CN116683940B - 一种基于光子学太赫兹跳频源的超宽带跳频通信系统 - Google Patents

一种基于光子学太赫兹跳频源的超宽带跳频通信系统 Download PDF

Info

Publication number
CN116683940B
CN116683940B CN202310966296.1A CN202310966296A CN116683940B CN 116683940 B CN116683940 B CN 116683940B CN 202310966296 A CN202310966296 A CN 202310966296A CN 116683940 B CN116683940 B CN 116683940B
Authority
CN
China
Prior art keywords
frequency hopping
terahertz
signal
optical
photonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310966296.1A
Other languages
English (en)
Other versions
CN116683940A (zh
Inventor
张健
王瀚锋
杨帆
姜昊
李沫
陈飞良
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202310966296.1A priority Critical patent/CN116683940B/zh
Publication of CN116683940A publication Critical patent/CN116683940A/zh
Application granted granted Critical
Publication of CN116683940B publication Critical patent/CN116683940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Optical Communication System (AREA)

Abstract

本发明属于太赫兹通信技术领域,具体为一种基于光子学太赫兹跳频源的超宽带跳频通信系统。包括发射端和接收端,发射端包括第一光子学太赫兹跳频源和发射天线,接收端包括接收天线、太赫兹低噪声放大器、太赫兹功分器、第二光子学太赫兹跳频源、跳频同步模块、太赫兹混频器和基带信号解调模块;通过发射端的第一光子学太赫兹跳频源、接收端的第二光子学太赫兹跳频源,实现太赫兹频段的超带宽跳频通信系统,解决了传统电子学跳频方案无法满足太赫兹频段的跳频问题。

Description

一种基于光子学太赫兹跳频源的超宽带跳频通信系统
技术领域
本发明属于太赫兹通信技术领域,具体为一种基于光子学太赫兹跳频源的超宽带跳频通信系统。
背景技术
随着5G毫米波通信已在一些国家成为现实,人们寻求发展更高频段的通信技术。太赫兹通讯具有波束窄、方向性好的特点,可实现更好的传输安全性和抗干扰能力,被认为是高速无线通信的下一个前沿,但随着研究的深入,国际上最新研究表明太赫兹通信仍然存在被干扰和窃听的风险,提高太赫兹通信系统的抗干扰抗截获能力,是太赫兹通信走向实际应用必须要解决的问题。
跳频技术是提高通信系统抗干扰性能的常用方法之一,已经广泛应用于微波频段,其工作方式是收发双方传输信号的载波频率按照预定规律随机变化。现有的短波、微波和低频段毫米波跳频通信系统均采用电子学方法实现,工作频率不大于50GHz,跳频带宽不超过2GHz。但是,面向6G等场景的超宽带太赫兹跳频通信系统的载波频率高、跳频带宽大,以200GHz频段为例,如果实现相对带宽20-25%的超宽带跳频,绝对带宽要达到40-50GHz,采用电子学方法难以实现。可见,传统的电子学跳频方案并不能满足太赫兹频段的应用需求。
此外,目前还没有关于太赫兹频段的跳频通信报道。
发明内容
本发明的目的在于:针对上述现有技术中存在的不足,提供一种基于光子学太赫兹跳频源的超宽带跳频通信系统,以解决传统的电子学跳频方案无法满足太赫兹频段的跳频。
为实现上述目的,本发明采用如下技术方案:
一种基于光子学太赫兹跳频源的超宽带跳频通信系统,包括发射端和接收端;
所述发射端包括第一光子学太赫兹跳频源和发射天线;第一光子学太赫兹跳频源产生光载波信号和第一跳频光信号;对光载波信号与第一跳频光信号进行拍频,产生太赫兹超宽带跳频通信信号传输至发射天线;发射天线将接收的太赫兹超宽带跳频通信信号辐射至自由空间;
所述接收端包括接收天线、太赫兹低噪声放大器、太赫兹功分器、第二光子学太赫兹跳频源、跳频同步模块、太赫兹混频器和基带信号解调模块;
接收天线用于接收自由空间中的太赫兹超宽带跳频通信信号,并将其传输至太赫兹低噪声放大器进行放大;
太赫兹功分器接收放大后的太赫兹超宽带跳频通信信号,并将其分成功率相等的两路信号,其中一路输出至跳频同步模块,另一路输出至太赫兹混频器;
跳频同步模块用于产生控制第二跳频光信号的跳频同步控制信号,利用第二光子学太赫兹跳频源,实现与接收的太赫兹超宽带跳频通信信号的频率同步处理;
第二光子学太赫兹跳频源产生第二参考光信号和第二跳频光信号;对第二参考光信号和第二跳频光信号进行拍频后;经同步控制产生与接收到的太赫兹超宽带跳频通信信号同频、同相、同步的,产生太赫兹跳频本振,并输出至太赫兹混频器;
太赫兹混频器将收到的太赫兹超宽带跳频通信信号,与第二光子学太赫兹跳频源产生的太赫兹跳频本振进行混频,完成太赫兹超宽带跳频通信信号的跳频解跳,得到基带信号,并输出至基带信号解调模块;
基带信号解调模块对收到的基带信号进行解调,恢复原始信息。
进一步的,所述第一光子学太赫兹跳频源和第二光子学太赫兹跳频源结构相似,均包括依次连接的光耦合器、光-太赫兹转换器和太赫兹功率放大器。
进一步的,所述第一光子学太赫兹跳频源的光载波信号由光载波信号产生单元产生,光载波信号产生单元包括第一参考光模块、基带信号发生器和第一MZ调制器;
第一参考光模块用于为第一MZ调制器提供第一参考光信号;
基带信号发生器用于为第一MZ调制器提供数字基带信号;
第一MZ调制器的输入连接参考光模块和基带信号发生器,输出连接光耦合器,用于将数字基带信号调制到第一参考光信号上,生成已调光载波信号。
进一步的,第二光子学太赫兹跳频源产生的第二参考光信号由第二参考光模块提供。
进一步的,所述第一光子学太赫兹跳频源接收的第一跳频光信号由第一光跳频信号产生单元提供,第二光子学太赫兹跳频源接收的第二跳频光信号由第二光跳频信号产生单元提供,第一光跳频信号产生单元与第二跳频信号产生单元结构相同,均包括依次连接的跳频序列控制器、跳频序列发生器和光跳频模块;
跳频序列控制器用于根据需求生成跳频控制信号;
跳频序列发生器用于根据接收的跳频控制信号生成跳频图案;
光跳频模块用于根据的跳频图案生成跳频光信号。
更进一步的,所述光跳频模块包括第三参考光模块、任意波形发生器、微波放大器和第二MZ调制器;
第三参考光模块用于为第二MZ调制器提供第三参考光信号,第三参考光信号与第一参考光信号相差一个太赫兹频率范围的频差;
任意波形发生器输入连接跳频序列发生器,输出经微波放大器连接第二MZ调制器,用于根据接收的跳频图案生成电跳频本振信号,并经微波放大器放大;
第二MZ调制器输入连接第三参考光模块和微波放大器,输出连接光耦合器,根据接收的电跳频本振信号和第三参考光信号,生成跳频光信号输出至光耦合器。
进一步的,所有参考光模块均为激光器。
进一步的,所有光-太赫兹转换器均为光电探测器。
本发明提供的一种基于光子学太赫兹跳频源的超宽带跳频通信系统,是通过发射端的第一光子学太赫兹跳频源、接收端的第二光子学太赫兹跳频源,实现太赫兹频段的超带宽跳频通信系统。在发射端,设置的第一光子学太赫兹跳频源由于运用了光子学跳频、光子学调制、光子学拍频相结合的方法,较容易产生在太赫兹频段的超宽带跳频通信信号,其跳频通信信号带宽可以实现超过20GHz,突破了传统电子学跳频方案面临的带宽瓶颈,具有工作频率高,跳频带宽大的优点。在接收端采用类似结构的第二光子学太赫兹跳频源产生太赫兹跳频本振进行相干接收,实现带宽超过20GHz的太赫兹超宽带跳频信号接收和解跳。
综上可见,本发明的超宽带跳频通信系统,解决了传统电子学跳频方案无法满足太赫兹频段的跳频问题。
附图说明
图1为本发明基于光子学太赫兹跳频源的超宽带跳频通信系统结构框图。
图2为实施例提供的基于光子学太赫兹跳频源的超宽带跳频通信系统。
实施方式
下面结合附图和实施例详述本发明技术方案。
如图1、图2所示,本实施例提供的一种基于光子学太赫兹跳频源的超宽带跳频通信系统,包括发射端与接收端。
所述发射端包括第一光子学太赫兹跳频源和发射天线。第一光子学太赫兹跳频源的输出端连接发射天线,用于对光载波信号与跳频光信号进行拍频,产生太赫兹超宽带跳频通信信号。发射天线用于接收的太赫兹超宽带跳频通信信号,并将其辐射至自由空间。第一光子学太赫兹跳频源包括依次连接的光耦合器、光-太赫兹转换器和太赫兹功率放大器。光耦合器的输入接光载波信号和第一跳频光信号,输出经第一光-太赫兹转换器连接第一太赫兹功率放大器。
所述接收端包括接收天线、太赫兹低噪声放大器、太赫兹功分器、跳频同步模块、第二光子学太赫兹跳频源、太赫兹混频器和基带信号解调模块。接收天线输入接自由空间中的太赫兹超宽带跳频通信信号,输出经太赫兹低噪声放大器连接太赫兹功分器。太赫兹功分器的输出连接跳频同步模块的输入和太赫兹混频器的第一输入,同步模块的输出经第二光子学太赫兹跳频源连接太赫兹混频器的第二输入,太赫兹混频器的输出连接基带信号解调模块。
第二光子学太赫兹跳频源与第二光子学太赫兹跳频源结构相同,但是两者输入信号不同,所起作用也不相同。第二光子学太赫兹跳频源的输入接第二参考光、第二跳频光信号以及跳频同步模块提供的同步控制信号;直接对第二参考光信号和第二跳频光信号进行拍频,经同步控制产生与接收到的太赫兹超宽带跳频通信信号同频、同相、同步的太赫兹跳频本振。
本实施例中,第一光子学太赫兹跳频源接收的第一跳频光信号,由第一光跳频信号产生单元提供。第二光子学太赫兹跳频源接收的第二跳频光信号,由第二光跳频信号产生单元提供。第一光跳频信号产生单元与第二跳频信号产生单元结构相同,均包括依次连接的跳频序列控制器、跳频序列发生器和光跳频模块。跳频序列控制器用于根据需求生成跳频控制信号。跳频序列发生器用于根据接收的跳频控制信号生成跳频图案。光跳频模块用于根据的跳频图案生成跳频光信号,包括第三参考光模块、任意波形发生器、微波放大器和第二MZ调制器;第三参考光模块用于为第二MZ调制器提供第三参考光信号,第三参考光信号与第一参考光信号相差一个太赫兹频率范围的频差;任意波形发生器输入连接跳频序列发生器,输出经微波放大器连接第二MZ调制器,用于根据接收的跳频图案生成电跳频本振信号,并经微波放大;第二MZ调制器输入连接第三参考光模块和微波放大器,输出连接光耦合器,根据接收的电跳频本振信号和第三参考光信号,生成跳频光信号。
实施时,跳频序列控制器与控制跳频序列发生器生成跳频图案的过程,由FPGA实现。太赫兹跳频同步模块控制第二光子学太赫兹跳频源产生本振信号的过程,同样也由FPGA实现。所有的参考光模块均由激光器构成,所有的光-太赫兹转换器均为由光电探测器构成。
本实施例基于光子学太赫兹跳频源的超宽带跳频通信系统的工作流程如下:
首先,发射端的基带信号发生器产生数字基带信号,并将其传输至第一MZ调制器;参考光模块产生第一参考光信号,并将其输出至第一MZ调制器。第一MZ调制器将收到的数字基带信号调制到第一参考光信号上,生成已调光载波信号输出至光耦合器。跳频序列控制器控制跳频序列发生器,生成跳频图案输出到光跳频模块。光跳频模块根据接收的跳频图案生成跳频光信号,并输出至到光耦合器。光耦合器对跳频光信号和光载波信号进行耦合,生成光信号传输至光-太赫兹转换器。光-太赫兹转换器采用拍频的方法对接收的光信号进行处理,产生太赫兹超宽带跳频通信信号传输至太赫兹功率放大器功率进行放大后,输出至发射天线,并通过发射天线辐射到自由空间。
接收端的接收天线接收自由空间中的太赫兹超宽带跳频通信信号,并将其传输至太赫兹低噪声放大器进行噪声放大处理。太赫兹功分器接收放大后的太赫兹超宽带跳频通信信号,并对其分成功率相等的两路信号,其中一路输出至跳频同步模块做跳频同步处理,另一路输出至太赫兹混频器做跳频解跳处理。跳频同步模块对太赫兹超宽带跳频通信信号进行跳频同步信息提取,产生同步控制信号传输至第二光子学太赫兹跳频源。第二光子学太赫兹跳频源对第一参考光信号和光跳频信号进行拍频,在同步控制信号的控制下,产生与接收到的太赫兹超宽带跳频通信信号同频、同相、同步的太赫兹本振信号输出至太赫兹混频器。太赫兹混频器将收到的太赫兹超宽带跳频通信信号与太赫兹跳频本振进行混频,完成太赫兹超宽带跳频通信信号的跳频解跳,得到基带信号输出至基带信号解调模块;基带信号解调模块对收到的基带信号进行解调并恢复原始信息。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化均应视为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种基于光子学太赫兹跳频源的超宽带跳频通信系统,包括发射端和接收端,其特征在于:
所述发射端包括第一光子学太赫兹跳频源和发射天线;第一光子学太赫兹跳频源产生光载波信号和第一跳频光信号;对光载波信号与第一跳频光信号进行拍频,产生太赫兹超宽带跳频通信信号传输至发射天线;发射天线将接收的太赫兹超宽带跳频通信信号辐射至自由空间;
所述接收端包括接收天线、太赫兹低噪声放大器、太赫兹功分器、第二光子学太赫兹跳频源、跳频同步模块、太赫兹混频器和基带信号解调模块;
接收天线用于接收自由空间中的太赫兹超宽带跳频通信信号,并将其传输至太赫兹低噪声放大器进行放大;
太赫兹功分器接收放大后的太赫兹超宽带跳频通信信号,并将其分成功率相等的两路信号,其中一路输出至跳频同步模块,另一路输出至太赫兹混频器;
跳频同步模块用于产生控制第二跳频光信号的跳频同步控制信号,利用第二光子学太赫兹跳频源,实现与接收的太赫兹超宽带跳频通信信号的频率同步处理;
第二光子学太赫兹跳频源产生第二参考光信号和第二跳频光信号;对第二参考光信号和第二跳频光信号进行拍频后;经同步控制产生与接收到的太赫兹超宽带跳频通信信号同频、同相、同步的太赫兹跳频本振,并输出至太赫兹混频器;
太赫兹混频器将收到的太赫兹超宽带跳频通信信号,与第二光子学太赫兹跳频源产生的太赫兹跳频本振进行混频,完成太赫兹超宽带跳频通信信号的跳频解跳,得到基带信号,并输出至基带信号解调模块;
基带信号解调模块对收到的基带信号进行解调,恢复原始信息。
2.如权利要求1所述的一种基于光子学太赫兹跳频源的超宽带跳频通信系统,其特征在于:
所述第一光子学太赫兹跳频源和第二光子学太赫兹跳频源结构相同,均包括依次连接的光耦合器、光-太赫兹转换器和太赫兹功率放大器。
3.如权利要求1所述的一种基于光子学太赫兹跳频源的超宽带跳频通信系统,其特征在于:所述第一光子学太赫兹跳频源的光载波信号由光载波信号产生单元产生,光载波信号产生单元包括第一参考光模块、基带信号发生器和第一MZ调制器;
第一参考光模块用于为第一MZ调制器提供第一参考光信号;
基带信号发生器用于为第一MZ调制器提供数字基带信号;
第一MZ调制器的输入连接参考光模块和基带信号发生器,输出连接光耦合器,用于将数字基带信号调制到第一参考光信号上,生成已调光载波信号;
第二光子学太赫兹跳频源接收的第二参考光信号由第二参考光模块提供。
4.如权利要求1所述的一种基于光子学太赫兹跳频源的超宽带跳频通信系统,其特征在于:所述第一光子学太赫兹跳频源接收的第一跳频光信号由第一光跳频信号产生单元提供,第二光子学太赫兹跳频源接收的第二跳频光信号由第二光跳频信号产生单元提供,第一光跳频信号产生单元与第二跳频信号产生单元结构相同,均包括依次连接的跳频序列控制器、跳频序列发生器和光跳频模块;
跳频序列控制器用于根据需求生成跳频控制信号;
跳频序列发生器用于根据接收的跳频控制信号生成跳频图案;
光跳频模块用于根据的跳频图案生成跳频光信号。
5.如权利要求4所述的一种基于光子学太赫兹跳频源的超宽带跳频通信系统,其特征在于:所述光跳频模块包括第三参考光模块、任意波形发生器、微波放大器和第二MZ调制器;
第三参考光模块用于为第二MZ调制器提供第三参考光信号,第三参考光信号与第一参考光信号相差一个太赫兹频率范围的频差;
任意波形发生器输入连接跳频序列发生器,输出经微波放大器连接第二MZ调制器,用于根据接收的跳频图案生成电跳频本振信号,并经微波放大器放大;
第二MZ调制器输入连接第三参考光模块和微波放大器,输出连接光耦合器,根据接收的电跳频本振信号和第三参考光信号,生成跳频光信号输出至光耦合器。
6.如权利要求5所述的一种基于光子学太赫兹跳频源的超宽带跳频通信系统,其特征在于:所有参考光模块均为激光器。
7.如权利要求2所述的一种基于光子学太赫兹跳频源的超宽带跳频通信系统,其特征在于:所有光-太赫兹转换器均为光电探测器。
CN202310966296.1A 2023-08-02 2023-08-02 一种基于光子学太赫兹跳频源的超宽带跳频通信系统 Active CN116683940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310966296.1A CN116683940B (zh) 2023-08-02 2023-08-02 一种基于光子学太赫兹跳频源的超宽带跳频通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310966296.1A CN116683940B (zh) 2023-08-02 2023-08-02 一种基于光子学太赫兹跳频源的超宽带跳频通信系统

Publications (2)

Publication Number Publication Date
CN116683940A CN116683940A (zh) 2023-09-01
CN116683940B true CN116683940B (zh) 2023-11-28

Family

ID=87787675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310966296.1A Active CN116683940B (zh) 2023-08-02 2023-08-02 一种基于光子学太赫兹跳频源的超宽带跳频通信系统

Country Status (1)

Country Link
CN (1) CN116683940B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209400695U (zh) * 2018-09-18 2019-09-17 雄安华讯方舟科技有限公司 太赫兹雷达的信号转换装置和太赫兹雷达
CN115459859A (zh) * 2022-07-27 2022-12-09 电子科技大学 一种基于光注入锁定动态选频的光子学超宽带太赫兹跳频源
CN115708394A (zh) * 2021-08-20 2023-02-21 苹果公司 具有高频反射天线阵列的电子设备
CN116170084A (zh) * 2023-02-21 2023-05-26 电子科技大学 一种基于四波混频的光子学超宽带太赫兹跳频源
CN116400520A (zh) * 2023-02-21 2023-07-07 电子科技大学 一种基于高阶电光调制的光子学超宽带太赫兹跳频源

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446601B2 (en) * 2003-06-23 2008-11-04 Astronix Research, Llc Electron beam RF amplifier and emitter
US11646492B2 (en) * 2019-05-07 2023-05-09 Bao Tran Cellular system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209400695U (zh) * 2018-09-18 2019-09-17 雄安华讯方舟科技有限公司 太赫兹雷达的信号转换装置和太赫兹雷达
CN115708394A (zh) * 2021-08-20 2023-02-21 苹果公司 具有高频反射天线阵列的电子设备
CN115459859A (zh) * 2022-07-27 2022-12-09 电子科技大学 一种基于光注入锁定动态选频的光子学超宽带太赫兹跳频源
CN116170084A (zh) * 2023-02-21 2023-05-26 电子科技大学 一种基于四波混频的光子学超宽带太赫兹跳频源
CN116400520A (zh) * 2023-02-21 2023-07-07 电子科技大学 一种基于高阶电光调制的光子学超宽带太赫兹跳频源

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Wireless terahertz low power UWB communications;M. Ye. Ilchenko;2012 22nd International Crimean Conference "Microwave & Telecommunication Technology";全文 *
光电融合智能太赫兹的体系架构和关键技术;张健;《太赫兹科学与电子信息学报》;第21卷(第4期);全文 *
基于VO2的超宽带高调谐太赫兹超材料吸波体研究;蔡成凤;中国优秀硕士学位论文全文数据库;全文 *

Also Published As

Publication number Publication date
CN116683940A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
JP3981337B2 (ja) 光ファイバ−ラジオ混合双方通信装置及び方法
EP2506456B1 (en) Signal reception device and method based on microwave photon technology
US5710651A (en) Remote millimeter-wave antenna fiber optic communication system using dual optical signal with millimeter-wave beat frequency
CN100536371C (zh) 基于电光调制器和光纤光栅的微波光子下变频方法及装置
CN111953425B (zh) 高灵敏度光子辅助超宽带毫米波接收机
WO2020207442A1 (zh) 太赫兹信号的生成方法、设备及计算机可读存储介质
CN101001126B (zh) 全双工通信Radio-Over-Fiber中光毫米波产生和波长重用方法和系统
CN101521962B (zh) 单边带高频光毫米波产生及波长再利用系统
CN111464240A (zh) 基于偏振复用强度调制器的矢量射频信号发生系统
CN101674136A (zh) OFDM调制方式的光学倍频毫米波RoF信号生成系统及方法
CN116683940B (zh) 一种基于光子学太赫兹跳频源的超宽带跳频通信系统
CN101001114A (zh) 结构简单的全双工光纤无线通信系统
CN111965915A (zh) 基于光学频率梳的太赫兹波信号生成系统及方法
CN117014074A (zh) 一种面向不同电子系统应用的超宽带一体化柔性变频装置
CN101667868B (zh) 集成802.11g标准OFDM芯片的双向40GHz毫米波RoF通信系统及方法
CN116400520A (zh) 一种基于高阶电光调制的光子学超宽带太赫兹跳频源
CN116170084A (zh) 一种基于四波混频的光子学超宽带太赫兹跳频源
CN113608227B (zh) 光子辅助雷达混频与直达波自干扰对消一体化装置及方法
CN113489551B (zh) 一种厘米波/毫米波超宽带信号产生装置
CN112087264B (zh) 光子辅助多通道信号合成和超宽带毫米波调制方法及系统
CN102684791B (zh) 有线和无线融合通信系统、方法及多波段信号的生成方法、装置
CN112350777A (zh) 一种基于推挽调制器的双矢量毫米波的发生系统及方法
CN113507327B (zh) 光子辅助的通信感知一体化装置
JP4164570B2 (ja) 無線光融合通信システムおよび無線光融合通信方法
CN116436532A (zh) 一种步进频率时隙间插的光子太赫兹通信感知一体化系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant