CN116699644A - Marking reliability assessment method based on three-dimensional laser radar - Google Patents

Marking reliability assessment method based on three-dimensional laser radar Download PDF

Info

Publication number
CN116699644A
CN116699644A CN202310983274.6A CN202310983274A CN116699644A CN 116699644 A CN116699644 A CN 116699644A CN 202310983274 A CN202310983274 A CN 202310983274A CN 116699644 A CN116699644 A CN 116699644A
Authority
CN
China
Prior art keywords
laser radar
point cloud
cloud data
area
marking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310983274.6A
Other languages
Chinese (zh)
Other versions
CN116699644B (en
Inventor
唐堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Huateng Road Test For Detection Of LLC
Original Assignee
Sichuan Huateng Road Test For Detection Of LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Huateng Road Test For Detection Of LLC filed Critical Sichuan Huateng Road Test For Detection Of LLC
Priority to CN202310983274.6A priority Critical patent/CN116699644B/en
Publication of CN116699644A publication Critical patent/CN116699644A/en
Application granted granted Critical
Publication of CN116699644B publication Critical patent/CN116699644B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration by the use of local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

The invention discloses a marking reliability evaluation method based on a three-dimensional laser radar, which comprises the following steps: s1, performing comprehensive scanning by using a three-dimensional laser radar to obtain three-dimensional point cloud data of a marking line; s2, filtering the three-dimensional point cloud data of the marking, dividing the filtered three-dimensional point cloud data to obtain a plurality of measuring areas, and calculating the areas of the measuring areas to obtain the total surface area of the marking; s3, selecting a measurement area according to requirements, and acquiring DRI data pairs of each point in point cloud data in the measurement area; s4, calculating the luminous coefficient intensity of the measurement area based on DRI data pairs of each point in the point cloud data in the measurement area and combining the total surface area of the marked line; s5, based on the luminous coefficient intensity of the measuring area, finishing evaluation of the reliability of the marking; the method solves the problems of high measurement difficulty and easy influence of external environmental factors on the measurement result in the prior art.

Description

Marking reliability assessment method based on three-dimensional laser radar
Technical Field
The invention relates to the technical field of laser radar measurement, in particular to a marking reliability evaluation method based on a three-dimensional laser radar.
Background
The retroreflection coefficient is the reciprocal of the ratio of reflected light intensity to incident light intensity, reflects the quality of the reflection performance of the material, and is an important parameter of the optical property of the material; in the field of road traffic, retroreflective coefficients are widely used for condition assessment and traffic safety management of pavement markings.
The traditional marking reliability evaluation method is to measure through the retroreflection coefficient, usually irradiate the marking by using a light source, and then measure the reflected light intensity and the incident light intensity, but the method has various defects such as high measurement difficulty, low measurement precision, and the measurement result is easily influenced by external environment factors.
Disclosure of Invention
Aiming at the defects in the prior art, the marking reliability evaluation method based on the three-dimensional laser radar solves the problems that the existing method is high in measurement difficulty, low in measurement precision and easy to influence a measurement result by external environmental factors.
In order to achieve the aim of the invention, the invention adopts the following technical scheme: the marking reliability evaluation method based on the three-dimensional laser radar comprises the following steps:
s1, performing comprehensive scanning by using a three-dimensional laser radar to obtain three-dimensional point cloud data of a marking line;
s2, filtering the three-dimensional point cloud data of the marking, dividing the filtered three-dimensional point cloud data to obtain a plurality of measuring areas, and calculating the areas of the measuring areas to obtain the total surface area of the marking;
s3, selecting a measurement area according to requirements, and acquiring DRI data pairs of each point in point cloud data in the measurement area;
s4, calculating the luminous coefficient intensity of the measurement area based on DRI data pairs of each point in the point cloud data in the measurement area and combining the total surface area of the marked line;
s5, based on the luminous coefficient intensity of the measuring area, the reliability assessment of the marked line is completed.
Further: the step S2 comprises the following sub-steps:
s21, filtering the three-dimensional point cloud data of the marked line, and removing noise points and irrelevant points to obtain filtered three-dimensional point cloud data;
s22, dividing the three-dimensional point cloud data after filtering by adopting a K-means algorithm to obtain K measurement areas;
k is the number of measurement areas obtained by dividing the three-dimensional point cloud data after filtering;
s23, calculating the surface areas of the k measuring areas respectively and adding the surface areas to obtain the total surface area of the marked line.
Further: the step S3 comprises the following sub-steps:
s31, selecting a measurement area according to requirements, and mapping point cloud data of the measurement area to a laser radar coordinate system through coordinate system transformation;
s32, calculating the distance between each mapped point in the measurement area and the laser radar position by adopting a Euclidean distance mode;
s33, taking the signal intensity received by the laser radar as reflection intensity, and acquiring a reflection intensity value of each point mapped in the measurement area;
s34, obtaining DRI data pairs of each point in the point cloud data in the measurement area according to the distance between each point mapped in the measurement area and the laser radar position and the reflection intensity value of each point mapped in the measurement area;
wherein the DRI data pair is a data pair of the distance between each point and the laser radar position after mapping-the reflection intensity value of each point.
Further: the step S4 includes the following sub-steps:
s41, fitting the DRI data pair to obtain a reflectivity equation, and calculating the retroreflection coefficient of the measurement area through the reflectivity equation;
s42, calculating the luminous coefficient intensity of the measurement area according to the retroreflection coefficient of the measurement area.
Further: in the step S41, the formula for calculating the retroreflection coefficient is:
C = ∫(R(I)/I) dI
wherein R (-) is the reflectance equation, I is the incident light intensity, and C is the retroreflection coefficient.
Further: in the step S42, the formula for calculating the luminous coefficient intensity is:
F=C×I×S
where F is the luminous intensity coefficient and S is the total surface area of the reticle.
Further: the step S5 includes the following sub-steps:
s51, normalizing the ratio of the luminous coefficient intensity to the surface area of each measuring area, and taking the normalized ratio of the luminous coefficient intensity to the surface area and the retroreflection coefficient as the marking characteristics of each measuring area;
s52, the marking characteristics of each measuring area are obtained regularly, and the marking reliability is evaluated through the change trend of the marking characteristics of each measuring area.
The beneficial effects of the above-mentioned further scheme are: the ratio of the luminous intensity coefficient to the surface area is normalized, and the unit is candela per lux per square meter, so that the change and difference comparison of different marked lines are facilitated.
The beneficial effects of the invention are as follows:
drawings
FIG. 1 is a flow chart of a reticle reliability evaluation method according to the present invention.
Detailed Description
The following description of the embodiments of the present invention is provided to facilitate understanding of the present invention by those skilled in the art, but it should be understood that the present invention is not limited to the scope of the embodiments, and all the inventions which make use of the inventive concept are protected by the spirit and scope of the present invention as defined and defined in the appended claims to those skilled in the art.
As shown in fig. 1, in one embodiment of the present invention, there is provided a reticle reliability evaluation method based on a three-dimensional lidar, including the steps of:
s1, performing comprehensive scanning by using a three-dimensional laser radar to obtain three-dimensional point cloud data of a marking line;
s2, filtering the three-dimensional point cloud data of the marking, dividing the filtered three-dimensional point cloud data to obtain a plurality of measuring areas, and calculating the areas of the measuring areas to obtain the total surface area of the marking;
s3, selecting a measurement area according to requirements, and acquiring DRI data pairs of each point in point cloud data in the measurement area;
s4, calculating the luminous coefficient intensity of the measurement area based on DRI data pairs of each point in the point cloud data in the measurement area and combining the total surface area of the marked line;
s5, based on the luminous coefficient intensity of the measuring area, the reliability assessment of the marked line is completed.
In this embodiment, the step S2 includes the following sub-steps:
s21, filtering the three-dimensional point cloud data of the marked line, and removing noise points and irrelevant points to obtain filtered three-dimensional point cloud data;
s22, dividing the three-dimensional point cloud data after filtering by adopting a K-means algorithm to obtain K measurement areas;
k is the number of measurement areas obtained by dividing the three-dimensional point cloud data after filtering;
s23, calculating the surface areas of the k measuring areas respectively and adding the surface areas to obtain the total surface area of the marked line.
In this embodiment, the step S3 includes the following sub-steps:
s31, selecting a measurement area according to requirements, and mapping point cloud data of the measurement area to a laser radar coordinate system through coordinate system transformation;
s32, calculating the distance between each mapped point in the measurement area and the laser radar position by adopting a Euclidean distance mode;
s33, taking the signal intensity received by the laser radar as reflection intensity, and acquiring a reflection intensity value of each point mapped in the measurement area;
s34, obtaining DRI data pairs of each point in the point cloud data in the measurement area according to the distance between each point mapped in the measurement area and the laser radar position and the reflection intensity value of each point mapped in the measurement area;
wherein the DRI data pair is a data pair of the distance between each point and the laser radar position after mapping-the reflection intensity value of each point.
In this embodiment, the step S4 includes the following sub-steps:
s41, fitting the DRI data pair to obtain a reflectivity equation, and calculating the retroreflection coefficient of the measurement area through the reflectivity equation;
in the step S41, the formula for calculating the retroreflection coefficient is:
C = ∫(R(I)/I) dI
wherein R (-) is a reflectance equation, I is the intensity of incident light, and C is the retroreflection coefficient;
s42, calculating the luminous coefficient intensity of the measurement area according to the retroreflection coefficient of the measurement area;
in the step S42, the formula for calculating the luminous coefficient intensity is:
F=C×I×S
where F is the luminous intensity coefficient and S is the total surface area of the reticle.
In this embodiment, the step S5 includes the following sub-steps:
s51, normalizing the ratio of the luminous coefficient intensity to the surface area of each measuring area, and taking the normalized ratio of the luminous coefficient intensity to the surface area and the retroreflection coefficient as the marking characteristics of each measuring area;
the normalized formula is:
wherein I is n The normalized luminous intensity coefficient;Iis the original luminous intensity coefficient; s is the total area of the marked lines; k is the ratio of the light radiation brightness to the illuminance, and can be calculated by photometric parameters.
S52, the marking characteristics of each measuring area are obtained regularly, and the marking reliability is evaluated through the change trend of the marking characteristics of each measuring area.
The ratio of the light coefficient intensity to the surface area is used for describing the optical characteristics and the luminous characteristics of the region, effectively supplementing the single retroreflection coefficient and enhancing the descriptive property.
Statistical methods can be used to find outliers when evaluating the retroreflection coefficient of each measurement region. In general, the mean and standard deviation of the retroreflection coefficient of each region can be calculated, and then the range of outliers can be determined by adding or subtracting a number of standard deviations from the mean. In general, data points with a retroreflection coefficient exceeding the mean plus or minus 3 standard deviations can be considered outliers. When an area is found to have an abnormally high or low retroreflection coefficient, the area can be further finely scanned to find a specific problem location. Fine scanning may be performed by increasing the scanning density or adjusting parameters of the lidar.
In the description of the present invention, it should be understood that the terms "center," "thickness," "upper," "lower," "horizontal," "top," "bottom," "inner," "outer," "radial," and the like indicate or are based on the orientation or positional relationship shown in the drawings, merely to facilitate description of the present invention and to simplify the description, and do not indicate or imply that the devices or elements referred to must have a particular orientation, be configured and operated in a particular orientation, and thus should not be construed as limiting the present invention. Furthermore, the terms "first," "second," and "third" are used for descriptive purposes only and are not to be interpreted as indicating or implying a relative importance or number of technical features indicated. Thus, a feature defined as "first," "second," "third," or the like, may explicitly or implicitly include one or more such feature.

Claims (7)

1. The marking reliability evaluation method based on the three-dimensional laser radar is characterized by comprising the following steps of: the method comprises the following steps:
s1, performing comprehensive scanning by using a three-dimensional laser radar to obtain three-dimensional point cloud data of a marking line;
s2, filtering the three-dimensional point cloud data of the marking, dividing the filtered three-dimensional point cloud data to obtain a plurality of measuring areas, and calculating the areas of the measuring areas to obtain the total surface area of the marking;
s3, selecting a measurement area according to requirements, and acquiring DRI data pairs of each point in point cloud data in the measurement area;
s4, calculating the luminous coefficient intensity of the measurement area based on DRI data pairs of each point in the point cloud data in the measurement area and combining the total surface area of the marked line;
s5, based on the luminous coefficient intensity of the measuring area, the reliability assessment of the marked line is completed.
2. The method for evaluating the reliability of a reticle based on a three-dimensional laser radar according to claim 1, wherein the step S2 comprises the following sub-steps:
s21, filtering the three-dimensional point cloud data of the marked line, and removing noise points and irrelevant points to obtain filtered three-dimensional point cloud data;
s22, dividing the three-dimensional point cloud data after filtering by adopting a K-means algorithm to obtain K measurement areas;
k is the number of measurement areas obtained by dividing the three-dimensional point cloud data after filtering;
s23, calculating the surface areas of the k measuring areas respectively and adding the surface areas to obtain the total surface area of the marked line.
3. The method for evaluating the reliability of a reticle based on a three-dimensional laser radar according to claim 1, wherein the step S3 comprises the following sub-steps:
s31, selecting a measurement area according to requirements, and mapping point cloud data of the measurement area to a laser radar coordinate system through coordinate system transformation;
s32, calculating the distance between each mapped point in the measurement area and the laser radar position by adopting a Euclidean distance mode;
s33, taking the signal intensity received by the laser radar as reflection intensity, and acquiring a reflection intensity value of each point mapped in the measurement area;
s34, obtaining DRI data pairs of each point in the point cloud data in the measurement area according to the distance between each point mapped in the measurement area and the laser radar position and the reflection intensity value of each point mapped in the measurement area;
wherein the DRI data pair is a data pair of the distance between each point and the laser radar position after mapping-the reflection intensity value of each point.
4. The method for evaluating the reliability of a reticle based on a three-dimensional laser radar according to claim 1, wherein the step S4 comprises the following sub-steps:
s41, fitting the DRI data pair to obtain a reflectivity equation, and calculating the retroreflection coefficient of the measurement area through the reflectivity equation;
s42, calculating the luminous coefficient intensity of the measurement area according to the retroreflection coefficient of the measurement area.
5. The method for evaluating the reliability of a reticle based on a three-dimensional laser radar according to claim 4, wherein in the step S41, a formula for calculating the retroreflection coefficient is:
C = ∫(R(I)/I) dI
wherein R (-) is the reflectance equation, I is the incident light intensity, and C is the retroreflection coefficient.
6. The method for evaluating the reliability of a reticle based on a three-dimensional laser radar according to claim 5, wherein in the step S42, the formula for calculating the intensity of the luminescence coefficient is:
F=C×I×S
where F is the luminous intensity coefficient and S is the total surface area of the reticle.
7. The method for evaluating the reliability of a reticle based on a three-dimensional laser radar according to claim 6, wherein the step S5 comprises the following sub-steps:
s51, normalizing the ratio of the luminous coefficient intensity to the surface area of each measuring area, and taking the normalized ratio of the luminous coefficient intensity to the surface area and the retroreflection coefficient as the marking characteristics of each measuring area;
s52, the marking characteristics of each measuring area are obtained regularly, and the marking reliability is evaluated through the change trend of the marking characteristics of each measuring area.
CN202310983274.6A 2023-08-07 2023-08-07 Marking reliability assessment method based on three-dimensional laser radar Active CN116699644B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310983274.6A CN116699644B (en) 2023-08-07 2023-08-07 Marking reliability assessment method based on three-dimensional laser radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310983274.6A CN116699644B (en) 2023-08-07 2023-08-07 Marking reliability assessment method based on three-dimensional laser radar

Publications (2)

Publication Number Publication Date
CN116699644A true CN116699644A (en) 2023-09-05
CN116699644B CN116699644B (en) 2023-10-27

Family

ID=87843686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310983274.6A Active CN116699644B (en) 2023-08-07 2023-08-07 Marking reliability assessment method based on three-dimensional laser radar

Country Status (1)

Country Link
CN (1) CN116699644B (en)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141092A1 (en) * 2003-12-24 2005-06-30 Couzin Dennis I. Cube corner retroreflector with limited range
WO2011095605A1 (en) * 2010-02-04 2011-08-11 Delta Dansk Elektronik, Lys & Akustik Apparatus and method for measuring retroreflectivity of a surface
WO2014076324A1 (en) * 2012-11-14 2014-05-22 Fundación Cidaut Dynamic method and device for measuring the luminance and back-reflection of road markings and signs and obtaining the shape, position and dimensions thereof
WO2015055737A1 (en) * 2013-10-16 2015-04-23 Cipherstone Technologies Ab Method and system for determining a reflection property of a scene
CN108319920A (en) * 2018-02-05 2018-07-24 武汉武大卓越科技有限责任公司 A kind of pavement strip detection and calculation method of parameters scanning three-dimensional point cloud based on line
CN108648447A (en) * 2018-05-08 2018-10-12 清华大学 Vehicular intelligent security decision method based on traffic safety field
WO2019064062A1 (en) * 2017-09-26 2019-04-04 Innoviz Technologies Ltd. Lidar systems and methods
CN110441269A (en) * 2019-08-13 2019-11-12 江苏东交工程检测股份有限公司 The reflective detection method of graticule, device, equipment and storage medium
CN210198958U (en) * 2019-05-20 2020-03-27 交通运输部公路科学研究所 Device for measuring road marking luminosity performance
CN111080662A (en) * 2019-12-11 2020-04-28 北京建筑大学 Lane line extraction method and device and computer equipment
CN111192309A (en) * 2019-12-25 2020-05-22 中公高科养护科技股份有限公司 Measuring method of pavement marking
CN111735769A (en) * 2020-08-07 2020-10-02 中国人民解放军国防科技大学 Traffic sign retroreflection coefficient rapid measurement device and method
CN112147638A (en) * 2020-09-21 2020-12-29 知行汽车科技(苏州)有限公司 Ground information acquisition method, device and system based on laser point cloud reflection intensity
CN114136440A (en) * 2021-10-29 2022-03-04 交通运输部公路科学研究所 Portable retroreflection luminosity and chromaticity combined measurement method and device
CN216132934U (en) * 2021-01-11 2022-03-25 交通运输部公路科学研究所 Novel standard substance assignment device
WO2022227878A1 (en) * 2021-04-30 2022-11-03 华为技术有限公司 Lane line labeling method and apparatus
CN115348994A (en) * 2020-03-30 2022-11-15 巴斯夫涂料有限公司 Paint with enhanced reflectivity
US20220414386A1 (en) * 2021-06-28 2022-12-29 Vueron Technology Co., Ltd Method for detecting lane line using lidar sensor and lane detection device for performing the method
CN115619972A (en) * 2022-10-26 2023-01-17 北京工业大学 Road marking abrasion identification and evaluation method based on point cloud data
CN115855694A (en) * 2022-08-31 2023-03-28 四川华腾公路试验检测有限责任公司 System and method for detecting road surface structural strength
CN116188334A (en) * 2023-05-04 2023-05-30 四川省公路规划勘察设计研究院有限公司 Automatic repair method and device for lane line point cloud

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141092A1 (en) * 2003-12-24 2005-06-30 Couzin Dennis I. Cube corner retroreflector with limited range
WO2011095605A1 (en) * 2010-02-04 2011-08-11 Delta Dansk Elektronik, Lys & Akustik Apparatus and method for measuring retroreflectivity of a surface
WO2014076324A1 (en) * 2012-11-14 2014-05-22 Fundación Cidaut Dynamic method and device for measuring the luminance and back-reflection of road markings and signs and obtaining the shape, position and dimensions thereof
WO2015055737A1 (en) * 2013-10-16 2015-04-23 Cipherstone Technologies Ab Method and system for determining a reflection property of a scene
WO2019064062A1 (en) * 2017-09-26 2019-04-04 Innoviz Technologies Ltd. Lidar systems and methods
CN108319920A (en) * 2018-02-05 2018-07-24 武汉武大卓越科技有限责任公司 A kind of pavement strip detection and calculation method of parameters scanning three-dimensional point cloud based on line
CN108648447A (en) * 2018-05-08 2018-10-12 清华大学 Vehicular intelligent security decision method based on traffic safety field
CN210198958U (en) * 2019-05-20 2020-03-27 交通运输部公路科学研究所 Device for measuring road marking luminosity performance
CN110441269A (en) * 2019-08-13 2019-11-12 江苏东交工程检测股份有限公司 The reflective detection method of graticule, device, equipment and storage medium
CN111080662A (en) * 2019-12-11 2020-04-28 北京建筑大学 Lane line extraction method and device and computer equipment
CN111192309A (en) * 2019-12-25 2020-05-22 中公高科养护科技股份有限公司 Measuring method of pavement marking
CN115348994A (en) * 2020-03-30 2022-11-15 巴斯夫涂料有限公司 Paint with enhanced reflectivity
CN111735769A (en) * 2020-08-07 2020-10-02 中国人民解放军国防科技大学 Traffic sign retroreflection coefficient rapid measurement device and method
CN112147638A (en) * 2020-09-21 2020-12-29 知行汽车科技(苏州)有限公司 Ground information acquisition method, device and system based on laser point cloud reflection intensity
CN216132934U (en) * 2021-01-11 2022-03-25 交通运输部公路科学研究所 Novel standard substance assignment device
WO2022227878A1 (en) * 2021-04-30 2022-11-03 华为技术有限公司 Lane line labeling method and apparatus
US20220414386A1 (en) * 2021-06-28 2022-12-29 Vueron Technology Co., Ltd Method for detecting lane line using lidar sensor and lane detection device for performing the method
CN114136440A (en) * 2021-10-29 2022-03-04 交通运输部公路科学研究所 Portable retroreflection luminosity and chromaticity combined measurement method and device
CN115855694A (en) * 2022-08-31 2023-03-28 四川华腾公路试验检测有限责任公司 System and method for detecting road surface structural strength
CN115619972A (en) * 2022-10-26 2023-01-17 北京工业大学 Road marking abrasion identification and evaluation method based on point cloud data
CN116188334A (en) * 2023-05-04 2023-05-30 四川省公路规划勘察设计研究院有限公司 Automatic repair method and device for lane line point cloud

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GAO, Y等: "Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR", 《MEASUREMENT SCIENCE AND TECHNOLOGY》 *
WANG, J 等: "Point-Based Visual Status Evaluation of Worn Pavement Markings Based on a Feature-Binary-PointNet Network and Shape Descriptors Using LiDAR Point Clouds: A Case Study of an Expressway", 《TRANSPORTATION RESEARCH RECORD》 *
初秀民, 严新平, 章先阵: "道路标志标线养护管理先进技术", 交通与计算机, no. 03 *
宣寒宇;刘宏哲;袁家政;李青;牛小宁;: "一种鲁棒性的多车道线检测算法", 计算机科学, no. 11 *
曹月花: "复杂环境下道路车道线识别算法的研究", 《现代电子技术》, vol. 40, no. 14, pages 109 - 113 *
谷天明: "反光标线夜间可见度的测量", 公路交通科技, no. 03 *

Also Published As

Publication number Publication date
CN116699644B (en) 2023-10-27

Similar Documents

Publication Publication Date Title
CN102175613B (en) Image-brightness-characteristic-based pan/tilt/zoom (PTZ) video visibility detection method
GB2581293A (en) A method for detecting degree of crack development of asphalt pavement
US10451862B2 (en) Calibration plate for measuring calibration of a digital microscope and methods of using the same
US20210398311A1 (en) Positioning method and device, and storage medium
US20110311126A1 (en) Defect inspecting apparatus and defect inspecting method
US9903710B2 (en) Shape inspection apparatus for metallic body and shape inspection method for metallic body
CN110221277A (en) A kind of tunnel surface infiltration method for extracting region based on laser radar scanning
CN108845332B (en) Depth information measuring method and device based on TOF module
WO2014074003A1 (en) Method for monitoring linear dimensions of three-dimensional objects
CN111432144B (en) Imaging system and related electronic device and operating method of imaging system
CN116699644B (en) Marking reliability assessment method based on three-dimensional laser radar
CN104375383A (en) Focusing and leveling device and method for photo-etching equipment
CN112833812B (en) Measuring instrument for testing a sample and method for determining a height map of a sample
CN113237459B (en) Long-term monitoring method and monitoring system for building settlement
CN105841621B (en) A kind of method of long-range measurement roadbed horizontal displacement
CN2316630Y (en) High-precision automatic angle measurer
CN105277131A (en) Measurement device and measurement method of three-dimensional pore structure
CN109040724B (en) Light spot distortion detection method and device of structured light projector and readable storage medium
CN105676587A (en) Method for determining focal plane of OPC (Optical Proximity Correction) model
CN109559356A (en) A kind of highway sighting distance detection method based on machine vision
CN102052896A (en) Automatic method for detecting dimension of use part of surgical instrument
CN110906884B (en) Three-dimensional geometry measuring apparatus and three-dimensional geometry measuring method
CN115330832A (en) Computer vision-based transmission tower full-freedom displacement monitoring system and method
US20080013101A1 (en) Repairing method for dark areas on a surface profile and a surface profile measuring method
CN107389552B (en) Method for measuring white light optical parameters of atmospheric aerosol by using white light optical imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant