CN116639727A - 一种改性钒酸铋基氧离子导体材料及其制备方法 - Google Patents

一种改性钒酸铋基氧离子导体材料及其制备方法 Download PDF

Info

Publication number
CN116639727A
CN116639727A CN202211395394.6A CN202211395394A CN116639727A CN 116639727 A CN116639727 A CN 116639727A CN 202211395394 A CN202211395394 A CN 202211395394A CN 116639727 A CN116639727 A CN 116639727A
Authority
CN
China
Prior art keywords
oxygen ion
ion conductor
containing compound
conductor material
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211395394.6A
Other languages
English (en)
Inventor
王春海
姬智林
严维新
王昭丰
罗发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202211395394.6A priority Critical patent/CN116639727A/zh
Publication of CN116639727A publication Critical patent/CN116639727A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/006Compounds containing, besides vanadium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/006Compounds containing, besides chromium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种中低温区具有高氧离子电导率的氧离子导体材料及其制备方法。所述材料的化学组成表示式为:Bi4(V1‑yMy)xO11+z,其中M为金属阳离子,1.7≤x≤2.2且x≠2,0<y≤0.3,z取决于所述金属阳离子组成电中性平衡。本发明制备的改性钒酸铋基Bi4(V1‑yMy)xO11+z材料,其制备工艺简易、成本低,结构稳定、电导率高,其中Bi4(V0.9Cu0.1)1.9O10.465在300℃时,晶粒电导率在10‑2S/cm量级,陶瓷总离子电导率达1.2×10‑3S/cm,高于当前最高文献报道值约1个数量级,可满足中低温氧化物燃料电池及氧传感器的应用要求。

Description

一种改性钒酸铋基氧离子导体材料及其制备方法
技术领域
本发明属于新型固态氧离子导体与固态电解质技术领域,涉及在中低温固态氧化物燃料电池电解质、氧传感器用的固态离子导体材料及制备方法,具体涉及一种改性钒酸铋基氧离子导体材料及其制备方法。
背景技术
固态氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)作为一种新型、清洁的能源转换装置,因其全固态结构耐久性强、转换效率高(60-80%)、燃料种类多、电极无需贵金属、无一氧化碳中毒威胁等优点而备受关注,在发电、交通、空间宇航等领域具有广阔的应用前景,被称为21世纪的绿色能源。夹在两个电极之间的致密电解质层是固态氧化物燃料电池的关键材料,负责载流子输运和隔绝两电极的反应气体。氧化钇稳定氧化锆(YSZ)电解质在800-1000℃下离子电导率可达到0.1S/cm,是目前普遍商用的氧离子导体,但其高工作温度引起的电极烧结、密封成本高、电解质与电极材料之间的界面扩散和热不稳定性等问题限制以YSZ为电解质的SOFC电池的应用。降低SOFC的操作温度、保持相/热稳定性并且达到所需电导率水平是SOFC电解质研究开发的主要目标。设计和开发中低温(300-750℃)下的新型固态氧离子导体是实现中低温固态氧化物燃料电池应用的关键。
化合物Bi4V2O11是由(Bi2O2)2+层和类钙钛矿(VO3.50.5)2-层交替形成,□表示本征氧空位,晶体结构中存在的氧空位使得该类材料在中低温下具有良好的离子电导率,其中Cu掺杂形成的四方相Bi4V1.8Cu0.2O10.7是目前报道中低温下离子电导率最高的化合物,在300℃时晶粒电导率达到了1×10-3S/cm,但因陶瓷晶界电阻较大,材料总体电导率约为10-4S/cm量级,在实际应用中仍待进一步提高,以实现更好的电学性能。另外,氧离子导体材料在氧传感器中也具有广泛的应用,中低温高电导率的氧离子导体材料对于提高传感器的性能也具有重要价值。
发明内容
为了避免现有技术的不足之处,本发明提出一种改性钒酸铋基氧离子导体材料及其制备方法,本发明的改性钒酸铋基氧离子导体材料在300℃及以上温度具有高氧离子电导率。
按照本发明的一个方面,提供一种改性钒酸铋基氧离子导体材料,其特征在于所述改性钒酸铋基氧离子导体材料的化学组成表示式为:Bi4(V1-yMy)xO11+z,其中M为金属阳离子,选自铜、铬、银、镁、钛、镍、锌等中的一种或几种,其中1.7≤x≤2.2且x≠2,0<y≤0.3,z取决于所述M阳离子组成电中性平衡。
其中,优选地,所述M为铜,并且x=1.9,y=0.1。
按照本发明的另一个方面,提供上述改性钒酸铋基氧离子导体材料的制备方法,包括如下步骤:
(1)以含铋化合物、含钒化合物和含金属M化合物作为原料,按上述化学组成表示式中铋、钒和金属M元素占比进行配料,然后混合均匀得到混合物;
(2)将混合物烘干后煅烧;
(3)将煅烧后的粉末以聚乙烯醇(PVA)溶液为粘结剂压制成型后烧结,得到所述改性钒酸铋基氧离子导体材料。
其中,所述方法还可以包括在混合前将含铋化合物、含钒化合物和含金属M化合物原料在100~500℃下干燥2-12小时。
其中,所述混合是在行星球磨机中进行的,球料比为2:1,球磨介质为无水乙醇,转速为300r/min,球磨时间2~12小时。
其中,所述煅烧的煅烧温度为500~800℃,煅烧时间为12~96小时。
其中,所述烧结的烧结温度为750~900℃,烧结时间为0.5~6小时。
优选地,步骤(1)中含铋化合物为氧化铋,含钒化合物为五氧化二钒,含金属M化合物为金属M的氧化物或者碳酸盐。
本发明制备的改性钒酸铋基氧离子导体材料Bi4(V1-yMy)xO11+z结构稳定,电导率高,其中Bi4(V0.9Cu0.1)1.9O10.465在300℃时,晶粒电导率在10-2S/cm量级,陶瓷总离子电导率达1.2×10-3S/cm,高于当前最高文献报道值约1个数量级,其原料成本低、制备工艺简单,可满足中低温氧化物燃料电池及氧传感器的应用要求。
附图说明
图1为按照本发明实施例1的改性钒酸铋基氧离子导体材料的X射线衍射图谱;
图2为按照本发明实施例1的改性钒酸铋基氧离子导体材料的扫描电镜图;
图3示出了按照本发明实施例1的改性钒酸铋基氧离子导体材料的温度-电导率数据。
具体实施方式
为了更清楚地理解本发明的目的、技术方案及优点,以下结合附图及实施例,对本发明进行进一步详细说明。
本发明提供的改性钒酸铋基氧离子导体材料的化学式为Bi4(V1-yMy)xO11+z,其中M为金属阳离子,选自铜、铬、银、镁、钛、镍、锌等中一种或几种金属元素,其中x的数值在1.7到2.2之间且x≠2,y的数值大于0并且小于等于0.3,z由M阳离子组成决定。
所述的改性钒酸铋基氧离子导体材料的制备方法,包括如下步骤:
(1)将含铋化合物、含钒化合物和含金属M化合物原料在100~500℃下干燥2~12小时。
(2)将步骤(1)中的原料干粉按化学式Bi4(V1-yMy)xO11+z称量配料。
(3)将步骤(2)中称量的粉料在球磨机中混合,球料比为2:1,无水乙醇为球磨介质,转速为300r/min,球磨2~12小时。
(4)将步骤(3)获得的浆料在烘箱中烘干。
(5)将步骤(4)中得到的混合料在500~800℃煅烧12~96小时。
(6)将步骤(5)煅烧的粉末添加聚乙烯醇(PVA)溶液作为粘结剂压制成型,在750~900℃烧结0.5~6小时,即得到本发明的高氧离子电导率的改性钒酸铋基氧离子导体材料。
实施例1:
制备Bi4(V0.9Cu0.1)1.9O10.465氧离子导体材料
步骤如下:
(1)以Bi2O3、V2O5和CuO为原料,在500℃干燥12小时,按Bi4(V0.9Cu0.1)1.9O10.465中各金属元素的比例进行称量配料;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为12小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合原料在650℃煅烧48小时;将处理好的粉料进行研磨,接着在650℃继续煅烧48小时。
(3)煅烧之后的粉料以聚乙烯醇(PVA)溶液为粘结剂在压片机中压制成型,在大气气氛下进行烧结,烧结温度为830℃,烧结时间为2小时;即得到所述高氧离子电导率的四方相结构氧离子导体陶瓷。
本实施制备的Bi4(V0.9Cu0.1)1.9O10.465氧离子导体陶瓷XRD谱图如图1所示,物相鉴定与晶体结构精修表明,制备的陶瓷为单一的四方相结构。图2是实施例Bi4(V0.9Cu0.1)1.9O10.465的扫面电镜图,表明制备陶瓷样品具有高的致密度。用交流阻抗分析仪进行对陶瓷导电性的评价,如图3所示,在300℃时,晶粒电导率达到1.1×10-2S/cm,总电导率达1.2×10-3S/cm。
实施例2:
制备Bi4(V0.9Cr0.1)1.75O10.2氧离子导体材料
(1)以Bi2O3、V2O5和Cr2O3为原料,在500℃干燥4小时,按Bi4(V0.9Cr0.1)1.75O10.2中各金属元素的比例进行称量配料;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为10小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合原料在660℃煅烧48小时;将处理好的粉料进行研磨,接着在660℃继续煅烧48小时。
(3)煅烧之后的粉料以聚乙烯醇(PVA)溶液为粘结剂在压片机中压制成型,在大气气氛下进行烧结,烧结温度为870℃,烧结时间为4小时;即得到所述高氧离子电导率的氧离子导体陶瓷。在300℃时,晶粒电导率为0.8×10-2S/cm,总电导率达1.1×10-3S/cm。
实施例3:
制备Bi4(V0.9Zn0.1)1.8O10.23氧离子导体材料
(1)以Bi2O3、V2O5和ZnCO3为原料,在400℃干燥6小时,按Bi4(V0.9Zn0.1)1.8O10.23中各金属元素的比例进行称量配料;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为5小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合原料在630℃煅烧20小时;将处理好的粉料进行研磨,接着在630℃继续煅烧20小时。
(3)煅烧之后的粉料以聚乙烯醇(PVA)溶液为粘结剂在压片机中压制成型,在大气气氛下进行烧结,烧结温度为850℃,烧结时间为3小时;即得到所述高氧离子电导率的氧离子导体材料陶瓷。在300℃时,晶粒电导率为0.9×10-2S/cm,总电导率达1.1×10-3S/cm。
实施例4:
制备Bi4(V0.7Cu0.3)2.2O10.51氧离子导体材料
(1)以Bi2O3、V2O5和CuCO3为原料,在100℃干燥12小时,按Bi4(V0.9Cr0.1)1.75O10.2中各金属元素的比例进行称量配料;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为2小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合原料在800℃煅烧6小时;将处理好的粉料进行研磨,接着在800℃继续煅烧6小时。
(3)煅烧之后的粉料以聚乙烯醇(PVA)溶液为粘结剂在压片机中压制成型,在大气气氛下进行烧结,烧结温度为900℃,烧结时间为0.5小时;即得到所述高氧离子电导率的氧离子导体陶瓷。在300℃时,晶粒电导率为0.4×10-2S/cm,总电导率达0.9×10-3S/cm。
实施例5:
制备Bi4(V0.95Mg0.025Cu0.025)2.1O10.23氧离子导体材料
(1)以Bi2O3、V2O5和Cr2O3为原料,在400℃干燥12小时,按Bi4(V0.9Cr0.1)1.75O10.2中各金属元素的比例进行称量配料;将称量好的粉料用球磨机混合均匀,球磨介质为无水乙醇,转速为300r/min,球磨时间为10小时;将混合均匀的浆料在烘箱中烘干。
(2)烘干的混合原料在550℃煅烧48小时;将处理好的粉料进行研磨,接着在550℃继续煅烧48小时。
(3)煅烧之后的粉料以聚乙烯醇(PVA)溶液为粘结剂在压片机中压制成型,在大气气氛下进行烧结,烧结温度为800℃,烧结时间为6小时;即得到所述高氧离子电导率的氧离子导体陶瓷。在300℃时,晶粒电导率为0.2×10-2S/cm,总电导率达0.8×10-3S/cm。
除上述实施例外,其他组分的改性钒酸铋基氧离子导体材料的制备也均能实现。

Claims (8)

1.一种改性钒酸铋基氧离子导体材料,其中所述改性钒酸铋基氧离子导体材料的化学组成表示式为:Bi4(V1-yMy)xO11+z,其中M为金属阳离子,选自铜、铬、银、镁、钛、镍、锌等中的一种或几种,其中1.7≤x≤2.2且x≠2,0<y≤0.3,z取决于所述金属阳离子组成电中性平衡。
2.按照权利要求1所述的改性钒酸铋基氧离子导体材料,其中所述M为铜,并且x=1.9,y=0.1。
3.一种按照权利要求1所述的改性钒酸铋基氧离子导体材料的制备方法,包括如下步骤:
(1)以含铋化合物、含钒化合物和含金属M化合物作为原料,按所述化学组成表示式中铋、钒和金属M元素占比进行配料,然后混合均匀得到混合物;
(2)将混合物烘干后煅烧;
(3)将煅烧后的粉末以聚乙烯醇溶液为粘结剂压制成型后烧结,得到所述改性钒酸铋基氧离子导体材料。
4.按照权利要求3所述的方法,其中所述方法还包括在混合前将含铋化合物、含钒化合物和含金属M化合物原料在100~500℃下干燥2~12小时。
5.按照权利要求3所述的方法,其中所述混合是在行星球磨机中进行的,球料比为2:1,球磨介质为无水乙醇,转速为300r/min,球磨时间2~12小时。
6.按照权利要求3所述的方法,其中所述煅烧的煅烧温度为500~800℃,煅烧时间为12~96小时。
7.按照权利要求3所述的方法,其中所述烧结的烧结温度为750~900℃,烧结时间为0.5~6小时。
8.按照权利要求3所述的方法,其中所述含铋化合物为氧化铋,含钒化合物为五氧化二钒,含金属M化合物为金属M的氧化物或者碳酸盐。
CN202211395394.6A 2022-11-09 2022-11-09 一种改性钒酸铋基氧离子导体材料及其制备方法 Pending CN116639727A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211395394.6A CN116639727A (zh) 2022-11-09 2022-11-09 一种改性钒酸铋基氧离子导体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211395394.6A CN116639727A (zh) 2022-11-09 2022-11-09 一种改性钒酸铋基氧离子导体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116639727A true CN116639727A (zh) 2023-08-25

Family

ID=87614081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211395394.6A Pending CN116639727A (zh) 2022-11-09 2022-11-09 一种改性钒酸铋基氧离子导体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116639727A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117049874A (zh) * 2023-09-04 2023-11-14 桂林理工大学 一类钒酸铋基中低熵氧离子导体材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117049874A (zh) * 2023-09-04 2023-11-14 桂林理工大学 一类钒酸铋基中低熵氧离子导体材料及其制备方法

Similar Documents

Publication Publication Date Title
Anantharaman et al. Potential of pyrochlore structure materials in solid oxide fuel cell applications
Fan et al. Layer-structured LiNi0. 8Co0. 2O2: A new triple (H+/O2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells
Simner et al. Development of lanthanum ferrite SOFC cathodes
Xia et al. Novel cathodes for low‐temperature solid oxide fuel cells
Marina et al. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate
JP3527099B2 (ja) 固体酸化物燃料電池用カソード組成物
KR101300157B1 (ko) 고체 산화물 연료 전지용 복합 세라믹 접촉재 및 그 제조방법
Liu et al. Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation
KR20130099704A (ko) 고체산화물 연료전지용 기능층 소재, 및 상기 소재를 이용하여 제조된 기능층과 상기 기능층을 포함하는 고체산화물 연료전지
Huang et al. Intermediate-temperature conductivity of B-site doped Na0. 5Bi0. 5TiO3-based lead-free ferroelectric ceramics
Lü et al. SmBaCoCuO5+ x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells
Du et al. Electrical conductivity and cell performance of La0. 3Sr0. 7Ti1− xCrxO3− δ perovskite oxides used as anode and interconnect material for SOFCs
Zhang et al. Cost-effective solid oxide fuel cell prepared by single step co-press-firing process with lithiated NiO cathode
Kiratzis et al. Preparation and characterization of copper/yttria titania zirconia cermets for use as possible solid oxide fuel cell anodes
West et al. Layered LnBa1− xSrxCoCuO5+ δ (Ln= Nd and Gd) perovskite cathodes for intermediate temperature solid oxide fuel cells
Ghorbani-Moghadam et al. High temperature electrical conductivity and electrochemical investigation of La2-xSrxCoO4 nanoparticles for IT-SOFC cathode
Jo et al. Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs
KR101892909B1 (ko) 프로톤 전도성 산화물 연료전지의 제조방법
Leng et al. The effect of sintering aids on BaCe0· 7Zr0· 1Y0. 1Yb0. 1O3-δ as the electrolyte of proton-conducting solid oxide electrolysis cells
Solovyev et al. Effect of sintering temperature on the performance of composite La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3–Ce 0.9 Gd 0.1 O 2 cathode for solid oxide fuel cells
CN116639727A (zh) 一种改性钒酸铋基氧离子导体材料及其制备方法
Zheng et al. A promising Bi-doped La0. 8Sr0. 2Ni0. 2Fe0. 8O3-δ oxygen electrode for reversible solid oxide cells
US7468218B2 (en) Composite solid oxide fuel cell anode based on ceria and strontium titanate
Kim et al. Characterization of Sr2. 7Ln0. 3Fe1. 4Co0. 6O7 (Ln= La, Nd, Sm, Gd) intergrowth oxides as cathodes for solid oxide fuel cells
JP2003308846A (ja) ペロブスカイト型酸化物及び燃料電池用空気極

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination