CN116706944A - 一种频率安全约束下新能源渗透率的确定方法 - Google Patents

一种频率安全约束下新能源渗透率的确定方法 Download PDF

Info

Publication number
CN116706944A
CN116706944A CN202310984938.0A CN202310984938A CN116706944A CN 116706944 A CN116706944 A CN 116706944A CN 202310984938 A CN202310984938 A CN 202310984938A CN 116706944 A CN116706944 A CN 116706944A
Authority
CN
China
Prior art keywords
frequency
power
inertia
fan
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310984938.0A
Other languages
English (en)
Other versions
CN116706944B (zh
Inventor
束洪春
陈靖
王广雪
董海飞
赵红芳
董俊
韩一鸣
时波涛
何业福
朱柳青
张焦婕
李建男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310984938.0A priority Critical patent/CN116706944B/zh
Publication of CN116706944A publication Critical patent/CN116706944A/zh
Application granted granted Critical
Publication of CN116706944B publication Critical patent/CN116706944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及一种频率安全约束下新能源渗透率的确定方法,属于电力系统新能源技术领域。基于电力系统受到功率扰动时发生频率不稳定的运行情况下,运用传统同步机组提供稳定的惯量支撑,运用虚拟同步技术控制风机以及储能对系统提供惯量支撑以及快速频率响应功率,在此前提下计及源荷的时序特性及各传统同步机组、双馈风机、储能的惯量支撑能力计算系统可承受的风电极限渗透率。本发明综合考虑系统机组运行状况、计及双馈风机和储能装置对系统的惯量支撑能力,在满足系统低频减载装置不触发动作信号以及考虑系统消纳情况下,为新能源并网要求提供参考。

Description

一种频率安全约束下新能源渗透率的确定方法
技术领域
本发明涉及一种频率安全约束下新能源渗透率的确定方法,属于电力系统新能源技术领域。
背景技术
2021年国家提出“构建以新能源为主体的新型电力系统”的战略目标,正加速实施能源转型战略,加速推进新能源并网,构建以新能源为主体的新型电力系统。在上述背景下,未来电力系统不确定性、弱稳定支撑特征不断凸显,低惯量特性逐渐呈现,同时受电力电子器件并网的影响,新能源输出的有功功率不再与系统频率耦合,不能主动响应系统频率波动的需求,系统稳定性受到严重挑战。
当新能源并网后,由于新能源有功功率与系统频率解耦,本身不具备惯量支撑能力,会导致系统额定容量基数变大的同时降低整个系统的惯量水平,致使在低惯量电力系统中系统频率稳定能力减小,频率支撑能力降低。通过考虑在双馈风机以及储能提供一定惯量支撑功率情况下,利用转子运动方程及风储联合系统可输出的虚拟惯量响应功率构建在频率安全约束下的新能源渗透率计算方法。而目前对于新能源渗透率的计算,大多基于电力电量平衡状态下的,很少考虑系统频率稳定能力下的新能源渗透率计算方法;并且大多数在计算新能源渗透率时很少考虑新能源提供惯量支撑能力,所以本发明提出了在计及一定的风储虚拟惯量支撑情况下,且在满足频率安全约束情况下的计算新能源渗透率简便方法。
发明内容
本发明要解决的技术问题是提供一种频率安全约束下新能源渗透率的确定方法,针对新能源并网问题,在考虑新能源及储能提供惯量支撑时,通过确定机组状况以及负荷水平来计算在满足系统频率安全约束的前提下,计算新能源渗透率。
本发明的技术方案是:一种频率安全约束下新能源渗透率的确定方法,基于电力系统受到功率扰动时发生频率不稳定的运行情况下,运用传统同步机组提供稳定的惯量支撑,运用虚拟同步技术控制风机以及储能对系统提供惯量支撑以及快速频率响应功率,在此前提下计及源荷的时序特性及各传统同步机组、双馈风机、储能的惯量支撑能力计算系统可承受的风电极限渗透率,具体步骤为:
Step1:获取当前区域电力系统结构及自身参数。
Step2:根据电力系统电源出力及负荷水平,利用转子运动方程确定系统频率稳定状态,若系统稳定则终止,系统不稳定则继续执行Step3。
Step3:根据电力系统中传统机组自身参数及机组开机状况,计算出当前系统各传统机组贡献的传统惯量。
Step4:根据双馈风机不同运行状态,确定双馈风机的虚拟惯量响应功率。
Step5:根据储能充放电特性及不同荷电状态,优化储能虚拟惯量及下垂充放电控制系数,最终确定储能装置的虚拟惯量响应功率。
Step6:根据上述确定的双馈风机及储能虚拟惯响应功率,量化双馈风机及储能装置的虚拟惯量支撑能量。
Step7:根据双馈风机及储能装置量化的虚拟惯量支撑能量,同时利用系统频率最低点及最大频率变化率作为系统频率安全约束。
Step8:据系统机组运行状况、风电出力特性及储能荷电状态,在确定出风储联合可对系统进行虚拟惯量支撑的前提下,计算当前电力系统的新能源渗透率极限值。
所述Step2具体为:
Step2.1:根据系统网络拓扑及各电源的时序出力特性,确定系统电源的功率。
Step2.2:根据系统负荷的时序出力特性,确定系统负荷扰动功率。
Step2.3:根据系统电源出力及负荷功率,利用转子运动方程确定系统频率是否处于动态稳定,具体为:
式中,为同步机的机械功率变化量,为同步机的电磁功率变化量,Hsys为当 前电力系统等值惯性时间常数,D为负荷阻尼系数,为电力系统频率偏差。
由于传统机组转子转速与系统频率耦合,当系统受到扰动时,此时系统功率不稳定,出现的不平衡功率将会通过发电机的转子运动方程影响到系统频率的动态响应过程,引起系统频率变化,而电源侧发出的机械功率不等于负荷侧从系统吸收的电磁功率,电力系统此时需要各机组提供惯量响应功率来抵抗系统频率变化,维持系统频率动态稳定。
所述Step3具体为:
采用如下算式根据传统机组的开机情况及惯性时间常数,确定第p台机组为系统提供的等效传统惯量:
式中,为第p台传统同步机组提供的系统等效传统惯量,为第p台传统同步 机机组开机状态,当机组为开机状态时,为1,否则为0;为系统第p台机组的额定容量,为系统第j台常规机组额定容量。
所述Step4具体为:
Step4.1:风机转子所存储的旋转动能为:
式中,为双馈风机自身旋转惯量系数,为风机运行的实时转速。
根据风机转速变化得到由风机动能可增发的虚拟惯量响应功率:
式中,为风机利用自身动能可提供的虚拟惯量响应功率,为双馈风机自身 所具备的旋转动能,为双馈风机自身旋转惯量系数,为风机运行的实时转速。
其中,风机惯性时间常数为:
由于各机组自身额定参数标准众多,为方便统一计算参数,简便后续运算过程,根据风机转速变化得到由风机动能可增发虚拟惯量响应功率,通过标幺化统一参数标准,标幺过程为:
式中,为双馈风机额定容量,为风机额定转速。
Step4.2:根据风机自身动能提供的能量,并利用风机转速表示风机各风速段的运 行状态,得到不同风机运行状态下可提供的虚拟惯量响应功率,当风机转子的转速为, 则标幺值为,为方便统一计算参数简便运算过程,使用标幺值表达式如下:
式中,为双馈风机可提供的虚拟惯量标幺值,为风机等效惯性时间常数,为风机实时转速标幺值,为系统频率变化标幺值。
所述Step5具体为:
Step5.1:根据储能装置充放电特性,建立虚拟惯量支撑响应模型,确定储能装置可输出的虚拟惯量响应功率。
Step5.2:根据储能装置荷电状态,优化储能电池虚拟惯量响应功率控制函数中的虚拟惯量及虚拟下垂控制系数,最终得到控制系数优化后储能可输出的虚拟惯量响应功率。
所述Step6具体为:
Step6.1:根据风机牺牲动能可增发的虚拟惯量响应功率,量化出双馈风机的虚拟惯量支撑能量:
式中,为双馈风机提供的虚拟惯量支撑能量,为电力系统额定频率,为 系统频率最低点时风机输出的惯量支撑功率,系统受扰初期风机输出的惯量支撑功 率,为系统频率跌落最低值,取不触发第一轮低频减载动作的频率最小值,为频率到 达最低点时刻;为扰动初始时刻。
Step6.2:根据储能装置充放电特性及荷电状态可增发的虚拟惯量支撑功率,量化出储能装置的虚拟惯量支撑能量。
为要求储能系统在惯量响应环节释放的能量与同步发电机转子释放的动能相等, 则可得到在相同时间段内储能应该释放的能量为:
式中,为同步机组惯量系数,为所替代掉的同步发电机的额定容量, 为所替代掉的同步发电机额定惯性常数。
所述Step7具体为:
Step7.1:在满足低频减载装置不触发动作信号的情况下,取低频减载装置第一轮动作频率作为系统频率最低点安全约束。
Step7.2:在满足系统历史受扰后系统频率动态稳定的情况下,取系统历史最大频率变化率作为系统频率变化率安全约束。
在电力系统发生扰动开始的初期阶段,由于发电机调速器等还来得及动作,此时电力系统的调频资源和手段较少,因此,此时的频率变化率将出现最大值,可以将此频率变化率最大值设置为系统频率调整的约束指标;同时,在低惯量的电力系统当中,频率的跌落深度也会增大,电力系统具有极大概率使频率下降到触发低频减载的频率水平,并且频率变化过大,系统频率跌落过于严重,将导致大量的新能源机组无法运行、电网崩溃。与现有技术相比,本发明同时利用了系统频率跌落最低点与系统频率变化率作为频率安全约束,减小了系统频率越限情况,能更准确地评估电力系统的新能源渗透率。
所述Step8具体为:
当系统满足频率安全约束下时,系统等效惯量水平为:
式中,M,K,L分别为提供惯量支撑的同步机组、风机以及储能装置数量,E为各资源所能提供惯量支撑的能量,S为全网各资源的额定装机容量。
新能源渗透率极限值为:
式中,为新能源额定装机容量。
本发明的有益效果是:
1、本发明在系统稳定运行前提下,考虑除了传统方式下基于电力电量平衡的新能源渗透率计算,在此基础上加入了基于系统频率安全约束条件,分别在满足电力系统频率达到最低点不至于出发系统低频减载第一轮动作约束以及满足电力系统频率变化率达到历史数据最大频率变化率的安全约束下对新能源并网渗透率进行计算;
2、相比于新能源渗透率传统计算方式不考虑新能源机组提供惯量支撑情况下,本发明充分考虑双馈风机不同运行状态下实际可发出的惯量支撑功率,以及储能在自适应虚拟惯量及下垂控制提供惯量支撑情况下,计算在满足系统频率安全约束下的新能源渗透率;
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在没有实施创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中三机九节点电力系统拓扑结构;
图2是本发明实施例中新能源渗透率0%下的系统频率曲线;
图3是本发明实施例新能源渗透率20%下的系统频率曲线;
图4是本发明实施例中新能源渗透率40%下的系统频率曲线;
图5是本发明实施例中新能源渗透率60%下的系统频率曲线;
图6是本发明实施例中不同新能源渗透率下的系统惯量水平曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在不付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:本发明利用Matlab/Simulink搭建三机九节点的电力系统时域模型进行仿真验证,其中三机九节点的G2发电机风电机组进行替代,且风速设置为恒定风速,电力系统拓扑结构如图1所示,参数设置为发电机G1、G3额定容量为100MW,同步发电机G1惯性时间常数均设置为10s,同步发电机G3惯性时间常数均设置为8s,风电机组为35*1.5MW,虚拟同步发电机惯性时间常数设置为4.26s,初始风电渗透率为20%。负荷L1、L2、L3分别为60MW、70MW、80MW。
一种频率安全约束下新能源渗透率的确定方法,具体步骤为:
Step1:获取当前区域电力系统结构及自身参数。
Step2:根据电力系统电源出力及负荷水平,利用转子运动方程确定系统频率稳定状态,若系统稳定则终止,系统不稳定则继续执行Step3。
具体为:
Step2.1:根据系统网络拓扑及各电源的时序出力特性,确定系统电源的功率。
Step2.2:根据系统负荷的时序出力特性,确定系统负荷扰动功率。
Step2.3:根据系统电源出力及负荷功率,利用转子运动方程确定系统频率是否处于动态稳定,具体为:
式中,为同步机的机械功率变化量,为同步机的电磁功率变化量,Hsys为当 前电力系统等值惯性时间常数,D为负荷阻尼系数,为电力系统频率偏差。
由于传统机组转子转速与系统频率耦合,当系统受到扰动时,此时系统功率不稳定,出现的不平衡功率将会通过发电机的转子运动方程影响到系统频率的动态响应过程,引起系统频率变化,而电源侧发出的机械功率不等于负荷侧从系统吸收的电磁功率,电力系统此时需要各机组提供惯量响应功率来抵抗系统频率变化,维持系统频率动态稳定。
Step3:根据电力系统中传统机组自身参数及机组开机状况,计算出当前系统各传统机组贡献的传统惯量。
具体为:
采用如下算式根据传统机组的开机情况及惯性时间常数,确定第p台机组为系统提供的等效传统惯量:
式中,为第p台传统同步机组提供的系统等效传统惯量,为第p台传统同步 机机组开机状态,当机组为开机状态时,为1,否则为0;为系统第p台机组的额定容量, 为系统第j台常规机组额定容量。
Step4:根据双馈风机不同运行状态,确定双馈风机的虚拟惯量响应功率。
具体为:
Step4.1:风机转子所存储的旋转动能为:
式中,为双馈风机自身旋转惯量系数,为风机运行的实时转速。
根据风机转速变化得到由风机动能可增发的虚拟惯量响应功率:
式中,为双馈风机自身所具备的旋转动能,为双馈风机自身旋转惯量系数,为风机运行的实时转速。
由于各机组自身额定参数标准众多,为方便统一计算参数,简便后续运算过程,根据风机转速变化得到由风机动能可增发虚拟惯量响应功率,通过标幺化统一参数标准,标幺过程为:
式中,为双馈风机额定容量,为风机额定转速。
Step4.2:根据风机自身动能提供的能量,并利用风机转速表示风机各风速段的运行状态,得到不同风机运行状态下可提供的虚拟惯量响应功率,为方便统一计算参数简便运算过程,使用标幺值表达式如下:
式中,为双馈风机可提供的虚拟惯量标幺值,为风机等效惯性时间常数, 为风机实时转速标幺值,为系统频率变化标幺值。
Step5:根据储能充放电特性及不同荷电状态,优化储能虚拟惯量及下垂充放电控制系数,最终确定储能装置的虚拟惯量响应功率。
具体为:
Step5.1:根据储能装置充放电特性,建立虚拟惯量支撑响应模型,确定储能装置可输出的虚拟惯量响应功率。
储能系统的主要控制策略为虚拟下垂控制,辅助控制策略应为虚拟惯性控制,则基于权重因子的储能电池输出功率控制函数为:
式中,则分别是考虑权重因子之后的虚拟惯性控制系数与虚拟下垂控制 系数。
其中,考虑权重因子之后的虚拟惯性充放电控制系数与虚拟下垂充放电控制系数为:
式中,与b为权重因子,控制函数在不同的系统频率响应阶段有所不同, 分别为储能虚拟惯量与虚拟下垂充电控制系数,分别为储能虚拟惯量与虚拟下垂 放电控制系数。
其中,当频率为不同阶段时,储能装置利用不同控制策略输出虚拟惯量响应功率。
在电力系统频率处于下降阶段时,系统频率偏差及频率变化率相乘为正,此时系 统频率变化率变化较快,使用虚拟惯量控制,权重因子;当系统频率处于恢复状态 时,系统频率偏差及频率变化率相乘为负,此时系统频率偏差变化较快,使用虚拟下垂控 制,权重因子
同理,在电力系统频率处于下降阶段时,此时系统频率变化率变化较快,使用虚拟 惯量控制,权重因子;当系统频率处于恢复状态时,此时系统频率偏差变化较快,使 用虚拟下垂控制,权重因子
其中,系统频率处于下降阶段时,此时储能电池出力控制策略应以虚拟惯性控制为主要控制策略,下垂控制为辅助控制策略即可,则频率下降阶段的权重因子控制函数为:
式中,为系统实际频率。
当系统频率变化率过零时,系统频率处于恢复阶段,此时需要展现虚拟下垂控制策略的优点,储能电池出力控制应以虚拟下垂控制为主要控制,虚拟惯性控制为辅助控制策略,则系统频率恢复阶段的权重因子控制函数为:
式中,为储能电池参与电力系统一次调频响应的调频死区,一般设置为± 0.033Hz,为当系统频率变化率过零时所对应的系统频率与系统额定频率的差值。
Step5.2:根据储能装置荷电状态,优化储能电池虚拟惯量响应功率控制函数中的虚拟惯量及虚拟下垂控制系数,最终得到控制系数优化后储能可输出的虚拟惯量响应功率。
为防止储能装置在进行惯量支撑时出现过充过放现象,根据储能装置荷电状态,优化储能电池虚拟惯量响应功率控制函数中的虚拟惯量及虚拟下垂控制系数,最终得到控制系数优化后储能可输出的虚拟惯量响应功率;
其中,根据储能装置状态区间的界定,可以得出基于储能电池状态边界 优化后的电池虚拟惯量与虚拟下垂的充放电控制系数,具体包括:当储能电池充电时,可确 定储能电池输出的两种控制策略的控制系数:
当储能电池在放电时,可确定储能电池输出的两种控制策略的控制系数。
式中,分别为中间系数,取15;电池SOC状态分别为最小值、 较小值、较大值、最大值,有利于保护电池,避 免储能电池过充过放。
Step6:根据上述确定的双馈风机及储能虚拟惯响应功率,量化双馈风机及储能装置的虚拟惯量支撑能量。
具体为:
Step6.1:根据风机牺牲动能可增发的虚拟惯量响应功率,量化出双馈风机的虚拟惯量支撑能量:
式中,为双馈风机提供的虚拟惯量支撑能量,为电力系统额定频率,为 系统频率最低点时风机输出的惯量支撑功率,系统受扰初期风机输出的惯量支撑功 率,为系统频率跌落最低值,取不触发第一轮低频减载动作的频率最小值,取49Hz。 为频率到达最低点时刻;为扰动初始时刻。
Step6.2:根据储能装置充放电特性及荷电状态可增发的虚拟惯量支撑功率,量化出储能装置的虚拟惯量支撑能量。
为要求储能系统在惯量响应环节释放的能量与同步发电机转子释放的动能相等, 则可得到在相同时间段内储能应该释放的能量为:
式中,为同步机组惯量系数,为所替代掉的同步发电机的额定容量, 为所替代掉的同步发电机额定惯性常数。
Step7:根据双馈风机及储能装置量化的虚拟惯量支撑能量,同时利用系统频率最低点及最大频率变化率作为系统频率安全约束。
具体为:
Step7.1:在满足低频减载装置不触发动作信号的情况下,取低频减载装置第一轮动作频率49Hz,作为系统频率最低点安全约束。
Step7.2:在满足系统历史受扰后系统频率动态稳定的情况后,取系统历史最大频率变化率1Hz/s,作为系统频率变化率安全约束。
Step8:据系统机组运行状况、风电出力特性及储能荷电状态,在确定出风储联合可对系统进行虚拟惯量支撑的前提下,计算当前电力系统的新能源渗透率极限值。
具体为:
当系统满足频率安全约束下时,系统等效惯量水平为:
式中,M,K,L分别为提供惯量支撑的同步机组、风机以及储能装置数量,E为各资源所能提供惯量支撑的能量,S为全网各资源的额定装机容量。
新能源渗透率极限值为:
式中,为新能源额定装机容量。
如图2~图5所示,本发明基于频率变化率最大值约束以及频率跌落最小值约束确定新能源渗透率,当风电渗透率提升之后,系统的惯量需求也不断提升,在持续的负荷扰动的情况下,给电力系统造成大量的惯量缺额,并且在不同风电渗透率下的惯量需求也各有不同。
如图6所示,当同步转动惯量为2300MWs时,含新能源系统提升至新能源并网前等效惯量所需惯量为3000MWs时,系统可接纳新能源渗透率为30%;当同步转动惯量为1300MWs时,含新能源系统提升至新能源并网前等效惯量所需惯量为7000MWs时,系统可接纳新能源渗透率为60%;本发明所提方法能够在计及风储系统提供虚拟惯量支撑的情况下计算新能源渗透率。因此,准确的新能源渗透率确定方法可在未来的研究当中增强电网的抗干扰能力以及电力系统的新能源消纳能力。
实施本发明实施例,具有如下有益效果:
本发明对惯量支撑在一定时间尺度下对双馈风机进行全风速分段,并定义出双馈风机不同运行状态下实际可发出的惯量支撑功率,使调度功率可以在风机运行过程中精准调用,并在考虑储能荷电状态下的充放电特性进行合理的储能辅助惯量支撑,最终在考虑合理出力分配的情况下保证了系统所需最小的惯量支撑功率;通过对双馈风机进行风速段分区合理区分了不同运行状态下实际可发出的惯量支撑功率,并通过对上一时刻储能的荷电状态预判了下一时刻的剩余容量,同时通过双馈风机与储能的混合预判构造出考虑系统频率偏差、频率变化率、风机运行状态的储能辅附加调节深度系数,相比于其他惯量补偿方法,该发明通过全风速段和储能荷电状态下的风储支撑功率进行混合预判,既保证了系统在满足临界惯量需求下的惯量缺额,又通过合理的策略提升了系统惯量指标。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (8)

1.一种频率安全约束下新能源渗透率的确定方法,其特征在于:
Step1:获取当前区域电力系统结构及自身参数;
Step2:根据电力系统电源出力及负荷水平,利用转子运动方程确定系统频率稳定状态,若系统稳定则终止,系统不稳定则继续执行Step3;
Step3:根据电力系统中传统机组自身参数及机组开机状况,计算出当前系统各传统机组贡献的传统惯量;
Step4:根据双馈风机不同运行状态,确定双馈风机的虚拟惯量响应功率;
Step5:根据储能充放电特性及不同荷电状态,优化储能虚拟惯量及下垂充放电控制系数,最终确定储能装置的虚拟惯量响应功率;
Step6:根据上述确定的双馈风机及储能虚拟惯响应功率,量化双馈风机及储能装置的虚拟惯量支撑能量;
Step7:根据双馈风机及储能装置量化的虚拟惯量支撑能量,同时利用系统频率最低点及最大频率变化率作为系统频率安全约束;
Step8:根据系统机组运行状况、风电出力特性及储能荷电状态,在确定出风储联合可对系统进行虚拟惯量支撑的前提下,计算当前电力系统的新能源渗透率极限值。
2.根据权利要求1所述的频率安全约束下新能源渗透率的确定方法,其特征在于,所述Step2具体为:
Step2.1:根据系统网络拓扑及各电源的时序出力特性,确定系统电源的功率;
Step2.2:根据系统负荷的时序出力特性,确定系统负荷扰动功率;
Step2.3:根据系统电源出力及负荷功率,利用转子运动方程确定系统频率是否处于动态稳定,具体为:
式中,为同步机的机械功率变化量,/>为同步机的电磁功率变化量,Hsys为当前电力系统等值惯性时间常数,D为负荷阻尼系数,/>为系统频率偏差。
3.根据权利要求1所述的频率安全约束下新能源渗透率的确定方法,其特征在于,所述Step3具体为:
采用如下算式根据传统机组的开机情况及惯性时间常数,确定第p台机组为系统提供的等效传统惯量:
式中,为第p台传统同步机组提供的系统等效传统惯量,/>为第p台传统同步机组开机状态,/>为系统第p台机组的额定容量,/>为系统第j台常规机组额定容量。
4.根据权利要求1所述的频率安全约束下新能源渗透率的确定方法,其特征在于,所述Step4具体为:
Step4.1:根据风机不同运行状态得到由风机动能可提供的虚拟惯量响应功率:
式中,为风机利用自身动能可提供的虚拟惯量响应功率;/>为双馈风机自身所具备的旋转动能,/>为双馈风机自身旋转惯量系数,/>为风机运行的实时转速;
Step4.2:根据风机自身动能提供的能量,并利用风机转速表示风机各风速段的运行状态,得到不同风机运行状态下可提供的虚拟惯量响应功率,使用标幺值表达式如下:
式中,为双馈风机可提供的虚拟惯量标幺值,/>为风机等效惯性时间常数,/>为风机实时转速标幺值,/>为系统频率变化标幺值。
5.根据权利要求1所述的频率安全约束下新能源渗透率的确定方法,其特征在于,所述Step5具体为:
Step5.1:根据储能装置充放电特性,设计基于权重因子的储能电池虚拟惯量响应功率控制函数,确定储能装置可输出的虚拟惯量响应功率;
Step5.2:根据储能装置荷电状态,优化储能电池虚拟惯量响应功率控制函数中的虚拟惯量及虚拟下垂控制系数,最终得到控制系数优化后储能可输出的虚拟惯量响应功率。
6.根据权利要求1所述的频率安全约束下新能源渗透率的确定方法,其特征在于,所述Step6具体为:
Step6.1:根据风机牺牲动能可增发的虚拟惯量响应功率,量化出双馈风机的虚拟惯量支撑能量;
Step6.2:根据储能装置充放电特性及荷电状态可增发的虚拟惯量支撑功率,量化出储能装置的虚拟惯量支撑能量。
7.根据权利要求1所述的频率安全约束下新能源渗透率的确定方法,其特征在于,所述Step7具体为:
Step7.1:在满足低频减载装置不触发动作信号的情况下,取低频减载装置第一轮动作频率作为系统频率最低点安全约束;
Step7.2:在满足系统历史受扰后系统频率动态稳定的情况下,取系统历史最大频率变化率作为系统频率变化率安全约束。
8.根据权利要求1所述的频率安全约束下新能源渗透率的确定方法,其特征在于,所述Step8具体为:
当系统满足频率安全约束下时,系统等效惯量水平为:
式中,M,K,L分别为提供惯量支撑的同步机组、风机以及储能装置数量,E为各资源所能提供惯量支撑的能量,S为全网各资源的额定装机容量;
新能源渗透率极限值为:
式中,为新能源额定装机容量。
CN202310984938.0A 2023-08-07 2023-08-07 一种频率安全约束下新能源渗透率的确定方法 Active CN116706944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310984938.0A CN116706944B (zh) 2023-08-07 2023-08-07 一种频率安全约束下新能源渗透率的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310984938.0A CN116706944B (zh) 2023-08-07 2023-08-07 一种频率安全约束下新能源渗透率的确定方法

Publications (2)

Publication Number Publication Date
CN116706944A true CN116706944A (zh) 2023-09-05
CN116706944B CN116706944B (zh) 2023-10-27

Family

ID=87839645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310984938.0A Active CN116706944B (zh) 2023-08-07 2023-08-07 一种频率安全约束下新能源渗透率的确定方法

Country Status (1)

Country Link
CN (1) CN116706944B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836253A (zh) * 2015-05-19 2015-08-12 清华大学 双馈风机虚拟惯量的控制方法及控制装置
CN105226723A (zh) * 2015-11-19 2016-01-06 国家电网公司 一种双馈风电机组基于风功率跟踪自适应调节的虚拟惯性控制方法
CN107994604A (zh) * 2017-11-24 2018-05-04 国网浙江省电力公司电力科学研究院 一种双馈风电机组紧急功率支撑控制方法及系统
CN108521135A (zh) * 2018-03-26 2018-09-11 上海电力学院 适用于高渗透率可再生能源微电网的风柴荷协调调频方法
CN108832658A (zh) * 2018-06-22 2018-11-16 三峡大学 一种考虑频率约束及风电调频的风电穿透功率极限计算方法
CN109066746A (zh) * 2018-08-20 2018-12-21 哈尔滨工业大学 一种含有储能系统的电力系统惯性时间常数获得方法
CN110417046A (zh) * 2019-06-04 2019-11-05 重庆大学 面向小干扰稳定提升的风电虚拟惯量优化配置方法
CN110518632A (zh) * 2019-08-05 2019-11-29 三峡大学 一种风电场并网对电网惯量削弱的定量计算方法
CN111064196A (zh) * 2019-12-22 2020-04-24 上海电力大学 一种高渗透风机模糊自适应运行的微网电压控制方法
CN112421655A (zh) * 2020-10-29 2021-02-26 东北电力大学 一种考虑电网频率支撑需求的储能系统配置方法
CN114285076A (zh) * 2021-12-24 2022-04-05 国网青海省电力公司经济技术研究院 一种考虑动态频率响应过程的虚拟惯量配置方法
CN114640140A (zh) * 2022-04-09 2022-06-17 昆明理工大学 计及混合储能辅助电网负荷频率联合控制策略的建立方法
CN115149579A (zh) * 2022-08-23 2022-10-04 华北电力大学(保定) 一种基于系统惯量需求的风机虚拟惯量控制方法及系统
CN115313443A (zh) * 2022-08-25 2022-11-08 华北电力大学(保定) 一种基于储能虚拟惯量需求的调频状态转移控制方法
CN115842376A (zh) * 2022-12-12 2023-03-24 湖南大学 电力系统等效惯量趋势与安全状态评估方法、设备和介质
CN116131278A (zh) * 2022-11-28 2023-05-16 国网河北省电力有限公司 一种电网频率安全在线分析方法与装置
CN116316671A (zh) * 2022-09-07 2023-06-23 三峡大学 基于改进粒子群算法的风电场虚拟惯量优化分配方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836253A (zh) * 2015-05-19 2015-08-12 清华大学 双馈风机虚拟惯量的控制方法及控制装置
CN105226723A (zh) * 2015-11-19 2016-01-06 国家电网公司 一种双馈风电机组基于风功率跟踪自适应调节的虚拟惯性控制方法
CN107994604A (zh) * 2017-11-24 2018-05-04 国网浙江省电力公司电力科学研究院 一种双馈风电机组紧急功率支撑控制方法及系统
CN108521135A (zh) * 2018-03-26 2018-09-11 上海电力学院 适用于高渗透率可再生能源微电网的风柴荷协调调频方法
CN108832658A (zh) * 2018-06-22 2018-11-16 三峡大学 一种考虑频率约束及风电调频的风电穿透功率极限计算方法
CN109066746A (zh) * 2018-08-20 2018-12-21 哈尔滨工业大学 一种含有储能系统的电力系统惯性时间常数获得方法
CN110417046A (zh) * 2019-06-04 2019-11-05 重庆大学 面向小干扰稳定提升的风电虚拟惯量优化配置方法
CN110518632A (zh) * 2019-08-05 2019-11-29 三峡大学 一种风电场并网对电网惯量削弱的定量计算方法
CN111064196A (zh) * 2019-12-22 2020-04-24 上海电力大学 一种高渗透风机模糊自适应运行的微网电压控制方法
CN112421655A (zh) * 2020-10-29 2021-02-26 东北电力大学 一种考虑电网频率支撑需求的储能系统配置方法
CN114285076A (zh) * 2021-12-24 2022-04-05 国网青海省电力公司经济技术研究院 一种考虑动态频率响应过程的虚拟惯量配置方法
CN114640140A (zh) * 2022-04-09 2022-06-17 昆明理工大学 计及混合储能辅助电网负荷频率联合控制策略的建立方法
CN115149579A (zh) * 2022-08-23 2022-10-04 华北电力大学(保定) 一种基于系统惯量需求的风机虚拟惯量控制方法及系统
CN115313443A (zh) * 2022-08-25 2022-11-08 华北电力大学(保定) 一种基于储能虚拟惯量需求的调频状态转移控制方法
CN116316671A (zh) * 2022-09-07 2023-06-23 三峡大学 基于改进粒子群算法的风电场虚拟惯量优化分配方法
CN116131278A (zh) * 2022-11-28 2023-05-16 国网河北省电力有限公司 一种电网频率安全在线分析方法与装置
CN115842376A (zh) * 2022-12-12 2023-03-24 湖南大学 电力系统等效惯量趋势与安全状态评估方法、设备和介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HONGCHUN SHU等: "Time-domain protection for collector lines in large-scale wind farms based on random matrix theory", 《CSEE JOURNAL OF POWER AND ENERGY SYSTEMS ( EARLY ACCESS )》, pages 1 - 11 *
PENGWEI CHEN等: "Virtual Inertia Estimation Method of DFIG-based Wind Farm with Additional Frequency Control", 《JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY》, vol. 9, no. 5, pages 1076 - 1087 *
刘中建等: "高比例新能源电力系统的惯量控制技术与惯量需求评估综述", 《电力自动化设备》, vol. 41, no. 12, pages 1 - 8 *
张雪娟等: "双馈风机参与系统调频对系统暂态功角稳定性的影响分析", 《电力系统保护与控制》, vol. 49, no. 2, pages 18 - 27 *

Also Published As

Publication number Publication date
CN116706944B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
CN103986190B (zh) 基于发电功率曲线的风光储联合发电系统平滑控制方法
Nguyen et al. Cost-optimized battery capacity and short-term power dispatch control for wind farm
US9733657B2 (en) Power system with an energy generator and a hybrid energy storage system
CN105162167B (zh) 一种基于自适应下垂控制的风光储微网调频方法
Zhang et al. Self-adaptive secondary frequency regulation strategy of micro-grid with multiple virtual synchronous generators
Vassilakis et al. A battery energy storage based virtual synchronous generator
CN105406496A (zh) 一种基于实测频率响应辨识的孤立微电网调频控制方法
CN105470985B (zh) 一种风储孤网系统的柔性自启动方法
CN104600742A (zh) 一种利用储能装置补偿风电场虚拟惯量的方法
CN107370171B (zh) 一种独立微网中大规模储能优化配置与协调控制方法
CN116667389B (zh) 一种新型电力系统惯量提升的风储联合预测校正控制方法
CN108092323A (zh) 一种含dfig的电力系统agc优化控制方法
CN109995051A (zh) 一种微能源网系统电力调频控制方法及系统
CN111817338B (zh) 一种风光储新能源电站黑启动控制方法和系统
CN115995825A (zh) 一种计及调频死区的风储联合频率控制方法
CN115833229A (zh) 基于多变量模糊逻辑控制的风储联合系统一次调频方法
CN105720596B (zh) 电力储能系统的调频方法和装置
Changqing et al. Reliability improvement of wind power frequency modulation based on look‐ahead control strategy and stage of charge optimization of energy storage
CN116706944B (zh) 一种频率安全约束下新能源渗透率的确定方法
CN113162073A (zh) 一种风电机组与储能协调调频控制方法及系统
Li et al. Virtual inertial control strategy based on fuzzy logic algorithm for PMSG wind turbines to enhance frequency stability
CN116937546A (zh) 一种考虑风储并网的电网低频振荡抑制方法及系统
CN103887808A (zh) 基于机组惯性储能的风电场储能锂电优化控制方法
He et al. Research on the frequency regulation strategy of large-scale Battery energy storage in the power grid system
CN116093972A (zh) 结合储能的新型风电场调频和惯量控制系统及新型风电场

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant