CN116659731A - 一种mems表压传感器及其制备方法 - Google Patents

一种mems表压传感器及其制备方法 Download PDF

Info

Publication number
CN116659731A
CN116659731A CN202310344749.7A CN202310344749A CN116659731A CN 116659731 A CN116659731 A CN 116659731A CN 202310344749 A CN202310344749 A CN 202310344749A CN 116659731 A CN116659731 A CN 116659731A
Authority
CN
China
Prior art keywords
silicon layer
pressure sensor
cavity
mems
top silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310344749.7A
Other languages
English (en)
Inventor
周浩楠
王齐
陈广忠
张亚婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhixin Sensing Technology Co ltd
Original Assignee
Beijing Zhixin Sensing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhixin Sensing Technology Co ltd filed Critical Beijing Zhixin Sensing Technology Co ltd
Priority to CN202310344749.7A priority Critical patent/CN116659731A/zh
Publication of CN116659731A publication Critical patent/CN116659731A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0061Packages or encapsulation suitable for fluid transfer from the MEMS out of the package or vice versa, e.g. transfer of liquid, gas, sound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00309Processes for packaging MEMS devices suitable for fluid transfer from the MEMS out of the package or vice versa, e.g. transfer of liquid, gas, sound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明的提供了一种MEMS表压传感器及其制备方法,包括硅片、压敏电阻、应变膜、金属引线;所述硅片含有顶硅层、底硅层、空腔及气路通孔,空腔位于硅片下方位置,即顶硅层内部;气路通孔贯穿硅片正反面,空腔是上方是应变膜;在应变膜上共有四个压敏电阻,四个压敏电阻构成惠斯通电桥,用金属导线引出。通过在传感器芯片上制造与大气相通的气路孔,改善传感器的应力变形,粘片困难等问题,同时无需通过封装结构实现双气嘴朝上,减少封装成本,从而达到表压传感器测量更准确的效果。

Description

一种MEMS表压传感器及其制备方法
技术领域
本发明涉及MEMS传感器技术领域,具体涉及一种微机电系统(MEMS)技术的表压传感器及其制备的方法。
背景技术
微机电系统(MEMS)是一种将微电子技术与机械工程融合到一起的一种工业技术,一般为使用微加工技术制造的小型化机械和机电元件(即设备和结构)。使用MEMS技术的惯性传感器成本低、精度高,可在各种行业中应用。基于MEMS技术制造的压阻式表压传感器具有体积小、易于集成、可靠性高且易于将信号转化成电信号等优点,目前已广泛应用于工业控制、生物医疗、环境监测、航空航天等领域。其工作原理如下,在硅片上形成薄膜,通过离子注入或者扩散等方式制作压敏电阻组成惠斯通电桥,在外界压力作用下应变膜发生形变从而使得膜上的压敏电阻发生形变,导致其电阻值发生变化,从而通过惠斯通电桥将电阻值的变化转化成输出电压变化。
压力传感器分为差压传感器、表压传感器、绝压传感器三种类型,其中差压传感器是测量被测两端压力之间的差值;表压传感器测量的是相对环境大气压的压力差值,所以差压、表压、精度较高;绝压传感器是测量绝对压力,没有比较,所以精度较差,受环境影响大。由于表压传感器必须有一个导气孔和大气相通,所以表压传感器的生产工艺会更复杂。现在市场上的差压传感器芯片正负气嘴大部分不在同一侧,如果想把正负气嘴调整到同一侧需要在封装结构上设计出气路孔。而表压传感器芯片封装方式大多为底部涂胶粘接到衬板上,通过衬板底部打孔方式与大气压相通,但是由于目前使用的差压传感器芯片导气孔朝下,导致传感器与衬板粘接面积较小,而且封装结构底部需要打孔,这样会使传感器芯片应力增大,导致传感器测试精度降低;而且增加了封装难度和成本。
发明内容
针对上述问题,本发明提供了一种新的MEMS压力传感器及其制备方法,通过在传感器芯片上制造与大气相通的气路孔,调整正负气嘴在同一方向,无需通过封装来调整气嘴方向,从而达到传感器测量精度高、制造简单、成本低等特点。具体技术方案如下
一种MEMS表压传感器,包括硅片、压敏电阻、应变膜、金属引线;所述硅片含有顶硅层、底硅层、空腔及气路通孔,顶硅层位于底硅层上表面;空腔位于硅片下方位置,具体位于顶硅层内部;气路通孔贯穿硅片正反面,气路通孔包含气孔和气路槽两部分;气孔位于顶硅层上,与外界接通;气路槽位于底硅层顶部,连接气孔与空腔。空腔是构成应变膜的空腔,应变膜位于空腔上方;压敏电阻在所述空腔的正上方对应的应变膜上,共有四个压敏电阻,四个压敏电阻构成一个惠斯通电桥,所述的压敏电阻用金属导线引出。
所述的硅片为单晶硅片或者SOI硅片。
所述的金属引线的材料可以是钯银合金或者金等材料。
本发明还提供了一种MEMS表压传感器的制备方法,其步骤包括:
1、准备顶硅层硅片,进行平整化处理,并制作相互连接的压敏电阻;
2、在顶硅层硅片的正面制作引线;
3、在顶硅层硅片的下表面进行光刻,形成开放腔体;
4、在顶硅层硅片的上表面进行光刻,形成通孔;
5、准备一片底硅层硅片,在底硅层硅片的上表面进行光刻,形成开放气路槽;
6、通过将顶硅层硅片底部与底硅层硅片键合,形成空腔,完成MEMS表压传感器的制备。
本发明的MEMS表压传感器,通过在传感器上制造与环境相通的气路孔,气路孔调整正负气嘴在同一方向,硅片粘接气路孔相较与直接粘在管壳上应力减小,从而达到传感器测量精度高、制造简单、成本低等特点。
附图说明
图1是本发明MEMS表压传感器的惠斯通电桥电阻排列示意图;
图2是本发明MEMS表压传感器的剖面视图;
图3-图7是本发明MEMS表压传感器的制备步骤对应的示意图;
图中包括:顶硅层[1]、底硅层[2]、压敏电阻[3]、引线[4]、空腔[5]、应变膜[6]、气孔[7],气路槽[8]、惠斯通电桥[9]
具体实施方式
实施例1
一种MEMS表压传感器制备方法,包括:顶硅层[1]、底硅层[2]、压敏电阻[3]、引线[4]、空腔[5]、应变膜[6]、气孔[7],气路槽[8]、惠斯通电桥[9]、所述顶硅层[1]位于底硅层[2]上表面,所述顶硅层[1]内部有四个压敏电阻[3],每个所述压敏电阻[3]并由金属引线[4]引出,四个压敏电阻[3]构成惠斯通电桥[9],所述顶硅层[1]内部设有所述空腔[5],所述空腔[5]正上方的顶硅层[1]部分形成为所述应变膜[6],所述顶硅层[1]设有所述气孔[7],底硅层[2]顶部设有所述气路槽[8]。所述表压传感器的四个压敏电阻[3],四个所述压敏电阻[3]设置在所述空腔[5]四边的正上方位置;四个位于所述空腔[5]四边的正上方位置的所述压敏电阻[3]采用惠斯通电桥方式连接,构成惠斯通电桥[9]。
实施例2
结合附图3-7对本发明制备步骤进行介绍。
步骤1:准备顶硅层[1]厚度为500μm,再对SOI片顶硅层[1]采用刻蚀,形成空腔[5],对SOI片顶硅层[1]采用刻蚀,形成气孔[7],如图3所示;
步骤2:准备底硅层[2]厚度为200μm,再对SOI片底硅层[2]采用刻蚀,形成气路槽[8],如图4所示;
步骤3:通过对顶硅层[1]进行光刻和离子注入,形成压敏电阻[3],如图5所示;步骤4:再在顶硅层[1]上表面溅射0.1-4μm金属铬/金或者钛/金,再进行光刻,
形成引线[4],如图6所示;
步骤5:采用键合工艺,如阳极键合、硅硅键合或BCB键合等,将顶硅层[1]与底硅层[2]键合,使空腔[5]、气路槽[8]、气孔[7],形成可以通大气压的气路,完成该MEMS表压传感器的制备如图7所示。

Claims (8)

1.一种MEMS表压传感器,其特征在于,包括:硅片、压敏电阻、应变膜、金属引线;所述硅片包含顶硅层、底硅层、空腔及气路通孔;所述顶硅层位于底硅层上表面;所述空腔位于顶硅层内部;所述应变膜位于空腔上方;所述压敏电阻在应变膜上,所述压敏电阻由金属引线引出;所述气路通孔包含气孔和气路槽两部分;所述气孔位于顶硅层上,与外界接通;所述气路槽位于底硅层顶部,连接气孔与空腔。
2.根据权利要求1所述的MEMS表压传感器,其特征在于,所述MEMS表压传感器有四个压敏电阻,所述四个压敏电阻设置在所述空腔四边的正上方位置;所述压敏电阻采用惠斯通电桥方式连接,构成惠斯通电桥。
3.根据权利要求1所述的MEMS表压传感器,其特征在于,所述空腔设置在所述顶硅层下方,由对所述顶硅层下表面光刻或刻蚀形成开放空腔,再与所述底硅层上表面键合制备形成。
4.根据权利要求1所述的MEMS表压传感器,其特征在于,所述气孔由对所述顶硅层光刻或刻蚀形成开放通孔制备形成。
5.根据权利要求1所述的MEMS表压传感器,其特征在于,所述气路槽由对所述底硅层光刻或刻蚀形成开放空腔再与所述顶硅层下表面键合制备形成。
6.根据权利要求1所述的MEMS表压传感器,其特征在于,所述硅片为单晶硅片或者SOI硅片;所述金属引线为金属铬、金或钯银合金。
7.如权利要求1~6任一所述MEMS表压传感器的制备方法,其特征在于,包括如下步骤:
(1)在顶硅层进行平整化处理,并制作相互连接的压敏电阻;
(2)在顶硅层的正面制作引线;
(3)在顶硅层的下表面进行光刻,形成开放腔体;
(4)在顶硅层的上表面进行光刻,形成气孔;
(5)在底硅层的上表面进行光刻,形成开放腔体的气路槽;
(6)通过将顶硅层下表面与底硅层上表面键合,形成空腔,完成所述MEMS表压传感器的制备。
8.根据权利要求7所述的MEMS表压传感器的制备方法,其特征在于,所述顶硅层为单晶硅或SOI硅片;所述底硅层为单晶硅或玻璃。
CN202310344749.7A 2023-04-03 2023-04-03 一种mems表压传感器及其制备方法 Pending CN116659731A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310344749.7A CN116659731A (zh) 2023-04-03 2023-04-03 一种mems表压传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310344749.7A CN116659731A (zh) 2023-04-03 2023-04-03 一种mems表压传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN116659731A true CN116659731A (zh) 2023-08-29

Family

ID=87708596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310344749.7A Pending CN116659731A (zh) 2023-04-03 2023-04-03 一种mems表压传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN116659731A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527961B1 (en) * 1997-03-04 2003-03-04 Sgs-Thomson Microelectronics, S.R.L. Method of manufacturing pressure microsensors
CN1974372A (zh) * 2006-12-15 2007-06-06 沈阳仪表科学研究院 差压/绝压/温度三参数单片集成传感器芯片及其制备方法
CN101551284A (zh) * 2009-04-22 2009-10-07 江苏英特神斯科技有限公司 基于硅硅直接键合的压力传感器及其制造方法
US20110308324A1 (en) * 2010-06-18 2011-12-22 Sisira Kankanam Gamage A sensor and method for fabricating the same
CN104236766A (zh) * 2013-06-13 2014-12-24 中国科学院上海微系统与信息技术研究所 封装应力与温漂自补偿的双悬浮式力敏传感器芯片及制备方法
CN104236787A (zh) * 2014-09-05 2014-12-24 龙微科技无锡有限公司 Mems差压传感器芯片及制作方法
CN106404237A (zh) * 2015-07-29 2017-02-15 浙江盾安人工环境股份有限公司 压力传感器芯片及制备方法、绝压传感器芯片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527961B1 (en) * 1997-03-04 2003-03-04 Sgs-Thomson Microelectronics, S.R.L. Method of manufacturing pressure microsensors
CN1974372A (zh) * 2006-12-15 2007-06-06 沈阳仪表科学研究院 差压/绝压/温度三参数单片集成传感器芯片及其制备方法
CN101551284A (zh) * 2009-04-22 2009-10-07 江苏英特神斯科技有限公司 基于硅硅直接键合的压力传感器及其制造方法
US20110308324A1 (en) * 2010-06-18 2011-12-22 Sisira Kankanam Gamage A sensor and method for fabricating the same
CN104236766A (zh) * 2013-06-13 2014-12-24 中国科学院上海微系统与信息技术研究所 封装应力与温漂自补偿的双悬浮式力敏传感器芯片及制备方法
CN104236787A (zh) * 2014-09-05 2014-12-24 龙微科技无锡有限公司 Mems差压传感器芯片及制作方法
CN106404237A (zh) * 2015-07-29 2017-02-15 浙江盾安人工环境股份有限公司 压力传感器芯片及制备方法、绝压传感器芯片

Similar Documents

Publication Publication Date Title
Eaton et al. Micromachined pressure sensors: review and recent developments
US8569092B2 (en) Method for fabricating a microelectromechanical sensor with a piezoresistive type readout
US7503221B2 (en) Dual span absolute pressure sense die
EP2270455B1 (en) Force sensor apparatus
Wei et al. TPMS (tire-pressure monitoring system) sensors: Monolithic integration of surface-micromachined piezoresistive pressure sensor and self-testable accelerometer
US7998777B1 (en) Method for fabricating a sensor
CN106404237B (zh) 压力传感器芯片及制备方法、绝压传感器芯片
US8511171B2 (en) Device for measuring environmental forces and method of fabricating the same
US20110308324A1 (en) A sensor and method for fabricating the same
EP3165888B1 (en) Pressure sensor with variable sense gap
US20110309458A1 (en) A sensor and method for fabricating the same
US9686864B2 (en) Device including interposer between semiconductor and substrate
Hsieh et al. Investigation of a pressure sensor with temperature compensation using two concentric wheatstone-bridge circuits
CN114235232B (zh) 一种mems压力传感器及其制备方法
US20160341759A1 (en) Sensor and method of manufacturing same
Duqi et al. A piezoresistive MEMS barometer with thermomecanical stress rejection
Cheng et al. A resonant differential pressure microsensor with temperature and static pressure compensations
CN116659731A (zh) 一种mems表压传感器及其制备方法
CN109425460B (zh) 用于高压的具有薄膜的微机电换能器、其制造方法和包括微机电换能器的系统
Mirza Wafer-level packaging technology for MEMS
CN116465541A (zh) 一种静压补偿硅谐振微差压传感器及其制备方法
Glukhovskoy et al. Proof of Concept: Glass-Membrane Based Differential Pressure Sensor
US6308575B1 (en) Manufacturing method for the miniaturization of silicon bulk-machined pressure sensors
Sindhanaiselvi Design and analysis of low pressure MEMS sensor
CN212988661U (zh) Mems压力芯片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination