CN116613811A - 全直流海上风电制氢并网系统及控制方法 - Google Patents

全直流海上风电制氢并网系统及控制方法 Download PDF

Info

Publication number
CN116613811A
CN116613811A CN202310482542.6A CN202310482542A CN116613811A CN 116613811 A CN116613811 A CN 116613811A CN 202310482542 A CN202310482542 A CN 202310482542A CN 116613811 A CN116613811 A CN 116613811A
Authority
CN
China
Prior art keywords
direct current
power
voltage
converter
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310482542.6A
Other languages
English (en)
Inventor
王霄鹤
杨文斌
陈晴
郦洪柯
李景一
陈雨薇
夏冰清
陈玮
殷贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PowerChina Huadong Engineering Corp Ltd
Original Assignee
PowerChina Huadong Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PowerChina Huadong Engineering Corp Ltd filed Critical PowerChina Huadong Engineering Corp Ltd
Priority to CN202310482542.6A priority Critical patent/CN116613811A/zh
Publication of CN116613811A publication Critical patent/CN116613811A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种全直流海上风电制氢并网系统及控制方法,将风电机组网侧直接接入海上直流母线,为制氢设备提供直流电源,同时通过高压直流送出系统接入陆上电网;并针对该系统提出一种控制方法,通过风电机组机侧换流器、制氢设备DC/DC换流器、直流送出系统换流器的协同控制,实现海上风电制氢并网系统的高效稳定运行。与已有方案相比,本发明具有更简单的拓扑结构,能够有效解决大规模海上风电直流送出系统直接接入对陆上电网稳定性产生不利影响的问题。

Description

全直流海上风电制氢并网系统及控制方法
技术领域
本发明属于新能源发电技术领域,具体涉及一种全直流海上风电制氢并网系统及控制方法。
背景技术
大力发展海上风力发电是我国实现“双碳”目标的重要途径,目前,我国海上风电的建设正在如火如荼地进行中。氢能具有高能量密度、可储存运输、高转化效率、适用范围广和环保无污染等特点,是大规模转化剩余可再生能源电力的优选方式之一。海上风电制氢既可以利用氢能储存电能以平抑海上风电输出的波动性,还可以利用海上风电较低的度电成本提高电解制氢的收益。
随着海上风电的大规模开发,近海海上风电的建设已经趋于饱和,海上风电正在走向深远海,随着输电距离的增加,与传统的海上风电交流送出方式相比,采用柔性高压直流输电技术是一种更加经济有效的输电方案。然而,由于海上风电具有随机性和波动性,大规模海上风电柔性直流送出系统直接接入陆上电网会对电网的稳定性产生不利影响。在远距离海上风电场配套建设一定量的制氢设备,就地消纳一部分海上风电出力,就能够平抑海上风电的波动性,且能够优化直流送出系统的建设容量,是未来远距离海上风电的发展趋势。
海上风电制氢并网系统包含多种交直流变换系统,结构复杂,目前,针对海上风电制氢并网系统的拓扑结构和控制方法的研究还十分有限,尤其是针对适用于远距离海上风电制氢系统直流并网方案还未见相关研究,因此,亟需提出一种海上风电制氢直流并网系统及控制方法。
发明内容
本发明的目的是为了克服已有海上风电制氢并网系统包含多种交直流变换系统,结构复杂的问题,提供一种全直流海上风电制氢并网系统及控制方法,通过风电机组机侧换流器、制氢设备DC/DC换流器、直流送出系统换流器的协同控制,实现海上风电制氢并网系统的高效稳定运行。
为实现上述发明目的,根据本发明的第一个方面,本发明采取如下技术方案:
一种全直流海上风电制氢并网系统,其特征在于,所述全直流海上风电制氢并网系统包括:风力发电机、风机机侧换流器、风电场直流母线、双向DC/DC换流器、海水电解槽、储氢罐、海上直流升压站、高压直流送出海缆、受端MMC换流器、受端交流变压器、陆上交流电网;
所述风力发电机经过风机机侧换流器接入海上风电场直流母线;
所述储氢罐与海水电解槽相连,海水电解槽经过双向DC/DC换流器接入海上风电场直流母线;
所述海上风电场直流母线通过海上直流升压站升压后利用高压直流海缆送出,送至陆上后通过受端MMC换流器逆变为三相交流电压,再通过受端交流变压器与陆上交流电网的电压等级相匹配后,接入陆上交流电网;
所述海上直流升压站,采用直-交-直拓扑,首先将直流电压逆变为高频交流电压,经高频交流变压器升压后,再整流为直流电压;其中,低压侧逆变装置采用多个子模块并联结构,高压侧整流装置采用多个子模块串联结构,每个子模块采用单相可控全桥换流器。
为实现上述发明目的,根据本发明的第二个方面,本发明采取如下技术方案:
一种全直流海上风电制氢并网系统控制方法,其特征在于:
所述风机机侧换流器,采用定有功和无功功率控制策略,在正常运行阶段,其有功功率指令根据最大功率点跟踪指令给定,在风电场限功率运行阶段,其有功功率指令根据上层调度指令直接给定;
所述双向DC/DC变换器,采用直流母线电压控制外环和电流控制内环,控制目标为通过控制海水电解槽直流母线电压调节制氢功率,直流母线电压参考值根据以下方法进行给定:根据上层调度指令确定制氢系统有功功率参考值,再根据海水电解槽有功功率-直流电压特性曲线,确定直流母线电压参考值;
所述海上直流升压站,采用定直流母线电压控制策略,控制目标为维持海上风电场直流母线电压稳定;
所述受端MMC换流器,采用直流母线电压和无功功率控制外环、电流控制内环,控制目标为维持直流升压站高压侧直流电压稳定。
进一步地,所述风机机侧换流器采用的控制系统包括:上层有功调度指令模块、最大功率点跟踪计算模块、转子位置观测器、Park变换模块、功率外环控制器、电流内环控制器、Park反变换模块、调制模块;其中,当风电场制氢系统正常运行时,机侧换流器的有功功率参考值根据最大功率点跟踪计算模块的输出给定;当制氢系统暂停或低载运行时,风机机侧换流器工作于限功率模式,此时有功功率参考值的计算方法如下:
其中,Poutmax为海上直流升压站最大送出有功功率,Pb为制氢系统消耗有功功率,n为风电场并网风机台数。
进一步地,所述双向DC/DC变换器所采用的控制系统包括:功率指令计算模块、电压参考值计算模块、电压控制外环、电流控制内环、PWM信号生成模块;其中,功率指令计算模块根据以下方法计算功率参考指令Pbref
其中,Pmax为海水电解槽最大有功功率,Pwind为风电场输出功率,S为储氢罐当前压力,Sth为储氢罐安全限额压力,Smax为储氢罐允许最大压力。
本发明的有益效果是:
通过采用本发明的技术方案,优化了海上风电制氢并网系统的拓扑结构,通过风电机组机侧换流器、制氢设备DC/DC换流器、直流送出系统换流器的协同控制,实现全直流海上风电制氢并网系统的协调运行,能够有效解决大规模海上风电柔性直流送出系统直接接入陆上电网会对电网的稳定性产生不利影响的问题,具有良好的应用前景。
附图说明
图1为本发明全直流海上风电制氢并网系统的一个典型拓扑图。
图2为本发明中海上直流升压站的一个典型拓扑图。
图3为本发明中双向DC/DC换流器的一个典型拓扑图。
图4为本发明中受端MMC换流器的一个典型拓扑图。
图5为本发明中风机机侧换流器控制方法的一个具体示例系统原理图。
图6为本发明中双向DC/DC换流器控制方法的一个具体示例系统原理图。
图7为本发明中受端MMC换流器控制方法的一个具体示例系统原理图。
图1中,1-风力发电机、2-风机机侧换流器、3-风电场直流母线、4-双向DC/DC换流器、5-海水电解槽、6-储氢罐、7-海上直流升压站、8-高压直流送出海缆、9-受端MMC换流器、10-受端交流变压器、11-陆上交流电网;
图5中,12-上层有功调度指令模块、13-最大功率点跟踪计算模块、14-转子位置观测器、15-Park变换模块、16-功率外环控制器、17-电流内环控制器、18-Park反变换模块、19-调制模块;
图6中,20-功率指令计算模块、21-电压参考值计算模块、22-电压控制外环、23-电流控制内环、24-PWM信号生成模块;
图7中,25-直流母线电压和无功功率控制模块、26-电流控制模块、27-Park反变换模块、28-内部环流控制模块、29-桥臂电压计算模块。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施例对本发明的技术方案进行详细说明。
在本发明实施例中,全直流海上风电制氢并网系统如图1所示,包括风力发电机1、风机机侧换流器2、风电场直流母线3、双向DC/DC换流器4、海水电解槽5、储氢罐6、海上直流升压站7、高压直流送出海缆8、受端MMC换流器9、受端交流变压器10、陆上交流电网11。
在本发明实施例中,风力发电机1经过风机机侧换流器2接入海上风电场直流母线3;储氢罐6与海水电解槽5相连,海水电解槽5经过双向DC/DC换流器4接入海上风电场直流母线3;海上风电场直流母线3通过海上直流升压站7升压后利用高压直流海缆8送出,送至陆上后通过受端MMC换流器9逆变为三相交流电压,再通过受端交流变压器10与陆上交流电网11的电压等级相匹配后,接入陆上交流电网11;海上直流升压站7采用直-交-直拓扑,首先将直流电压逆变为高频交流电压,经高频交流变压器升压后,再整流为直流电压;其中,低压侧逆变装置采用多个子模块并联结构,高压侧整流装置采用多个子模块串联结构,每个子模块采用单相可控全桥换流器。
在本发明实施例中,风机机侧换流器2采用定有功和无功功率控制策略,在正常运行阶段,其有功功率指令根据最大功率点跟踪指令给定,在风电场限功率运行阶段,其有功功率指令根据上层调度指令直接给定。
如图5所示,在本发明实施例中,风机机侧换流器2所采用的控制系统包括:上层有功调度指令模块12、最大功率点跟踪计算模块13、转子位置观测器14、Park变换模块15、功率外环控制器16、电流内环控制器17、Park反变换模块18、调制模块19;当风电场制氢系统正常运行时,机侧换流器的有功功率参考值根据最大功率点跟踪计算模块的输出给定;当制氢系统暂停或低载运行时,风机机侧换流器工作于限功率模式,此时有功功率参考值的计算方法如下:
其中,Poutmax为海上直流升压站最大送出有功功率,Pb为制氢系统消耗有功功率,n为风电场并网风机台数。
风机机侧换流器功率外环控制器16的实现方式如下:
其中:FPI1(s)为PI控制器的传递函数,kp1为比例系数,ki1为积分系数,isdref,isqref对应为电流矢量Isdqref的d轴,q轴分量,Psref为有功功率参考值,Ps为有功功率,Qsref为无功功率参考值,Qs为无功功率。
风机机侧换流器电流内环控制器17的实现方式如下:
其中:FPI2(s)为PI控制器的传递函数,kp2为比例系数,ki2为积分系数,usdref,usqref对应为电压矢量Usdqref的d轴,q轴分量,isd,isq对应为电流矢量Isdq的d轴,q轴分量,ωr为转子角频率,Ls为风机定子电感,Ψ为转子永磁体磁链。
在本发明实施例中,双向DC/DC换流器采用定直流母线电压控制策略,通过控制海水电解槽直流母线电压调节制氢功率,直流母线电压参考值根据以下方法进行给定:根据上层调度指令确定制氢系统有功功率参考值,再根据海水电解槽有功功率-直流电压特性曲线,确定直流母线电压参考值。
如图6所示,在本发明实施例中,所述双向DC/DC变换器所采用的控制系统包括:功率指令计算模块20、电压参考值计算模块21、电压控制外环22、电流控制内环23、PWM信号生成模块24;其中,功率指令计算模块根据以下方法计算功率参考指令Pbref
其中,Pmax为海水电解槽最大有功功率,Pwind为风电场输出功率,S为储氢罐当前压力,Sth为储氢罐安全限额压力,Smax为储氢罐允许最大压力。
电压参考值计算模块21用于计算直流母线电压参考值,可以根据海水电解槽有功功率-直流电压特性曲线采用查表法得到。
在本发明实施例中,受端MMC换流器采用直流母线电压和无功功率控制外环、电流控制内环,控制目标为维持直流升压站高压侧直流电压稳定。
如图7所示,在本发明实施例中,所述受端MMC换流器所采用的控制系统包括:直流母线电压和无功功率控制模块25、电流控制模块26、Park反变换模块27、内部环流控制模块28、桥臂电压计算模块29;
其中,直流母线电压及无功功率外环控制模块25的实现方式如下:
其中:FPI3(s)为PI控制器的传递函数,kp3为比例系数,ki3为积分系数,igdref2,igqref2对应为电流矢量Igdqref2的d轴,q轴分量,Udc2ref为直流母线电压参考值,Udc2为直流母线电压,Qg2ref为无功功率参考值,Qg2为无功功率。
电流控制模块26的实现方式如下:
其中:FPI4(s)为PI控制器的传递函数,kp4为比例系数,ki4为积分系数,udifd2,udifq2对应为电压矢量Udifdq2的d轴,q轴分量,ugd,ugq对应为电压矢量Ugdq的d轴,q轴分量,igd2,igq2对应为电流矢量Igdq2的d轴,q轴分量,ωg为电网电压角频率,Lg为滤波电感。
内部环流控制模块28的实现方式如下:
其中,FSOGI(s)为二阶广义积分器的传递函数,kg为增益系数,ωc为截止频率,在本发明实施例中,二阶广义积分器的谐振频率选择为±100Hz,截止频率选择为12Hz;ucoma2,ucomb2和ucomc2对应为电压矢量Ucomabc2的a轴,b轴和c轴分量,ica2,icb2和icc2对应为电流矢量Icabc2的a轴,b轴和c轴分量。
上述对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (4)

1.一种全直流海上风电制氢并网系统,其特征在于,包括:风力发电机、风机机侧换流器、风电场直流母线、双向DC/DC换流器、海水电解槽、储氢罐、海上直流升压站、高压直流送出海缆、受端MMC换流器、受端交流变压器、陆上交流电网;
所述风力发电机经过风机机侧换流器接入海上风电场直流母线;
所述储氢罐与海水电解槽相连,海水电解槽经过双向DC/DC换流器接入海上风电场直流母线;
所述海上风电场直流母线通过海上直流升压站升压后利用高压直流海缆送出,送至陆上后通过受端MMC换流器逆变为三相交流电压,再通过受端交流变压器与陆上交流电网的电压等级相匹配后,接入陆上交流电网;
所述海上直流升压站,采用直-交-直拓扑,首先将直流电压逆变为高频交流电压,经高频交流变压器升压后,再整流为直流电压;其中,低压侧逆变装置采用多个子模块并联结构,高压侧整流装置采用多个子模块串联结构,每个子模块采用单相可控全桥换流器。
2.权利要求1所述的全直流海上风电制氢并网系统的控制方法,其特征在于:
所述风机机侧换流器,采用定有功和无功功率控制策略,在正常运行阶段,其有功功率指令根据最大功率点跟踪指令给定,在风电场限功率运行阶段,其有功功率指令根据上层调度指令直接给定;
所述双向DC/DC变换器,采用直流母线电压控制外环和电流控制内环,控制目标为通过控制海水电解槽直流母线电压调节制氢功率,直流母线电压参考值根据以下方法进行给定:根据上层调度指令确定制氢系统有功功率参考值,再根据海水电解槽有功功率-直流电压特性曲线,确定直流母线电压参考值;
所述海上直流升压站,采用定直流母线电压控制策略,控制目标为维持海上风电场直流母线电压稳定;
所述受端MMC换流器,采用直流母线电压和无功功率控制外环、电流控制内环,控制目标为维持直流升压站高压侧直流电压稳定。
3.根据权利要求2所述的控制方法,其特征在于,所述风机机侧换流器采用的控制系统包括:上层有功调度指令模块、最大功率点跟踪计算模块、转子位置观测器、Park变换模块、功率外环控制器、电流内环控制器、Park反变换模块、调制模块;当风电场制氢系统正常运行时,机侧换流器的有功功率参考值根据最大功率点跟踪计算模块的输出给定;当制氢系统暂停或低载运行时,风机机侧换流器工作于限功率模式,此时有功功率参考值的计算方法如下:
其中,Poutmax为海上直流升压站最大送出有功功率,Pb为制氢系统消耗有功功率,n为风电场并网风机台数。
4.根据权利要求2所述的控制方法,其特征在于,所述双向DC/DC变换器所采用的控制系统包括:功率指令计算模块、电压参考值计算模块、电压控制外环、电流控制内环、PWM信号生成模块;其中,功率指令计算模块根据以下方法计算功率参考指令Pbref
其中,Pmax为海水电解槽最大有功功率,Pwind为风电场输出功率,S为储氢罐当前压力,Sth为储氢罐安全限额压力,Smax为储氢罐允许最大压力。
CN202310482542.6A 2023-04-27 2023-04-27 全直流海上风电制氢并网系统及控制方法 Pending CN116613811A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310482542.6A CN116613811A (zh) 2023-04-27 2023-04-27 全直流海上风电制氢并网系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310482542.6A CN116613811A (zh) 2023-04-27 2023-04-27 全直流海上风电制氢并网系统及控制方法

Publications (1)

Publication Number Publication Date
CN116613811A true CN116613811A (zh) 2023-08-18

Family

ID=87673854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310482542.6A Pending CN116613811A (zh) 2023-04-27 2023-04-27 全直流海上风电制氢并网系统及控制方法

Country Status (1)

Country Link
CN (1) CN116613811A (zh)

Similar Documents

Publication Publication Date Title
WO2021082601A1 (zh) 一种海上风电场高频不控整流直流输电系统
Lu et al. Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC
CN112421670B (zh) 一种适用于远海风电送出的中频柔性直流输电系统及其控制方法
CN105429183A (zh) 永磁直驱型海上风电场并网系统拓扑结构及其控制方法
CN104113077A (zh) 一种双馈异步风力发电机高电压穿越的协调控制方法
CN108092257A (zh) 一种18相风力发电机直流并网结构及其控制方法
CN104539206A (zh) 海上大型直驱开关磁阻风力发电机功率变换器及其系统
CN109474021A (zh) 一种基于h-mmc的风力发电-并网系统及其控制方法
CN108923450B (zh) 电流源型高压直流输电系统的控制及运行方法
CN109962496A (zh) 一种基于高压直流输电的海上风电场集成拓扑设计方法
CN116632902A (zh) 一种基于pwm电流源型变换器的多端口柔性直流输电系统
CN102946102B (zh) 潮流发电机组变流输电系统的工作方法
Callegari et al. VFD-based coordinated multi-stage centralized/decentralized control to support offshore electrical power systems
CN116613811A (zh) 全直流海上风电制氢并网系统及控制方法
CN115622110A (zh) 一种海上风电柔性直流并网系统及其控制方法
CN219937960U (zh) 全直流海上风电制氢并网系统
CN204258295U (zh) 开关磁阻风力发电机直流输出Cuk升降压型电能变换系统
CN204361682U (zh) 一种风电场全直流电能汇聚系统
Berboucha et al. Fuzzy logic control of wind turbine storage system connected to the grid using multilevel inverter
CN116632910A (zh) 一机一储式海上风电制氢直流并网系统及控制方法
CN204258296U (zh) 开关磁阻风力发电机直流输出升压型电能变换系统
CN204258685U (zh) 开关磁阻风力发电机直流输出电流可逆电能变换系统
Garces et al. A control strategy for series connected offshore wind turbines
CN110838720B (zh) 基于多绕组永磁发电机的直流串并联海上风电场及其控制方法
CN202957598U (zh) 潮流发电机组变流输电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination