CN116641012A - 一种基于梯度设计的玻璃模具表面涂层及其制备方法 - Google Patents

一种基于梯度设计的玻璃模具表面涂层及其制备方法 Download PDF

Info

Publication number
CN116641012A
CN116641012A CN202310581248.0A CN202310581248A CN116641012A CN 116641012 A CN116641012 A CN 116641012A CN 202310581248 A CN202310581248 A CN 202310581248A CN 116641012 A CN116641012 A CN 116641012A
Authority
CN
China
Prior art keywords
sib
zrsi
glass mold
coating
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310581248.0A
Other languages
English (en)
Inventor
赵凤玲
李小平
卢雅琳
段刘阳
张扬
孙顺平
刘骁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN202310581248.0A priority Critical patent/CN116641012A/zh
Publication of CN116641012A publication Critical patent/CN116641012A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及材料涂层领域,具体涉及一种基于梯度设计的玻璃模具表面涂层及其制备方法,首先对玻璃模具母材的表面进行抛光、清洗,并对其表面进行预热;然后将以NiCrBSi合金为主要成分,ZrSi2和SiB6为抗氧化组元,三者的混合物为喷涂原料进行球磨混合后,再分别进行喷雾造粒,最终将四种不同比例的NiCrBSi、ZrSi2、SiB6的混合物按照ZrSi2(SiB6)含量递增的顺序,在电子束的作用下分别在母材表面进行电子束喷涂,所得梯度涂层与母材界面结合良好,其表面硬度、耐磨性和抗氧化性均显著提高。

Description

一种基于梯度设计的玻璃模具表面涂层及其制备方法
技术领域
本发明涉及材料涂层领域,具体涉及一种基于梯度设计的玻璃模具表面涂层及其制备方法。
背景技术
玻璃模具是玻璃制品的重要成形工具,随着玻璃制品成形速度的不断提高,对玻璃模具的耐高温、抗氧化、抗热疲劳等性能提出了更为严苛的要求。目前,国内多采用球墨铸铁和蠕墨铸铁作为模具材料,使用寿命约为25~30万次,与国外同类产品50~60万次的使用寿命相比,有较大的提升空间。
虽然铸铁中的石墨成分可以发挥自润滑作用,但频繁的开合动作依然使铸铁模具开合面的磨损比较严重,并且由于服役条件为高温有氧环境,开合面经常因过热或氧化而发生失效,导致模具因变形或者玻璃制品的合缝线粗大而报废。因此,如何提高开合面的硬度、耐磨性和抗氧化性是解决问题的关键。
发明内容
本发明提供了一种在玻璃模具表面设计并制备梯度合金涂层的方法,用于解决现有技术中玻璃模具开合面硬度不足、磨损大和抗氧化性不足的问题。
为实现上述目标,本发明采取下述技术方案:
本发明提出一种基于梯度结构的玻璃模具表面涂层及其制备方法,通过在Ni基合金中同步引入ZrSi2和SiB6组元构建梯度涂层,进而实现提高玻璃模具开合面的表面硬度、耐磨性和抗氧化性的目的。一种基于梯度设计的耐磨涂层制备方法,其特征在于包括以下步骤:
(1)对玻璃模具母材进行表面预处理,依次进行抛光、清洗,并对其表面进行预热。
(2)以NiCrBSi合金为主要成分,ZrSi2和SiB6为抗氧化组元,三者的混合物为喷涂原料。按照ZrSi2(SiB6)质量依次比为0(0)、0-10%(0-5%)、10-20%(5-10%)和20-30%(10-20%)(余量为NiCrBSi合金)分别进行球磨混合,再分别进行喷雾造粒。得到四种喷涂粉末,分别为:NiCrBSi粉末;
NiCrBSi-(0-10%)ZrSi2-(0-5%)SiB6粉末;
NiCrBSi-(10-20%)ZrSi2-(5-10%)SiB6粉末;
NiCrBSi-(20-30%)ZrSi2-(10-20%)SiB6粉末。
(3)以电子束为热源,在惰性气体保护条件下,采用同步送粉模式,在母材表面进行电子束喷涂,获得具有梯度结构的NiCrBSi-ZrSi2-SiB6复合涂层。
优选的,步骤(1)所述的玻璃模具为铁素体球墨铸铁和高耐热蠕墨铸铁,所述的预处理包括对母材表面进行抛光、清洗,并利用激光束进行表面预热。所述的混合粉末的主要成分为NiCrBSi合金和SiB6,其中NiCrBSi合金主要成分为Cr(0.3%)、B(1.6%)、Si(2.5%)、Ni(余量),粒度为微米级。ZrSi2和SiB6粒度为纳米级。
优选的,步骤(2)所述的球磨过程为湿式行星球磨,以无水乙醇为分散剂,高铬研磨球为研磨介质,球磨转速为200~500r/min。
优选的,步骤(3)所述的惰性保护气体与送粉的载气为同一种气体,如同为氩气或同为氮气。
优选的,步骤(3)所述的送粉顺序以ZrSi2(SiB6)含量递增进行。即由内而外依次将NiCrBSi粉末;NiCrBSi-(0-10%)ZrSi2-(0-5%)SiB6粉末;NiCrBSi-(10-20%)ZrSi2-(5-10%)SiB6粉末以及NiCrBSi-(20-30%)ZrSi2-(10-20%)SiB6粉末;喷涂到玻璃模具母材上。
本发明的优点在于:
首先对母材进行预热,以缓解喷涂过程中涂层与母材之间的热应力,避免因应力过大而发生涂层剥落;再将ZrSi2与SiB6组元以不同百分比与NiCrBSi合金粉体进行充分混合,按照ZrSi2(SiB6)含量递增的顺序进行送粉并喷涂,喷涂过程在保护气氛中进行,可避免粉料在高温喷涂过程中的氧化;最终获得具有梯度结构的NiCrBSi-SiB6复合涂层。
由于引入的抗氧化组元ZrSi2为陶瓷相,服役条件下其热膨胀系数小于6×10-6/℃,而NiCrBSi合金的热膨胀系数为15.4×10-6/℃;二者差异较大,在进行复合时存在严重的应力集中。
本发明为避免这一问题,采用ZrSi2含量递增的方案,以实现梯度过渡,从而达到缓解涂层内应力的目的。但在实际服役环境中,ZrSi2的抗氧化机制在1000℃以上的高温区效果较好,在500-1000℃的中温区存在严重不足。因此本发明同步引入SiB6组元。
SiB6组元的引入一方面可提高SiO2的生成量,促进ZrO2与SiO2在高温时生成ZrSiO4并弥散分布于SiO2玻璃中,起到弥散强化的作用;另一方面生成的B2O3玻璃相可显著提高涂层在中温区的抗氧化能力,使自愈合抗氧化机制可以在较宽的温度范围内发挥作用。同时,模具在连续工作后,其开合面的表层所形成的连续氧化膜还有助于磨损性能的提高。
附图说明
图1是本发明实施例所制备梯度涂层的结构示意图以及所得涂层不同位置的硬度测试结果;
图2为母材、实施例以及对比例的磨损量和氧化性能测试数据表。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
实施例:
一种在玻璃模具表面设计并制备梯度合金涂层的方法,包括如下步骤:
步骤一、对玻璃模具母材进行表面抛光、清洗和预热。在母材的表面覆盖NiCrBSi涂层,涂层与母材界面结合良好,硬度、耐磨性和抗氧化能力有一定提高。但是设有该涂层的模具在使用过程中容易因应力过大而发生涂层剥落的情况,故先对母材进行预热,以缓解喷涂过程中涂层与母材之间的热应力。
步骤二、以NiCrBSi合金为主要成分,ZrSi2和SiB6为抗氧化组元,三者的混合物为喷涂原料,按照ZrSi2(SiB6)质量比依次为0(0)、8%(4%)、18%(9%)和28%(15%)(余量为NiCrBSi合金)分别进行球磨混合,再分别进行喷雾造粒。
步骤三、以电子束为热源,在氩气保护条件下,以氩气为载气,采用同步送粉模式,送粉顺序以ZrSi2(SiB6)含量递增进行,在母材表面进行电子束喷涂,喷涂过程在保护气氛中进行,可避免粉料在高温喷涂过程中的氧化;从而获得具有梯度结构的NiCrBSi-ZrSi2-SiB6复合涂层。其结构示意图如图1所示。
对比例:
本对比例与实施例的方法相同,不同之处在于涂层仅为NiCrBSi合金。对以上实施案例中获得的涂层材料分别进行性能测试,测试方式如下:
(1)采用维氏硬度计对涂层的表面硬度和断裂韧性进行测定。
涂层韧性计算公式为K1C=(0.079P/a1.5)log(4.5a/c);
式中K1C为断裂韧性,P为高温维氏硬度施加载荷(N),a为压痕对角线半长(μm),c为裂纹半长(μm)。
(2)高温抗氧化能力采用高温箱式电阻炉进行测试,
设定测试温度为1100℃,以连续加热50h后单位面积的增重进行衡量。
(3)耐磨失重采用CrWMn钢配副(HRC55)磨轮,磨轮转速为200r/min;实验载荷为200N,通过弹簧系统加载,总行程5km。测试结果见图2的数据表。
测试结果:
对比例所获得的涂层与母材界面结合良好,硬度、耐磨性和抗氧化能力有一定提高。与母材相比,涂层改性后的表面硬度从320HV提高到426HV,耐磨失重从18mg/km降低到10.34mg/km,抗氧化能力从每平方厘米增重50mg降低到36mg。
实施例所获得的涂层与NiCrBSi涂层相比,所得NiCrBSi-ZrSi2-SiB6梯度涂层的孔隙率和裂纹明显降低,界面处结合良好。引入梯度设计前后,玻璃模具表面涂层的硬度从426HV提高到580HV,耐磨失重从10.34mg/km降到2.12mg/km,高温抗氧化能力从每平方厘米增重36mg降低到5mg。
发明原理:
在母材表面包覆NiCrBSi涂层可一定程度上提高玻璃模具开合面的表面硬度和耐磨性,但其在具体使用过程中,因高低温热震和频繁的开合动作,使得涂层内部产生微裂纹甚至发生局部开裂,导致产品寿命与国外同类产品有较大差距。
故在表面涂层中同步引入ZrSi2和SiB6抗氧化组元,以使涂层在较宽的温度范围内具有自愈合的功能。
对母材进行预热,可以缓解喷涂过程中涂层与母材之间的热应力,避免因应力过大而发生涂层剥落;
再将ZrSi2和SiB6组元以不同百分比与NiCrBSi合金粉体进行充分混合,按照ZrSi2(SiB6)含量递增的顺序进行送粉并喷涂,喷涂过程在保护气氛中进行,可避免粉料在高温喷涂过程中的氧化;最终获得具有梯度结构的NiCrBSi-SiB6复合涂层。
由于引入的抗氧化组元ZrSi2为陶瓷相,服役条件下其热膨胀系数小于6×10-6/℃,数据来源于以下文献:
[俞继军,邓代英,罗晓光,高俊杰,艾邦成.材料防热的多尺度现象与防热建模[J].气体物理,2021,6(04):1-18.DOI:10.19527/j.cnki.2096-1642.0928];
而NiCrBSi合金的热膨胀系数为15.4×10-6/℃,数据来源于以下文献:[K,FRANZ M,/>G.Investigation and estimation of residualstress in flame sprayed and fused NiCrBSi coatings[J].Metalurgija,2008,47(2):93-97];
二者差异较大,在进行复合时存在严重的应力集中。本发明为避免这一问题,采用ZrSi2含量递增的方案,以实现梯度过渡,从而达到缓解涂层内应力的目的。
但在实际服役环境中,ZrSi2的抗氧化机制在1000℃以上的高温区效果较好,在500-1000℃的中温区存在严重不足。因此本发明同步引入SiB6组元。
SiB6组元的引入一方面可提高SiO2的生成量,促进ZrO2与SiO2在高温时生成ZrSiO4并弥散分布于SiO2玻璃中,起到弥散强化的作用;另一方面生成的B2O3玻璃相可显著提高涂层在中温区的抗氧化能力,使自愈合抗氧化机制可以在较宽的温度范围内发挥作用。同时,模具在连续工作后,其开合面的表层所形成的连续氧化膜还有助于磨损性能的提高。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (6)

1.一种基于梯度设计的玻璃模具表面涂层及其制备方法,其特征在于包括以下步骤:
(1)对玻璃模具母材进行表面预处理;
(2)以NiCrBSi合金为主要成分,ZrSi2和SiB6为抗氧化组元,三者的混合物为喷涂原料,按照ZrSi2(SiB6)质量比依次为0(0)、0-10%(0-5%)、10-20%(5-10%)和20-30%(10-20%)(余量为NiCrBSi合金)分别进行球磨混合,再分别进行喷雾造粒;
(3)以电子束为热源,在惰性气体保护条件下,采用同步送粉模式,在母材表面进行电子束喷涂,获得具有梯度结构的NiCrBSi-ZrSi2-SiB6复合涂层。
2.根据权利要求1所述的一种基于梯度设计的玻璃模具表面涂层及其制备方法,其特征在于,步骤(1)所述的玻璃模具为铁素体球墨铸铁和高耐热蠕墨铸铁,Ni基合金主要成分为Cr(0.1~0.3%)、B(0.5~1.6%)、Si(1.5~2.5%)、Ni(余量)。
3.根据权利要求1所述的一种基于梯度设计的玻璃模具表面涂层及其制备方法,其特征在于,步骤(1)所述的混合粉末的主要成分为NiCrBSi合金、ZrSi2和SiB6,其中NiCrBSi合金粉为微米级,ZrSi2和SiB6为纳米级。
4.根据权利要求1所述的一种基于梯度设计的玻璃模具表面涂层及其制备方法,其特征在于,步骤(2)中的球磨过程为湿式行星球磨,以无水乙醇为分散剂,高铬研磨球为研磨介质,球磨转速为200~500r/min。
5.根据权利要求1所述的一种基于梯度设计的玻璃模具表面涂层及其制备方法,其特征在于,步骤(3)所述的惰性保护气体与送粉的载气为同一种气体,如同为氩气或同为氮气。
6.根据权利要求1所述的一种基于梯度设计的玻璃模具表面涂层及其制备方法,其特征在于,步骤(3)所述的送粉顺序以ZrSi2(SiB6)含量递增。
CN202310581248.0A 2023-05-23 2023-05-23 一种基于梯度设计的玻璃模具表面涂层及其制备方法 Pending CN116641012A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310581248.0A CN116641012A (zh) 2023-05-23 2023-05-23 一种基于梯度设计的玻璃模具表面涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310581248.0A CN116641012A (zh) 2023-05-23 2023-05-23 一种基于梯度设计的玻璃模具表面涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN116641012A true CN116641012A (zh) 2023-08-25

Family

ID=87622331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310581248.0A Pending CN116641012A (zh) 2023-05-23 2023-05-23 一种基于梯度设计的玻璃模具表面涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN116641012A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116988061A (zh) * 2023-09-27 2023-11-03 太原科技大学 一种镍基高温合金及其表面改性方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116988061A (zh) * 2023-09-27 2023-11-03 太原科技大学 一种镍基高温合金及其表面改性方法
CN116988061B (zh) * 2023-09-27 2023-12-19 太原科技大学 一种镍基高温合金及其表面改性方法

Similar Documents

Publication Publication Date Title
CN116641012A (zh) 一种基于梯度设计的玻璃模具表面涂层及其制备方法
CN107460391B (zh) 一种添加石墨烯的梯度硬质合金刀具材料及其快速制备方法
CN109439995A (zh) 高熵非晶合金涂层及其制备方法
CN109881109B (zh) 一种激光熔覆材料及激光熔覆涂层的制备方法
Zhang et al. Wear behaviors of 5 wt% SiO2–Ni60 coatings deposited by atmospheric plasma spraying under dry and water-lubrication sliding conditions
CN104439940B (zh) 一种基于铸辗复合成形的紧固螺母铸造工艺
CN109385586A (zh) 一种粉末冶金摩擦材料及摩擦块的制备方法
WO2018094969A1 (zh) 一种专用于激光修复不锈钢表面微小裂纹的微纳米复合粉末
Hui et al. Surface and cross–section characteristics and friction–wear properties of high velocity oxy fuel sprayed WC–12Co coating
Zhang et al. Braking behavior of C/SiC composites prepared by chemical vapor infiltration
CN103920872B (zh) 激光合金化粉末及其在钢瓶环模激光表面合金化中的应用
CN103042207A (zh) 一种用于提高钛合金表面高温耐磨减摩性能的材料及其应用
Chen et al. An advanced self‐lubricating ceramic composite with the addition of core‐shell structured CaF2@ Al2O3 powders
CN114540814A (zh) 一种高温耐磨抗氧化涂层
CN112705700B (zh) 提高Inconel 718激光沉积层高温强度的方法
CN110093053B (zh) 重轨钢钢坯加热过程中高温防脱碳保护涂料及其制备方法和应用
CN111451470B (zh) 一种耐磨合金铸铁缸套及其制备方法
Zhou et al. Super Cold‐Drawing Ability and High Tensile Strength of Fe35Ni35Cr20Mn10 High‐Entropy‐Alloy Wires
CN111718187A (zh) 含纳米碳的高炉出铁沟用浇注料及其制备方法
JPH11209863A (ja) 耐摩耗部品の製造方法
CN111689783A (zh) 含纳米碳的脱硫搅拌器用耐火浇注料及其制备方法
CN115261850B (zh) 一种用于无氧化热处理炉的激光熔覆材料及制作方法
Xinsheng et al. Preparation and Properties of Core‐Shell Structure/Ni60 Coating
KR20040069835A (ko) 탄소/탄소 복합재료의 내산화 코팅방법
CN109487110A (zh) 一种原位自生Al2O3颗粒增强钢基表面复合材料用预制体、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination