CN116642845A - 一种用于检测环境水中痕量Hg2+的比色纳米传感器 - Google Patents

一种用于检测环境水中痕量Hg2+的比色纳米传感器 Download PDF

Info

Publication number
CN116642845A
CN116642845A CN202310430604.9A CN202310430604A CN116642845A CN 116642845 A CN116642845 A CN 116642845A CN 202310430604 A CN202310430604 A CN 202310430604A CN 116642845 A CN116642845 A CN 116642845A
Authority
CN
China
Prior art keywords
colorimetric
nanosensor
nano
solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310430604.9A
Other languages
English (en)
Other versions
CN116642845B (zh
Inventor
刘婷婷
王学东
马勤勤
公海龙
丁永立
王慧利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202310430604.9A priority Critical patent/CN116642845B/zh
Publication of CN116642845A publication Critical patent/CN116642845A/zh
Application granted granted Critical
Publication of CN116642845B publication Critical patent/CN116642845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供一种用于检测环境水中痕量Hg2+的比色纳米传感器,其由Fe7S8纳米片、谷胱甘肽或其水溶液、3,3',5,5'‑四甲基联苯胺显色液、H2O2水溶液和NaAc‑HAc缓冲液组成,Fe7S8纳米片的制备方法为:将FeCl2·4H2O和CH4N2S按照质量比为(2~3):1溶解于乙二醇中,200℃条件下加热10~15h,冷却后离心、洗涤、烘干得到。本发明的比色纳米传感器能够快速、灵敏地测定环境水体中纳摩级的Hg2+,本发明的比色纳米传感器无需依赖大型检测仪器,使用的纳米酶制备成本低、稳定性好且可循环重复使用,对环境水体中纳摩级的Hg2+准确、快速、低成本检测具有重要的现实意义。

Description

一种用于检测环境水中痕量Hg2+的比色纳米传感器
技术领域
本发明涉及水质检测技术领域,具体涉及一种用于检测环境水中痕量Hg2+的比色纳米传感器。
背景技术
Hg2+作为一种有毒的重金属,暴露于人体后,由于其高毒性和生物蓄积的特性,会对人体组织器官造成严重的损伤。根据世界卫生组织和中国政府的规定,饮用水中允许的Hg2+最大残留量为小于1.0μg/L。因此,快速、准确定量水中微量Hg2+对防止其对人体的危害具有重要意义。虽然许多测定Hg2+的方法都比较成熟,如液相色谱、电感耦合等离子体质谱、电化学方法等,但复杂的预处理程序和昂贵的仪器设备极大地限制了其在室外条件下的原位监测应用。因此,开发一种简单、通用、高效、灵敏的环境介质中痕量Hg2+现场检测方法仍然是一个挑战。
近年来,纳米酶因其稳定性高、可循环利用、成本低、便于规模化制造等明显优于天然酶的优点而引起了人们的广泛关注。纳米酶的这些优势使其在生物传感器、环境监测、即时检测等领域得到了广泛应用。到目前为止,已经报道了几种具有类酶活性的纳米材料用于比色法检测Hg2+。Ju和同事制备的Ag2WO4纳米片具有强氧化酶样活性,可用于口红中Hg2 +的检测,检测灵敏度好,但是该方法的线性范围很窄(0.25μmol/L-8.0μmol/L),且由于需使用贵金属Ag和稀有金属W等制备纳米酶,导致纳米酶制备成本很高,因此应用前景有限。Lian和同事合成了Pt掺杂的CuO/Pt,与单独的CuO和Pt NPs相比,具有更高的过氧化物酶样催化活性,在各种地下水中提供了灵敏的Hg2+检测,但是该检测方法仍然需要依赖大型检测仪器,且由于需使用贵金属Pt,纳米酶的制备成本偏高,因此该检测方法的应用前景也不好。
作为复杂基质中生物分子、有机污染物或重金属的敏感传感器,FexSy被广泛应用于催化反应中。基于纳米级FeS2的过氧化物酶样活性,Song的小组开发了一种高效的生物传感器,其催化活性比天然辣根过氧化物酶(HRP)的催化活性高12倍。很多研究表明,纳米酶的活性中心在系统中分散后容易被环境成分消化。为了提高FeS2的稳定性,He和同事通过在FeS2周围改变COFs微环境制备了纳米酶FeS2@SNW-1,利用疏水/多孔SNW-1对FeS2活性中心的保护作用,获得了稳定性高、可重复使用的纳米酶。与FeS2相似,Fe3S4也表现出优异的类酶催化活性。丁等制备了比其他铁基纳米材料具有更高过氧化物酶样活性的磁性Fe3S4。然而,相比Ag2WO4和CuO/Pt等纳米酶,上述FexSy纳米酶虽然降低了纳米酶的制备成本,但是对环境水中痕量Hg2+的比色检测效果并不理想。分析认为,对于环境水中痕量Hg2+的比色纳米传感器,应当同时具备高效吸附/富集痕量Hg2+,以及利用其对显色底物的优越催化活性进行灵敏的比色检测的能力,而上述FexSy纳米酶及其检测体系在这两方面或多或少都存在一些缺陷。因此,开发新的痕量Hg2+的比色纳米传感器,对环境水体中纳摩级的Hg2 +准确、快速、低成本检测具有重要的现实意义。
发明内容
本发明的目的是提供一种用于检测环境水中痕量Hg2+的比色纳米传感器。
为解决上述技术问题,本发明采用如下技术方案:
一种用于检测环境水中痕量Hg2+的比色纳米传感器,其特征在于,所述比色纳米传感器由Fe7S8纳米片、谷胱甘肽或其水溶液、3,3',5,5'-四甲基联苯胺显色液、H2O2水溶液和NaAc-HAc缓冲液组成,
所述Fe7S8纳米片的制备方法为:将FeCl2·4H2O和CH4N2S按照质量比为(2~3):1溶解于乙二醇中,200℃条件下加热10~15h,冷却至室温后,经离心、洗涤、烘干得到固体产物,即为所述Fe7S8纳米片。
优选地,所述Fe7S8纳米片在所述比色纳米传感器中的含量为3~7μg/mL。
优选地,所述比色纳米传感器中谷胱甘肽的含量为0.025~0.2μmol/mL。
优选地,所述3,3',5,5'-四甲基联苯胺显色液为3,3',5,5'-四甲基联苯胺DMSO溶液。
优选地,所述比色纳米传感器中3,3',5,5'-四甲基联苯胺的含量为0.5~0.7μmol/mL。
优选地,所述比色纳米传感器中H2O2的含量为0.8~3μmol/mL。
优选地,所述NaAc-HAc缓冲液的pH值为3~5。
本发明还提供上述比色纳米传感器在环境水分析中的应用。
本发明还提供上述比色纳米传感器检测环境水中痕量Hg2+的方法,所述方法包括以下步骤:
(1)取待检测水样和Hg2+标准液配制不同加标浓度的预处理水样;
(2)将步骤(1)的预处理水样与Fe7S8纳米片混合震荡,然后在磁铁的作用下分离得到富集Hg2+的Fe7S8纳米片;
(3)将富集Hg2+的Fe7S8纳米片与谷胱甘肽或其水溶液、3,3',5,5'-四甲基联苯胺显色液、H2O2水溶液和NaAc-HAc缓冲液混合得到显色体系,35~45℃水浴中孵育15~30min;
(4)将步骤(3)反应显色后的显色体系通过0.22μm混合纤维素滤膜过滤去除Fe7S8,终止反应,目视观察步骤(3)的反应显色后的显色体系的颜色变化,或用紫外分光光度计测量滤液在652nm处的吸光度值,或对滤液进行拍摄并计算灰度值。
优选地,步骤(1)的所述待检测水样为15~25mL。
优选地,步骤(1)的加标水平范围为0.1~10μmol/L。
优选地,步骤(2)中,所述Fe7S8纳米片的用量为4~8mg。
优选地,步骤(2)中,调节所述预处理水样与所述Fe7S8纳米片的混合物的pH值至3.5~4.5。
优选地,步骤(2)中,所述混合震荡在室温下进行,所述混合震荡的时间为15~30min;
优选地,步骤(3)中,将所述富集Hg2+的Fe7S8纳米片与所述NaAc-HAc缓冲液混合配制浓度为50~150μg/mL的Fe7S8悬浊液的形式进行投料。
优选地,步骤(3)中,所述富集Hg2+的Fe7S8纳米片在显色体系中的浓度为3~7μg/mL。
优选地,步骤(3)中,所述显色体系中谷胱甘肽的浓度为0.025~0.2μmol/L。
优选地,步骤(3)中,所述3,3',5,5'-四甲基联苯胺显色液为浓度为4~10mmol/L的3,3',5,5'-四甲基联苯胺DMSO溶液。
优选地,步骤(3)中,所述显色体系中3,3',5,5'-四甲基联苯胺的浓度为0.5~0.7μmol/L。
优选地,步骤(3)中,所述显色体系中H2O2的浓度为0.8~3μmol/L。
优选地,步骤(3)中,步骤(4)中,基于智能手机检测平台进行待测水样中Hg2+含量检测,采用手机对滤液进行拍摄并上传至“Thing Identify”软件,所述“Thing Identify”软件能够计算拍摄的照片的灰度值,根据灰度值计算待测水样中的Hg2+含量。
本发明开发了一种便携式高灵敏度Hg2+比色传感器,其中Fe7S8纳米片作为高效的富集/预富集载体、特异性识别单元和显色催化剂。Fe7S8纳米片对Hg2+的吸附效率为90%以上。Fe7S8纳米片可以催化无色显色底物3,3',5,5'-四甲基联苯胺(TMB)生成蓝色的oxTMB,而谷胱甘肽(GSH)可以抑制上述反应生成蓝色,Hg2+与GSH的-SH基团会形成Hg2+-SH配合物,使得谷胱甘肽的抑制作用消失,最终使得蓝色恢复,即Fe7S8+TMB+GSH体系是无色的,但若同时含有Hg2+,Hg2+-SH配合物的形成会使体系变成蓝色。基于此构建的“富集-比色”集成平台线性范围为0.01-300μmol/L,检出限为3nmol/L。本发明的Fe7S8纳米片制备成本低且稳定性好,可循环利用,在简化Hg2+检测操作和缩短检测时间的同时,显著降低了Hg2+检测成本,应用前景好。
本发明还将便携式高灵敏度Hg2+比色传感器与“Thing Identify”软件集成,开发了一款基于智能手机的Hg2+比色检测APP,检出限为30nmol/L,回收率为86-115%。为了获得高分辨率的成像照片,设计并制作了一种基于智能手机的视觉摄影装置,该装置具有减少自然光对成像的干扰,使蓝色图像更清晰的优点。总体而言,“无解吸-富集-比色”一体化策略,结合基于智能手机的视觉检测,为满足环境水体中痕量Hg2+的现场/实时监测的实际需求提供了可行的解决方案。
本发明与现有技术相比具有如下优势:
本发明的比色纳米传感器能够快速、灵敏地测定环境水体中纳摩级的Hg2+,本发明的比色纳米传感器无需依赖大型检测仪器,使用的纳米酶制备成本低、稳定性好且可循环重复使用,对环境水体中纳摩级的Hg2+准确、快速、低成本检测具有重要的现实意义。
附图说明
图1为实施例1制备的纳米片的表征结果图;
图2为实施例2中不同Hg2+浓度下比色纳米传感器的吸光度变化曲线图;
图3为实施例2中以Hg2+浓度为横坐标,A652值为纵坐标绘制的线性曲线图;
图4为图3中Hg2+浓度在80~300μmol/L范围内的标准曲线图;
图5为实施例4中不同干扰物对比色纳米传感器的干扰影响比较图;
图6为实施例4中Fe7S8纳米片的稳定性和可重用性测试结果图;
图7为实施例5的基于智能手机的环境水中痕量Hg2+的比色检测的流程示意图;
图8为Thing Identify软件使用流程示意图。
具体实施方式
下面结合实施例对本发明作进一步描述。但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。
以下实施例中,所有化学品都是分析或色谱级的。乙酸(CH3COOH,98.5%),乙酸钠(CH3COONa,99.0%),过氧化氢(H2O2,30%)、3,3,5,5-四甲基联苯胺(TMB)、二甲基亚砜(DMSO,99.0%)、氯化亚铁(FeCl2·4H2O,98.5%)、硫脲(CH4N2S,99.0%)、乙二醇(EG,99.0%)、乙醇(99.0%)来自Adams(中国上海)。Hg2+的标准溶液(1000μg/mL)由Tansoole(中国上海)公司提供。谷胱甘肽(GSH,98.0%)从Bioss(北京,中国)公司获得。所有化学品在收到时都被利用,没有进行进一步的净化,并使用Milli-Q纯水机(Bedford,MA,USA)生产超纯水(>18.2MΩ)用于实验。
扫描电子显微镜(SEM,Quanta250;FEI,USA);透射电镜(Talos F200X G2;FEI,USA);X射线衍射仪(D8-Advance,Bruker,Germany);X射线光电子能谱(K-Alpha+型;ThermoScientific,USA)。酶动力学数据和紫外-可见光谱在紫外-8000分光光度计(上海,中国)上获得。采用原子荧光光度计(AFS-8820;北京吉天仪器)测定样品溶液中Hg2+的浓度。
实施例1
基于Fe7S8纳米片的比色纳米传感器的制备。
纳米片的合成:
将0.5425g FeCl2·4H2O和0.2374g CH4N2S溶解于100mL EG中,搅拌至完全溶解,然后将混合溶液转移到200mL聚四氟乙烯衬里高压反应釜中,200℃条件下加热12h,冷却至室温后,离心,收集沉淀,用去离子水和乙醇交替洗涤3次。在真空烘箱中60℃干燥12h后,得到纳米片。
纳米片的表征:
如显示,通过扫描电镜观察固体产物形貌,纳米片被大量的细颗粒覆盖(图1A)。通过TEM观察,纳米片表面覆盖着不规则的平均长度约为60.1nm的细短棒(图1C,图1D)。通过EDS测试图,观察到Fe和S元素均匀分布在纳米片表面,其重量百分比分别为61.7%和38.3%,这与Fe7S8中Fe和S的理论比例一致(图1B,图1E,图1F)。通过XRD分析,Fe7S8的晶体结构在30.022°、33.995°、44.028°和53.317°分别对应于(200)、(203)、(206)和(220)晶面,与Fe7S8标准卡PDF#24-0220相一致,而且,在Fe7S8晶体中未观察到其他杂相,表明制备的纳米材料纯度高(图1G)。Fe7S8的高分辨率Fe2p谱清晰地显示,位于711.1eV和724.9eV的峰属于Fe2+,而位于713.1eV和727.0eV的峰属于Fe3+(图1H)。综上表征结果可知,本实施例合成的纳米片为Fe7S8纳米片。
配制浓度为1mmol/L的GSH水溶液,pH=4.0的NaAc-HAc缓冲液,浓度为6mmol/L的TMB显色液(溶剂为DMSO),浓度为50mmol/L的H2O2水溶液,Fe7S8纳米片含量为100μg/mL的Fe7S8悬浊液,备用。
实施例2
基于实施例1的比色纳米传感器的Hg2+检测。
(1)配制不同Hg2+浓度的标准液,Hg2+浓度为0.01μmol/L~500μmol/L,采用梯度稀释法配制;
(2)取不同Hg2+浓度的标准液50μL,分别采用NaAc-HAc缓冲液稀释至1700μL,向稀释液中加入GSH水溶液50μL,混合均匀,室温反应10min;
(3)将反应后的体系中加入TMB显色液100μL,浓度为50mmol/L的H2O2 40μL,Fe7S8悬浊液60μL,混合均匀得到显色体系,置于40℃的水浴中孵育20min反应显色,产生蓝色;
(4)将(3)反应显色后的显色体系通过0.22μm混合纤维素滤膜过滤去除Fe7S8,终止反应,用紫外分光光度计测量滤液在652nm处的吸光度值。
检测结果显示,从0.01到500μmol/L,随着Hg2+浓度的增加,A652值单调增加,同时蓝色溶液逐渐加深(图2)。
以Hg2+浓度为横坐标,A652值为纵坐标绘制线性曲线,结果显示,在Hg2+0.01~80μmol/L范围内和80~300μmol/L范围内分别具有良好的线性关系。在0.01~80μmol/L范围内的标准曲线为y=0.03458x+0.01617,线性决定系数(R2)为0.9974(图3)。在80~300μmol/L范围内的标准曲线为y=0.00182x+1.17083,R2为0.9729(图4)。基于3倍信噪比(S/N=3),计算出检测限(LOD)为3.0nM。
本实施例的比色纳米传感器与现有比色纳米传感器的检测线及线性范围见表1(现有比色纳米传感器的数据来自文献)。
表1
[1]X Li,H Wang,X Wang,G Lai,J Gong.“All-in-One”ultra-portablecolorimetric sensor coupled with confinement effect for Hg2+highly sensitiveand instant detection.Sensor Actuat B:Chem 351:130945(2022).
[2]Y Zhai,Y Li,X Huang,J Hou,H Li,S Ai.Colorimetric and ratiometricfluorescent dual-mode sensitive detection of Hg2+based on UiO-66-NH2@Aucomposite.Spectrochim Acta A275:121187(2022).
[3]S Zhang,S Wei,H Cheng,B Rong.Ahighly sensitive colorimetric sensorfor Hg2+detection based on the oxidative enzyme mimics-like activity ofhierarchical porous carbon@chitosan-modified silver nanoparticles.J King SaudUniv Sci 32(2):1265-1271(2020).
[4]H Khani,S Abbasi,M Tavakkoli Yaraki,Y N Tan.Anaked-eyecolorimetric assay for detection of Hg2+ions in real water samples based ongold nanoparticles-catalyzed clock reaction.JMol Liq 345:118243(2022).
[5]L Luo,C Xi,J Zhuo,G Liu,S Yang,Y Nian,J Sun,M Q Zhu,JWang.Aportable dual-mode colorimetric platform for sensitive detection of Hg2+based on NiSe2 with Hg2+-Activated oxidase-like activity.Biosens Bioelectron215:114519(2022).
[6]LXiao,P Wei,F He,Y Gou,Y Ge,Y Liu,P Wang,Y Liao.Peptide-basedfluorescent and colorimetric dual-functional probe for visual detection ofCu2+,Hg2+and S2-in 100%aqueous media,living cells and paper test strips.JPhotoch Photobio A 433:114178(2022)
[7]F Faghiri,F Ghorbani.Colorimetric and naked eye detection of traceHg2+ions in the environmental water samples based on plasmonic response ofsodium alginate impregnated by silver nanoparticles.J Hazard Mater 374:329-340(2019)
[8]L Feng,L Zhang,Y Gong,Z Du,X Chen,X Qi,X Zhang,G Mao,H Wang.HollowC@MoS2 nanotubes with Hg2+-triggered oxidase-like catalysis:A colorimetricmethod for detection of Hg2+ions in wastewater Sensor Actuat B:Chem 361:131725(2022)
[9]S Pattaweepaiboon,T Nanok,N Kaewchangwat,K Suttisintong,WSirisaksoontorn.Colorimetric detection of Hg2+and CH3Hg+by a novelspirooxazine derivative as a highly sensitive and selective probe.DyesPigments 186:108996(2021).
[10]Y Wang,L Xu,W Xie.Rapid and sensitive colorimetric sensor for H2O2and Hg2+detection based on homogeneous iodide with high peroxidase-mimickingactivity.Microchem J 147:75-82(2019).
[11]P Ju,Z Wang,Y Zhang,X Zhai,F Jiang,C Sun,X Han.Enhanced oxidase-like activity of Ag@Ag2WO4 nanorods for colorimetric detection of Hg2+.ColloidSurface A 603:125203(2020)
由此可见,实施例1的比色纳米传感器获得了较低的Hg2+检出限和较宽的线性范围,为水样中微量/痕量Hg2+测定提供了可行性。所构建的纳米传感器用于Hg2+检测的灵敏度与以前的其他方法相当,甚至更好,而所采用的Fe7S8纳米片的制备方法简单,成本低,从而能够在简化痕量Hg2+检测操作的同时,大大降低检测成本和时间,应用前景广阔。
实施例3
环境水中痕量Hg2+的比色检测。
本实施例中的待测水样来自真实世界样本,包括自来水、湖水、校园河水和生活废水。
(1)分别使用Hg2+标准溶液和上述待测水样配制加标浓度为0.1μmol/L、1μmol/L和10μmol/L的预处理水样;
(2)取上述预处理水样各取20mL转移到150mL锥形瓶中,通过滴加NaOH和HCl溶液调节pH为4.0,分别加入5mg Fe7S8纳米片作为吸附剂,用密封膜将锥形瓶密封,室温下振荡20min,在外部磁铁的帮助下分离去除上清,留下富集了Hg2+的Fe7S8纳米片,将富集了Hg2+的Fe7S8纳米片与适量的NaAc-HAc缓冲液混合配制浓度为100μg/mL的Fe7S8悬浊液,备用;
(3)取浓度为1mmol/L的GSH水溶液50μL,浓度为6mmol/L的TMB显色液100μL,浓度为50mmol/L的H2O2 40μL,浓度为100μg/mL的Fe7S8悬浊液60μL,使用NaAc-HAc缓冲液定容至2000μL,混合均匀得到显色体系,置于40℃的水浴中孵育20min反应显色,产生蓝色;
(4)将(3)反应显色后的显色体系通过0.22μm混合纤维素滤膜过滤去除Fe7S8,终止反应,用紫外分光光度计测量滤液在652nm处的吸光度值。
从加标回收率和Hg2+的相对标准偏差(RSD)方面评价了所开发的纳米传感器的分析精度和精密度。由表1可知,平均加样回收率在92.4%-110.2%之间,RSD<3.54%。这些数据表明,基于Fe7S8的纳米传感器可以为快速、灵敏地测定环境水中的Hg2+提供令人满意的分析指标。
表1
注:每种处理重复测试三次(n=3)。
实施例4
实施例1的比色纳米传感器的抗干扰测试。
本实施例方法参考实施例2,区别仅在于在步骤(1)中配制不同Hg2+浓度的标准液时还添加不同浓度的干扰物。
本实施例中,干扰物包括各种金属离子(Pb2+、Cu2+、Se4+、As3+、Hg2+、Cr3+、Ag+、K+、Ni2 +、Na+、Ca2+、Mg2+、Mn2+、Al3+、Fe2+、Fe3+、Zn2+、Co2+)以及氨基酸和小生物分子(L-谷氨酸、蔗糖、硫脲、尿酸、尿素、L-丝氨酸、L-组织氨酸、抗坏血酸(AA)、D-半乳糖)。
结果显示,Hg2+和GSH的强化浓度均为20μmol/L,其他干扰物质的强化浓度均为200μmol/L,是Hg2+和GSH峰值浓度的10倍。除AA和L-半胱氨酸外,金属和其他生物分子的A652值没有明显变化(图5)。这一现象表明,大多数共存的金属离子和生物分子对比色反应影响非常轻微。虽然AA作为一种重要的抗氧化剂,具有一定的还原能力,能够抑制Fe7S8的类酶活性,L-半胱氨酸的干扰源于其分子中含有巯基,但是由于AA和L-半胱氨酸在真实环境中的水平远低于GSH,因此其影响也非常轻微。
实施例1的Fe7S8纳米片的稳定性和可重用性测试。
制备六个合成批次的Fe7S8纳米片,在相同显色条件下,六个合成批次对显色体系的吸光度均无显著影响(图6A),说明不同批次合成Fe7S8纳米片具有较高的均匀性。
将带有Fe7S8纳米片的反应体系转移至薄壁的离心管中,离心管下方放置一块磁铁。在外部磁铁的作用下,具有磁性的Fe7S8纳米片会被吸附在离心管底。此时,用胶头滴管移除上清液,留下Fe7S8纳米片经过真空干燥后即可重复使用。随着循环次数的增加,A652值单调下降(图6B),但第6个循环仅使初始吸光度下降16.0%。可见,基于Fe7S8纳米片的传感器具有较高的可重用性,可用于至少6次循环实验,从而大大降低了检测成本。
将Fe7S8纳米片在制备当天、在常温下储存10天、20天、30天、40天、50天、60天后分别进行活性测试,结果显示,在常温下储存60天后相对活性仅降低了约10%(图6C),表明其具有较高的稳定性。
因此,实施例1的比色传感器在60天存储期间至少可以使用6次,具有高稳定性和可重用性。
实施例5
基于智能手机的环境水中痕量Hg2+的比色检测。
基于智能手机APP的环境水体Hg2+检测及图像采集装置的研制。
为了实现高分辨率成像照片,设计并制作了一个基于智能手机的视觉摄影设备。其具有以下优点:(1)良好的内部密封性可以防止自然光进入,减少对成像的干扰;(2)底部有光源,使蓝色图像更清晰;(3)可同时检测多个样品;(4)该装置轻便便携。在紫外-可见吸收试验优化变量的基础上,开发了一款基于智能手机的Hg2+比色检测APP,该APP将“Fe7S8+TMB+H2O2+GSH”反应体系与“Thing Identify”软件集成(图7、图8)。
本实施例中的待测水样来自真实世界样本,包括自来水、湖水、校园河水和生活废水。
(1)分别使用Hg2+标准溶液和上述待测水样配制加标浓度为0.1μmol/L、1μmol/L和10μmol/L的预处理水样;
(2)取上述预处理水样各取20mL转移到150mL锥形瓶中,通过滴加NaOH和HCl溶液调节pH为4.0,分别加入5mg Fe7S8纳米片作为吸附剂,用密封膜将锥形瓶密封,室温下振荡20分钟,在外部磁铁的帮助下分离去除上清,留下富集了Hg2+的Fe7S8纳米片,将富集了Hg2+的Fe7S8纳米片与适量的NaAc-HAc缓冲液混合配制浓度为100μg/mL的Fe7S8悬浊液,备用;
(3)取浓度为1mmol/L的GSH水溶液50μL,浓度为6mmol/L的TMB显色液100μL,浓度为50mmol/L的H2O2 40μL,浓度为100μg/mL的Fe7S8悬浊液60μL,使用NaAc-HAc缓冲液定容至2000μL,混合均匀得到显色体系,置于40℃的水浴中孵育20min反应显色,产生蓝色;
(4)将(3)反应显色后的显色体系通过0.22μm混合纤维素滤膜过滤去除Fe7S8,终止反应,将滤液滴入96孔板中,每个孔中加入每种处理溶液,每种处理一式三份。然后,将96孔板放置在设备的内腔中,并打开底部光源。拍摄完成后上传到“Thing Identify”软件,计算蓝色溶液灰度值,得到Hg2+浓度。
软件操作如图8(A-H)所示,根据灰度值与Hg2+浓度的相关性,构建了相应的校准曲线。在0.1~35μmol/L范围内估计所构建的校准曲线的LR,得到的回归方程为Y=0.487X+85.524(R2=0.928),其中Y为Hg2+浓度,X为颜色灰度值。基于智能手机的比色检测在S/N=3的基础上提供了30nmol/L的LOD。表2显示了真实水样中Hg2+的回收结果。
表2
注:实验平行3次(n=3)。
由表1可知,智能手机APP测得的Hg2+浓度与紫外可见分光光度计测得值相似,平均回收率为92.7-115.0%,RSD为3.24-4.22%。总体而言,基于智能手机的传感方法具有便携性强、视觉检测通量高、快速、操作方便、适合户外使用等优点。由此可见,所开发的基于智能手机的传感器为远程环境中痕量Hg2+的需求点检测提供了一种令人满意的替代方案。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

1.一种用于检测环境水中痕量Hg2+的比色纳米传感器,其特征在于,所述比色纳米传感器由Fe7S8纳米片、谷胱甘肽或其水溶液、3,3',5,5'-四甲基联苯胺显色液、H2O2水溶液和NaAc-HAc缓冲液组成,
所述Fe7S8纳米片的制备方法为:将FeCl2·4H2O和CH4N2S按照质量比为(2~3):1溶解于乙二醇中,200℃条件下水热10~15h,冷却至室温后,经离心、洗涤、烘干得到固体产物,即为所述Fe7S8纳米片。
2.根据权利要求1所述的比色纳米传感器,其特征在于,所述Fe7S8纳米片在所述比色纳米传感器中的含量为3~7μg/mL。
3.根据权利要求1所述的比色纳米传感器,其特征在于,所述比色纳米传感器中谷胱甘肽的含量为0.025~0.2μmol/mL。
4.根据权利要求1所述的比色纳米传感器,其特征在于,所述3,3',5,5'-四甲基联苯胺显色液为3,3',5,5'-四甲基联苯胺DMSO溶液,和/或,所述比色纳米传感器中3,3',5,5'-四甲基联苯胺的含量为0.5~0.7μmol/mL。
5.根据权利要求1所述的比色纳米传感器,其特征在于,所述比色纳米传感器中H2O2的含量为0.8~3μmol/mL。
6.根据权利要求1所述的比色纳米传感器,其特征在于,所述NaAc-HAc缓冲液的pH值为3~5。
7.如权利要求1至6中任一项所述的比色纳米传感器在环境水分析中的应用。
8.采用权利要求1至6中任一项所述的比色纳米传感器检测环境水中痕量Hg2+的方法,其特征在于,所述方法包括如下步骤:
(1)取待检测水样和Hg2+标准液配制不同加标浓度的预处理水样;
(2)将步骤(1)的预处理水样与Fe7S8纳米片混合震荡,然后在磁铁的作用下分离得到富集Hg2+的Fe7S8纳米片;
(3)将富集Hg2+的Fe7S8纳米片与谷胱甘肽或其水溶液、3,3',5,5'-四甲基联苯胺显色液、H2O2水溶液和NaAc-HAc缓冲液混合得到显色体系,35~45℃水浴中孵育15~30min;
(4)将步骤(3)反应显色后的显色体系通过0.22μm混合纤维素滤膜过滤去除Fe7S8,终止反应,目视观察步骤(3)的反应显色后的显色体系的颜色变化,或用紫外分光光度计测量滤液在652nm处的吸光度值,或对滤液进行拍摄并计算灰度值。
9.根据权利要求8所述的比色纳米传感器检测Hg2+的方法,其特征在于,步骤(1)的所述待检测水样为15~25mL,加标水平范围为0.1~10μmol/L;
步骤(2)中,所述Fe7S8纳米片用量为4~8mg;
和/或,步骤(2)中,调节所述预处理水样与所述Fe7S8纳米片的混合物的pH值至3.5~4.5;
和/或,步骤(2)中,所述混合震荡在室温下进行,所述混合震荡的时间为15~30min;
和/或,步骤(3)中,将所述富集Hg2+的Fe7S8纳米片与所述NaAc-HAc缓冲液混合配制浓度为50~150μg/mL的Fe7S8悬浊液的形式进行投料;
和/或,步骤(3)中,所述富集Hg2+的Fe7S8纳米片在显色体系中的浓度为3~7μg/mL;
和/或,步骤(3)中,所述显色体系中谷胱甘肽的浓度为0.025~0.2μmol/mL;
和/或,步骤(3)中,所述3,3',5,5'-四甲基联苯胺显色液为浓度为4~10mmol/L的3,3',5,5'-四甲基联苯胺DMSO溶液;
和/或,步骤(3)中,所述显色体系中3,3',5,5'-四甲基联苯胺的浓度为0.5~0.7μmol/mL;
和/或,步骤(3)中,所述显色体系中H2O2的浓度为0.8~3μmol/mL。
10.根据权利要求9所述的比色纳米传感器检测Hg2+的方法,其特征在于,步骤(4)中,基于智能手机检测平台进行待测水样中Hg2+含量检测,采用手机对滤液进行拍摄并上传至“Thing Identify”软件,所述“Thing Identify”软件能够计算拍摄的照片的灰度值,根据灰度值计算待测水样中的Hg2+含量。
CN202310430604.9A 2023-04-21 2023-04-21 一种用于检测环境水中痕量Hg2+的比色纳米传感器 Active CN116642845B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310430604.9A CN116642845B (zh) 2023-04-21 2023-04-21 一种用于检测环境水中痕量Hg2+的比色纳米传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310430604.9A CN116642845B (zh) 2023-04-21 2023-04-21 一种用于检测环境水中痕量Hg2+的比色纳米传感器

Publications (2)

Publication Number Publication Date
CN116642845A true CN116642845A (zh) 2023-08-25
CN116642845B CN116642845B (zh) 2024-05-07

Family

ID=87638882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310430604.9A Active CN116642845B (zh) 2023-04-21 2023-04-21 一种用于检测环境水中痕量Hg2+的比色纳米传感器

Country Status (1)

Country Link
CN (1) CN116642845B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138572A1 (en) * 2013-03-07 2014-09-12 Heritage Research Group Use of ferrous sulfide suspension for the removal of mercury from flue gases
WO2018211415A1 (en) * 2017-05-15 2018-11-22 Fondazione Istituto Italiano Di Tecnologia A method for detecting the presence of mercury in water, and a kit for carrying out the method
CN109164097A (zh) * 2018-09-30 2019-01-08 重庆师范大学 基于智能手机拍照功能快速检测红酒中抗氧化剂的方法
CN113406068A (zh) * 2021-07-08 2021-09-17 云南伦扬科技有限公司 一种基于智能手机快速检测草甘膦的方法
CN115420692A (zh) * 2022-07-18 2022-12-02 温州医科大学 一种具有类过氧化物酶催化活性的Fe3S4/CDs纳米材料及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138572A1 (en) * 2013-03-07 2014-09-12 Heritage Research Group Use of ferrous sulfide suspension for the removal of mercury from flue gases
WO2018211415A1 (en) * 2017-05-15 2018-11-22 Fondazione Istituto Italiano Di Tecnologia A method for detecting the presence of mercury in water, and a kit for carrying out the method
CN109164097A (zh) * 2018-09-30 2019-01-08 重庆师范大学 基于智能手机拍照功能快速检测红酒中抗氧化剂的方法
CN113406068A (zh) * 2021-07-08 2021-09-17 云南伦扬科技有限公司 一种基于智能手机快速检测草甘膦的方法
CN115420692A (zh) * 2022-07-18 2022-12-02 温州医科大学 一种具有类过氧化物酶催化活性的Fe3S4/CDs纳米材料及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JESUS CANTU ET AL.: ""Removal of arsenic from water using synthetic Fe7S8 nanoparticles"", 《CHEMICAL ENGINEERING JOURNAL》, 26 January 2016 (2016-01-26), pages 428 - 437 *
YUN JEONG CHOE ET AL.: ""Fe3S4/Fe7S8-promoted degradation of phenol via heterogeneous,catalytic H2O2 scission mediated by S-modified surface Fe2+ species"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, 6 April 2018 (2018-04-06), pages 272 - 280 *
宋娟;李晓燕;张升晓;张媛媛;刘军深;徐强;: "磁性Fe_3O_4@SiO_2-SH的制备及环境水体中汞的富集与分析", 分析试验室, vol. 33, no. 12, 31 December 2014 (2014-12-31), pages 1374 - 1377 *
谢晓雷: ""非贵金属掺杂的碳基纳米酶在环境和生物分析中的应用"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 1, 15 January 2022 (2022-01-15), pages 2 - 3 *

Also Published As

Publication number Publication date
CN116642845B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
Zhou et al. Enhanced electrochemical performance for sensing Pb (II) based on graphene oxide incorporated mesoporous MnFe2O4 nanocomposites
Ghanei-Motlagh et al. A novel voltammetric sensor for sensitive detection of mercury (II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer
Yu et al. Electrochemical sensor construction based on Nafion/calcium lignosulphonate functionalized porous graphene nanocomposite and its application for simultaneous detection of trace Pb2+ and Cd2+
Guo et al. Ionic liquid–graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene
Xu et al. An efficient and sensitive fluorescent pH sensor based on amino functional metal–organic frameworks in aqueous environment
Wang et al. Magnetic Fe 3 O 4@ MOFs decorated graphene nanocomposites as novel electrochemical sensor for ultrasensitive detection of dopamine
Yao et al. Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode
Wen et al. Electrochemical sensor for arsenite detection using graphene oxide assisted generation of prussian blue nanoparticles as enhanced signal label
Li et al. Graphene‐Fe3O4 as a magnetic solid‐phase extraction sorbent coupled to capillary electrophoresis for the determination of sulfonamides in milk
Chen et al. Doping ZIF-67 with transition metals results in bimetallic centers for electrochemical detection of Hg (II)
Arvand et al. A new core@ shell silica-coated magnetic molecular imprinted nanoparticles for selective detection of sunset yellow in food samples
Daud et al. Electrochemical sensor for As (III) utilizing CNTs/leucine/nafion modified electrode
Wu et al. Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination
Tu et al. Nanochannel-based sensor for the detection of lead ions in traditional Chinese medicine
Ngo et al. Multi-functional NiO/gC 3 N 4 hybrid nanostructures for energy storage and sensor applications
Lei et al. Dopamine functionalized S, N co-doped carbon dots as a fluorescent sensor for the selective detection of Fe3+ and Fe2+ in water
He et al. Hydrophobic plasmonic silver membrane as SERS-active catcher for rapid and ultrasensitive Cu (II) detection
Zheng et al. Simultaneous detection and speciation of mono-and di-valent copper ions with a dual-channel fluorescent nanoprobe
Wei et al. Self-assembled electroactive MOF–magnetic dispersible aptasensor enables ultrasensitive microcystin-LR detection in eutrophic water
Jiang et al. Sensitive detection of prostate specific antigen based on copper ions doped ag-au nanospheres labeled immunosensor
Zhu et al. Facile synthesis of flower-like CePO 4 with a hierarchical structure for the simultaneous electrochemical detection of dopamine, uric acid and acetaminophen
Liu et al. Highly efficient detection of Pb (II) ion in water by polypyrrole and metal-organic frame modify glassy carbon electrode
CN116642845B (zh) 一种用于检测环境水中痕量Hg2+的比色纳米传感器
Nan et al. Facile fabrication of chiral hybrid organic–inorganic nanomaterial with large optical activity for selective and sensitive detection of trace Hg2+
Boxi et al. Fluorometric sensing of ultralow As (III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant