CN116732468A - 立方相耐火涂层及其应用 - Google Patents

立方相耐火涂层及其应用 Download PDF

Info

Publication number
CN116732468A
CN116732468A CN202310201557.0A CN202310201557A CN116732468A CN 116732468 A CN116732468 A CN 116732468A CN 202310201557 A CN202310201557 A CN 202310201557A CN 116732468 A CN116732468 A CN 116732468A
Authority
CN
China
Prior art keywords
coated tool
refractory layer
cubic
tialn
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310201557.0A
Other languages
English (en)
Inventor
J·科尔申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Inc
Original Assignee
Kennametal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Inc filed Critical Kennametal Inc
Publication of CN116732468A publication Critical patent/CN116732468A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/08Aluminium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/24Titanium aluminium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • B23B2226/315Diamond polycrystalline [PCD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

在一个方面,本文描述了具有多个立方相的耐火涂层。在一些实施方案中,涂层包括通过PVD而沉积的粘附到所述基体的TiAlN耐火层,所述耐火层包含立方TiAlN相和立方AlN相,其中所述立方AlN相的(200)反射的X射线衍射图(XRD)中的强度与所述立方TiAlN相的(200)反射的强度的比率I(200)/I(200)为至少0.5。

Description

立方相耐火涂层及其应用
技术领域
本发明涉及用于切削工具的硬质耐火涂层,尤其涉及通过物理气相沉积而沉积的呈现立方相的耐火涂层。
背景技术
通常通过物理气相沉积(PVD)技术将一层或多层耐火材料施加到切削刀具表面,以改善切削刀具的特性,包括耐磨性、性能和寿命。例如,氮化钛(TiN)涂层通常由PVD施加于硬质合金切削刀具基体。然而,TiN在大约500℃时开始氧化,形成金红石型TiO2,从而促进涂层快速劣化。将铝结合到立方晶格中可以通过在涂层表面形成保护性的富铝氧化膜来减缓TiN涂层的降解氧化。
在提高高温稳定性的同时,铝还会引起TiN涂层的结构变化,从而对涂层特性产生负面影响。加入到TiN涂层中的铝量的增加可以诱导六方密堆积(hcp)氮化铝(AlN)相的生长,将涂层的晶体结构从单相立方相改变为立方相和六方相的混合物。超过70原子%的铝含量可以进一步将AlTiN层的晶体结构改变为单相hcp。大量的六方相导致AlTiN的硬度显著降低,导致涂层过早失效或其它不希望的性能特征。不能充分控制六方相的形成阻碍了向TiN涂层中添加铝所带来的优点的充分实现。
发明内容
在一个方面,通过本文所述的具有多个立方相的耐火涂层来解决上述缺点。在一些实施方案中,涂层包括通过物理气相沉积(PVD)而沉积的TiAlN耐火层,所述耐火层包含立方TiAlN相和立方AlN相,其中所述立方AlN相的(200)反射的X射线衍射图(XRD)中的强度与所述立方TiAlN相的(200)反射的强度的比率I(200)/I(200)为至少0.5。在一些实施方案中,I(200)/I(200)比率为至少一。
在另一方面,涂层包括通过PVD而沉积的MAlN耐火层,所述耐火层包含立方AlN相,其中M选自由钛、铬、钒和锆组成的组。
本文所述的涂层可粘附到各种基体,包括但不限于工具,诸如切削工具。在下面的具体实施方式中更详细地描述了这些和其他实施方案。
附图说明
图1是根据一个实施方案的包含立方AlN相和立方TiAlN相的TiAlN耐火层相对于比较样品TiAlN耐火层的X射线衍射图。
图2示出了根据一些实施方案的本文所述的刀片相对于缺少立方AlN相的比较PVD涂覆的切削刀片的金属切削测试结果,该刀片包括包含立方AlN相的TiAlN耐火层。
图3示出了根据一些实施方案的本文所述的刀片相对于缺少立方AlN相的比较PVD涂覆的切削刀片的金属切削测试结果,该刀片包括包含立方AlN相的TiAlN耐火层。
具体实施方式
本文描述的实施方案可通过参考以下具体实施方式和实施例以及其先前描述和以下描述而更容易地理解。然而,本文描述的元件、装置和方法不限于具体实施方式和实施例中呈现的具体实施方案。应当认识到,这些实施方案仅仅说明本发明的原理。在不脱离本发明的精神和范围的情况下,许多修改和改变对于本领域技术人员来说将是显而易见的。
I.涂层和涂覆的工具
本文所述的涂层可施加或粘附到各种基体,包括但不限于切削工具。在一些实施方案中,涂覆的工具包括基体和涂层,该涂层包括通过PVD而沉积的粘附到基体的TiAlN耐火层,该耐火层包含立方TiAlN相和立方AlN相,其中立方AlN相的(200)反射的XRD中的强度与立方TiAlN相的(200)反射的强度的比率I(200)/I(200)为至少0.5。在一些实施方案中,I(200)/I(200)比率为0.5-5或1-5。
在另一方面,涂层包括通过PVD而沉积的MAlN耐火层,所述耐火层包含立方AlN相,其中M选自由钛、铬、钒和锆组成的组。
现在转向具体的部件,在一些实施方案中,涂覆的工具是切削工具。涂覆的切削工具可以包括与本发明的目的不矛盾的任何基体。在一些实施方案中,基体是端铣刀、钻头或可转位切削刀片。在一些实施方案中,可转位切削刀片可具有用于铣削或车削应用的任何所需ANSI标准几何形状。另选地,切削刀片是不可转位的和/或确实属于特定的ANSI名称。本文所述的涂覆的切削工具的基体可由硬质合金、碳化物、陶瓷、金属陶瓷或钢形成。在一些实施方案中,硬质合金基体包含碳化钨(WC)。WC可以至少约80重量%的量或以至少约85重量%的量存在于切削工具基体中。另外,硬质合金的金属粘结剂可包含钴或钴合金。例如,钴可以以3重量%至15重量%的量存在于硬质合金基体中。在一些实施方案中,钴以在5-12重量%或6-10重量%的范围内的量存在于硬质合金基体中。此外,硬质合金基体可具有从基体表面开始并从基体表面向内延伸的粘结剂富集区。
硬质合金切削工具基体还可包含一种或多种添加剂,例如以下元素和/或其化合物中的一种或多种:钛、铌、钒、钽、铬、锆和/或铪。在一些实施方案中,钛、铌、钒、钽、铬、锆和/或铪与基体的WC一起形成固溶体碳化物。在此类实施方案中,基体可包含在0.1-5重量%的范围内的量的一种或多种固溶体碳化物。此外,硬质合金基体可包含氮。
在一些实施方案中,本文所述的涂层包括通过PVD而沉积的MalN耐火层,其中M选自钛、铬、钒和锆。在一些实施方案中,MalN具有式M1-xAlxN,其中x≥0.5。在一些实施方案中,M1-xAlxN耐火层的x在0.6至0.9的范围内。此外,本文所述的M1-xAlxN耐火层的x具有选自表I的值。
表I–M1-xAlxN的Al含量(以%计)
M1-xAlxN中x的值
≥0.55
≥0.6
≥0.64
≥0.68
≥0.69
≥0.7
≥0.75
0.6-0.85
0.65-0.8
0.7-0.8
0.7-0.85
在一些实施方案中,立方AlN相由MalN耐火层呈现,而不管M是钛、铬、钒还是锆。MalN耐火层的组成可通过本领域中建立的任何合适的技术来确定,包括X射线荧光(XRF)。
如本文所述,立方AlN相的I(200)反射的XRD强度与立方TiAlN相的I(200)反射的强度的比率I(200)/I(200)为至少0.5或至少1。在一些实施方案中,I(200)/I(200)具有选自表II的值。
表II–I(200)/I(200)值
≥0.7
≥0.8
0.7-5
0.8-5
1-5
1-3
1-2
0.5-1.5
1-1.5
在具有以下规格的X射线衍射仪上测量用于计算I(200)/I(200)比率的XRD峰数据:
Rigaku MF600
Bragg Brentano几何
Cu Kα管,电压45kV,电流15mA
检测器前的Ni kβ滤波器
入射狭缝=10x 2mm
接收狭缝=0.3mm
带Be窗的Na I(碘化钠晶体)闪烁检测器
根据以下规范进行数据分析,包括使用轮廓函数精确确定峰位置和峰高:
背景扣除:线性
峰轮廓拟合:Origin软件
洛伦兹函数:
其中:
x=衍射角(2θ)
y=信号强度
y0=强度基线(背景)
w=半高全宽(FWHM)
xc=峰中心(最大强度)
A=曲线下面积(基线y0)
在一些实施方案中,本文所述的包含立方AlN相的MalN耐火层具有至少25Gpa的硬度。硬度值根据ISO 14577用维氏压头在0.25μm的压痕深度下测定。在一些实施方案中,具有本文所述构造(包括选自表I的x值和来自表II的立方AlN相)的耐火层具有根据表III的硬度。
表III–耐火层硬度(Gpa)
≥25
≥27
≥28
25-35
25-30
26-32
27-35
28-35
30-40
除了硬度之外,MalN耐火层(包括TiAlN层)可具有与本发明的目的不矛盾的任何厚度。耐火层例如可具有1μm至10μm或2μm至8μm的厚度。在一些实施方案中,包含MalN的耐火层具有大于5μm的厚度。例如,具有本文所述构造(包括选自表I的x值、选自表II的I(200)/I(200)比率和/或选自表III的硬度)的耐火层可具有选自表IV的厚度。
表IV–耐火层厚度(μm)
1-3
1-5
>5
≥6
≥7
≥8
≥9
≥10
6-30
8-20
9-15
本文所述的耐火层厚度在切削工具的侧表面上测量。
在一些实施方案中,本文所述的包含立方AlN的耐火层可操作地具有选自表IV的厚度值,同时呈现小于2.5Gpa的残余压应力。在一些实施方案中,例如,包含M1-xAlxN的耐火层可具有根据表V的残余压应力。
表V–耐火层残余压应力
≤2.2
≤2.0
≤1.5
≤1.0
0.5至2.5
0.8至2.0
1.0至1.5
相对于不存在立方AlN的耐火层,在耐火层中包含立方AlN可降低残余压应力。在一些实施方案中,相对于不存在立方AlN的相同组成或基本相同组成的耐火层,在MalN耐火层(诸如TiAlN)中包含立方AlN可将残余压应力降低至少50%。在一些实施方案中,残余压应力的这种降低可以是60%-80%。
在没有具体指定为压缩的情况下,本文所述的残余应力值可以被指定为负值,以表示残余应力是压缩性的。如本领域技术人员所理解的,在没有具体指定的情况下,残余应力被赋予正值以表示拉伸应力,负值表示压应力。
对于本文所述的包含M1-xAlxN的耐火层,使用了改进的Sin2ψ方法,该方法采用Seemann-Bohlin(S-B)聚焦几何学来确定残余应力和剪切应力。参见V.Valvoda,R.Kuzel,R.Cerny,D.S.Rafaja,J.Musil,C.Kadlec,A.J.Perry,Thin Solid Films 193/194(1990)401。根据此方法,使用掠入射X射线衍射几何确定具有不同米勒(hkl)指数的所有可测量衍射峰的平面间距。[在以与试样呈固定入射束角度进行的单次2θ扫描中,收集不同(hkl)平面的衍射峰。]由于在Perry等人的方法中,衍射平面与样品表面法线产生不同角度,故不需要样品倾斜ψ。Perry等人提出,角度ψ实际上对应于布拉格角(Bragg angle)θ减去掠射角γ(ψ=θ-γ)。因此,在单次2θ扫描中,当以不同2θ角度测量具有不同米勒指数的多个布拉格峰时,自动地选择ψ角度的范围。然后从不同峰计算的晶格参数对Sin2的图中导出残余应力。ψ
例如,对于包含MalN的耐火层,其中M是钛,残余应力和剪切应力通过x射线衍射使用掠入射Sin2ψ方法参照AlTiN晶相的多次(hkl)反射来确定。用于残余应力测定的仪器与上述用于测定(200)和(111)强度的仪器相同。
选出AlTiN的(111)、(200)、(220)、(311)、(222)、(331)、(420)及(422)反射以测量残余应力水平。掠入射角度的选择应使基体反射减到最少,同时保证在分析中包含整个耐火层厚度。对于每次(hkl)反射,调整针对步长和计数时间的数据采集参数以获得适当峰强度,由此准确地确定峰位置。
接着,使用以下公式,针对吸收和透明度校正峰数据:
吸收校正
透明度校正
其中
其中:
t=层厚度
μ=线性吸收系数(cm-1)
θ=2θ/2(度)
(ω-θ)=ω偏移角(度)
ψ=倾斜角(Psi应力)(度)
τ=信息深度(微米)
R=测角仪的半径(mm)
使用以下公式,针对洛仑兹偏振(Lorentz polarization)校正峰数据:
偏振校正
mon=石墨单色器的衍射角
使用Ladell模型移除Kα2峰。使用修改的Lorentzian形状轮廓函数使峰位置精确化。
由以下通用公式计算耐火层残余应力:
其中
do=无应变晶格常数
ψ=试样倾斜角
σ12=试样表面中的主应力张量
S1&1/2S2=X射线弹性常数
对于本发明的AlTiN分析,泊松比(υ)设定为0.20,弹性模量(E以Gpa表示)由纳米压痕分析确定,所述纳米压痕分析根据ISO标准14577使用维氏压头(Vickers indenter)用Fischerscope HM2000进行。压痕深度设定为0.25μm。通过XRD的残余应力分析可以以类似的方式在包含Cr1-xAlxN和/或Zr1-xAlxN的耐火层上进行,如本领域技术人员已知的,方式是通过选择适合于这些组成的多次(hkl)反射。此外,Cr1-xAlxN和/或Zr1-xAlxN的层的泊松比(υ)和弹性模量(E)也可以通过本文所述的纳米压痕分析来确定。
此外,在一些实施方案中,MalN耐火层具有小于50nm的平均粒度。在一些实施方案中,平均粒度例如可在1-20nm或5-15nm的范围内。
在下面的非限制性实施例中进一步说明了这些和其他实施方案。
实施例1–涂覆的切削刀具
根据以下方案,用包含立方AlN的TiAlN耐火层涂覆切削刀片。将几何形状为HNGJ0905ANSN-GD的硬质合金(WC-6Co)切削刀片放置在采用AlTi阴极和Al阴极的CemeconHIPIMS PVD装置中。包含立方AlN的TiAlN耐火层的沉积条件在表VI中提供。
表VI–TiAlN PVD条件
温度(℃) 400
HIPIMS频率(Hz) 2000
脉冲长度 100μs
功率AlTi阴极 8kW
功率Al阴极 0.8kW
基体偏压(V) 180V
压力 0.2Pa
Ar/N2流量比 3:1
TiAlN耐火层具有Ti0.26Al0.74N的组成,并且在43.98°2(θ)处呈现具有(200)反射的立方AlN相。立方TiAlN(200)反射为43.35°2(θ)。TiAlN耐火层还具有3.4μm的厚度和35Gpa的硬度。立方AlN相的(200)反射的X射线衍射图(XRD)中的强度与立方TiAlN相的(200)反射的强度的比率I(200)/I(200)为0.64。
将相同几何形状的比较切削刀片放置在Cemecon溅射PVD装置中,并提供如表VII所示的TiAlN耐火层。
表VII–比较TiAlN PVD条件
温度(℃) 600
HIPIMS频率(Hz) n/a
脉冲长度 n/a
功率AlTi阴极 7.5kW
功率Al阴极 n/a
基体偏压(V) 100V
压力 0.6Pa
Ar/N2流量比 3.5:1
TiAlN耐火层具有Ti0.46Al0.54N的组成,并且不呈现立方AlN相。TiAlN耐火层还具有3.2μm的厚度和29Gpa的硬度。
对本文所述的具有立方AlN相的切削刀片和比较切削刀片进行金属切削测试。测试参数为:
工件:EN-GJS-600(球墨铸铁,UTS=600Mpa)
vc:220m/min
fz:0.2mm/rev
ap:2mm
ae:28mm
冷却剂:空气
在两次重复(rep1和rep2)中记录本发明切削刀片和比较切削刀片的最大侧面磨损值(mm)。结果在图2中示出。如图2中所提供的,相对于比较切削刀片,包括具有立方AlN的TiAlN耐火层的切削刀片呈现显著更小的侧面磨损。
实施例2–涂覆的切削刀具
根据以下方案,用包含立方AlN的TiAlN耐火层涂覆切削刀片。将几何形状为HNGJ0905ANSN-GD的硬质合金(WC-6Co)切削刀片放置在采用AlTi阴极和Al阴极的CemeconHIPIMS PVD装置中。包含立方AlN的TiAlN耐火层的沉积条件在表VIII中提供。
表VIII–TiAlN PVD条件
温度(℃) 400
HIPIMS频率(Hz) 2000
脉冲长度 100μs
功率AlTi阴极 8kW
功率Al阴极 0.8kW
基体偏压(V) 180V
压力 0.2Pa
Ar/N2流量比 3:1
TiAlN耐火层具有Ti0.31Al0.69N的组成,并且在44.11°2(θ)处呈现具有(200)反射的立方AlN相。立方TiAlN(200)反射为43.33°2(θ)。TiAlN耐火层还具有3.4μm的厚度和33Gpa的硬度。立方AlN相的(200)反射的X射线衍射图(XRD)中的强度与立方TiAlN相的(200)反射的强度的比率I(200)/I(200)为1.42。
将相同几何形状的比较切削刀片放置在采用AlTi阴极的CemeconHIPIMSPVD装置中,并提供如表IX所示的TiAlN耐火层。
表IX–比较TiAlN PVD条件
温度(℃) 600
HIPIMS频率(Hz) 4000
脉冲长度 70μs
功率AlTi阴极 10kW
功率Al阴极 0kW
基体偏压(V) 60V
压力 0.6Pa
Ar/N2流量比 3.5:1
TiAlN耐火层具有Ti0.42Al0.58N的组成,并且不呈现立方AlN相。TiAlN耐火层还具有3.5μm的厚度和31Gpa的硬度。
对本文所述的具有立方AlN相的切削刀片和比较切削刀片进行金属切削测试。测试参数为:
工件:EN-GJS-600(球墨铸铁,UTS=600Mpa)
vc:220m/min
fz:0.2mm/rev
ap:2mm
ae:28mm
冷却剂:空气
在两次重复(rep1和rep2)中记录本发明切削刀片和比较切削刀片的最大侧面磨损值(mm)。结果在图3中示出。如图2中所提供的,相对于比较切削刀片,包括具有立方AlN的TiAlN耐火层的切削刀片呈现显著更小的侧面磨损。
已在本发明的各种目的的实现中描述了本发明的各种实施方案。应当认识到,这些实施方案仅仅说明本发明的原理。在不脱离本发明的精神和范围的情况下,其许多修改和改变对于本领域技术人员来说将是显而易见的。

Claims (15)

1.一种涂覆的工具,包括:
基体;和
涂层,包括通过物理气相沉积而沉积的粘附到所述基体的TiAlN耐火层,所述耐火层包含立方TiAlN相和立方AlN相,其中所述立方AlN相的(200)反射的X射线衍射图(XRD)中的强度与所述立方TiAlN相的(200)反射的强度的比率I(200)/I(200)为至少0.5。
2.如权利要求1所述的涂覆的工具,其中所述MAlN具有式M1-xAlxN,其中x≥0.5。
3.如权利要求2所述的涂覆的工具,其中x≥0.6。
4.如权利要求2所述的涂覆的工具,其中0.6≤x≤0.75。
5.如权利要求1所述的涂覆的工具,其中所述I(200)/I(200)为至少1。
6.如权利要求1所述的涂覆的工具,其中所述I(200)/I(200)为至少0.5-5。
7.如权利要求1所述的涂覆的工具,其中所述I(200)/I(200)为至少1-2。
8.如权利要求1所述的涂覆的工具,其中所述耐火层具有1-5μm的厚度。
9.如权利要求1所述的涂覆的工具,其中所述耐火层包含平均尺寸为1-20nm的颗粒。
10.如权利要求1所述的涂覆的工具,其中所述耐火层具有小于2GPa的残余压应力。
11.如权利要求1所述的涂覆的工具,其中所述耐火层具有0.5-1.5GPa的残余压应力。
12.如权利要求1所述的涂覆的工具,其中所述涂层还包括除所述耐火层之外的层。
13.如权利要求12所述的涂覆的工具,其中所述附加层包含一种或多种选自由铝和周期表的IVB、VB和VIB族金属元素组成的组的金属元素,以及一种或多种选自由周期表的IIIA、IVA、VA和VIA族非金属元素组成的组的非金属元素。
14.如权利要求1所述的涂覆的工具,其中所述基体是切削工具。
15.如权利要求1所述的涂覆的工具,其中所述基体包括烧结硬质合金、金属陶瓷、多晶立方氮化硼、多晶金刚石或它们的组合。
CN202310201557.0A 2022-03-10 2023-03-03 立方相耐火涂层及其应用 Pending CN116732468A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/691,546 US11724317B1 (en) 2022-03-10 2022-03-10 Cubic phase refractory coatings and applications thereof
US17/691,546 2022-03-10

Publications (1)

Publication Number Publication Date
CN116732468A true CN116732468A (zh) 2023-09-12

Family

ID=87560126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310201557.0A Pending CN116732468A (zh) 2022-03-10 2023-03-03 立方相耐火涂层及其应用

Country Status (3)

Country Link
US (1) US11724317B1 (zh)
CN (1) CN116732468A (zh)
DE (1) DE102023202041A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416440B2 (en) * 2011-09-30 2016-08-16 Cemecon Ag Coating of substrates using HIPIMS
KR20200049701A (ko) 2017-09-05 2020-05-08 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 Al이 풍부한 AlTiN 기반의 필름

Also Published As

Publication number Publication date
DE102023202041A1 (de) 2023-09-14
US11724317B1 (en) 2023-08-15

Similar Documents

Publication Publication Date Title
US10808325B2 (en) Low stress hard coatings and applications thereof
US11453063B2 (en) Multilayer nitride hard coatings
EP1722009B1 (en) Thin wear resistant coating
US20140272391A1 (en) Hard coatings comprising cubic phase forming compositions
EP2483437B1 (en) Aluminum titanium nitride coating and method of making same
US8568866B2 (en) Multilayer nitride hard coatings
EP1400609B1 (en) Precipitation hardened wear resistant coating
US8409702B2 (en) Cubic aluminum titanium nitride coating and method of making same
EP3434809A1 (en) Coated cutting tool
US8440328B2 (en) Coating for improved wear resistance
US9168664B2 (en) Low stress hard coatings and applications thereof
EP2463398A1 (en) Coated member
US11104987B2 (en) Coated cutting tool and a method for its production
JP7539418B2 (ja) 被覆切削工具を製造する方法および被覆切削工具
WO2020138304A1 (ja) 表面被覆切削工具
CN116732468A (zh) 立方相耐火涂层及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication