CN116676207B - 一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用 - Google Patents

一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用 Download PDF

Info

Publication number
CN116676207B
CN116676207B CN202310238846.8A CN202310238846A CN116676207B CN 116676207 B CN116676207 B CN 116676207B CN 202310238846 A CN202310238846 A CN 202310238846A CN 116676207 B CN116676207 B CN 116676207B
Authority
CN
China
Prior art keywords
strain
chondroitin sulfate
bacteroides
hyaluronic acid
oligosaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310238846.8A
Other languages
English (en)
Other versions
CN116676207A (zh
Inventor
尚庆森
王亚敏
于广利
马明凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN202310238846.8A priority Critical patent/CN116676207B/zh
Publication of CN116676207A publication Critical patent/CN116676207A/zh
Application granted granted Critical
Publication of CN116676207B publication Critical patent/CN116676207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及硫酸软骨素或透明质酸的降解菌株领域,具体涉及一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用。萨利尔斯氏拟杆菌菌株具体为萨利尔斯氏拟杆菌菌株CSP6(Bacteroides salyersiae CSP6),该菌株分离自健康人体粪便,保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M20221993。该菌株能够将分子量为5~50KDa的硫酸软骨素降解为聚合度主要为4和6的不饱和硫酸软骨素寡糖,或者将分子量为20~2000KDa的透明质酸降解为聚合度主要为4和8的不饱和透明质酸寡糖。

Description

一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖 及透明质酸寡糖中的应用
技术领域
本发明涉及硫酸软骨素或透明质酸的降解菌株领域,具体涉及一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用。
背景技术
糖胺聚糖(Glycosaminoglycan,GAGs)属于杂多糖,为不分支的长链聚合物,主要存在于高等动物结缔组织中,根据二糖单元组成的不同分为不同的种类。目前研究较多的是硫酸软骨素(Chondroitinsulfate,CS),肝素和透明质酸(Hyaluronic acid,HA)。其中,硫酸软骨素是一种由交替二糖单元葡萄糖醛酸(GlcA)和N-乙酰半乳糖胺(GalNAc)组成的天然糖胺聚糖,在N-乙酰半乳糖胺的不同位羟基上发生硫酸酯化(PMID:30879253)。在中国和美国,硫酸软骨素主要作为一种协助治疗骨关节炎的功能食品使用(PMID:20521042)。透明质酸作为细胞外基质的重要组成部分,主要由二糖重复单元葡萄糖醛酸和N-乙酰葡萄糖胺(GlcNAc)连接而成,具有维持细胞结构和提供能量来源等多种生理功能。研究表明,硫酸软骨素寡糖具有良好的抗炎活性,其可以抑制TLRs介导的白细胞介素-6的分泌(PMID:21737940)。此外,透明质酸寡糖也可以竞争性结合TLR4受体,降低细菌脂多糖引起的炎症反应,抑制肿瘤坏死因子和白细胞介素-6的分泌(PMID:34823813)。
人体肠道是一个由数万亿微生物组成的多样而复杂的微生物生态系统,肠道菌群作为人体共生微生物的一个关键部分,对宿主的发育、免疫和代谢等多种生理学过程具有重要调控作用(PMID:33239790)。研究表明多糖具有多种生物活性,包括调节免疫功能、降脂降血糖、抗肥胖等(PMID:33648176)。部分多糖如淀粉可以在人的胃和小肠中被消化吸收,但绝大部分多糖无法被宿主消化进入结肠,在结肠内与肠道菌群相互作用,从而发挥营养或药理作用(PMID:33219555)。
拟杆菌门在复杂碳水化合物的分解中起着重要作用。文献报道Bacteroidessalyersiae DSM 18765/WAL10018通过T9SS指导分泌至少109种不同功能的蛋白质,能够降解利用酵母甘露聚糖(DOI:10.1101/2022.07.15.500217)。此外,Bacteroides salyersiae具有潜在的粘液蛋白降解能力,能够抑制肠上皮炎症,调节紧密连接屏障功能(PMID:36311778)。但是,Bacteroides salyersiae是否能够降解硫酸软骨素及透明质酸等糖胺聚糖目前并未有研究报道。本研究首次发现,萨利尔斯氏拟杆菌(Bacteroides salyersiae)CSP6能够将硫酸软骨素降解为聚合度主要为4和6的不饱和硫酸软骨素寡糖。此外,其还可以将透明质酸降解为聚合度主要为4和8的不饱和透明质酸寡糖。硫酸软骨素寡糖和透明质酸寡糖具有良好的抗炎作用,所述萨利尔斯氏拟杆菌CSP6在制备硫酸软骨素寡糖和透明质酸寡糖方面具有广阔的应用前景。
发明内容
基于现有技术中的不足,本发明公开一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用。
本发明的技术方案是:
一种萨利尔斯氏拟杆菌菌株,所述萨利尔斯氏拟杆菌菌株具体为萨利尔斯氏拟杆菌菌株CSP6(Bacteroides salyersiae CSP6),该菌株源分离自健康人体粪便,保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 20221993。
一种萨利尔斯氏拟杆菌菌株在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用。
进一步的,上述的一种萨利尔斯氏拟杆菌菌株在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用,所述应用的方法为:将萨利尔斯氏拟杆菌菌株CSP6经活化培养后获得的种子液接种至硫酸软骨素培养基或透明质酸培养基中进行厌氧发酵培养,薄层层析法检测菌株对硫酸软骨素或透明质酸的降解,实现硫酸软骨素或透明质酸的降解。
进一步的,上述的一种萨利尔斯氏拟杆菌菌株在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用,所述硫酸软骨素培养基终浓度组成为:硫酸软骨素6~10g/L、胰蛋白胨2~4g/L、蛋白胨2~4g/L、酵母提取物2~4g/L、粘液素0.4~0.6g/L、3号胆盐0.3~0.5g/L、半胱氨酸盐酸盐0.7~0.9g/L、血红素0.04~0.06g/L、吐温80 0.8~1.2mL/L、氯化钠4~5g/L、氯化钾2~3g/L、氯化镁4~5g/L、氯化钙0.1~0.3g/L、磷酸二氢钾0.3~0.5g/L、微量元素1~3mL/L,溶剂为蒸馏水,pH值为6.4~6.5;
所述透明质酸培养基终浓度组成为:将硫酸软骨素培养基中的硫酸软骨素用6~10g/L透明质酸替换,其他组成同硫酸软骨素培养基其他组成。
进一步的,上述的一种萨利尔斯氏拟杆菌菌株在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用,所述硫酸软骨素分子量为5~50KDa,优选为15~40KDa。进一步的,上述的一种萨利尔斯氏拟杆菌菌株在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用,所述透明质酸分子量为20~2000KDa,优选为1000~1800KDa。
进一步的,上述的一种萨利尔斯氏拟杆菌菌株在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用,所述应用步骤具体为:
步骤1)种子培养:将萨利尔斯氏拟杆菌菌株CSP6接种至种子培养基,25~42℃培养1~4天,获得种子液;所述种子培养基同硫酸软骨素培养基或透明质酸培养基;
步骤2)发酵培养:将步骤1)获得的种子液以体积比1%~10%的接种量接种至硫酸软骨素培养基或透明质酸培养基中,25~42℃培养,薄层色谱层析跟踪检测原料利用情况,实现硫酸软骨素或透明质酸的降解。
本发明的优点及有益效果:
本发明提供的一株萨利尔斯氏拟杆菌菌株CSP6,该菌株能够将分子量为5~50KDa的硫酸软骨素降解为聚合度主要为4和6的不饱和硫酸软骨素寡糖,或者将分子量为20~2000KDa的透明质酸降解为聚合度主要为4和8的不饱和透明质酸寡糖。
附图说明
图1为TLC检测萨利尔斯氏拟杆菌菌株CSP6对CS的降解作用的薄层层析图,
其中,样品1,样品2和样品3为3个平行样本;
图2为HILIC-FTMS检测萨利尔斯氏拟杆菌菌株CSP6降解CS终产物的总离子色谱图,
其中,曲线0h为硫酸软骨素空白培养基的总离子色谱图,曲线24h为接种萨利尔斯氏拟杆菌菌株CSP6发酵24h样品液的总离子色谱图,曲线48h为接种萨利尔斯氏拟杆菌菌株CSP6发酵48h样品液的总离子色谱图,曲线72h为接种萨利尔斯氏拟杆菌菌株CSP6发酵72h样品液的总离子色谱图。字母表示不同寡糖的聚合度(dp,其中dp为饱和的寡糖,udp为不饱和的寡糖)。实验设置3组平行(样品1,样品2和样品3);
图3为HILIC-FTMS检测萨利尔斯氏拟杆菌菌株CSP6降解CS终产物的峰面积分布图,
其中,寡糖成分为[ΔHexA,HexA,GalNAc4S],数字为各组分中单糖的数量,数据以Mean±SEM表示,ΔHexA代表不饱和的六碳糖醛酸,HexA代表饱和的六碳糖醛酸,GalNAc4S代表4位硫酸酯化的N-乙酰半乳糖胺;
图4为TLC检测萨利尔斯氏拟杆菌菌株CSP6对HA的降解作用的薄层层析图,
其中,样品1、样品2和样品3为3个平行样本;
图5为HILIC-FTMS检测萨利尔斯氏拟杆菌菌株CSP6降解HA终产物的总离子色谱图,
其中,曲线0h为HA空白培养基的总离子色谱图,曲线72h为接种萨利尔斯氏拟杆菌菌株CSP6发酵72h样品液的总离子色谱图。字母表示不同寡糖的聚合度(dp,其中dp为饱和的寡糖,udp为不饱和的寡糖)。实验设置3组平行(样品1,样品2和样品3);
图6为HILIC-FTMS检测萨利尔斯氏拟杆菌菌株CSP6降解HA终产物的峰面积分布图,
其中,寡糖成分为[ΔHexA,HexA,GlcNAc],数字为各组分中单糖的数量,数据以Mean±SEM表示,ΔHexA代表不饱和的六碳糖醛酸,HexA代表饱和的六碳糖醛酸,GlcNAc代表N-乙酰葡萄糖胺;
图7为HILIC-FTMS检测萨利尔斯氏拟杆菌菌株CSP6降解HA终产物的质谱图,
其中,字母表示不同寡糖的聚合度(dp,其中dp为饱和的寡糖,udp为不饱和的寡糖)。
具体实施方式
生物保藏说明:
本发明提供的萨利尔斯氏拟杆菌菌株CSP6,保藏编号:CCTCC NO:M 20221993;分类命名:拟杆菌属,萨利尔斯氏拟杆菌种;拉丁文学名:Bacteroides salyersiae CSP6;该菌株保藏于中国典型微生物保藏中心,保藏日期为2022年12月19日,保藏地址为湖北省武汉市武昌区八一路299号武汉大学校内,中国典型培养物保藏中心。
本发明中萨利尔斯氏拟杆菌菌株CSP6源于健康人体粪便,16S rDNA的序列如序列表所示。
接下来结合说明书附图和具体实施方式对本发明进行进一步的描述,但本发明的保护范围并不仅限于此。
实施例1.
菌株CSP6的分离鉴定
(1)培养基的配制
配置VI-CS培养基,具体成分如下:CSA(分子量为24KDa)8g/L、胰蛋白胨3g/L、蛋白胨3g/L、酵母提取物3g/L、粘液素0.5g/L、3号胆盐0.4g/L、半胱氨酸盐酸盐0.8g/L、血红素0.05g/L、吐温80 1mL/L、氯化钠4.5g/L、氯化钾2.5g/L、氯化镁4.5g/L、氯化钙0.2g/L、磷酸二氢钾0.4g/L、微量元素2mL/L,溶剂为蒸馏水,pH值为6.4~6.5,将培养基灌注至厌氧小瓶中,充氮气灭菌。
在本发明中,所述微量元素终浓度组成为:MgSO4·7H20 3.0g/L、CaCl2·2H200.1g/L、MnCl2·4H20 0.32g/L、FeSO4·7H20 0.1g/L、CoSO4·7H20 0.18g/L、ZnSO4·7H20 0.18g/L、CuSO4·5H20 0.01g/L、NiCl2·6H20 0.092g/L。
(2)粪便的前处理
取1名志愿者新鲜粪便,用PBS(pH7.0)配成20%(wt/vol)的悬浮液,充分混匀,后用直径为2mm的金属筛过滤,除去大的食物颗粒,得到粪便PBS溶液。
(3)接种培养
所得粪便PBS溶液接种至高温灭菌后的厌氧小瓶中,37℃培养48h进行初步的富集培养。将培养液采用梯度稀释法涂布,平板为VI-CS液体培养基加终浓度为1.2wt%琼脂。平板置于厌氧工作站中37℃培养48h后,挑取单菌落于VI-CS平板培养基中进行两次纯化培养后,继续挑取单菌落至VI-CS液体培养基中37℃培养48h。
(4)16S rDNA序列分析
DNA的提取:将步骤(3)得到的菌株CSP6采用德国QIAGEN公司粪便分析试剂盒(CatNo.51604)提取DNA。将所得DNA进行16S rDNA全长扩增。具体扩增的实验条件和引物序列如下:
引物序列:
27F(5’-CAGAGTTTGATCCTGGCT-3’)
1492R(5’-AGGAGGTGATCCAGCCGCA-3’)
扩增体系:反应体系25μL,DNA模板100ng,10×PCRBuffer 2.5μL,dNTP Mix(10mM)0.5μL,10μL上下游引物各0.5μL,Taq酶(5U/μL)0.2μL,加去离子水补足至25μL。
扩增条件:预变形94℃保持5min,循环94℃下35s,72℃保持1min,运行35个循环,延伸8min。
PCR产物纯化后送至生工生物工程(上海)股份有限公司(上海,中国)进行DNA测序,如SEQID No.CSP6所示,将测序结果提交NCBI数据库进行Blast比对。比对结果显示该菌株与萨利尔斯氏拟杆菌(Bacteroides salyersiae)同源性为99.83%,根据16S rDNA对比,将菌株CSP6鉴定为萨利尔斯氏拟杆菌(Bacteroides salyersiae),命名为萨利尔斯氏拟杆菌(Bacteroides salyersiae)CSP6。
SEQID No.CSP6序列为:
caccgctggcgaccggcgcacgggtgagtaacacgtatccaacctgccctttactcggggatagcctttcgaaagaaagattaatacccgatggtataacatgacctcctggttttgttattaaagaatttcggtagaggatggggatgcgttccattaggcagttggcggggtaacggcccaccaaaccttcgatggataggggttctgagaggaaggtcccccacattggaactgagacacggtccaaactcctacgggaggcagcagtgaggaatattggtcaatgggcgagagcctgaaccagccaagtagcgtgaaggatgaccgccctatgggttgtaaacttcttttatatgggaataaagggtgccacgtgtggcattttgtatgtaccatatgaataaggatcggctaactccgtgccagcagccgcggtaatacggaggatccgagcgttatccggatttattgggtttaaagggagcgtaggtggacatgtaagtcagttgtgaaagtttgcggctcaaccgtaaaattgcagttgaaactgcgtgtcttgagtacagtagaggtgggcggaattcgtggtgtagcgg
实施例2.
萨利尔斯氏拟杆菌菌株CSP6对硫酸软骨素的降解作用
将所述萨利尔斯氏拟杆菌菌株CSP6活化培养获得种子液,采用本领域常规的活化方法。将所述种子液以1%体积比接种至实施例1中VI-CS液体培养基中,在37℃条件下于厌氧培养箱(CO2:H2:N2=1:1:8)中进行发酵。发酵过程中分别在24h,48h和72h取样,分析降解情况、降解产物结构及降解能力,实验设置3组平行。
(1)降解情况
采用薄层色谱层析法,将所取样品离心后取上清0.6μL于硅胶板上点样,以反应0h的样品作为参照,置于甲酸:正丁醇:水(体积为6:3:1)展开剂中展开后吹干,重复展开两次后,在专用显色剂(地衣酚-硫酸溶液)中浸润后吹干,120℃加热3min进行显色。图1为TLC检测菌株CSP6对硫酸软骨素的降解,从图1可以看出萨利尔斯氏拟杆菌菌株CSP6可以降解硫酸软骨素,反应24h后,硫酸软骨素被降解为硫酸软骨素寡糖。
(2)HILIC-FTMS分析降解终产物结构
取1mL萨利尔斯氏拟杆菌菌株CSP6在VI-CS液体培养基中发酵培养0h,24h,48h和72h获得的发酵液,采用HILIC-FTMS分析降解产物结构(具体方法参照:PMID:34294327)。将1mL发酵液离心浓缩得到100uL浓缩样品液,加入100uL乙腈涡旋混匀后,12000rpm离心10min,取上清分析降解产物结构,萨利尔斯氏拟杆菌菌株CSP6在VI-CS液体培养基中发酵培养0h的样品液作为参照。图2结果显示,硫酸软骨素被萨利尔斯氏拟杆菌菌株CSP6降解产生了大量寡糖,从图3可以看出主要为不饱和寡糖,其中不饱和四糖和不饱和六糖占大多数。
实施例3
萨利尔斯氏拟杆菌菌株CSP6对透明质酸的降解作用
将实施例1中VI-CS液体培养基中的CSA替换为HA(分子量为1610KDa),将所述萨利尔斯氏拟杆菌菌株CSP6活化培养获得种子液,将所述种子液以1%体积比接种至实施例1中VI-HA液体培养基中,于厌氧培养箱(CO2:H2:N2=1:1:8)中37℃进行厌氧发酵培养,培养至72h取样,分析降解情况、降解产物结构及降解能力,实验设置3组平行。
(1)降解情况
采用薄层色谱层析法(方法同实施例2(1))检测降解情况,TLC结果显示萨利尔斯氏拟杆菌菌株CSP6可以降解HA,图4为TLC检测萨利尔斯氏拟杆菌菌株CSP6对CSA的降解情况,图4表明反应72h以后透明质酸被降解为透明质酸寡糖。
(2)HILIC-FTMS分析降解产物结构
取1mL萨利尔斯氏拟杆菌菌株CSP6在VI-HA液体培养基中发酵培养72h获得的发酵液,采用实施例2中的HILIC-FTMS分析降解产物结构。将1mL发酵液离心浓缩得到100uL浓缩样品液,加入100uL乙腈涡旋混匀后,12000rpm离心10min,取上清分析降解产物结构,萨利尔斯氏拟杆菌菌株CSP6在VI-HA液体培养基中发酵培养0h的样品液作为参照。图5结果显示,HA被萨利尔斯氏拟杆菌菌株CSP6降解产生了大量不饱和偶数寡糖,从图6和图7中可以看出主要为不饱和四糖和不饱和八糖。

Claims (4)

1.一种萨利尔斯氏拟杆菌菌株,其特征在于,所述萨利尔斯氏拟杆菌菌株具体为萨利尔斯氏拟杆菌菌株CSP6(Bacteroides salyersiae CSP6),该菌株分离自健康人体粪便,保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 20221993。
2.一种权利要求1所述的萨利尔斯氏拟杆菌菌株在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用。
3.根据权利要求2所述的一种萨利尔斯氏拟杆菌菌株在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用,其特征在于,所述应用的方法为:将萨利尔斯氏拟杆菌菌株CSP6经活化培养后获得的种子液接种至硫酸软骨素培养基或透明质酸培养基中进行厌氧发酵培养,薄层层析法检测菌株对硫酸软骨素或透明质酸的降解,实现硫酸软骨素或透明质酸的降解。
4.根据权利要求3所述的一种萨利尔斯氏拟杆菌菌株在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用,其特征在于,所述硫酸软骨素分子量为5 ~ 50KDa,所述透明质酸分子量为20 ~ 2000KDa。
CN202310238846.8A 2023-03-14 2023-03-14 一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用 Active CN116676207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310238846.8A CN116676207B (zh) 2023-03-14 2023-03-14 一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310238846.8A CN116676207B (zh) 2023-03-14 2023-03-14 一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用

Publications (2)

Publication Number Publication Date
CN116676207A CN116676207A (zh) 2023-09-01
CN116676207B true CN116676207B (zh) 2024-06-04

Family

ID=87779779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310238846.8A Active CN116676207B (zh) 2023-03-14 2023-03-14 一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用

Country Status (1)

Country Link
CN (1) CN116676207B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117281839A (zh) * 2023-10-13 2023-12-26 中国海洋大学 萨利尔斯氏拟杆菌csp6在制备治疗和/或预防炎症性肠病的药物及食品中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865844A (zh) * 2014-02-18 2014-06-18 浙江省农业科学院 单形拟杆菌l8及在降解琼胶或琼胶寡糖中的应用
CN108517347A (zh) * 2018-04-12 2018-09-11 江南大学 一种Bacteroides cellulosilyticus的筛选培养基及其应用
CN110191946A (zh) * 2016-12-23 2019-08-30 学校法人庆应义塾 诱导cd8+t细胞的组合物及方法
WO2022191182A1 (ja) * 2021-03-08 2022-09-15 学校法人順天堂 炎症抑制作用を有する組成物及び改善剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865844A (zh) * 2014-02-18 2014-06-18 浙江省农业科学院 单形拟杆菌l8及在降解琼胶或琼胶寡糖中的应用
CN110191946A (zh) * 2016-12-23 2019-08-30 学校法人庆应义塾 诱导cd8+t细胞的组合物及方法
CN108517347A (zh) * 2018-04-12 2018-09-11 江南大学 一种Bacteroides cellulosilyticus的筛选培养基及其应用
WO2022191182A1 (ja) * 2021-03-08 2022-09-15 学校法人順天堂 炎症抑制作用を有する組成物及び改善剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Structure and function of Bs 164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164;Zachary Armstrong等;J Biol Chem;20200327;第295卷(第13期);第4316-4326页 *
人体肠道菌群来源碳水化合物活性酶(CAZYmes)研究进展;张浩雯;曹浩;王钰璐;辛凤姣;;生物化学与生物物理进展;20200720(第07期);全文 *
肥胖人群肠道细菌多样性研究;徐海燕;马慧敏;王彦杰;赵飞燕;刘亚华;海棠;张和平;孙志宏;;中国食品学报;20180131(第01期);全文 *

Also Published As

Publication number Publication date
CN116676207A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
Shi et al. In vitro digestibility and prebiotic potential of curdlan (1→ 3)-β-d-glucan oligosaccharides in Lactobacillus species
Chen et al. New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: Impact of extraction processes on its prebiotic activity
Salyers et al. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon
Ibarburu et al. Production and partial characterization of exopolysaccharides produced by two Lactobacillus suebicus strains isolated from cider
Du et al. Oligosaccharides prepared by acid hydrolysis of polysaccharides from pumpkin (Cucurbita moschata) pulp and their prebiotic activities
Zhang et al. Study on prebiotic effectiveness of neutral garlic fructan in vitro
CN116676207B (zh) 一种萨利尔斯氏拟杆菌菌株及其在降解制备硫酸软骨素寡糖及透明质酸寡糖中的应用
Tang et al. Extraction, isolation, structural characterization and prebiotic activity of cell wall polysaccharide from Kluyveromyces marxianus
WO2010098217A1 (ja) フルクタン含有食品からの免疫賦活発酵食品
Fissore et al. A study of the effect of dietary fiber fractions obtained from artichoke (Cynara cardunculus L. var. scolymus) on the growth of intestinal bacteria associated with health
Rabelo et al. Isolation of Paraclostridium CR4 from sugarcane bagasse and its evaluation in the bioconversion of lignocellulosic feedstock into hydrogen by monitoring cellulase gene expression
Liang et al. Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil
Zhang et al. Characterization and antioxidant activity of released exopolysaccharide from potential probiotic Leuconostoc mesenteroides LM187
Thakham et al. Structural characterization of functional ingredient Levan synthesized by Bacillus siamensis isolated from traditional fermented food in Thailand
Ouyang et al. The effect of deacetylation degree of konjac glucomannan on microbial metabolites and gut microbiota in vitro fermentation
Xiao et al. Biosynthesis of exopolysaccharide and structural characterization by Lacticaseibacillus paracasei ZY-1 isolated from Tibetan kefir
Cheng et al. Biosynthesis and prebiotic activity of a linear levan from a new Paenibacillus isolate
Fu et al. Enzymatic preparation of low-molecular-weight Laminaria japonica polysaccharides and evaluation of its effect on modulating intestinal microbiota in high-fat-diet-fed mice
Ge et al. In vitro fermentation characteristics of polysaccharides from coix seed and its effects on the gut microbiota
Xu et al. Metabolic profiles of oligosaccharides derived from four microbial polysaccharides by faecal inocula from type 2 diabetes patients
Gao et al. Structural characterization and in vitro evaluation of the prebiotic potential of an exopolysaccharide produced by Bacillus thuringiensis during fermentation
Zhao et al. Evaluation of prebiotic ability of xylo-oligosaccharide fractions with different polymerization degrees from bamboo shoot shells
Abdel-Aziz et al. Production and assessment of antioxidant activity of exopolysaccharide from marine Streptomyces globisporus bu2018
LU500037B1 (en) Fucosyl-disaccharide with Prebiotic Effect, Method for Preparing the Same and Application Thereof
Chen et al. In vitro prebiotic function of oligosaccharides from Schizophyllum commune and its sulfated derivatives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant