CN116659863A - 一种基于小波包的轴承振动信号处理方法 - Google Patents

一种基于小波包的轴承振动信号处理方法 Download PDF

Info

Publication number
CN116659863A
CN116659863A CN202310567506.XA CN202310567506A CN116659863A CN 116659863 A CN116659863 A CN 116659863A CN 202310567506 A CN202310567506 A CN 202310567506A CN 116659863 A CN116659863 A CN 116659863A
Authority
CN
China
Prior art keywords
bearing
particle
vibration signal
wavelet
wavelet packet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310567506.XA
Other languages
English (en)
Other versions
CN116659863B (zh
Inventor
阮爱国
沈忠明
刘发炳
赵海
何杨张
张博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Cgn Energy Service Co ltd
Original Assignee
Yunnan Cgn Energy Service Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Cgn Energy Service Co ltd filed Critical Yunnan Cgn Energy Service Co ltd
Priority to CN202310567506.XA priority Critical patent/CN116659863B/zh
Publication of CN116659863A publication Critical patent/CN116659863A/zh
Application granted granted Critical
Publication of CN116659863B publication Critical patent/CN116659863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/10Pre-processing; Data cleansing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2123/00Data types
    • G06F2123/02Data types in the time domain, e.g. time-series data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • G06F2218/10Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明涉及一种基于小波包的轴承振动信号处理方法。该基于小波包的轴承振动信号处理方法,该方法包括以下步骤,获得多种轴承状态的振动信号;基于多种轴承状态的振动信号选择恰当的小波基,并确定小波包分解层数;对多种轴承状态的振动信号进行分解滤波,并基于非线性均衡的方法提取故障特征值,获得轴承不同故障类型之间的区分度;基于轴承不同故障类型之间的区分度,确定轴承的不同故障类型;该基于小波包的轴承振动信号处理方法,可以进一步提高对轴承信号的故障诊断能力。

Description

一种基于小波包的轴承振动信号处理方法
技术领域
本发明属于轴承振动信号处理技术领域,具体涉及一种基于小波包的轴承振动信号处理方法。
背景技术
在互联网和人工智能这些新型技术的推动下,机械设备也有着越来越高的要求,不仅要适应复杂的工作环境,还要在制造中更加精密、更加智能。轴承作为其中重要的一种器件,在实际应用中,容易受到破坏。引起轴承故障的原因有很多,而造成轴承故障的内部因素一般包括由于轴承生产制作时材料质量不合格、生产过程中精度达不到以及轴承组装位置不合理等情况。造成轴承故障的外部因素一般包括人力破环、机械外力作用等情况。经研究表明,由轴承引发的故障约占30%。当轴承发生损坏时,会引起设备一系列反应,轻者引起机械设备损坏、造成财产损失,重者对生命安全造成伤害。
在早期机械故障时,对于机械是否故障,人们只能通过人力来进行判断,故障的类型也只有通过人来判断,这不仅影响生产还存在安全隐患。随着科技的进步,一些智能识别算法应运而生,通过技术手段识别来代替人力识别,大大提高了故障诊断维修的效率。目前常采用的智能识别算法包括神经网络、聚类分析、支持向量机等。
经调查显示,在全国范围内出现很多由轴承损坏引发的事故。当航空航天、新能源、海洋工程、医疗器械等领域一旦出现由轴承引发的故障,造成的后果将无法估量。当轴承出现故障时,如果没有检测出故障并且故障类型不能判断,将导致出现的故障不能及时解决,这时就会对机械设备以及生命财产造成更加严重的影响。因此,对有关轴承故障的研究,具有重大意义。本发明旨在提出一种轴承振动信号处理的方法,来提高故障诊断的能力。
发明内容
本发明的目的就在于为了解决上述问题而提供一种结构简单,设计合理的基于小波包的轴承振动信号处理方法。
本发明通过以下技术方案来实现上述目的:
本发明第一方面提供了一种基于小波包的轴承振动信号处理方法,该方法包括以下步骤,
获得多种轴承状态的振动信号;基于多种轴承状态的振动信号选择恰当的小波基,并确定小波包分解层数;
对多种轴承状态的振动信号进行分解滤波,并基于非线性均衡的方法提取故障特征值,获得轴承不同故障类型之间的区分度;
基于轴承不同故障类型之间的区分度,确定轴承的不同故障类型。
作为本发明的进一步优化方案,所述小波包为Daubechies小波;且所述小波包为db3小波;所述小波包的分解层数为2层。
作为本发明的进一步优化方案,所述故障特征值为方差值。
作为本发明的进一步优化方案,所述非线性均衡方法包括非线性均衡函数,基于非线性均衡函数对所述故障特征值处理,所述非线性均衡函数为:
y=-k*loge(S2);
其中,S2为方差值,k为调控因子,e为对数的底数,函数结果用y表示。
作为本发明的进一步优化方案,所述调控因子k=2。
作为本发明的进一步优化方案,非线性均衡函数处理之后信号之间的区分度L的计算公式为:
作为本发明的进一步优化方案,对轴承状态的振动信号进行识别,从而获得轴承状态的振动信号,选择峰度作为特征值,峰度属于无量纲参数,其公式为:
其中,x为故障信号,u为信号均值,E为信号标准差,σ为信号期望。
作为本发明的进一步优化方案,在对轴承状态的振动信号进行识别中,通过改进粒子群算法获得粒子最优位置,基于粒子最优位置映射于BP神经网络模型的权重和阈值,基于神经网络模型,识别轴承信号的故障类型。
作为本发明的进一步优化方案,所述粒子飞行速度:
粒子当前位置:
其中,i表示粒子;d表示空间维度;t表示当前进化代数;c1、c2表示为非负的加速度常数,r1、r2表示为服从[0,1]上均匀分布的随机数;w表示为惯性权重;v表示为粒子的飞行速度且区间范围为[-vmax,vmax];x表示为粒子当前位置;p表示为个体最优位置;g表示全局最优位置。
作为本发明的进一步优化方案,其中,神经网络惯性权重随着迭代次数的改变呈非线性递减:
其中ωmax为最大惯性权重,ωmin为最小惯性权重,t为迭代次数,tmax为最大迭代次数。
作为本发明的进一步优化方案,前一次迭代的个体和全局最优位置对当前迭代的个体和全局最优位置的影响,其粒子更新公式如下所示:
其中,pi(t-1)表示前一次迭代个体最优位置,g(t-1)表示前一次迭代全局最优位置,pi(t)表示当前迭代个体最优位置,g(t)表示当前迭代全局最优位置,c3、c4表示加速度常数,r3、r4表示服从[0,1]上均匀分布的随机数;此计算过程在原始粒子群算法的基础上加入了个体最优解和全局最优解之间的搜索。
作为本发明的进一步优化方案,前一次迭代的个体和全局最优位置对当前粒子位置的影响,其粒子更新公式如下所示:
此计算过程加入了当前粒子之间和个体最优解以及全局最优解之间的搜索。
本发明第二方面提供了一种轴承振动信号识别方法,在对轴承状态的振动信号进行识别中,通过改进粒子群算法获得粒子最优位置,基于粒子最优位置映射于BP神经网络模型的权重和阈值,基于神经网络模型,识别轴承信号的故障类型。
本发明的有益效果在于:本发明中的轴承信号经时频分析后在不同频段上呈现出故障信息,提出非线性均衡的方法,可以进一步提取故障特征;并且在信号识别上采用智能优化算法去优化识别算法,为了进一步提高轴承故障识别率,对粒子群算法进行改进,并通过实验来具体分析,从而进一步验证了以上提出的方法是有效的;通过本申请的方法可以进一步提高对轴承信号的故障诊断能力。
附图说明
图1是多轨迹粒子形态轨迹1图;
图2是多轨迹粒子形态轨迹2图;
图3是1797r/min转速时的不同轴承状态原始信号波形图;
图4是1797r/min转速时轴承故障信号经小波包分解重构后方差分析;
图5是1797r/min转速时均衡化方差分析;
图6是1772r/min转速时的不同轴承状态原始信号波形图;
图7是1772r/min转速时轴承故障信号经小波包分解重构后方差分析;
图8是1772r/min转速时均衡化方差分析;
图9是1797r/min转速时故障轴承直径为0.007英寸下的不同轴承状态原始信号波形图;
图10是1797r/min转速时故障轴承直径为0.007英寸下PSO-BP识别方法训练10次且平均后得到的误差曲线以及IPSO-BP识别方法训练10次且平均后得到的误差曲线图;
图11是1797r/min转速时故障轴承直径为0.014英寸下的不同轴承状态原始信号波形图;
图12是1797r/min转速时故障轴承直径为0.014英寸下PSO-BP识别方法训练10次且平均后得到的误差曲线以及IPSO-BP识别方法训练10次且平均后得到的误差曲线图;
图13是本发明一种基于小波包的轴承振动信号处理方法的方法流程示意图。
具体实施方式
下面结合附图对本申请作进一步详细描述,有必要在此指出的是,以下具体实施方式只用于对本申请进行进一步的说明,不能理解为对本申请保护范围的限制,该领域的技术人员可以根据上述申请内容对本申请作出一些非本质的改进和调整。
实施例1
如图13所示,一种基于小波包的轴承振动信号处理方法,该方法包括以下步骤,
步骤S102,获得多种轴承状态的振动信号;基于多种轴承状态的振动信号选择恰当的小波基,并确定小波包分解层数;
步骤S104,对多种轴承状态的振动信号进行分解滤波,并基于非线性均衡的方法提取故障特征值,获得轴承不同故障类型之间的区分度;
步骤S106,基于轴承不同故障类型之间的区分度,确定轴承的不同故障类型。
需要说明的是,本方法在实际的使用中,基于小波包对振动信号进行分解,根据小波包分解重构结果在不同频段上的特点,计算小波包分解重构信号的方差值,并将计算的方差作为故障信号特征值。发现振动信号在不同频段的方差分布并不均衡,因此提出一种非线性均衡的方法。所提方法能有效地提取故障特征,实现故障特征的更高区分度,从而实现轴承故障类型的区分。
进一步的,所述小波包为Daubechies小波;且所述小波包为db3小波;所述小波包的分解层数为2层。
进一步的,在本申请中,所述故障特征值为方差值。
在本实施例中,非线性均衡化方法为:
设X1,X2,…,Xn为总体X的一个样本,n为样本个体数,为样本均值,样本方差用S2表示,则样本方差为:
假如方差用S2表示、调控因子用k表示、e为对数的底数、函数结果用y表示,则非线性均衡函数为:
在公式中,调控因子k属于经验性参数,需要根据样本和实验结果进行调整,使数据分布呈现均衡化最佳效果。本发明调控因子k=2。
优选的,本发明中的区分度为是量化两个数据之间关系的量。用a,b表示不同轴承状态,定义区分度l为:
为了对处理后的信号进行区分与度量,建立处理后的区分度,
区分度l表示非线性均衡函数处理之前信号之间的区分度,区分度L表示非线性均衡函数处理之后信号之间的区分度。区分度是为了描述数据是否达到均衡化,当区分度增大到一定程度,就会实现数据的均衡化,这时数据两极化现象就会减弱,幅度较大的数据就会相对缩小,幅度较小的数据相对放大,数据之间达到平稳状态。
实施例2
基于上述实施例1,本实施例进行实际的实验说明:
1797r/min转速下轴承振动信号特征提取,具体包括以下步骤:
在该转速下,每种轴承状态信号选取120930个数据点,根据电机转速和采样频率,选取两圈为一帧,即每组834个数据点,每种轴承状态信号分成145组。如图3所示,是1797r/min转速时的不同轴承状态原始信号波形图。
对轴承振动信号进行小波包分解,选取db3小波为小波基,进行2层分解。对分解之后的8个频段的重构信号进行方差特征提取。根据不同轴承状态信号特征,选用第2频段-第4频段的方差作为研究对象。最后每种轴承状态信号下都得到145组数据,且每组数据中含有3个方差值。把每种轴承状态信号下的每一组方差数据绘制在同一坐标刻度。如图4所示。
对每种轴承状态信号下的145组中的各个频段的方差进行非线性均衡函数处理,绘制非线性均衡函数处理后每种轴承状态的方差变化趋势,如图5所示。
计算不同轴承状态信号在小波包两层分解时各频带相邻轴承状态信号的区分度L。如表下所示:
实施例3
为了1772r/min转速下轴承振动信号特征提取,具体包括以下步骤:
在该转速下,每种轴承状态信号选取120930个数据点,根据电机转速和采样频率,选取两圈为一帧,即每组834个数据点,每种轴承状态信号分成145组。如图6所示,是1772r/min转速时的不同轴承状态原始信号波形图。
对轴承振动信号进行小波包分解,选取db3小波为小波基,进行2层分解。对分解之后的8个频段的重构信号进行方差特征提取。根据不同轴承状态信号特征,选用第2频段-第4频段的方差作为研究对象。最后每种轴承状态信号下都得到145组数据,且每组数据中含有3个方差值。把每种轴承状态信号下的每一组方差数据绘制在同一坐标刻度。如图7所示。
对每种轴承状态信号下的145组中的各个频段的方差进行非线性均衡函数处理,绘制非线性均衡函数处理前后两种方差分析的对比图如图8所示。
计算不同轴承状态信号在小波包两层分解时各频带相邻轴承状态信号的区分度L。如下表所示:
实施例4
在上述方案中,实际已经可以做到对信号特征的有效提取,实际即可以搭配相应的神经网络进行使用,也可以采用其他的分析方法基于上述特征进行故障特征的提取判断,在本实施例中,由于传统的粒子群算法在优化其它识别方法时的效果不好。针对这一情况,从粒子群算法的实现原理出发,对其结构进行改进。本发明提出了非线性递减权重法和多轨迹粒子形态法,来提高信号识别率。
如图1与图2所示,具体的,基于粒子群算法获得粒子最优位置,基于粒子最优位置映射于神经网络模型的权重,基于神经网络模型,识别轴承信号的故障类型。
在本实施例中的方案中的粒子群算法,实际上是先从传统的粒子群算法的实现原理出发,对其结构进行改进,提出了非线性递减权重法和多轨迹粒子形态法,来提高信号识别率;再比较不同故障信号识别率的变化情况;其基本思想是将可能解当作粒子,所有粒子在空间内飞行来寻找全局最优值,其粒子更新公式取下:
所述粒子飞行速度:
粒子当前位置:
其中,i表示粒子;d表示空间维度;t表示当前进化代数;c1、c2表示为非负的加速度常数,r1、r2表示为服从[0,1]上均匀分布的随机数;w表示为惯性权重;v表示为粒子的飞行速度且区间范围为[-vmax,vmax];x表示为粒子当前位置;p表示为个体最优位置;g表示全局最优位置。
本实施例中,提出了非线性递减权重法,改善算法的全局和局部搜索能力,从而提高算法的广度。上述非线性递减权重法其基本思想是惯性权重随着迭代次数的改变呈非线性递减。其公式如下:
其中ωmax为最大惯性权重,ωmin为最小惯性权重,t为迭代次数,tmax为最大迭代次数。
本实施例中提出的多轨迹粒子形态法,引导粒子向不同区域移动,探索新的空间,从而提高算法的精度。其中的多轨迹粒子形态法其基本思想是通过粒子自适应地改变原始轨迹,从而对空间进行更广泛的探索并发现新的空间,寻找到最优解。前一次迭代的个体和全局最优位置对当前迭代的个体和全局最优位置的影响,其粒子更新公式如下所示:
其中,pi(t-1)表示前一次迭代个体最优位置,g(t-1)表示前一次迭代全局最优位置,pi(t)表示当前迭代个体最优位置,g(t)表示当前迭代全局最优位置,c3、c4表示加速度常数,r3、r4表示服从[0,1]上均匀分布的随机数;此计算过程在原始粒子群算法的基础上加入了个体最优解和全局最优解之间的搜索。
前一次迭代的个体和全局最优位置对当前粒子位置的影响,其粒子更新公式如下所示:
此计算过程加入了当前粒子之间和个体最优解以及全局最优解之间的搜索。
基于此,结合上述处理方法,本实施例的实际的处理方法为:通过改进粒子群算法优化BP神经网络中的权值和阈值识别故障信息,获得多种确定轴承状态的振动信号;基于多种轴承状态的振动信号选择恰当的小波基,并确定小波包分解层数;对多种轴承状态的振动信号进行分解重构滤波,并计算重构后故障信号的方差作为故障特征值;基于非线性均衡的方法分析故障特征值,构建区分度函数用来计算轴承不同故障类型之间的区别;基于轴承不同故障类型之间的区分度,确定轴承的不同故障类型。
实施例5
在上述实施例4的基础上,在1797r/min转速下故障轴承直径为0.007英寸下的不同轴承信号识别,具体步骤如下:
(1)绘制0.007英寸下的不同轴承状态原始信号波形图,如图9所示。
(2)把得到的峰度(Kurtosis)特征分别送进BP、PSO-BP和IPSO-BP中进行训练,通过训练将得到的模型用于识别当中,运行10次,并将每次产生的识别率相加然后求其平均值。不同方法得到最终识别率结果如下表所示:
不同方法 测试集/组 识别率/%
BP 230 74.30
PSO-BP 230 82.48
IPSO-BP 230 95.48
(3)将PSO-BP识别方法和IPSO-BP识别方法训练10次过程中产生的误差值分别相加求平均值,在同一坐标刻度中进行分析。PSO-BP识别方法训练10次且平均后得到的误差曲线以及IPSO-BP识别方法训练10次且平均后得到的误差曲线图如图10所示。
实施例6
在1797r/min转速下故障轴承直径为0.014英寸下的不同轴承信号识别,具体步骤如下:
绘制0.014英寸下的不同轴承状态原始信号波形图,如图11所示。
把得到的峰度(Kurtosis)特征分别送进BP、PSO-BP和IPSO-BP中进行训练,通过训练将得到的模型用于识别当中,运行10次,并将每次产生的识别率相加然后求其平均值。不同方法得到最终识别率结果如下表所示:
不同方法 测试集/组 识别率/%
BP 230 60.61
PSO-BP 230 60.61
IPSO-BP 230 89.30
将PSO-BP识别方法和IPSO-BP识别方法训练10次过程中产生的误差值分别相加求平均值,在同一坐标刻度中进行分析。PSO-BP识别方法训练10次且平均后得到的误差曲线以及IPSO-BP识别方法训练10次且平均后得到的误差曲线图如图12所示。
由本实施例以及上述实施例可以看出,IPSO-BP网络模型更加契合本申请中所述的轴承故障识别处理的方法。
还需要说明的是,本申请中对于实施例4、实施例5与实施例6中的神经网络的模型应用,采用的是如传统的使用方式,本申请特殊调整的部分均已在实施例部分进行说明。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (9)

1.一种基于小波包的轴承振动信号处理方法,其特征在于:该方法包括以下步骤,
获得多种轴承状态的振动信号;基于多种轴承状态的振动信号选择恰当的小波基,并确定小波包分解层数;
对多种轴承状态的振动信号进行分解滤波,并基于非线性均衡的方法提取故障特征值,获得轴承不同故障类型之间的区分度;
基于轴承不同故障类型之间的区分度,确定轴承的不同故障类型;
所述小波包为Daubechies小波;且所述小波包为db3小波;所述小波包的分解层数为2层;
所述非线性均衡方法包括非线性均衡函数,基于非线性均衡函数对所述故障特征值处理,所述非线性均衡函数为:
y=-k*loge(S2);
其中,S2为方差值,k为调控因子,e为对数的底数,函数结果用y表示。
2.根据权利要求1所述的一种基于小波包的轴承振动信号处理方法,其特征在于:非线性均衡函数处理之后信号之间的区分度L的计算公式为:
3.根据权利要求1-2任一所述的一种基于小波包的轴承振动信号处理方法,其特征在于:对轴承状态的振动信号进行识别,从而获得轴承状态的振动信号,选择峰度作为特征值,峰度属于无量纲参数,其公式为:
其中,x为故障信号,u为信号均值,E为信号标准差,σ为信号期望。
4.根据权利要求3所述的一种基于小波包的轴承振动信号处理方法,其特征在于:在对轴承状态的振动信号进行识别中,通过改进粒子群算法获得粒子最优位置,基于粒子最优位置映射于BP神经网络模型的权重和阈值,基于神经网络模型,识别轴承信号的故障类型。
5.根据权利要求4所述的一种基于小波包的轴承振动信号处理方法,其特征在于:
所述粒子飞行速度:
粒子当前位置:
其中,i表示粒子;d表示空间维度;t表示当前进化代数;c1、c2表示为非负的加速度常数,r1、r2表示为服从[0,1]上均匀分布的随机数;w表示为惯性权重;v表示为粒子的飞行速度且区间范围为[-vmax,vmax];x表示为粒子当前位置;p表示为个体最优位置;g表示全局最优位置。
6.根据权利要求5所述的一种基于小波包的轴承振动信号处理方法,其特征在于:其中,神经网络惯性权重随着迭代次数的改变呈非线性递减:
其中ωmax为最大惯性权重,ωmin为最小惯性权重,t为迭代次数,tmax为最大迭代次数。
7.根据权利要求6所述的一种基于小波包的轴承振动信号处理方法,其特征在于:前一次迭代的个体和全局最优位置对当前迭代的个体和全局最优位置的影响,其粒子更新公式如下所示:
其中,pi(t-1)表示前一次迭代个体最优位置,g(t-1)表示前一次迭代全局最优位置,pi(t)表示当前迭代个体最优位置,g(t)表示当前迭代全局最优位置,c3、c4表示加速度常数,r3、r4表示服从[0,1]上均匀分布的随机数;此计算过程在原始粒子群算法的基础上加入了个体最优解和全局最优解之间的搜索。
8.根据权利要求7所述的一种基于小波包的轴承振动信号处理方法,其特征在于:前一次迭代的个体和全局最优位置对当前粒子位置的影响,其粒子更新公式如下所示:
此计算过程加入了当前粒子之间和个体最优解以及全局最优解之间的搜索。
9.一种轴承振动信号识别方法,其特征在于:在对轴承状态的振动信号进行识别中,通过改进粒子群算法获得粒子最优位置,基于粒子最优位置映射于BP神经网络模型的权重和阈值,基于神经网络模型,识别轴承信号的故障类型。
CN202310567506.XA 2023-05-19 2023-05-19 一种基于小波包的轴承振动信号处理方法 Active CN116659863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310567506.XA CN116659863B (zh) 2023-05-19 2023-05-19 一种基于小波包的轴承振动信号处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310567506.XA CN116659863B (zh) 2023-05-19 2023-05-19 一种基于小波包的轴承振动信号处理方法

Publications (2)

Publication Number Publication Date
CN116659863A true CN116659863A (zh) 2023-08-29
CN116659863B CN116659863B (zh) 2024-04-19

Family

ID=87716364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310567506.XA Active CN116659863B (zh) 2023-05-19 2023-05-19 一种基于小波包的轴承振动信号处理方法

Country Status (1)

Country Link
CN (1) CN116659863B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106650071A (zh) * 2016-12-12 2017-05-10 中国航空工业集团公司上海航空测控技术研究所 用于滚动轴承智能故障诊断的方法
CN111397901A (zh) * 2019-03-12 2020-07-10 上海电机学院 基于小波和改进pso-rbf神经网络的滚动轴承故障诊断方法
CN112014108A (zh) * 2020-08-08 2020-12-01 中车长春轨道客车股份有限公司 基于lmd及改进pso优化bp神经网络的轴承故障诊断方法
CN112347588A (zh) * 2020-11-26 2021-02-09 中国舰船研究设计中心 基于小波包分解的旋转机械故障诊断方法
WO2021135630A1 (zh) * 2019-12-31 2021-07-08 福州大学 基于grcmse与流形学习的滚动轴承故障诊断方法
CN115758233A (zh) * 2022-10-18 2023-03-07 中国重型机械研究院股份公司 一种高速精密带钢冷轧机主传动齿轮箱故障诊断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106650071A (zh) * 2016-12-12 2017-05-10 中国航空工业集团公司上海航空测控技术研究所 用于滚动轴承智能故障诊断的方法
CN111397901A (zh) * 2019-03-12 2020-07-10 上海电机学院 基于小波和改进pso-rbf神经网络的滚动轴承故障诊断方法
WO2021135630A1 (zh) * 2019-12-31 2021-07-08 福州大学 基于grcmse与流形学习的滚动轴承故障诊断方法
CN112014108A (zh) * 2020-08-08 2020-12-01 中车长春轨道客车股份有限公司 基于lmd及改进pso优化bp神经网络的轴承故障诊断方法
CN112347588A (zh) * 2020-11-26 2021-02-09 中国舰船研究设计中心 基于小波包分解的旋转机械故障诊断方法
CN115758233A (zh) * 2022-10-18 2023-03-07 中国重型机械研究院股份公司 一种高速精密带钢冷轧机主传动齿轮箱故障诊断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑志清 等: "基于小波包分解的方差非线性均衡下的轴承故障特征提取", 《激光与光电子学进展》, vol. 59, no. 21, 11 November 2021 (2021-11-11), pages 124 - 131 *

Also Published As

Publication number Publication date
CN116659863B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN109829402B (zh) 基于gs-svm的不同工况下轴承损伤程度诊断方法
CN107784325B (zh) 基于数据驱动增量融合的螺旋式故障诊断方法
CN112906473B (zh) 一种旋转设备故障诊断方法
CN110070060B (zh) 一种轴承设备的故障诊断方法
CN109858104B (zh) 一种滚动轴承健康评估与故障诊断方法及监测系统
CN106805965A (zh) 一种心电信号分类方法及装置
CN110133714B (zh) 一种基于深度学习的微震信号分类辨识方法
CN111476339B (zh) 滚动轴承故障特征提取方法、智能诊断方法及系统
CN107609774B (zh) 一种基于思维进化算法优化小波神经网络的光伏功率预测方法
CN113128567A (zh) 一种基于用电量数据的异常用电行为识别方法
CN116154972B (zh) 一种分布式电网电能质量监测方法及系统
CN114429152A (zh) 基于动态指数对抗性自适应的滚动轴承故障诊断方法
CN114580572B (zh) 一种异常值的识别方法、装置、电子设备及存储介质
CN114492588A (zh) 一种火电厂辅机设备故障识别方法、系统、设备和存储介质
CN115563484A (zh) 一种基于生理唤醒识别的街道绿化品质检测方法
CN107688820B (zh) 一种基于bcsa优化支持向量机的电梯故障诊断方法
CN109948738B (zh) 涂装烘干室的能耗异常检测方法、装置
CN116404186A (zh) 一种功率型锂锰电池生产系统
CN115392284A (zh) 一种基于机器学习的场地微振动振源识别方法
CN116659863B (zh) 一种基于小波包的轴承振动信号处理方法
CN111461183A (zh) 改进人工鱼群算法优化bp神经网络的平轮故障检测方法
CN113283474A (zh) 一种基于svm的局部放电模式识别方法
CN115856204B (zh) 基于三维回声状态网络的掘进工作面瓦斯浓度预测方法
CN116561692A (zh) 一种动态更新的实时量测数据检测方法
CN109115330A (zh) 一种汽车调光电机装置的异音识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant