用场景进行配置,代表着第一养殖参数和第二养殖参数,分别与第三养殖参数之间的关联性,关联性越强,对应的权重值越高。In some embodiments, the first weight and the second weight can be configured in combination with different application scenarios, and represent the correlation between the first breeding parameter and the second breeding parameter and the third breeding parameter respectively. The greater the correlation. The stronger, the higher the corresponding weight value.

在一些实施例中,第一影响值、第二影响值和第三影响值,分别代表着各个养殖参数对于目标养殖品种的影响力,影响力越高,响应的影响值越大,该影响值可结合历史数据进行确定,在此不作限定。In some embodiments, the first influence value, the second influence value and the third influence value respectively represent the influence of each breeding parameter on the target breeding species. The higher the influence, the greater the influence value of the response. The influence value It can be determined based on historical data and is not limited here.

在一些实施例中,预设影响值可以结合不同的应用场景进行配置,代表着对于目标养殖品种的影响力较大的影响值。In some embodiments, the preset influence value can be configured in combination with different application scenarios, representing an influence value that has a greater influence on the target breeding species.

从而,基于三种养殖参数之间的关系,可确定相应的连接关系。举例来说,若第三养殖参数基于第一养殖参数和第二养殖参数确定,则第三AI算法与第一AI算法和第二AI算法之间均具有连接关系;并且,在输入和输出之间,还加上相应的权重值限定。Therefore, based on the relationship between the three breeding parameters, the corresponding connection relationship can be determined. For example, if the third breeding parameter is determined based on the first breeding parameter and the second breeding parameter, then the third AI algorithm has a connection relationship with the first AI algorithm and the second AI algorithm; and, between the input and the output time, and also add corresponding weight value restrictions.

若第三养殖参数基于基于第一养殖参数或第二养殖参数确定,则,第三AI算法与第一AI算法或第二AI算法具有连接关系;并且,在输入和输出之间,还加上相应的权重值限定。If the third breeding parameter is determined based on the first breeding parameter or the second breeding parameter, then the third AI algorithm has a connection relationship with the first AI algorithm or the second AI algorithm; and between the input and the output, there is also The corresponding weight value is limited.

从而,作为一种可选的实施方式,步骤104包括:基于目标参数关系,确定第一AI算法、第二AI算法和第三AI算法的连接关系;该连接关系用于指示各个AI算法的输入和输出之间的关系;基于连接关系,对第一AI算法、第二AI算法和第三AI算法进行连接,构建初始的目标AI算法;基于目标养殖品种对应的预设AI算法和初始的目标AI算法,确定目标AI算法。Therefore, as an optional implementation, step 104 includes: determining the connection relationship of the first AI algorithm, the second AI algorithm and the third AI algorithm based on the target parameter relationship; the connection relationship is used to indicate the input of each AI algorithm. and the relationship between the output; based on the connection relationship, connect the first AI algorithm, the second AI algorithm and the third AI algorithm to construct the initial target AI algorithm; based on the preset AI algorithm corresponding to the target breeding species and the initial target AI algorithm, determine the target AI algorithm.

如图2所示,为本申请的实施例提供的一种算法连接关系,在该连接关系中,第一AI算法和第二AI算法的输入数据相同,第一AI算法和第二AI算法的输出均连接到第三AI算法的输入。As shown in Figure 2, an algorithm connection relationship is provided in the embodiment of the present application. In this connection relationship, the input data of the first AI algorithm and the second AI algorithm are the same, and the input data of the first AI algorithm and the second AI algorithm are the same. The outputs are connected to the input of the third AI algorithm.

可以理解,在不同的应用场景中,基于不同的目标参数关系,还可以是其他算法连接关系,在此不作限定。It can be understood that in different application scenarios, based on different target parameter relationships, other algorithm connection relationships can also be used, which are not limited here.

从而,基于该连接关系将三种AI算法进行连接,可构建初始的目标AI算法。Therefore, by connecting the three AI algorithms based on this connection relationship, the initial target AI algorithm can be constructed.

进一步地,基于目标养殖品种对应的预设AI算法和初始的目标AI算法,确定目标AI算法,包括:确定预设AI算法对应的输入参数和输出参数中是否包括所述第一养殖参数、第二养殖参数和第三养殖参数中的至少一项养殖参数;若是,判断预设AI算法是否与第一AI算法、第二AI算法和第三AI算法中的至少一项AI算法之间具有关联关系;若是,基于初始的目标AI算法确定目标AI算法;若否,基于预设AI算法对初始的目标AI算法进行调整,基于调整的AI算法确定目标AI算法。Further, determining the target AI algorithm based on the preset AI algorithm corresponding to the target breeding species and the initial target AI algorithm includes: determining whether the input parameters and output parameters corresponding to the preset AI algorithm include the first breeding parameter, the first breeding parameter, and the first breeding parameter. At least one of the two breeding parameters and the third breeding parameter; if so, determine whether the preset AI algorithm is related to at least one of the first AI algorithm, the second AI algorithm, and the third AI algorithm. relationship; if yes, determine the target AI algorithm based on the initial target AI algorithm; if not, adjust the initial target AI algorithm based on the preset AI algorithm, and determine the target AI algorithm based on the adjusted AI algorithm.

在一些实施例中,算法之间具有关联关系可以是,AI算法的复杂度相近、AI算法的类型相同或者相近等。In some embodiments, the correlation between algorithms may be that the complexity of the AI algorithms is similar, the types of the AI algorithms are the same or similar, etc.

在一些实施例中,基于初始的目标AI算法确定目标AI算法,包括:完善初始的目标AI算法,例如加入一些基础的数据预处理算法等,完善之后的算法确定为目标AI算法。In some embodiments, determining the target AI algorithm based on the initial target AI algorithm includes: improving the initial target AI algorithm, such as adding some basic data preprocessing algorithms, etc., and the improved algorithm is determined as the target AI algorithm.

在一些实施例中,预设AI算法可以是预设的与目标养殖品种匹配的一项AI算法。In some embodiments, the preset AI algorithm may be a preset AI algorithm that matches the target breeding species.

在一些实施例中,基于预设AI算法对初始的目标AI算法进行调整,包括:在初始的目标AI算法中加入预设AI算法,并且,预设AI算法与其他的AI算法为并列关系。从而,最终的目标AI算法中,预设AI算法与第三AI算法的输出结果整合之后,可输出最终的算法结果。In some embodiments, adjusting the initial target AI algorithm based on the preset AI algorithm includes: adding the preset AI algorithm to the initial target AI algorithm, and the preset AI algorithm is in a parallel relationship with other AI algorithms. Therefore, in the final target AI algorithm, after the output results of the preset AI algorithm and the third AI algorithm are integrated, the final algorithm result can be output.

在一些实施例中,该构建方法还包括:获取样本养殖数据;基于样本养殖数据和目标AI算法,确定第一样本养殖参数;基于样本养殖数据和预设的智慧养殖模型,确定第二样本养殖参数;预设的智慧养殖模型对应的模型算法与目标AI算法不同;基于第一样本养殖参数、第二样本养殖参数和样本养殖参数对应的真实养殖参数,对目标AI算法和所述预设的智慧养殖模型进行优化。In some embodiments, the construction method also includes: obtaining sample breeding data; determining the first sample breeding parameters based on the sample breeding data and the target AI algorithm; determining the second sample based on the sample breeding data and the preset smart breeding model Breeding parameters; the model algorithm corresponding to the preset smart breeding model is different from the target AI algorithm; based on the first sample breeding parameters, the second sample breeding parameters and the real breeding parameters corresponding to the sample breeding parameters, the target AI algorithm and the preset Optimize the designed smart breeding model.

在一些实施例中,将样本养殖数据输入到目标AI算法中,目标AI算法输出第一样本养殖参数。以及,将样本养殖数据输入到智慧养殖模型中,输出第二样本养殖参数。In some embodiments, the sample breeding data is input into the target AI algorithm, and the target AI algorithm outputs the first sample breeding parameters. And, input the sample breeding data into the smart breeding model and output the second sample breeding parameters.

其中,智慧养殖模型可以为预先通过模型训练等方式所得到的人工智能模型,其可以是神经网络模型、随机森林模型等。Among them, the smart breeding model can be an artificial intelligence model obtained in advance through model training, etc., which can be a neural network model, a random forest model, etc.

进一步地,样本养殖参数可对应一个真实养殖参数,也即,样本养殖数据为已经实施,并得到相应的养殖参数的数据。Further, the sample breeding parameter can correspond to a real breeding parameter, that is, the sample breeding data has been implemented and the corresponding breeding parameter data is obtained.

在一些实施例中,将第一样本养殖参数与真实养殖参数进行比较,如果匹配度较高,例如:参数值相近;则无需优化目标AI算法。In some embodiments, the first sample breeding parameters are compared with the real breeding parameters. If the matching degree is high, for example, the parameter values are similar, there is no need to optimize the target AI algorithm.

如果匹配度较低,例如:参数值相差较远,则需要优化目标AI算法,优化的方式包括:优化其中的函数、参数、算法循环方式等。If the matching degree is low, for example, the parameter values are far apart, the target AI algorithm needs to be optimized. Optimization methods include: optimizing the functions, parameters, algorithm cycle methods, etc.

在一些实施例中,将第二样本养殖参数与真实养殖参数进行比较,如果匹配度较高,例如:参数值相近;则无需优化智慧养殖模型。In some embodiments, the second sample breeding parameters are compared with the real breeding parameters. If the matching degree is high, for example, the parameter values are similar, there is no need to optimize the smart breeding model.

如果匹配度较低,例如:参数值相差较远,则需要优化智慧养殖模型,优化的方式包括:利用新的训练数据集再次训练等。If the matching degree is low, for example, the parameter values are far apart, the smart breeding model needs to be optimized. Optimization methods include: training again using a new training data set, etc.

通过本申请的实施例的介绍可以看出,一方面,针对不同类型的养殖参数,分别确定对应的AI算法,可以提高AI算法的多样性,在AI算法的多样性更高的基础上,无论是AI算法的准确性,还是与智慧场景的适配度,均相应提高。另一方面,基于多个AI算法,结合各个AI算法对应的输入对象之间的关系,整合构建目标AI算法,使得构建的目标AI算法与目标养殖品种的适配度提高。进而,在适配度和准确性提高的基础上,AI算法的应用性也相应提高。因此,该用于智慧养殖的AI算法构建方法,能够提高AI算法与智慧养殖的适配度,以及提高AI算法的准确性和应用性。It can be seen from the introduction of the embodiments of this application that on the one hand, determining the corresponding AI algorithms for different types of breeding parameters can improve the diversity of the AI algorithms. On the basis of higher diversity of the AI algorithms, regardless of Whether it is the accuracy of the AI algorithm or its adaptability to smart scenarios, both have improved accordingly. On the other hand, based on multiple AI algorithms, combined with the relationship between the input objects corresponding to each AI algorithm, the target AI algorithm is integrated and constructed, so that the fitness of the built target AI algorithm and the target breeding species is improved. Furthermore, on the basis of improved adaptability and accuracy, the applicability of AI algorithms has also been improved accordingly. Therefore, the AI algorithm construction method for smart farming can improve the adaptability of the AI algorithm to smart farming, as well as improve the accuracy and applicability of the AI algorithm.

请参照图3,为本申请实施例提供的用于智慧养殖的AI算法构建装置的结构示意图,包括:Please refer to Figure 3, which is a schematic structural diagram of an AI algorithm construction device for smart farming provided by an embodiment of the present application, including:

确定单元301,用于确定第一养殖参数和所述第一养殖参数对应的第一AI算法;所述第一AI算法用于基于目标养殖数据确定所述第一养殖参数,所述第一养殖参数为环境维度的养殖参数;确定第二养殖参数和所述第二养殖参数对应的第二AI算法;所述第二AI算法用于基于所述目标养殖数据确定所述第二养殖参数,所述第二养殖参数为人工维度的养殖参数;确定第三养殖参数和所述第三养殖参数对应的第三AI算法;所述第三AI算法用于基于所述第一养殖参数和/或所述第二养殖参数确定所述第三养殖参数,所述第三养殖参数为基于所述环境维度和/或所述人工维度的养殖参数;构建单元302,用于基于所述第一AI算法、所述第二AI算法、所述第三AI算法、目标养殖品种和目标参数关系,构建目标AI算法;所述目标AI算法用于确定所述目标养殖品种的养殖参数,所述目标参数关系表示为:;其中,/>代表所述第一养殖参数,/>代表所述第二养殖参数,/>代表所述第三养殖参数,/>代表第一权重,/>代表第二权重,代表第一影响值,/>代表第二影响值,/>代表第三影响值,/>代表预设影响值。The determination unit 301 is used to determine the first breeding parameter and the first AI algorithm corresponding to the first breeding parameter; the first AI algorithm is used to determine the first breeding parameter based on the target breeding data. The parameters are the breeding parameters of the environmental dimension; the second breeding parameters and the second AI algorithm corresponding to the second breeding parameters are determined; the second AI algorithm is used to determine the second breeding parameters based on the target breeding data, so The second breeding parameter is an artificial dimension breeding parameter; the third breeding parameter and the third AI algorithm corresponding to the third breeding parameter are determined; the third AI algorithm is used based on the first breeding parameter and/or the The second breeding parameter determines the third breeding parameter, and the third breeding parameter is a breeding parameter based on the environmental dimension and/or the artificial dimension; the construction unit 302 is configured to based on the first AI algorithm, The second AI algorithm, the third AI algorithm, the target breeding species and the target parameter relationship construct a target AI algorithm; the target AI algorithm is used to determine the breeding parameters of the target breeding species, and the target parameter relationship represents for: ;Among them,/> Represents the first breeding parameter,/> Represents the second breeding parameter,/> Represents the third breeding parameter,/> Represents the first weight,/> represents the second weight, Represents the first influence value,/> Represents the second influence value,/> Represents the third influence value,/> Represents the default influence value.

在一些实施例中,确定单元301进一步用于:获取多个第一预设养殖参数;所述多个第一预设养殖参数均为环境维度的养殖参数;确定所述多个第一预设养殖参数对所述目标养殖品种的直接影响值;确定所述多个第一预设养殖参数对所述目标养殖品种的间接影响值;所述间接影响值基于所述多个第一预设养殖参数对所述目标养殖品种的第一关联养殖品种的直接影响值确定;所述第一关联养殖品种的养殖环境与所述目标养殖品种的养殖环境之间的相似度大于第一预设相似度;基于对所述目标养殖品种的直接影响值和对所述目标养殖品种的间接影响值,确定所述多个第一预设养殖参数的整合影响值;基于所述整合影响值,从所述多个第一预设养殖参数中,确定出所述第一养殖参数。In some embodiments, the determining unit 301 is further configured to: obtain a plurality of first preset breeding parameters; the plurality of first preset breeding parameters are all breeding parameters of an environmental dimension; determine the plurality of first preset breeding parameters. The direct influence value of the breeding parameters on the target breeding species; the indirect influence value of the plurality of first preset breeding parameters on the target breeding species is determined; the indirect influence value is based on the plurality of first preset breeding The direct impact value of the parameter on the first associated cultured species of the target cultured species is determined; the similarity between the cultured environment of the first associated cultured species and the cultured environment of the target cultured species is greater than the first preset similarity ; Based on the direct impact value on the target cultured species and the indirect impact value on the target cultured species, determine the integrated impact value of the plurality of first preset breeding parameters; based on the integrated impact value, from the The first breeding parameter is determined among a plurality of first preset breeding parameters.

在一些实施例中,确定单元301进一步用于:获取多个第一预设AI算法;所述多个第一预设AI算法分别对应不同的养殖品种;从所述多个第一预设AI算法中确定出所述第一AI算法;其中,所述第一AI算法在所述多个第一预设AI算法中,所对应的养殖品种的数量最高,且所对应的养殖品种的养殖环境符合预设养殖环境条件。In some embodiments, the determining unit 301 is further configured to: obtain a plurality of first preset AI algorithms; the plurality of first preset AI algorithms respectively correspond to different breeding species; and obtain a plurality of first preset AI algorithms from the plurality of first preset AI algorithms. The first AI algorithm is determined in the algorithm; wherein the first AI algorithm has the highest number of corresponding breeding species among the plurality of first preset AI algorithms, and the breeding environment of the corresponding breeding species Comply with the preset breeding environment conditions.

在一些实施例中,确定单元301进一步用于:获取多个第二预设养殖参数;所述多个第二预设养殖参数均为人工维度的养殖参数;确定所述多个第二预设养殖参数对所述目标养殖品种的直接影响值;确定所述多个第二预设养殖参数对所述目标养殖品种的间接影响值;所述间接影响值基于所述多个第二预设养殖参数对所述目标养殖品种的第二关联养殖品种的直接影响值确定;所述第二关联养殖品种的人工养殖条件与所述目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;基于对所述目标养殖品种的直接影响值和对所述目标养殖品种的间接影响值,确定所述多个第二预设养殖参数的整合影响值;基于所述整合影响值,从所述多个第二预设养殖参数中,确定出所述第二养殖参数。In some embodiments, the determining unit 301 is further configured to: obtain a plurality of second preset breeding parameters; the plurality of second preset breeding parameters are all artificial dimension breeding parameters; determine the plurality of second preset breeding parameters. The direct influence value of the breeding parameters on the target breeding species; the indirect influence value of the plurality of second preset breeding parameters on the target breeding species is determined; the indirect influence value is based on the plurality of second preset breeding The direct influence value of the parameter on the second associated cultured species of the target cultured species is determined; the similarity between the artificial breeding conditions of the second associated cultured species and the artificial breeding conditions of the target cultured species is greater than the second preset Similarity; based on the direct impact value on the target cultured species and the indirect impact value on the target cultured species, determine the integrated impact value of the plurality of second preset breeding parameters; based on the integrated impact value, from Among the plurality of second preset breeding parameters, the second breeding parameter is determined.

在一些实施例中,确定单元301进一步用于:获取多个第二预设AI算法;所述多个第二预设AI算法分别对应不同的养殖品种;从所述多个第二预设AI算法中确定出所述第二AI算法;其中,所述第二AI算法在所述多个第二预设AI算法中,所对应的养殖品种的数量最高,且所对应的养殖品种的人工养殖条件符合预设人工养殖条件。In some embodiments, the determining unit 301 is further configured to: obtain a plurality of second preset AI algorithms; the plurality of second preset AI algorithms respectively correspond to different breeding species; and obtain a plurality of second preset AI algorithms from the plurality of second preset AI algorithms. The second AI algorithm is determined in the algorithm; wherein the second AI algorithm has the highest number of corresponding breeding species among the plurality of second preset AI algorithms, and the artificial breeding of the corresponding breeding species The conditions meet the preset artificial breeding conditions.

在一些实施例中,确定单元301进一步用于:获取多个第三预设养殖参数;所述多个第三预设养殖参数为基于所述第一预设养殖参数和/或所述第二预设养殖参数确定的养殖参数;确定所述多个第三预设养殖参数对所述目标养殖品种的直接影响值;确定所述多个第三预设养殖参数对所述目标养殖品种的间接影响值;所述间接影响值基于所述多个第一预设养殖参数对所述目标养殖品种的第三关联养殖品种的直接影响值确定;所述第三关联养殖品种的养殖环境与所述目标养殖品种的养殖环境之间的相似度大于第一预设相似度,和/或所述第三关联品种的人工养殖条件与所述目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;基于对所述目标养殖品种的直接影响值和对所述目标养殖品种的间接影响值,确定所述多个第三预设养殖参数的整合影响值;基于所述整合影响值,从所述多个第三预设养殖参数中,确定出所述第三养殖参数。In some embodiments, the determining unit 301 is further configured to: obtain a plurality of third preset breeding parameters; the plurality of third preset breeding parameters are based on the first preset breeding parameters and/or the second The breeding parameters determined by the preset breeding parameters; determining the direct influence value of the plurality of third preset breeding parameters on the target breeding species; determining the indirect influence of the plurality of third preset breeding parameters on the target breeding species. The influence value; the indirect influence value is determined based on the direct influence value of the plurality of first preset breeding parameters on the third related breeding species of the target breeding species; the breeding environment of the third related breeding species is different from the The similarity between the breeding environments of the target breeding species is greater than the first preset similarity, and/or the similarity between the artificial breeding conditions of the third associated species and the artificial breeding conditions of the target breeding species is greater than the second Preset similarity; determine the integrated impact value of the plurality of third preset farming parameters based on the direct impact value on the target cultured species and the indirect impact value on the target cultured species; based on the integrated impact value , determine the third breeding parameter from the plurality of third preset breeding parameters.

在一些实施例中,确定单元301进一步用于:获取多个第三预设AI算法;所述多个第三预设AI算法分别对应不同的养殖品种;从所述多个第三预设AI算法中确定出所述第三AI算法;其中,所述第三AI算法在所述多个第三预设AI算法中,所对应的养殖品种的数量最高,所对应的养殖品种的养殖环境符合预设养殖环境条件,和/或所对应的养殖品种的人工养殖条件符合预设人工养殖条件。In some embodiments, the determining unit 301 is further configured to: obtain a plurality of third preset AI algorithms; the plurality of third preset AI algorithms respectively correspond to different breeding species; and obtain a plurality of third preset AI algorithms from the plurality of third preset AI algorithms. The third AI algorithm is determined in the algorithm; wherein the third AI algorithm has the highest number of corresponding breeding species among the plurality of third preset AI algorithms, and the breeding environment of the corresponding breeding species meets The preset breeding environment conditions, and/or the artificial breeding conditions of the corresponding breeding species meet the preset artificial breeding conditions.

在一些实施例中,构建单元302进一步用于:基于所述目标参数关系,确定所述第一AI算法、所述第二AI算法和所述第三AI算法的连接关系;该连接关系用于指示各个AI算法的输入和输出之间的关系;基于所述连接关系,对所述第一AI算法、所述第二AI算法和所述第三AI算法进行连接,构建初始的目标AI算法;基于所述目标养殖品种对应的预设AI算法和所述初始的目标AI算法,确定所述目标AI算法。In some embodiments, the building unit 302 is further configured to: determine a connection relationship between the first AI algorithm, the second AI algorithm and the third AI algorithm based on the target parameter relationship; the connection relationship is used to Indicate the relationship between the input and output of each AI algorithm; based on the connection relationship, connect the first AI algorithm, the second AI algorithm and the third AI algorithm to construct an initial target AI algorithm; The target AI algorithm is determined based on the preset AI algorithm corresponding to the target breeding species and the initial target AI algorithm.

在一些实施例中,构建单元302还用于:确定所述预设AI算法对应的输入参数和输出参数中是否包括所述第一养殖参数、所述第二养殖参数和所述第三养殖参数中的至少一项养殖参数;若是,判断所述预设AI算法是否与所述第一AI算法、所述第二AI算法和所述第三AI算法中的至少一项AI算法之间具有关联关系;若是,基于所述初始的目标AI算法确定所述目标AI算法;若否,基于所述预设AI算法对所述初始的目标AI算法进行调整,基于调整的AI算法确定所述目标AI算法。In some embodiments, the construction unit 302 is also used to determine whether the input parameters and output parameters corresponding to the preset AI algorithm include the first breeding parameter, the second breeding parameter, and the third breeding parameter. at least one breeding parameter in; if yes, determine whether the preset AI algorithm is associated with at least one AI algorithm among the first AI algorithm, the second AI algorithm and the third AI algorithm. relationship; if yes, determine the target AI algorithm based on the initial target AI algorithm; if not, adjust the initial target AI algorithm based on the preset AI algorithm, and determine the target AI based on the adjusted AI algorithm algorithm.

如图4所示,本申请实施例还提供一种终端设备,包括处理器401和存储器402,处理器401和存储器402通信连接,该终端设备可作为前述的用于智慧养殖的AI算法构建方法的执行主体。As shown in Figure 4, the embodiment of the present application also provides a terminal device, including a processor 401 and a memory 402. The processor 401 and the memory 402 are communicatively connected. The terminal device can be used as the aforementioned AI algorithm construction method for smart breeding. the execution subject.

处理器401、存储器402之间直接或间接地电连接,以实现数据的传输或交互。例如,这些元件之间可以通过一条或多条通讯总线或信号总线实现电连接。前述的用于智慧养殖的AI算法构建方法分别包括至少一个可以以软件或固件(firmware)的形式存储于存储器402中的软件功能模块。The processor 401 and the memory 402 are electrically connected directly or indirectly to realize data transmission or interaction. For example, these components may be electrically connected through one or more communication buses or signal buses. The aforementioned AI algorithm construction methods for smart farming each include at least one software function module that can be stored in the memory 402 in the form of software or firmware.

处理器401可以是一种集成电路芯片,具有信号处理能力。处理器401可以是通用处理器,包括CPU (Central Processing Unit,中央处理器)、NP (Network Processor,网络处理器)等;还可以是数字信号处理器、专用集成电路、现成可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。其可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The processor 401 may be an integrated circuit chip with signal processing capabilities. The processor 401 can be a general-purpose processor, including a CPU (Central Processing Unit, central processing unit), NP (Network Processor, network processor), etc.; it can also be a digital signal processor, an application-specific integrated circuit, an off-the-shelf programmable gate array, or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components. It can implement or execute the disclosed methods, steps and logical block diagrams in the embodiments of the present invention. A general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.

存储器402可以存储各种软件程序以及模块,如本发明实施例提供的图像处理方法及装置对应的程序指令/模块。处理器401通过运行存储在存储器402中的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现本申请实施例中的方法。The memory 402 can store various software programs and modules, such as program instructions/modules corresponding to the image processing method and device provided by embodiments of the present invention. The processor 401 executes various functional applications and data processing by running software programs and modules stored in the memory 402, that is, implementing the methods in the embodiments of the present application.

存储器402可以包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read Only Memory,只读存储器),PROM(Programmable Read-Only Memory,可编程只读存储器),EPROM(Erasable Programmable Read-Only Memory,可擦除只读存储器),EEPROM(Electric Erasable Programmable Read-Only Memory,电可擦除只读存储器)等。The memory 402 may include but is not limited to RAM (Random Access Memory), ROM (Read Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable Programmable Read). -Only Memory, Erasable Read-Only Memory), EEPROM (Electric Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory), etc.

可以理解,图4所示的结构仅为示意,终端设备还可包括比图4中所示更多或者更少的组件,或者具有与图4所示不同的配置。It can be understood that the structure shown in Figure 4 is only illustrative, and the terminal device may also include more or fewer components than shown in Figure 4, or have a different configuration than that shown in Figure 4.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will understand that embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for realizing the functions specified in a process or processes in a flowchart and/or a block or blocks in a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions The device implements the functions specified in a process or processes in the flowchart and/or in a block or blocks in the block diagram.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device. Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

前述对本申请的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本申请限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本申请的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本申请的各种不同的示例性实施方案以及各种不同的选择和改变。本申请的范围意在由权利要求书及其等同形式所限定。The foregoing descriptions of specific exemplary embodiments of the present application have been presented for purposes of illustration and illustration. These descriptions are not intended to limit the application to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described in order to explain certain principles of the invention and their practical applications, thereby enabling others skilled in the art to make and utilize various exemplary embodiments of the invention and various different applications. Choice and change. The scope of the application is intended to be defined by the claims and their equivalents.

Claims (8)

1.一种用于智慧养殖的AI算法构建方法,其特征在于,包括:1. An AI algorithm construction method for smart farming, which is characterized by including: 确定第一养殖参数和所述第一养殖参数对应的第一AI算法;所述第一AI算法用于基于目标养殖数据确定所述第一养殖参数,所述第一养殖参数为环境维度的养殖参数;Determine the first breeding parameter and the first AI algorithm corresponding to the first breeding parameter; the first AI algorithm is used to determine the first breeding parameter based on the target breeding data, and the first breeding parameter is the environmental dimension of breeding parameter; 确定第二养殖参数和所述第二养殖参数对应的第二AI算法;所述第二AI算法用于基于所述目标养殖数据确定所述第二养殖参数,所述第二养殖参数为人工维度的养殖参数;Determine the second breeding parameter and the second AI algorithm corresponding to the second breeding parameter; the second AI algorithm is used to determine the second breeding parameter based on the target breeding data, and the second breeding parameter is an artificial dimension breeding parameters; 确定第三养殖参数和所述第三养殖参数对应的第三AI算法;所述第三AI算法用于基于所述第一养殖参数和/或所述第二养殖参数确定所述第三养殖参数,所述第三养殖参数为基于所述环境维度和/或所述人工维度的养殖参数;Determine a third breeding parameter and a third AI algorithm corresponding to the third breeding parameter; the third AI algorithm is used to determine the third breeding parameter based on the first breeding parameter and/or the second breeding parameter , the third breeding parameter is a breeding parameter based on the environmental dimension and/or the artificial dimension; 基于所述第一AI算法、所述第二AI算法、所述第三AI算法、目标养殖品种和目标参数关系,构建目标AI算法;所述目标AI算法用于确定所述目标养殖品种的养殖参数,所述目标参数关系表示为:;其中,/>代表所述第一养殖参数/>代表所述第二养殖参数,/>代表所述第三养殖参数,/>代表第一权重,/>代表第二权重,/>代表第一影响值,/>代表第二影响值,/>代表第三影响值,/>代表预设影响值;Based on the first AI algorithm, the second AI algorithm, the third AI algorithm, the target breeding species and the target parameter relationship, a target AI algorithm is constructed; the target AI algorithm is used to determine the breeding of the target breeding species Parameters, the target parameter relationship is expressed as: ;Among them,/> Represents the first breeding parameter/> Represents the second breeding parameter,/> Represents the third breeding parameter,/> Represents the first weight,/> Represents the second weight,/> Represents the first influence value,/> Represents the second influence value,/> Represents the third influence value,/> Represents the default influence value; 其中,所述确定第一养殖参数和所述第一养殖参数对应的第一AI算法,包括:获取多个第一预设养殖参数;所述多个第一预设养殖参数均为环境维度的养殖参数;确定所述多个第一预设养殖参数对所述目标养殖品种的直接影响值;确定所述多个第一预设养殖参数对所述目标养殖品种的间接影响值;所述间接影响值基于所述多个第一预设养殖参数对所述目标养殖品种的第一关联养殖品种的直接影响值确定;所述第一关联养殖品种的养殖环境与所述目标养殖品种的养殖环境之间的相似度大于第一预设相似度;基于对所述目标养殖品种的直接影响值和对所述目标养殖品种的间接影响值,确定所述多个第一预设养殖参数的整合影响值;基于所述整合影响值,从所述多个第一预设养殖参数中,确定出所述第一养殖参数;Wherein, the determination of the first breeding parameter and the first AI algorithm corresponding to the first breeding parameter includes: obtaining a plurality of first preset breeding parameters; the plurality of first preset breeding parameters are all environmental dimensions. Breeding parameters; determine the direct impact value of the plurality of first preset breeding parameters on the target cultured species; determine the indirect impact value of the plurality of first preset cultured parameters on the target cultured species; the indirect The influence value is determined based on the direct influence value of the plurality of first preset breeding parameters on the first associated breeding species of the target breeding species; the breeding environment of the first associated breeding species and the breeding environment of the target breeding species The similarity between them is greater than the first preset similarity; based on the direct impact value on the target culture variety and the indirect impact value on the target culture species, the integrated impact of the multiple first preset culture parameters is determined value; based on the integrated influence value, determine the first breeding parameter from the plurality of first preset breeding parameters; 获取多个第一预设AI算法;所述多个第一预设AI算法分别对应不同的养殖品种;从所述多个第一预设AI算法中确定出所述第一AI算法;其中,所述第一AI算法在所述多个第一预设AI算法中,所对应的养殖品种的数量最高,且所对应的养殖品种的养殖环境符合预设养殖环境条件。Obtain a plurality of first preset AI algorithms; the plurality of first preset AI algorithms respectively correspond to different breeding species; determine the first AI algorithm from the plurality of first preset AI algorithms; wherein, Among the plurality of first preset AI algorithms, the first AI algorithm corresponds to the highest number of breeding species, and the breeding environment of the corresponding breeding species meets the preset breeding environment conditions. 2.根据权利要求1所述的用于智慧养殖的AI算法构建方法,其特征在于,所述确定第二养殖参数和所述第二养殖参数对应的第二AI算法,包括:2. The AI algorithm construction method for smart breeding according to claim 1, characterized in that the determination of the second breeding parameter and the second AI algorithm corresponding to the second breeding parameter includes: 获取多个第二预设养殖参数;所述多个第二预设养殖参数均为人工维度的养殖参数;Obtain a plurality of second preset breeding parameters; the plurality of second preset breeding parameters are all artificial dimension breeding parameters; 确定所述多个第二预设养殖参数对所述目标养殖品种的直接影响值;Determine the direct impact value of the plurality of second preset breeding parameters on the target breeding species; 确定所述多个第二预设养殖参数对所述目标养殖品种的间接影响值;所述间接影响值基于所述多个第二预设养殖参数对所述目标养殖品种的第二关联养殖品种的直接影响值确定;所述第二关联养殖品种的人工养殖条件与所述目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;Determine the indirect influence value of the plurality of second preset breeding parameters on the target breeding species; the indirect influence value is based on the second associated breeding species of the target breeding species on the plurality of second preset breeding parameters. The direct influence value is determined; the similarity between the artificial breeding conditions of the second associated breeding species and the artificial breeding conditions of the target breeding species is greater than the second preset similarity; 基于对所述目标养殖品种的直接影响值和对所述目标养殖品种的间接影响值,确定所述多个第二预设养殖参数的整合影响值;Determine the integrated impact value of the plurality of second preset breeding parameters based on the direct impact value on the target cultured species and the indirect impact value on the target cultured species; 基于所述整合影响值,从所述多个第二预设养殖参数中,确定出所述第二养殖参数。Based on the integrated influence value, the second breeding parameter is determined from the plurality of second preset breeding parameters. 3.根据权利要求1所述的用于智慧养殖的AI算法构建方法,其特征在于,所述确定第二养殖参数和所述第二养殖参数对应的第二AI算法,包括:3. The AI algorithm construction method for smart breeding according to claim 1, characterized in that the determination of the second breeding parameter and the second AI algorithm corresponding to the second breeding parameter includes: 获取多个第二预设AI算法;所述多个第二预设AI算法分别对应不同的养殖品种;Obtain a plurality of second preset AI algorithms; the plurality of second preset AI algorithms respectively correspond to different breeding species; 从所述多个第二预设AI算法中确定出所述第二AI算法;其中,所述第二AI算法在所述多个第二预设AI算法中,所对应的养殖品种的数量最高,且所对应的养殖品种的人工养殖条件符合预设人工养殖条件。The second AI algorithm is determined from the plurality of second preset AI algorithms; wherein the second AI algorithm has the highest number of corresponding breeding species among the plurality of second preset AI algorithms. , and the artificial breeding conditions of the corresponding breeding species meet the preset artificial breeding conditions. 4.根据权利要求1所述的用于智慧养殖的AI算法构建方法,其特征在于,所述确定第三养殖参数和所述第三养殖参数对应的第三AI算法,包括:4. The AI algorithm construction method for smart farming according to claim 1, characterized in that the determination of the third farming parameter and the third AI algorithm corresponding to the third farming parameter include: 获取多个第三预设养殖参数;所述多个第三预设养殖参数为基于第一预设养殖参数和/或第二预设养殖参数确定的养殖参数;Acquire a plurality of third preset breeding parameters; the plurality of third preset breeding parameters are breeding parameters determined based on the first preset breeding parameters and/or the second preset breeding parameters; 确定所述多个第三预设养殖参数对所述目标养殖品种的直接影响值;Determine the direct impact value of the plurality of third preset breeding parameters on the target breeding species; 确定所述多个第三预设养殖参数对所述目标养殖品种的间接影响值;所述间接影响值基于所述第一预设养殖参数对所述目标养殖品种的第三关联养殖品种的直接影响值确定;所述第三关联养殖品种的养殖环境与所述目标养殖品种的养殖环境之间的相似度大于第一预设相似度,和/或所述第三关联养殖品种的人工养殖条件与所述目标养殖品种的人工养殖条件之间的相似度大于第二预设相似度;Determine the indirect influence value of the plurality of third preset breeding parameters on the target breeding species; the indirect influence value is based on the direct influence of the first preset breeding parameters on the third associated breeding species of the target breeding species. The influence value is determined; the similarity between the breeding environment of the third related breeding species and the breeding environment of the target breeding species is greater than the first preset similarity, and/or the artificial breeding conditions of the third related breeding species The similarity with the artificial breeding conditions of the target breeding species is greater than the second preset similarity; 基于对所述目标养殖品种的直接影响值和对所述目标养殖品种的间接影响值,确定所述多个第三预设养殖参数的整合影响值;Determine the integrated impact value of the plurality of third preset breeding parameters based on the direct impact value on the target cultured species and the indirect impact value on the target cultured species; 基于所述整合影响值,从所述多个第三预设养殖参数中,确定出所述第三养殖参数。Based on the integrated influence value, the third breeding parameter is determined from the plurality of third preset breeding parameters. 5.根据权利要求1所述的用于智慧养殖的AI算法构建方法,其特征在于,所述确定第三养殖参数和所述第三养殖参数对应的第三AI算法,包括:5. The AI algorithm construction method for smart farming according to claim 1, characterized in that the determination of the third farming parameter and the third AI algorithm corresponding to the third farming parameter include: 获取多个第三预设AI算法;所述多个第三预设AI算法分别对应不同的养殖品种;Obtain a plurality of third preset AI algorithms; the plurality of third preset AI algorithms respectively correspond to different breeding species; 从所述多个第三预设AI算法中确定出所述第三AI算法;其中,所述第三AI算法在所述多个第三预设AI算法中,所对应的养殖品种的数量最高,所对应的养殖品种的养殖环境符合预设养殖环境条件,和/或所对应的养殖品种的人工养殖条件符合预设人工养殖条件。The third AI algorithm is determined from the plurality of third preset AI algorithms; wherein the third AI algorithm has the highest number of corresponding breeding species among the plurality of third preset AI algorithms. , the breeding environment of the corresponding breeding species meets the preset breeding environment conditions, and/or the artificial breeding conditions of the corresponding breeding species meet the preset artificial breeding conditions. 6.根据权利要求1所述的用于智慧养殖的AI算法构建方法,其特征在于,所述基于所述第一AI算法、所述第二AI算法、所述第三AI算法、目标养殖品种和目标参数关系,构建目标AI算法,包括:6. The AI algorithm construction method for smart breeding according to claim 1, characterized in that the method is based on the first AI algorithm, the second AI algorithm, the third AI algorithm, the target breeding species relationship with the target parameters to construct the target AI algorithm, including: 基于所述目标参数关系,确定所述第一AI算法、所述第二AI算法和所述第三AI算法的连接关系;该连接关系用于指示各个AI算法的输入和输出之间的关系;Based on the target parameter relationship, determine the connection relationship between the first AI algorithm, the second AI algorithm and the third AI algorithm; the connection relationship is used to indicate the relationship between the input and output of each AI algorithm; 基于所述连接关系,对所述第一AI算法、所述第二AI算法和所述第三AI算法进行连接,构建初始的目标AI算法;Based on the connection relationship, connect the first AI algorithm, the second AI algorithm and the third AI algorithm to construct an initial target AI algorithm; 基于所述目标养殖品种对应的预设AI算法和所述初始的目标AI算法,确定所述目标AI算法。The target AI algorithm is determined based on the preset AI algorithm corresponding to the target breeding species and the initial target AI algorithm. 7.根据权利要求6所述的用于智慧养殖的AI算法构建方法,其特征在于,所述基于所述目标养殖品种对应的预设AI算法和所述初始的目标AI算法,确定所述目标AI算法,包括:7. The AI algorithm construction method for smart breeding according to claim 6, characterized in that the target is determined based on the preset AI algorithm corresponding to the target breeding species and the initial target AI algorithm. AI algorithms, including: 确定所述预设AI算法对应的输入参数和输出参数中是否包括所述第一养殖参数、所述第二养殖参数和所述第三养殖参数中的至少一项养殖参数;Determine whether the input parameters and output parameters corresponding to the preset AI algorithm include at least one of the first breeding parameter, the second breeding parameter and the third breeding parameter; 若是,判断所述预设AI算法是否与所述第一AI算法、所述第二AI算法和所述第三AI算法中的至少一项AI算法之间具有关联关系;If so, determine whether the preset AI algorithm has an associated relationship with at least one of the first AI algorithm, the second AI algorithm, and the third AI algorithm; 若是,基于所述初始的目标AI算法确定所述目标AI算法;If so, determine the target AI algorithm based on the initial target AI algorithm; 若否,基于所述预设AI算法对所述初始的目标AI算法进行调整,基于调整的AI算法确定所述目标AI算法。If not, the initial target AI algorithm is adjusted based on the preset AI algorithm, and the target AI algorithm is determined based on the adjusted AI algorithm. 8.根据权利要求1所述的用于智慧养殖的AI算法构建方法,其特征在于,所述用于智慧养殖的AI算法构建方法还包括:8. The AI algorithm construction method for smart farming according to claim 1, characterized in that the AI algorithm construction method for smart farming further includes: 获取样本养殖数据;Obtain sample breeding data; 基于所述样本养殖数据和所述目标AI算法,确定第一样本养殖参数;Based on the sample breeding data and the target AI algorithm, determine the first sample breeding parameters; 基于所述样本养殖数据和预设的智慧养殖模型,确定第二样本养殖参数;所述预设的智慧养殖模型对应的模型算法与所述目标AI算法不同;Determine the second sample breeding parameters based on the sample breeding data and the preset smart breeding model; the model algorithm corresponding to the preset smart breeding model is different from the target AI algorithm; 基于所述第一样本养殖参数、所述第二样本养殖参数和所述样本养殖参数对应的真实养殖参数,对所述目标AI算法和所述预设的智慧养殖模型进行优化。Based on the first sample breeding parameters, the second sample breeding parameters and the real breeding parameters corresponding to the sample breeding parameters, the target AI algorithm and the preset smart breeding model are optimized.
CN202310881962.1A 2023-07-18 2023-07-18 An AI algorithm construction method for smart farming Active CN116738185B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310881962.1A CN116738185B (en) 2023-07-18 2023-07-18 An AI algorithm construction method for smart farming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310881962.1A CN116738185B (en) 2023-07-18 2023-07-18 An AI algorithm construction method for smart farming

Publications (2)

Publication Number Publication Date
CN116738185A CN116738185A (en) 2023-09-12
CN116738185B true CN116738185B (en) 2024-03-19

Family

ID=87915172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310881962.1A Active CN116738185B (en) 2023-07-18 2023-07-18 An AI algorithm construction method for smart farming

Country Status (1)

Country Link
CN (1) CN116738185B (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942020A (en) * 2017-11-01 2018-04-20 梅州兴中智能科技有限公司 A kind of cultivation water monitoring system
WO2021246409A1 (en) * 2020-06-02 2021-12-09 株式会社Eco‐Pork Livestock control system, livestock control server, livestock control method, and livestock control program
CN113782125A (en) * 2021-09-17 2021-12-10 平安国际智慧城市科技股份有限公司 Clinic scoring method and device based on artificial intelligence, electronic equipment and medium
CN114398241A (en) * 2022-01-28 2022-04-26 常熟市阳澄湖特种水产有限公司 Monitoring method and system for intelligent breeding environment data
CN114581152A (en) * 2022-03-16 2022-06-03 杭州龙骞科技有限公司 Data management method and system based on intelligent village
CN114662790A (en) * 2022-04-21 2022-06-24 大连大学 A prediction method of sea cucumber culture water temperature based on multidimensional data
CN114862062A (en) * 2022-06-30 2022-08-05 深圳市信润富联数字科技有限公司 Early warning method and device for environmental bearing capacity, electronic equipment and readable storage medium
CN114924520A (en) * 2022-02-17 2022-08-19 中用科技有限公司 A smart farming IoT system
CN115272034A (en) * 2022-07-29 2022-11-01 四川至亲久久大数据科技有限责任公司 Interaction method and system for intelligent old age nursing
CN115362950A (en) * 2022-07-20 2022-11-22 慧之安信息技术股份有限公司 Management and control system is bred to wisdom based on thing networking platform
CN115453887A (en) * 2022-10-10 2022-12-09 山东华邦农牧机械股份有限公司 An automated smart farming system that combines monitoring data with the environment
CN115606537A (en) * 2022-10-25 2023-01-17 吴千文 Intelligent indoor oyster cultivation device and method capable of simulating original ecology
CN115633654A (en) * 2022-07-15 2023-01-24 海煜(福州)生物科技有限公司 Intelligent adjusting method and device for breeding environment
CN115731068A (en) * 2022-12-28 2023-03-03 广西参皇养殖集团有限公司 Sanhuang chicken industrial digital breeding process method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107942020A (en) * 2017-11-01 2018-04-20 梅州兴中智能科技有限公司 A kind of cultivation water monitoring system
WO2021246409A1 (en) * 2020-06-02 2021-12-09 株式会社Eco‐Pork Livestock control system, livestock control server, livestock control method, and livestock control program
CN113782125A (en) * 2021-09-17 2021-12-10 平安国际智慧城市科技股份有限公司 Clinic scoring method and device based on artificial intelligence, electronic equipment and medium
CN114398241A (en) * 2022-01-28 2022-04-26 常熟市阳澄湖特种水产有限公司 Monitoring method and system for intelligent breeding environment data
CN114924520A (en) * 2022-02-17 2022-08-19 中用科技有限公司 A smart farming IoT system
CN114581152A (en) * 2022-03-16 2022-06-03 杭州龙骞科技有限公司 Data management method and system based on intelligent village
CN114662790A (en) * 2022-04-21 2022-06-24 大连大学 A prediction method of sea cucumber culture water temperature based on multidimensional data
CN114862062A (en) * 2022-06-30 2022-08-05 深圳市信润富联数字科技有限公司 Early warning method and device for environmental bearing capacity, electronic equipment and readable storage medium
CN115633654A (en) * 2022-07-15 2023-01-24 海煜(福州)生物科技有限公司 Intelligent adjusting method and device for breeding environment
CN115362950A (en) * 2022-07-20 2022-11-22 慧之安信息技术股份有限公司 Management and control system is bred to wisdom based on thing networking platform
CN115272034A (en) * 2022-07-29 2022-11-01 四川至亲久久大数据科技有限责任公司 Interaction method and system for intelligent old age nursing
CN115453887A (en) * 2022-10-10 2022-12-09 山东华邦农牧机械股份有限公司 An automated smart farming system that combines monitoring data with the environment
CN115606537A (en) * 2022-10-25 2023-01-17 吴千文 Intelligent indoor oyster cultivation device and method capable of simulating original ecology
CN115731068A (en) * 2022-12-28 2023-03-03 广西参皇养殖集团有限公司 Sanhuang chicken industrial digital breeding process method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Smart breeding approaches in post-genomics era for developing climate-resilient food crops;Rubab Zahra Naqvi 等;《Frontiers in Plant Science》;20220916;1-19 *
基于三维重建的奶牛体尺检测与体重预估研究;初梦苑;《中国优秀硕士学位论文全文数据库 农业科技辑》;20210615;D050-43 *
基于卷积神经网络的细粒度图像识别关键技术分析与研究;魏花;《中国博士论文全文数据库 信息科技辑》;20220315;I138-50 *
智慧养殖在羊养殖产业中的应用效果;刘立安 等;《农业工程技术》;20221215;68-70 *

Also Published As

Publication number Publication date
CN116738185A (en) 2023-09-12

Similar Documents

Publication Publication Date Title
JP7287397B2 (en) Information processing method, information processing apparatus, and information processing program
CN106796533B (en) System and method for adaptively selecting execution mode
CN111047073B (en) Aquaculture water quality prediction method and system based on neural network
CN114241230B (en) Target detection model pruning method and target detection method
CN111353591A (en) Computing device and related product
CN115439757B (en) A method, device and equipment for tracing water pollution sources based on remote sensing images
CN108229536A (en) Optimization method, device and the terminal device of classification prediction model
CN112085056A (en) Object detection model generation method, device, device and storage medium
CN113902187A (en) Time-of-use electricity price forecasting method, device and terminal equipment
CN118484998A (en) A method and device for simulating laying hen breeding system based on digital twin
CN114239668A (en) Method, terminal and server for model update
CN116738185B (en) An AI algorithm construction method for smart farming
CN114330584A (en) Data clustering method and device, storage medium and electronic equipment
CN104732522A (en) Image segmentation method based on polymorphic ant colony algorithm
CN111382848B (en) Computing device and related product
US20240144633A1 (en) Image recognition method, electronic device and storage medium
CN118820663A (en) A method, device, equipment and medium for determining target characteristic variables
CN115981396B (en) Intelligent control method and device for loosening and regaining process
CN114116456B (en) Test case generation method, system and computer readable storage medium
CN112183725B (en) Method of providing neural network, computing device, and computer-readable storage medium
CN116721387A (en) Organic fertilizer containing amino acid nitrogen for promoting growth of camellia oleifera and preparation method thereof
CN113987762B (en) Elevator design method based on digital twin model
CN111291871B (en) Computing device and related product
CN116484226B (en) Method and device for building fishery culture model through neural network
CN110598321A (en) A method for predicting the yellowness index of rice grain piles based on particle swarm optimization SVR support vector regression algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No. 413-26, No. 942 Tonglong Second Road, Torch High tech Zone (Xiang'an) Industrial Zone, Xiamen City, Fujian Province, 361000

Patentee after: Huiliantong Industrial Supply Chain Digital Technology (Xiamen) Co.,Ltd.

Country or region after: China

Address before: 413-26, No. 942 Tonglong Second Road, Industrial Zone, Xiang'an District, Xiamen City, Fujian Province, 361101

Patentee before: Huiliantong Industrial Supply Chain Digital Technology (Xiamen) Co.,Ltd.

Country or region before: China

PP01 Preservation of patent right

Effective date of registration: 20250522

Granted publication date: 20240319