CN116611527B - 量子电路处理方法、装置及电子设备 - Google Patents

量子电路处理方法、装置及电子设备 Download PDF

Info

Publication number
CN116611527B
CN116611527B CN202310579860.4A CN202310579860A CN116611527B CN 116611527 B CN116611527 B CN 116611527B CN 202310579860 A CN202310579860 A CN 202310579860A CN 116611527 B CN116611527 B CN 116611527B
Authority
CN
China
Prior art keywords
directed
acyclic graph
list
candidate
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310579860.4A
Other languages
English (en)
Other versions
CN116611527A (zh
Inventor
石如琪
方堃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baidu Netcom Science and Technology Co Ltd
Original Assignee
Beijing Baidu Netcom Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baidu Netcom Science and Technology Co Ltd filed Critical Beijing Baidu Netcom Science and Technology Co Ltd
Priority to CN202310579860.4A priority Critical patent/CN116611527B/zh
Publication of CN116611527A publication Critical patent/CN116611527A/zh
Application granted granted Critical
Publication of CN116611527B publication Critical patent/CN116611527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/20Models of quantum computing, e.g. quantum circuits or universal quantum computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/60Quantum algorithms, e.g. based on quantum optimisation, quantum Fourier or Hadamard transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/80Quantum programming, e.g. interfaces, languages or software-development kits for creating or handling programs capable of running on quantum computers; Platforms for simulating or accessing quantum computers, e.g. cloud-based quantum computing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本公开提供了一种量子电路处理方法、装置及电子设备,涉及量子计算技术领域,具体涉及量子电路技术领域。具体实现方案为:获取第一量子电路的第一指令列表;基于第一指令列表,确定第一有向无环图;确定第一可连接信息;基于第一有向无环图和第一可连接信息,依次确定第二有向边,依次添加第二有向边,得到第二有向无环图,第二有向边为M个候选有向边中评分值最大的候选有向边,评分值用于表征第三有向无环图中输出节点到输入节点可连接的有向边数量中的最大值,第三有向无环图是在第一有向无环图中添加候选有向边后得到;基于第二有向无环图、第一目标列表和第一指令列表,对第一量子电路进行等效编译,得到第二量子电路的第二指令列表。

Description

量子电路处理方法、装置及电子设备
技术领域
本公开涉及量子计算技术领域,尤其涉及量子电路技术领域,具体涉及一种量子电路处理方法、装置及电子设备。
背景技术
量子计算利用量子世界中特有的运行规律,提供了一条全新的并且非常有前景的信息处理方式。在诸多特定问题上,量子算法可以带来超越经典算法的优势。例如,利用秀尔(Shor)算法,可以对大整数进行高效的分解,利用格罗弗(Grover)算法,可以更快的进行数据搜索。随着量子理论的发展,不断有新的量子算法被提出,如何高效的对这些算法进行模拟或者在真正的量子硬件上运行始终是一个重要的问题。
目前,量子算法的经典模拟或者真机运行主要受限于量子比特的数量。在经典模拟上,由于描述量子态的列向量的长度随对应比特数呈指数增长(例如一个n比特的量子态的列向量长度为2n),经典计算机很难模拟大规模的量子算法。受计算机内存和处理器能力的限制,现有的量子电路模拟方式最多能支持模拟几十个量子比特的算法。
发明内容
本公开提供了一种量子电路处理方法、装置及电子设备。
根据本公开的第一方面,提供了一种量子电路处理方法,包括:
获取第一量子电路的第一指令列表;
基于所述第一指令列表,确定第一有向无环图,所述第一有向无环图包括所述第一指令列表中指令对应的节点和第一有向边,所述第一有向边用于表征所述第一指令列表中不同指令间的时序关系;
确定所述第一有向无环图的第一可连接信息,所述第一可连接信息用于表征输出节点到输入节点的可连接性,所述输入节点为所述第一指令列表中类型为重置操作指令对应的节点,所述输出节点为所述第一指令列表中类型为量子测量操作指令对应的节点;
基于所述第一有向无环图和所述第一可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图,所述第二有向无环图包括所述第二有向边和所述第一有向边,所述第二有向边和所述第一有向边构成的路径不包括有向环路,所述第二有向无环图中各输出节点无可连接的输入节点,所述第二有向边为基于所述第一可连接信息确定的输出节点到输入节点可连接的M个候选有向边中评分值最大的候选有向边,所述评分值用于表征第三有向无环图中输出节点到输入节点可连接的有向边数量中的最大值,所述第三有向无环图是在所述第一有向无环图中添加候选有向边后得到的,M为正整数;
基于所述第二有向无环图、所述第二有向边构成的第一目标列表和所述第一指令列表,对所述第一量子电路进行等效编译,得到与所述第一量子电路等效的第二量子电路的第二指令列表。
根据本公开的第二方面,提供了一种量子电路处理装置,包括:
获取模块,用于获取第一量子电路的第一指令列表;
第一确定模块,用于基于所述第一指令列表,确定第一有向无环图,所述第一有向无环图包括所述第一指令列表中指令对应的节点和第一有向边,所述第一有向边用于表征所述第一指令列表中不同指令间的时序关系;
第二确定模块,用于确定所述第一有向无环图的第一可连接信息,所述第一可连接信息用于表征输出节点到输入节点的可连接性,所述输入节点为所述第一指令列表中类型为重置操作指令对应的节点,所述输出节点为所述第一指令列表中类型为量子测量操作指令对应的节点;
第三确定模块,用于基于所述第一有向无环图和所述第一可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图,所述第二有向无环图包括所述第二有向边和所述第一有向边,所述第二有向边和所述第一有向边构成的路径不包括有向环路,所述第二有向无环图中各输出节点无可连接的输入节点,所述第二有向边为基于所述第一可连接信息确定的输出节点到输入节点可连接的M个候选有向边中评分值最大的候选有向边,所述评分值用于表征第三有向无环图中输出节点到输入节点可连接的有向边数量中的最大值,所述第三有向无环图是在所述第一有向无环图中添加候选有向边后得到的,M为正整数;
等效编译模块,用于基于所述第二有向无环图、所述第二有向边构成的第一目标列表和所述第一指令列表,对所述第一量子电路进行等效编译,得到与所述第一量子电路等效的第二量子电路的第二指令列表。
根据本公开的第三方面,提供了一种电子设备,包括:
至少一个处理器;以及
与至少一个处理器通信连接的存储器;其中,
存储器存储有可被至少一个处理器执行的指令,该指令被至少一个处理器执行,以使至少一个处理器能够执行第一方面中的任一项方法。
根据本公开的第四方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,该计算机指令用于使计算机执行第一方面中的任一项方法。
根据本公开的第五方面,提供了一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现第一方面中的任一项方法。
根据本公开的技术解决了相关技术中量子电路的经典模拟和真机运行比较难的问题,使得能够实现对大规模量子比特的量子电路进行经典模拟和真机运行。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图用于更好地理解本方案,不构成对本公开的限定。其中:
图1是根据本公开第一实施例的量子电路处理方法的流程示意图;
图2是一示例的量子电路图的结构示意图;
图3是第一量子电路的结构示意图;
图4是第一有向无环图的结构示意图;
图5是一具体示例的量子电路处理方法的流程示意图;
图6是根据本公开第二实施例的量子电路处理装置的结构示意图;
图7是用来实施本公开的实施例的示例电子设备的示意性框图。
具体实施方式
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
第一实施例
如图1所示,本公开提供一种量子电路处理方法,包括如下步骤:
步骤S101:获取第一量子电路的第一指令列表。
本实施例中,量子电路处理方法涉及量子计算技术领域,尤其涉及量子电路技术领域,其可以广泛应用于量子电路的经典模拟和真机运行场景下。本公开实施例的量子电路处理方法,可以由本公开实施例的量子电路处理装置执行。本公开实施例的量子电路处理装置可以配置在任意电子设备中,以执行本公开实施例的量子电路处理方法。
受计算机内存和处理器能力的限制,现有的量子电路模拟方式最多能支持模拟几十个量子比特的算法。比如,笔记本能模拟20-30个左右的量子比特,大型超级计算机和集群可以最多模拟30-40个左右的量子比特。在真机运行上,由于当前量子芯片的可扩展性问题尚未解决,导致量子计算机能提供的量子比特数非常有限。因此,量子电路优化是量子计算领域中的一个基本问题。
量子电路优化是通过一定的技术手段,可以将给定的量子电路进行简化,以降低其经典模拟和真机运行的要求,进而加速量子算法的研究和量子计算在实际场景下的落地。
而本实施例的量子电路处理可以为量子电路优化的处理,其目的在于通过对量子电路进行优化编译,可以使得编译得到的量子电路在量子比特数上对原量子电路进行大量简化。一方面,可以进一步提升量子算法经典模拟的规模,加强经典计算机对量子算法的验证能力,另一方面,也可以降低量子算法在真机运行上的比特数要求,弥补当前量子芯片可扩展性问题的不足。
更具体的,本实施例的目的是将给定的量子电路等效编译为动态量子电路,以减少量子电路的量子比特数量,降低其经典模拟和真机运行的要求。
其中,通过引入量子比特的中间电路测量以及在计算中将量子比特重置为其基态的能力,动态量子电路能够将经典通信和计算整合到量子电路中。这一特性将极大地增加在量子硬件上运行电路的多样性,并且对于纠错和容错量子计算的发展也至关重要。因此,动态量子电路有望成为未来许多量子应用的重要组成部分。在数学意义上和没有实验约束的情况下,静态和动态量子电路具有相同的计算能力,即任何可以用动态量子电路表示的问题也可以表示为静态问题,所以动态量子电路提供了权衡电路深度和宽度的可能性。
以下详细介绍量子电路模型。
量子电路模型是一种常用的量子计算模型。通过对初始量子态进行量子门操作完成量子态的演化,并通过量子测量提取计算结果。而量子电路图则表示了量子电路模型计算的全部过程。
图2是一示例的量子电路图的结构示意图,如图2所示,可以用一根水平线表示一个量子比特系统,从上至下依次对量子比特位进行标号,其中,量子位的标号往往从零开始。
量子电路图中时间演化的方向从左到右,最左端为初始的量子态,其中,通常每个量子比特初始化为零态,之后对初始态依次作用不同的量子门操作以完成量子态的演化。同时可以对某些量子位进行量子测量,获得测量结果。
在一些应用场景中,量子电路中的操作可能会出现对一部分量子比特进行量子测量,并根据测量结果来调控其余的量子比特的演化,此类操作称为经典控制量子操作,如图2所示的经典控制量子门201。而经过测量后的量子比特则可以被重置,该类操作可以称之为重置操作,如图2所示的重置操作202,以供后续计算继续使用。可以将包含中间测量、经典控制量子操作以及重置操作的量子电路称为动态量子电路,如图2表示的量子电路即为动态量子电路。
量子电路图中除了初始态之外其余部分,通常可以按照量子门的作用顺序用一个有序的指令列表进行表示,列表中的每一个元素代表一个量子门、经典控制量子门、量子测量或重置操作指令。具体地,可以将:
每一个单量子比特门(如H,X,Y,Z,S,T,Rx,Ry,Rz等)表示为一个包含四个元素的指令[name,which_qubit,parameters,condition]。其中,name为量子门的名称,which_qubit为量子门作用的量子位,parameters为量子门的参数(如没有参数则默认为None),condition表示该量子门操作受哪一个量子位的测量结果控制(如果没有参数则默认为None)。
例如,[Rx,2,pi,None]表示对量子位2上的量子比特作用一个Rx旋转门,旋转角度为pi。又例如,图2中经典控制量子门201为经典受控量子X门,可以表示为[X,2,None,‘a’],即作用在量子位2上的泡利Pauli X门,受控条件为测量标识ID为‘a’的测量结果,测量结果为0则不作用量子门,测量结果为1则作用量子门。
每一个双量子比特门(如控制非门CNOT,CZ门)表示为一个包含四个元素的指令[name,which_qubit,parameters,condition]。其中,name为量子门的名称,which_qubit为该双量子比特门作用的量子位构成的列表(特别地,对于受控量子门,为控制位和受控位构成的列表),parameters为量子门的参数(如没有参数则默认为None),condition表示该量子门操作受哪一个量子位的测量结果控制(如果没有参数则默认为None)。
例如,[CNOT,[1,3],None,None]表示对量子位1和量子位3作用控制非门,其中,量子位1为控制位,量子位3为受控位。[CZ,[1,2],None,None]表示在量子位1和量子位2之间作用CZ门。
每一个单比特测量表示为一个包含四个元素的指令[measure,which_qubit,basis,mid]。其中,basis由四个参数决定,其包括测量角度angle,测量平面plane,域集s,域集t,而mid为标识当前测量的标识ID。
例如,[measure,2,[0,‘YZ’,[1],[2]],‘a’]表示对量子位2进行测量,测量角度为0,测量平面为‘YZ’平面,域集s为量子位1,域集t为量子位2,当前测量指令的标识ID为‘a’。
每一个重置操作指令可以表示为一个包含四个元素的指令[reset,which_qubit,matrix,None]。其中,which_qubit为需要重置的量子位,matrix为需要重置比特的量子态矩阵,经过重置操作后的量子比特可供后续计算继续使用。
在步骤S101中,第一量子电路可以为动态量子电路,按照第一量子电路中量子门的作用顺序用一个有序的指令列表表示,该指令列表即为第一指令列表,其内可以包括第一量子电路的操作指令,第一指令列表中的每一个元素代表一个量子门、经典控制量子门、量子测量或重置操作指令。
可以获取预先存储的第一量子电路的第一指令列表,也可以获取用户输入的第一量子电路的第一指令列表,这里不进行具体限定。
另外,第一量子电路也可以基于静态量子电路(即量子电路优化前的原量子电路)的指令列表得到,通过在静态量子电路的指令列表的前面添加各个量子比特的重置操作指令,即可得到第一量子电路的第一指令列表。其中,静态量子电路中仅包括量子测量操作和量子门操作,且量子测量操作位于量子门操作之后。
步骤S102:基于所述第一指令列表,确定第一有向无环图,所述第一有向无环图包括所述第一指令列表中指令对应的节点和第一有向边,所述第一有向边用于表征所述第一指令列表中不同指令间的时序关系。
其中,所述第一有向边构成的路径不包括有向环路。第一有向无环图中可以包括至少两条第一有向边,所述至少两条第一有向边构成的路径不包括有向环路。
该步骤中,第一有向无环图可以包括节点和由节点构成的第一有向边,每个节点表示第一量子电路中的一个电路指令,其中,节点标识可以为第一指令列表中的指令,也可以为第一指令列表中指令对应的标识,这里不进行具体限定。
第一有向边指的是带有指向(即方向性)的边,表示第一指令列表中不同指令间的时序关系,如节点A指向节点B的边表示节点A对应指令需要在节点B对应指令之前完成执行。
第一有向无环图中,各个第一有向边所构成的任一路径均不是有向环路,有向环路指的是带有方向性的环路,如节点A、节点B和节点C,若节点A指向节点B,节点B指向节点C、节点C再指向节点A,则节点A、节点B和节点C构成了一条有向环路。
由于量子电路中指令的时序关系可以基于量子电路的指令列表中指令的排列顺序体现,因此,可以基于第一量子电路的第一指令列表中指令的排列顺序,构建第一有向无环图。
在一可选实施方式中,可以基于第一指令列表中指令的数量,构建相应数量的节点,并基于第一指令列表中指令的排列顺序,确定各个指令之间的时序关系,基于该时序关系,在所构建的节点之间连接有向边,从而可以得到第一有向无环图。
在另一可选实施方式中,可以进行第一指令列表中指令的循环遍历,针对当前遍历的指令,在该当前遍历的指令之前查找与之存在时序关系的其他指令,相应构建存在时序关系的节点,并构建一条有向边,将其添加至图中,在循环遍历完成的情况下,即可以得到第一有向无环图。
例如,第一量子电路如图3所示,其中,“H”表示H门,“·-X”表示CNOT门,MEAS表示测量操作。相应的,其第一指令列表为[reset,0,[[1],[0]],None];[reset,1,[[1],[0]],None];[reset,2,[[1],[0]],None];[reset,3,[[1],[0]],None];[H,0,None,None];[H,1,None,None];[H,2,None,None];[H,3,None,None];[CNOT,[0,2],None,None];[CNOT,[1,0],None,None];[CNOT,[3,2],None,None];[measure,0,[0,‘YZ’,[],[]],(0,1)];[measure,1,[0,‘YZ’,[],[]],(1,1)];[measure,2,[0,‘YZ’,[],[]],(2,1)];[measure,3,[0,‘YZ’,[],[]],(3,1)]。
可以为每个指令分配ID,依次为0,1,…,14,可以确定第一有向无环图如图4所示。其中,每个节点上的数字为对应指令的ID,节点401可以输入节点,也可以称之为根节点,节点402为输出节点,也可以称之为终端节点。
步骤S103:确定所述第一有向无环图的第一可连接信息,所述第一可连接信息用于表征输出节点到输入节点的可连接性,所述输入节点为所述第一指令列表中类型为重置操作指令对应的节点,所述输出节点为所述第一指令列表中类型为量子测量操作指令对应的节点。
具体的,可以基于所述第一有向无环图、以及输入节点列表和输出节点列表,确定所述第一有向无环图的第一可连接信息,第一可连接信息用于表征输出节点列表中每个输出节点与输入节点列表中各输入节点的可连接性,其中,输入节点列表包括第一指令列表中类型为重置操作指令对应的所有节点,输出节点列表包括第一指令列表中类型为量子测量操作指令对应的所有节点。
由于有向无环图中不能包括有向环路(图中的有向边的指向表示指令的时序关系,环状结构将会破坏这种关系),且连接输出节点至输入节点后所得到的图也不能包括有向环图,因此,对于输出节点至输入节点的可连接性可以通过连接输出节点至输入节点后所构造的图中是否包括有向环图的方式来判定。即可连接性可以包括两种,第一种是:若连接输出节点至输入节点后所构造的图中包括有向环图,则输出节点到输入节点不可连接,可以用第一目标值表示,如第一目标值可以为0;第二种是:若连接输出节点至输入节点后所构造的图中不包括有向环图,则输出节点到输入节点可连接,可以用第二目标值表示,如第二目标值可以为1。
第一可连接信息可以用二维矩阵表示,也可以用其他信息结构表示,比如数据对象,这里不进行具体限定。
例如,第一有向无环图中输入节点的数量为4,第一有向无环图的输出节点的数量为4,则可以用4×4的二维矩阵表示第一有向无环图的第一可连接信息,矩阵中每个元素可以表示一输出节点至一输入节点的可连接性。二维矩阵的行标表示输入节点的标识,列标为输出节点的标识,相应元素可以表示输出节点与输入节点的可连接性,即是否可以在坐标对应的输出节点与输入节点之间添加有向边。
例如,矩阵中第一行第二列的元素可以表示第一有向无环图中第二个输出节点(即第二个量子测量操作指令对应的节点)到第一个输入节点(即第一个重置操作指令对应的节点)的可连接性,元素值为1时可以表示输出节点至输入节点可连接,元素值为0时可以表示输出节点至输入节点不可连接。
对于输出节点至输入节点的可连接性,其与输入节点至输出节点的可达性的指示相反,即若输入节点至输出节点可达,则表示输入节点与输出节点之间存在一条有向路径,若输出节点与输入节点连接,相应会使图中出现有向环路,在该种情况下,输出节点至输入节点不可连接。而若输入节点至输出节点不可达,则表示输入节点与输出节点之间不存在一条有向路径,若输出节点与输入节点连接,该输入节点与输出节点不会构成有向环路,在该种情况下,输出节点至输入节点可连接。因此,在一可选实施方式中,可以通过获取第一有向无环图的可达性信息,基于该可达性信息来确定第一有向无环图的第一可连接性信息。其中,可达性信息用于表征针对输出节点列表中每个输出节点,输入节点列表中各输入节点到输出节点的可达性,可达性指示输入节点是否存在到达输出节点的通路。
在另一可选实施方式中,可以通过模拟连接输出节点与输入节点后判定所得到的图中是否包括有向环图,来判定输出节点至输入节点的可连接性,得到第一可连接信息。
步骤S104:基于所述第一有向无环图和所述第一可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图,所述第二有向无环图包括所述第二有向边和所述至少两个第一有向边,所述第二有向边和所述至少两个第一有向边构成的路径不包括有向环路,所述第二有向无环图中各输出节点无可连接的输入节点,所述第二有向边为基于所述第一可连接信息确定的输出节点到输入节点可连接的M个候选有向边中评分值最大的候选有向边,所述评分值用于表征第三有向无环图中输出节点到输入节点可连接的有向边数量中的最大值,所述第三有向无环图是在所述第一有向无环图中添加候选有向边后得到的。
其中,M为正整数。M用于表征每次确定第二有向边之前候选有向边的总数。
该步骤中,可以将量子电路的优化问题转化为解决一个等价的图论优化问题,由于将一个量子电路编译成另一个量子电路,本质上是通过对已经测量的量子比特进行重置回收,以供后续指令所使用。对应第一有向无环图,相当于需要尽可能的向图中添加从输出节点指向输入节点的有向边,即尽可能的向第一有向无环图中添加第二有向边,以表示测量比特重置被重新利用,相应的,可以减少量子电路中所需要的量子比特数。
为了保证所编译得到的量子电路与原量子电路的等效性,以及保证量子电路中指令之间的时序关系,在添加输出节点至输入节点的有向边时需要保证如下约束条件:
1)为了使得整个图依然符合电路指令的时序关系,需要保证在加入更多有向边之后,整个图依然是无环的,需要注意的是,图中有向边的指向表示指令的时序关系,环状结构将会破坏这种关系,也即添加有向边之后,图中依然不能存在环状结构的路径(称之为有向环路);
2)每个输出节点最多只能和一个输入节点相连,以表示输出节点测量后,由所指向的输入节点继续在该量子比特上执行操作;
3)不同输出节点不能和同一个输入节点相连。
相应的,在第一有向无环图中添加符合上述约束条件的第二有向边之后,可以得到第二有向无环图。
对于第一有向无环图,可以基于第一可连接信息依次确定第二有向边,并依次添加第二有向边。在一可选实施方式中,可以先从第一可连接信息确定的M个候选有向边中确定第二有向边,在第一有向无环图中添加第二有向边后,再从得到的有向无环图的可连接信息确定的候选有向边中确定第二有向边,继续在图中添加所确定的第二有向边。也即以添加第二有向边后的有向无环图为起点,从该有向无环图中输出节点至输入节点可连接的候选有向边中确定第二有向边,并添加至有向无环图中得到新的有向无环图,直至所得到的有向无环图中输出节点无可连接的输入节点,即可以得到第二有向无环图。
在另一可选实施方式中,可以从第一可连接信息确定的M个候选有向边中确定第二有向边,添加第二有向边后更新第一可连接信息,并确定添加第二有向边后所影响的候选有向边,所影响的候选有向边后续不可在图中继续添加。之后,基于更新后得到的可连接信息从M个候选有向边中剩余候选有向边中再次确定第二有向边,直至更新后的可连接信息指示得到的有向无环图中输出节点无可连接的输入节点。
在一可选实施方式中,在每次确定第二有向边的过程中,可以是从新的有向无环图(即添加上次确定的第二有向边后所得到的有向无环图)中输出节点至输入节点可连接的候选有向边中确定第二有向边,也即每次确定第二有向边时,候选有向边的数量不同,即M可以不同。
也就是说,在第一次确定第二有向边时,是以第一有向无环图为起点,基于第一可连接信息直接确定第一有向无环图中的M个候选有向边,添加该次确定的第二有向边后可以得到新的有向无环图,相应第一可连接信息会更新,在新的有向无环图的基础上,基于第一可连接信息间接确定的候选有向边(即更新后的第一可连接信息确定的候选有向边)数量会减少。
但是,第二有向边的每次确定规则是相同的,均是从候选有向边中选取评分值最大的候选有向边作为第二有向边,其中,评分值用于表征在第一有向无环图中添加候选有向边后得到的第三有向无环图中输出节点到输入节点可连接的有向边数量中的最大值。也就是说,候选有向边的打分标准为连接该候选有向边后,所得到的有向无环图中剩余可连接的输出节点至输入节点的有向边数量的理论最大值,优先连接评分值最高的候选有向边,这样可以使得后续的第二有向边的添加存在更大空间,从而可以使得整体新加入的第二有向边尽可能多,进而可以在减低的时间复杂度下找到接近量子比特最小的编译电路。
在一可选实施方式中,可以根据有向无环图的可连接性和有向边的传递性质对候选有向边进行评分,选择评分值最高的候选有向边作为此轮添加的第二有向边。
其中,有向边的传递性质指的是以中间节点为媒介,若连接该中间节点至另一节点,连接至该中间节点的其他节点均会与该节点有向连接,中间节点也会与该节点所连接的其他节点连接,且连接至该中间节点的其他节点也会与该节点所连接的其他节点连接。
例如,针对中间节点B,连接节点B至节点C的有向边,根据有向边的传递性质,连接至节点B的其他节点(如节点A、节点D等)均会与节点C有向连接,且节点B与节点C所连接的其他节点(如节点E)也会有向连接,进一步的,连接至节点B的其他节点(如节点A、节点D等)会与节点C所连接的其他节点(如节点E)连接。
实际应用中,可以通过启发式的算法,针对每一候选有向边,在模拟连接该候选有向边后,可以根据有向边的传递性质确定连接该候选有向边所影响的有向无环图中节点和有向路径,并根据该有向无环图中输出节点至输入节点的可连接性,更新该有向无环图的可连接信息,得到模拟连接该候选有向边所得到的有向无环图的可连接信息。例如,针对节点B至节点C的候选有向边,在有向无环图中连接该候选有向边后,根据有向边的传递性质,会使得输入节点A与输出节点E之间存在通路,相应的,若有向无环图中节点E至节点A可连接,相应更新可连接信息,使之添加该候选有向边后,可连接信息可以指示节点E至节点A不可连接。
之后,可以基于更新后的可连接信息确定添加候选有向边后的有向无环图中剩余可添加输出节点至输入节点的有向边数量中的理论最大值。
在另一可选实施方式中,可以针对每一候选有向边,模拟添加该候选有向边后,进行输出节点至输入节点的有向边的遍历,在采用所有连接方案后,确定每种连接方案下添加候选有向边后的有向无环图中剩余可添加输出节点至输入节点的有向边数量,选择剩余可添加有向边数量中的最大值来确定该候选有向边的评分值。
步骤S105:基于所述第二有向无环图、所述第二有向边构成的第一目标列表和所述第一指令列表,对所述第一量子电路进行等效编译,得到与所述第一量子电路等效的第二量子电路的第二指令列表。
该步骤中,添加输出节点至输入节点的有向边之后,可以基于第二有向无环图,确定各个节点之间的时序关系,并基于该时序关系,对第一指令列表进行重排序,之后,可以利用第一目标列表中输入节点与输出节点之间的关系,将测量指令之后作用在其他量子比特(即与输出节点有向连接的输入节点对应指令所作用的量子比特)的指令,等效编译成作用到该测量指令所作用的量子比特上,如此,可以实现对第一量子电路的等效编译,得到与第一量子电路等效的第二量子电路的第二指令列表,第二量子电路中所需要的量子比特比第一量子电路中所需要的量子比特少。
本实施例中,通过将量子电路编译转化为有向无环图,并通过在有向无环图中添加输出节点至输入节点的有向边,以表示测量比特重置被重新利用。之后可以基于添加了输出节点至输入节点的有向边的有向无环图,对第一量子电路进行等效编译,得到第二量子电路,如此可以有效减少等效编译得到的量子电路中所需要的量子比特数,实现量子电路的优化,使得能够实现对大规模量子比特的量子电路进行经典模拟和真机运行。
并且,通过将电路编译转化为有向无环图的处理,并通过启发式的算法,计算出所有候选有向边的分数(其中,候选有向边打分标准为连接该有向边后,图中剩余可连接的输出节点至输入节点的有向边数量的理论最大值),优先连接评分值最高的候选有向边,这样可以使得后续的第二有向边的添加存在更大空间,从而可以使得整体新加入的第二有向边尽可能多,进而可以在减低的时间复杂度下找到接近量子比特最小的编译电路。
可选的,所述基于所述第一有向无环图和所述第一可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图,包括:
从所述第一可连接信息确定的M个候选有向边中确定一条第二有向边;
在所述第一有向无环图中添加一条所述第二有向边,得到第四有向无环图;
基于所述第四有向无环图和所述第四有向无环图的第二可连接信息,确定所述第二有向无环图。
本实施方式中,可以先从第一可连接信息确定的M个候选有向边中确定第二有向边,在第一有向无环图中添加第二有向边后,可以得到第四有向无环图。
确定第四有向无环图的第二可连接信息,其中,第二可连接信息的确定方式与第一可连接信息的确定方式相同,这里不进行赘述。
在第二可连接信息表征第四有向无环图中不存在输出节点到输入节点可连接的有向边的情况下,可以将第四有向无环图确定为第二有向无环图。在一可选实施方式中,可连接信息可以通过二维矩阵来表示,其中,元素值为0表示有向无环图中输出节点至输入节点不可连接,相应的,在二维矩阵中无非零元素的情况下,即可表征有向无环图中不存在输出节点到输入节点可连接的有向边,在二维矩阵中存在非零元素的情况下,即可表征有向无环图中存在输出节点到输入节点可连接的有向边。
可选的,所述基于所述第四有向无环图和所述第四有向无环图的第二可连接信息,确定所述第二有向无环图,包括:
在所述第二可连接信息表征所述第四有向无环图中存在输出节点到输入节点可连接的有向边的情况下,基于所述第四有向无环图和所述第二可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图。
具体的,可以从第二可连接信息确定的候选有向边中确定第二有向边,在第四有向无环图中添加所确定的第二有向边。也即以第四有向无环图为起点,从第四有向无环图中输出节点至输入节点可连接的候选有向边中确定第二有向边,并将本次确定的第二有向边添加至第四有向无环图中得到新的有向无环图,直至所得到的有向无环图中输出节点无可连接的输入节点,即可以得到第二有向无环图。
本实施方式中,通过从所述第一可连接信息确定的M个候选有向边中确定第二有向边;在所述第一有向无环图中添加所述第二有向边,得到第四有向无环图;基于所述第四有向无环图和所述第四有向无环图的第二可连接信息,确定所述第二有向无环图。如此,可以优先连接评分值最高的候选有向边,在较低的时间复杂度下找到更多的第二有向边,从而找到较接近量子比特数最小的编译电路。
依次确定第二有向边,并依次添加第二有向边,以循环更新有向无环图的具体过程如下:
输入:可连接性矩阵all_candidate;
输出:添加第二有向边后的有向无环图graph(即第二有向无环图)和有向边列表edges。
步骤1:对于输入的可连接性矩阵all_candidate;
步骤1.1:若可连接性矩阵中有非零元素,则从可连接性矩阵确定的候选有向边中确定新添加的第二有向边new_edge,将其添加至有向边列表new_edges,并更新可连接性矩阵all_candidate,重复步骤1.1;
步骤1.2:若可连接性矩阵中均为零元素,循环结束;
步骤2:在更新完毕的情况下,将有向边列表new_edges添加至第一有向无环图graph的有向边列表edges中,输出第二有向无环图。
可选的,所述第一可连接信息用第一矩阵表示,所述从所述第一可连接信息确定的M个候选有向边中确定第二有向边,包括:
针对每个候选有向边,在所述第一有向无环图中模拟添加所述候选有向边的情况下,对所述第一矩阵进行更新,得到第二矩阵,所述第二矩阵用于表征在所述第一有向无环图中添加所述候选有向边后得到的有向无环图中输出节点到输入节点的可连接性;
基于所述第二矩阵,确定所述候选有向边的评分值;
将所述M个候选有向边中评分值最大的候选有向边确定为第二有向边。
本实施方式中,第一可连接信息也可以用第一矩阵表示,第一矩阵可以为二维矩阵,第一矩阵的行标表示输入节点的标号,列标为输出节点的标识,相应元素可以表示输出节点与输入节点的可连接性。
在一可选实施方式中,元素值为1时可以表示输出节点至输入节点可连接,元素值为0时可以表示输出节点至输入节点不可连接。
比如,第一可连接信息的第一矩阵可以为如下式(1)所示,第一矩阵为一个4×4的二维矩阵。
其中,上式(1)中,每个非零元素即可以表示输出节点至输入节点的候选有向边,其中,具体是哪个输出节点至哪个输入节点的候选有向边,由非零元素的位置(包括行标和列标)确定。
针对每个候选有向边,在第一有向无环图中模拟添加该候选有向边的情况下,可以根据有向边的传递性质,确定连接该候选有向边所影响的有向无环图中节点和有向路径,并根据该有向无环图中输出节点至输入节点的可连接性,更新第一矩阵,得到第二矩阵。例如,针对节点B至节点C的候选有向边,在有向无环图中连接该候选有向边后,根据有向边的传递性质,会使得输入节点A与输出节点E之间存在通路,相应的,若有向无环图中节点E至节点A可连接,相应更新第一矩阵中节点E的列标和节点A的行标位置下的元素值,使之添加该候选有向边后,第二矩阵中该元素值可以指示节点E至节点A不可连接。
之后,可以基于第二矩阵,确定添加候选有向边后的有向无环图中剩余可添加输出节点至输入节点的有向边数量中的理论最大值,得到该候选有向边的评分值。
将M个候选有向边中评分值最大的候选有向边确定为第二有向边,如此,可以简单地实现第二有向边的确定。
可选的,所述第一矩阵中每个元素用于表征所述第一有向无环图中一输出节点到一输入节点的可连接性,所述对所述第一矩阵进行更新,得到第二矩阵,包括:
将所述第一矩阵中所述候选有向边对应元素值更新为第一目标值;
将所述第一矩阵中所述候选有向边对应元素的行中各元素值更新为所述第一目标值,以及将所述第一矩阵中所述候选有向边对应元素的列中各元素值更新为所述第一目标值;
将所述第一矩阵中目标行坐标和目标列坐标确定的位置的元素值更新为所述第一目标值,所述目标行坐标为所述候选有向边对应元素的列中元素值为所述第一目标值的行坐标,所述目标列坐标为所述候选有向边对应元素的行中元素值为所述第一目标值的列坐标;
其中,所述第一目标值用于表征有向无环图中输出节点到输入节点不可连接。
本实施方式中,第一目标值可以为0。
得到第一矩阵后,对于第一矩阵中非零元素(u,v),其表示节点v至节点u的候选有向边,根据有向边的传递性,之前与u,v节点存在通路的终端节点和根节点会在连接有向边(u,v)后两两形成通路,因此,可以找出矩阵中第u行和第v列中所有零元素(即与u,v节点存在通路的终端节点和根节点)对应的列坐标{y_1,y_2,...}和行坐标{x_1,x_2,...},将第一矩阵中对应位置(即所有(x_i,y_j)位置)元素均标为零,并将第u行和第v列中所有元素标为零。
对应如上式(1)所示的第一矩阵,遍历第一个可连接的候选有向边为可连接矩阵中的(1,2)元素,可以将可连接矩阵复制为all_candidate_copy。接下来,遍历可连接矩阵中第1行和第2列中所有为0的元素,得到列坐标{1,3}和行坐标{2},将(2,1)和(2,3)位置的元素值在矩阵all_candidate_copy中标为0,并将第1行和第2列中所有元素标为0,即得到针对(1,2)元素位置的候选有向边的第二矩阵,用下式(2)表示。
由此,可以简单地确定连接候选有向边(u,v)后的可连接矩阵,即第二矩阵。
可选的,所述基于所述第二矩阵,确定所述候选有向边的评分值,包括:
获取所述第二矩阵中存在元素值为第二目标值的行数量和列数量;
基于所述行数量和所述列数量,确定所述候选有向边的评分值。
本实施方式中,第二目标值可以为非零元素,如可以为1。
有向无环图中输出节点到输入节点可连接的有向边数量中的理论最大值可以通过第二矩阵中存在非零元素的行数量和列数量来确定,行数量可以表示仍存在候选有向边的输入节点(即根节点)数量r,列数量可以表示仍存在候选有向边的输出节点(即终端节点)数量t。
基于所述行数量和所述列数量,确定所述候选有向边的评分值。在一可选实施方式中,可以基于行数量和列数量,通过预设函数公式,来确定候选有向边的评分值。
在另一可选实施方式中,由于根节点数量r和终端节点数量t中的较小值min(r,t)即为连接(u,v)后有向无环图中剩余可连接有向边数量的理论最大值,因此可以基于行数量和列数量中的小者来确定候选有向边的评分值。比如,可以将行数量和列数量中的小者直接确定为候选有向边的评分值。
由于行数量和列数量中的小者有可能等于0,这样候选有向边的评分值可能会与非候选有向边的评分值(分数为0)存在冲突。可选的,所述基于所述行数量和所述列数量,确定所述候选有向边的评分值,包括:
将第三目标值确定为所述候选有向边的评分值,所述第三目标值是所述行数量和列数量中的小者加上1得到。
因此,计算候选有向边(u,v)的评分值时,可以确定评分值为min(r,t)+1,使得在min(r,t)=0时,也可以区别候选有向边的评分值(评分值为1)和非候选有向边的评分值(评分值为0)。
例如,针对如上式(2)所示的第二矩阵,可以得到有向无环图中仍存在候选有向边(即非零元素)的根节点数量r为3,终端节点数量t为2,由此,可连接矩阵中的(1,2)候选有向边的评分值可以为3。
按照打分标准,可以将可连接矩阵中所有候选有向边的评分值计入同一个尺寸的打分矩阵中,选取打分矩阵中评分值最高的候选有向边,将该候选有向边作为此轮确定并添加的第二有向边,即尽可能保证连接该第二有向边后,有尽可能多的剩余可连接的有向边存在。
在一可选实施方式中,第二有向边确定的具体过程如下:
输入:有向无环图graph,输入节点列表inputs,输出节点列表outputs,可连接性矩阵all_candidate;
输出:新添加的第二有向边new_edge和添加了第二有向边后的可连接性矩阵all_candidate。
步骤1:初始化一个空矩阵edge_score,其行数和列数分别与可连接性矩阵all_candidate的行数和列数相等;
步骤2:遍历可连接性矩阵all_candidate中非零元素(u,v);
步骤2.1:初始化一个变量score,复制一个all_candidate矩阵,记为all_candidate_copy;
步骤2.2:遍历all_candidate矩阵中第u行所有元素,找出元素值为0的所有元素对应的列坐标{y_1,y_2,...,y_j,...};遍历all_candidate矩阵中第v列所有元素,找出元素值为0的所有元素对应的行坐标{x_1,x_2,...,x_i,...};
步骤2.3:将矩阵all_candidate_copy中所有{(x_i,y_j)}元素标为0;
步骤2.4:将矩阵all_candidate_copy中第u行和第v列所有元素标为0;
步骤2.5:计算矩阵all_candidat_copy中仍存在候选有向边(即非零元素)的根节点数量r和终端节点数量t;
步骤2.6:将score的值计为min(r,t)+1;
步骤2.7:将edge_score矩阵中(u,v)位置的元素值记为score;
步骤3:选取步骤2中得到的edge_score矩阵中元素值最大的位置(m,n),对应从节点outputs[n]指向inputs[m]的候选有向边,记为new_edge,作为此轮新添加的第二有向边;
步骤4:利用步骤2更新添加了new_edge后的all_candidate矩阵;
步骤5:返回输出新添加的第二有向边new_edge。
可选的,所述步骤S102具体包括:
对所述第一指令列表按照从左至右的指令排列顺序进行遍历,并获取第二目标列表和当前遍历的指令所作用的第一量子位,所述第二目标列表包括所述第一指令列表中排序在所述当前遍历的指令之前的指令;
对所述第二目标列表按照从右至左的指令排列顺序进行遍历,并获取第一目标指令,所述第一目标指令所作用的量子位与所述第一量子位存在交集;
将所述第一目标指令的标识作为源节点,所述当前遍历的指令的标识作为目标节点,构建所述第一有向边;
在所述第一指令列表遍历完成的情况下,基于所构建的第一有向边,获取所述第一有向无环图。
本实施方式中,量子电路至第一有向无环图的转化过程如下:
输入:量子电路指令列表circuit_list;
输出:有向无环图(为第一有向无环图),输入节点列表,输出节点列表。
步骤1:根据量子电路指令列表circuit_list所表示的电路宽度,记录为n;循环遍历列表[0,1,…,n-1],记当前被循环的元素为idx,生成电路指令gate=[reset,idx,[[1],[0]],None],并添加至circuit_list列表最前面,获得更新后的列表circuit_list,即得到第一指令列表;
步骤2:循环遍历列表circuit_list,记当前被循环的元素为gate,且gate处于circuit_list的第i位,为gate添加一个ID属性,ID的值为i;
步骤3:初始化一个有向图graph,初始化两个空列表input_ids和output_ids;
步骤4:循环遍历列表circuit_list(即按照从左至右的指令排列顺序遍历),记当前被循环的元素为gate,且gate处于circuit_list的第i位,执行如下操作a)、b):
操作a)记录circuit_list中的前i个元素构成的列表为pre_gates(即第二目标列表);
操作b)获取gate指令所作用的量子位(即第一量子位),记当前被循环的量子位为idx;
操作c)反向循环遍历pre_gates(即按照从右至左的指令排列顺序遍历),并记当前被循环的元素为pre_gate;如果pre_gate所作用的量子位与idx有交集,则pre_gate为第一目标指令;记node1为pre_gate指令的标识ID,node2为gate指令的标识ID,向有向图graph中构建并添加节点node1和node2,添加一条从node1(源节点)指向node2(目标节点)的有向边;之后跳出本层循环;
步骤5:如果gate为重置指令,则将其对应ID加入到input_ids列表最末尾;如果gate为测量指令,则将其对应ID加入到output_ids列表最末尾;
步骤6:返回有向图graph(第一有向无环图),输入节点列表input_ids和输出节点列表output_ids。
本实施方式中,通过进行第一指令列表中指令的循环遍历,针对当前遍历的指令,在该当前遍历的指令之前查找与之存在时序关系(即两个指令作用有相同量子位)的其他指令,相应构建存在时序关系的节点,并构建一条有向边,将其添加至图中,在循环遍历完成的情况下,即可以得到第一有向无环图。如此,可以简单地实现第一有向无环图的构建。
另外,在构建第一有向无环图时,仅使用对应指令的ID即可,无需用电路指令本身作为图的节点,以尽可能减少相应运算。
可选的,所述步骤S103具体包括:
所述确定所述第一有向无环图的第一可连接信息,包括:
确定所述第一有向无环图的可达性信息,所述可达性信息用于表征所述第一有向无环图中输入节点到输出节点的可达性,所述可达性指示输入节点是否存在到达输出节点的通路;
基于所述可达性信息,确定所述第一可连接信息。
本实施方式中,可达性信息可以用二维矩阵表示,二维矩阵的行标表示输入节点的标号,列标为输出节点的标识,相应元素表示输入节点至输出节点是否可达,即输入节点是否存在到达输出节点的通路,若存在通路,则可达,若不存在通路,则不可达。
在一可选实施方式中,元素的值为1时可以表示输入节点到输出节点不可达,元素的值为0时可以表示输入节点到输出节点可达。
可连接信息与可达性信息的指示相反,其针对相同行标和列表的元素,若可达性信息表示输入节点至输出节点不可达,则可连接信息表示输出节点至输入节点可连接,若可达性信息表示输入节点至输出节点可达,则可连接信息表示输出节点至输入节点不可连接。
在一可选实施方式中,元素的值为1时可以表示输出节点至输入节点可连接,元素的值为0时可以表示输出节点至输入节点不可连接。
根据约束条件1):为了使得整个有向无环图依然符合电路指令的时序关系,需要保证在加入更多有向边之后,整个有向无环图依然是无环的。为了保证添加有向边后满足约束条件1),可以利用深度优先搜索算法(或者其他有效的算法)确定有向无环图中每一个输入节点到输出节点是否可达,从而避免添加从输出节点到输入节点的有向边而导致的环状结构,若某输入节点到一个输出节点不可达,则将该输出节点到此输入节点标记为可连接,反之不可连接。这样,可以利用可连接信息与可达性信息的指示相反性,基于可达性信息确定可连接信息,从而可以简单地实现第一有向无环图的可连接信息的确定。
可连接性的具体搜索过程可以如下:
输入:有向无环图graph(可以为第一有向无环图),输入节点列表inputs,输出节点列表outputs;
输出:二维矩阵all_candidate,包含输出节点到输入节点的可连接性,元素的值为1时表示输出节点到输入节点可连接,元素的值为0时表示输出节点到输入节点不可连接。
步骤1:对输入节点列表中的每个元素,利用深度优先搜索(或者其他有效的算法)确定其到输出节点列表中每个输出节点是否可达。具体地,步骤1包括步骤c)和步骤d):
步骤c)初始化二维矩阵all_candidate,其行数等于输入节点列表的长度,列数等于输出节点列表的长度,所有元素的初始值为1(元素值为1时表示该输入节点到输出节点不可达,即输出节点到输入节点可连接;元素值为0表示该输入节点到输出节点可达,输出节点到输入节点不可连接);
步骤d)循环遍历输出节点列表outputs,记当前被遍历的元素为output:利用深度优先搜索(或者其他有效的算法)判断输入节点inputs中的每个输入节点在图graph中是否存在到达节点output的通路,若存在通路则记该输入节点为output节点的不可达节点,并将二维矩阵all_candidate对应行列下的元素标记为0;反之不改变二维矩阵all_candidate对应行列下的元素值(即保持1);
步骤2:输出矩阵all_candidate,即为表示可达性信息的二维矩阵,该二维矩阵也可以表示可连接信息。
可选的,所述步骤S105具体包括:
基于所述第二有向无环图,对所述第一指令列表中的指令进行重排序,得到第三指令列表;
基于所述第一目标列表,对所述第三指令列表中的指令进行等效编译,得到所述第二指令列表。
本实施方式中,可以基于第二有向无环图,对第一量子电路的第一指令列表中指令进行重排序,得到第三指令列表。其中,第三指令列表中指令的排列顺序与第二有向无环图中节点的拓扑结构匹配。
第三指令列表中指令的排列顺序与第二有向无环图中节点的拓扑结构匹配,指的是若第二有向无环图中有一条节点A指向节点B的有向边,则第三指令列表中节点A对应指令排序在节点B对应指令之前。
在一可选实施方式中,可以通过指令之间的交换方式来基于第二有向无环图,对第一指令列表中的指令进行重排序,如进行图遍历,根据遍历到的节点和有向边,交换第一指令列表中相关的两个指令,使之与图的拓扑结构匹配。
在另一可选实施方式中,可以获取第二有向无环图对应的拓扑排序列表;基于该拓扑排序列表,对第一指令列表中的指令进行重排序。
之后,可以基于第一目标列表,对第三指令列表中的指令进行等效编译,得到第二指令列表。其中,等效编译的目的是将输入节点对应指令所作用的量子比特重新作用到输出节点测量后被重新利用的量子比特上,这样可以减少所编译得到的量子电路的量子比特数,如此实现量子电路的优化。
可选的,所述基于所述第二有向无环图,对所述第一指令列表中的指令进行重排序,得到第三指令列表,包括:
获取所述第二有向无环图对应的拓扑排序列表,所述拓扑排序列表中,针对所述第二有向无环图中的每个有向边,所述有向边的源节点排序在所述有向边的目标节点之前;
基于所述拓扑排序列表,对所述第一指令列表中的指令进行重排序,得到所述第三指令列表。
本实施方式中,拓扑排序列表指的是表征第二有向无环图拓扑结构的列表,比如,图中有一条节点A指向节点B的有向边,则在拓扑排序列表中节点A将会排在节点B的前面。可以通过遍历第二有向无环图的方式获取该拓扑排序列表。
之后,可以基于该拓扑排序列表,对第一指令列表中的指令进行重排序,比如,可以初始化一个空的指令列表,遍历该拓扑排序列表,按照该拓扑排序列表的排列顺序,将第一指令列表中该拓扑排序列表中节点对应指令排列到该指令列表,得到第三指令列表。
如此,可以实现对第一指令列表的重排序。
可选的,所述基于所述第一目标列表,对所述第三指令列表中的指令进行等效编译,得到所述第二指令列表,包括:
针对所述第一目标列表中每个所述第二有向边,将所述第三指令列表中各第二目标指令所作用的第二量子位更新为第三量子位,所述第二量子位为所述第二有向边中目标节点对应指令所作用的量子位,所述第三量子位为所述第二有向边中源节点对应指令所作用的量子位。
本实施方式中,第二有向边中,源节点指的是输出节点,目标节点指的是输入节点。可以将输入节点对应指令所作用的量子比特(即第二量子位对应量子比特)重新作用到输出节点测量后被重置的量子比特(即第三量子位对应量子比特)上,这样可以减少所编译得到的量子电路的量子比特数,如此实现量子电路的优化。
第二有向无环图至量子电路的等效编译过程如下:
输入:量子电路指令列表circuit_list(即第一指令列表),有向无环图graph(即第二有向无环图),有向边列表edges(即第一目标列表);
输出:编译后的量子电路指令列表(即第二指令列表)。
步骤1:根据有向无环图graph,获得其对应的拓扑排序列表,并记为sorted_gate_ids;
步骤2:根据sorted_gate_ids的顺序,对量子电路指令列表circuit_list进行排序;
步骤3:循环遍历有向边列表edges,记当前被循环的元素为edge,记edge的源节点对应电路指令所作用的量子位为new_idx,记edge的目标节点对应电路指令所作用的量子位为old_idx;循环遍历circuit_list,对所有作用在量子位old_idx上的指令,改写为作用在new_idx上;
步骤4:返回更新后的量子电路指令列表circuit_list作为输出。
图5是一具体示例的量子电路处理方法的流程示意图,对于一个量子电路,本实施例的量子电路处理方法的具体过程如下:
输入:量子电路指令列表circuit_list(即第一指令列表);
输出:编译后的动态量子电路指令列表(即第二指令列表)。
步骤1:获取第一量子电路;
步骤2:以circuit_list为输入,获取第一有向无环图graph,输入节点列表inputs,输出节点列表outputs;
步骤3:以graph,inputs,outputs为输入,获取可连接性矩阵all_candidate(即第一矩阵);
步骤4:以有向无环图graph,可连接性矩阵all_candidate为输入,对候选有向边进行打分;
步骤5:选择打分最高的候选有向边作为第二有向边new_edge,将其添加至有向边列表edges中,在有向无环图中添加第二有向边,更新可连接性矩阵all_candidate;在可连接性矩阵all_candidate指示存在可连接的有向边的情况下,返回步骤4,以循环更新有向无环图直到无法继续添加第二有向边,得到新的有向无环图new_graph;
步骤6:在可连接性矩阵all_candidate指示不存在可连接的有向边的情况下,以circuit_list,new_graph,edges为输入,获取编译后的动态量子电路的第二指令列表作为输出。
第二实施例
如图6所示,本公开提供一种量子电路处理装置600,包括:
获取模块601,用于获取第一量子电路的第一指令列表;
第一确定模块602,用于基于所述第一指令列表,确定第一有向无环图,所述第一有向无环图包括所述第一指令列表中指令对应的节点和至少两个第一有向边,所述第一有向边用于表征所述第一指令列表中不同指令间的时序关系;
第二确定模块603,用于确定所述第一有向无环图的第一可连接信息,所述第一可连接信息用于表征输出节点到输入节点的可连接性,所述输入节点为所述第一指令列表中类型为重置操作指令对应的节点,所述输出节点为所述第一指令列表中类型为量子测量操作指令对应的节点;
第三确定模块604,用于基于所述第一有向无环图和所述第一可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图,所述第二有向无环图包括所述第二有向边和所述第一有向边,所述第二有向边和所述第一有向边构成的路径不包括有向环路,所述第二有向无环图中各输出节点无可连接的输入节点,所述第二有向边为基于所述第一可连接信息确定的输出节点到输入节点可连接的M个候选有向边中评分值最大的候选有向边,所述评分值用于表征第三有向无环图中输出节点到输入节点可连接的有向边数量中的最大值,所述第三有向无环图是在所述第一有向无环图中添加候选有向边后得到的,M为正整数;
等效编译模块605,用于基于所述第二有向无环图、所述第二有向边构成的第一目标列表和所述第一指令列表,对所述第一量子电路进行等效编译,得到与所述第一量子电路等效的第二量子电路的第二指令列表。
可选的,所述第三确定模块604包括:
第一确定子模块,用于从所述第一可连接信息确定的M个候选有向边中确定一条第二有向边;
添加子模块,用于在所述第一有向无环图中添加一条所述第二有向边,得到第四有向无环图;
第二确定子模块,用于基于所述第四有向无环图和所述第四有向无环图的第二可连接信息,确定所述第二有向无环图。
可选的,所述第一可连接信息用第一矩阵表示,所述第一确定子模块,包括:
更新单元,用于针对每个候选有向边,在所述第一有向无环图中模拟添加所述候选有向边的情况下,对所述第一矩阵进行更新,得到第二矩阵,所述第二矩阵用于表征在所述第一有向无环图中添加所述候选有向边后得到的有向无环图中输出节点到输入节点的可连接性;
第一确定单元,用于基于所述第二矩阵,确定所述候选有向边的评分值;
第二确定单元,用于将所述M个候选有向边中评分值最大的候选有向边确定为第二有向边。
可选的,所述第一矩阵中每个元素用于表征所述第一有向无环图中一输出节点到一输入节点的可连接性,所述更新单元,具体用于:
将所述第一矩阵中所述候选有向边对应元素值更新为第一目标值;
将所述第一矩阵中所述候选有向边对应元素的行中各元素值更新为所述第一目标值,以及将所述第一矩阵中所述候选有向边对应元素的列中各元素值更新为所述第一目标值;
将所述第一矩阵中目标行坐标和目标列坐标确定的位置的元素值更新为所述第一目标值,所述目标行坐标为所述候选有向边对应元素的列中元素值为所述第一目标值的行坐标,所述目标列坐标为所述候选有向边对应元素的行中元素值为所述第一目标值的列坐标;
其中,所述第一目标值用于表征有向无环图中输出节点到输入节点不可连接。
可选的,所述第一确定单元,具体用于:
获取所述第二矩阵中存在元素值为第二目标值的行数量和列数量;
基于所述行数量和所述列数量,确定所述候选有向边的评分值。
可选的,所述第一确定单元,具体用于:
将第三目标值确定为所述候选有向边的评分值,所述第三目标值是所述行数量和列数量中的小者加上1得到。
可选的,所述第二确定子模块,具体用于:
在所述第二可连接信息表征所述第四有向无环图中存在输出节点到输入节点可连接的有向边的情况下,基于所述第四有向无环图和所述第二可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图。
可选的,所述第一确定模块602,具体用于:
对所述第一指令列表按照从左至右的指令排列顺序进行遍历,并获取第二目标列表和当前遍历的指令所作用的第一量子位,所述第二目标列表包括所述第一指令列表中排序在所述当前遍历的指令之前的指令;
对所述第二目标列表按照从右至左的指令排列顺序进行遍历,并获取第一目标指令,所述第一目标指令所作用的量子位与所述第一量子位存在交集;
将所述第一目标指令的标识作为源节点,所述当前遍历的指令的标识作为目标节点,构建所述第一有向边;
在所述第一指令列表遍历完成的情况下,基于所构建的第一有向边,获取所述第一有向无环图。
可选的,所述第二确定模块603,具体用于:
确定所述第一有向无环图的可达性信息,所述可达性信息用于表征所述第一有向无环图中输入节点到输出节点的可达性,所述可达性指示输入节点是否存在到达输出节点的通路;
基于所述可达性信息,确定所述第一可连接信息。
可选的,所述等效编译模块605包括:
重排序子模块,用于基于所述第二有向无环图,对所述第一指令列表中的指令进行重排序,得到第三指令列表;
等效编译子模块,用于基于所述第一目标列表,对所述第三指令列表中的指令进行等效编译,得到所述第二指令列表。
可选的,所述重排序子模块,具体用于:
获取所述第二有向无环图对应的拓扑排序列表,所述拓扑排序列表中,针对所述第二有向无环图中的每个有向边,所述有向边的源节点排序在所述有向边的目标节点之前;
基于所述拓扑排序列表,对所述第一指令列表中的指令进行重排序,得到所述第三指令列表。
可选的,所述等效编译子模块,具体用于:
针对所述第一目标列表中每个所述第二有向边,将所述第三指令列表中各第二目标指令所作用的第二量子位更新为第三量子位,所述第二量子位为所述第二有向边中目标节点对应指令所作用的量子位,所述第三量子位为所述第二有向边中源节点对应指令所作用的量子位。
本公开提供的量子电路处理装置600能够实现量子电路处理方法实施例实现的各个过程,且能够达到相同的有益效果,为避免重复,这里不再赘述。
本公开的技术方案中,所涉及的用户个人信息的收集、存储、使用、加工、传输、提供和公开等处理,均符合相关法律法规的规定,且不违背公序良俗。
根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。
图7示出了可以用来实施本公开的实施例的示例电子设备的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图7所示,设备700包括计算单元701,其可以根据存储在只读存储器(ROM)702中的计算机程序或者从存储单元708加载到随机访问存储器(RAM)703中的计算机程序,来执行各种适当的动作和处理。在RAM 703中,还可存储设备700操作所需的各种程序和数据。计算单元701、ROM 702以及RAM 703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。
设备700中的多个部件连接至I/O接口705,包括:输入单元706,例如键盘、鼠标等;输出单元707,例如各种类型的显示器、扬声器等;存储单元708,例如磁盘、光盘等;以及通信单元709,例如网卡、调制解调器、无线通信收发机等。通信单元709允许设备700通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
计算单元701可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元701的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元701执行上文所描述的各个方法和处理,例如量子电路处理方法。例如,在一些实施例中,量子电路处理方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元708。在一些实施例中,计算机程序的部分或者全部可以经由ROM 702和/或通信单元709而被载入和/或安装到设备700上。当计算机程序加载到RAM 703并由计算单元701执行时,可以执行上文描述的量子电路处理方法的一个或多个步骤。备选地,在其他实施例中,计算单元701可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行量子电路处理方法。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (27)

1.一种量子电路处理方法,包括:
获取第一量子电路的第一指令列表;
基于所述第一指令列表,确定第一有向无环图,所述第一有向无环图包括所述第一指令列表中指令对应的节点和第一有向边,所述第一有向边用于表征所述第一指令列表中不同指令间的时序关系;
确定所述第一有向无环图的第一可连接信息,所述第一可连接信息用于表征输出节点到输入节点的可连接性,所述输入节点为所述第一指令列表中类型为重置操作指令对应的节点,所述输出节点为所述第一指令列表中类型为量子测量操作指令对应的节点;
基于所述第一有向无环图和所述第一可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图,所述第二有向无环图包括所述第二有向边和所述第一有向边,所述第二有向边和所述第一有向边构成的路径不包括有向环路,所述第二有向无环图中各输出节点无可连接的输入节点,所述第二有向边为基于所述第一可连接信息确定的输出节点到输入节点可连接的M个候选有向边中评分值最大的候选有向边,所述评分值用于表征第三有向无环图中输出节点到输入节点可连接的有向边数量中的最大值,所述第三有向无环图是在所述第一有向无环图中添加候选有向边后得到的,M为正整数;
基于所述第二有向无环图、所述第二有向边构成的第一目标列表和所述第一指令列表,对所述第一量子电路进行等效编译,得到与所述第一量子电路等效的第二量子电路的第二指令列表;
所述基于所述第二有向无环图、所述第二有向边构成的第一目标列表和所述第一指令列表,对所述第一量子电路进行等效编译,得到与所述第一量子电路等效的第二量子电路的第二指令列表,包括:
基于第二有向无环图,确定各个节点之间的时序关系;
基于时序关系,对第一指令列表进行重排序;
利用第一目标列表中输入节点与输出节点之间的关系,将量子测量操作指令之后作用在其他量子比特的指令,等效编译成作用到该量子测量操作指令所作用的量子比特上,得到与第一量子电路等效的第二量子电路的第二指令列表;所述其他量子比特为与输出节点有向连接的输入节点对应指令所作用的量子比特。
2.根据权利要求1所述的方法,其中,所述基于所述第一有向无环图和所述第一可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图,包括:
从所述第一可连接信息确定的M个候选有向边中确定一条第二有向边;
在所述第一有向无环图中添加一条所述第二有向边,得到第四有向无环图;
基于所述第四有向无环图和所述第四有向无环图的第二可连接信息,确定所述第二有向无环图。
3.根据权利要求2所述的方法,其中,所述第一可连接信息用第一矩阵表示,所述从所述第一可连接信息确定的M个候选有向边中确定第二有向边,包括:
针对每个候选有向边,在所述第一有向无环图中模拟添加所述候选有向边的情况下,对所述第一矩阵进行更新,得到第二矩阵,所述第二矩阵用于表征在所述第一有向无环图中添加所述候选有向边后得到的有向无环图中输出节点到输入节点的可连接性;
基于所述第二矩阵,确定所述候选有向边的评分值;
将所述M个候选有向边中评分值最大的候选有向边确定为第二有向边。
4.根据权利要求3所述的方法,其中,所述第一矩阵中每个元素用于表征所述第一有向无环图中一输出节点到一输入节点的可连接性,所述对所述第一矩阵进行更新,得到第二矩阵,包括:
将所述第一矩阵中所述候选有向边对应元素值更新为第一目标值;
将所述第一矩阵中所述候选有向边对应元素的行中各元素值更新为所述第一目标值,以及将所述第一矩阵中所述候选有向边对应元素的列中各元素值更新为所述第一目标值;
将所述第一矩阵中目标行坐标和目标列坐标确定的位置的元素值更新为所述第一目标值,所述目标行坐标为所述候选有向边对应元素的列中元素值为所述第一目标值的行坐标,所述目标列坐标为所述候选有向边对应元素的行中元素值为所述第一目标值的列坐标;
其中,所述第一目标值用于表征有向无环图中输出节点到输入节点不可连接。
5.根据权利要求3所述的方法,其中,所述基于所述第二矩阵,确定所述候选有向边的评分值,包括:
获取所述第二矩阵中存在元素值为第二目标值的行数量和列数量;
基于所述行数量和所述列数量,确定所述候选有向边的评分值。
6.根据权利要求5所述的方法,其中,所述基于所述行数量和所述列数量,确定所述候选有向边的评分值,包括:
将第三目标值确定为所述候选有向边的评分值,所述第三目标值是所述行数量和列数量中的小者加上1得到。
7.根据权利要求2所述的方法,其中,所述基于所述第四有向无环图和所述第四有向无环图的第二可连接信息,确定所述第二有向无环图,包括:
在所述第二可连接信息表征所述第四有向无环图中存在输出节点到输入节点可连接的有向边的情况下,基于所述第四有向无环图和所述第二可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图。
8.根据权利要求1所述的方法,其中,所述基于所述第一指令列表,确定第一有向无环图,包括:
对所述第一指令列表按照从左至右的指令排列顺序进行遍历,并获取第二目标列表和当前遍历的指令所作用的第一量子位,所述第二目标列表包括所述第一指令列表中排序在所述当前遍历的指令之前的指令;
对所述第二目标列表按照从右至左的指令排列顺序进行遍历,并获取第一目标指令,所述第一目标指令所作用的量子位与所述第一量子位存在交集;
将所述第一目标指令的标识作为源节点,所述当前遍历的指令的标识作为目标节点,构建所述第一有向边;
在所述第一指令列表遍历完成的情况下,基于所构建的第一有向边,获取所述第一有向无环图。
9.根据权利要求1所述的方法,其中,所述确定所述第一有向无环图的第一可连接信息,包括:
确定所述第一有向无环图的可达性信息,所述可达性信息用于表征所述第一有向无环图中输入节点到输出节点的可达性,所述可达性指示输入节点是否存在到达输出节点的通路;
基于所述可达性信息,确定所述第一可连接信息。
10.根据权利要求1所述的方法,其中,所述基于所述第二有向无环图、所述第二有向边构成的第一目标列表和所述第一指令列表,对所述第一量子电路进行等效编译,得到与所述第一量子电路等效的第二量子电路的第二指令列表,包括:
基于所述第二有向无环图,对所述第一指令列表中的指令进行重排序,得到第三指令列表;
基于所述第一目标列表,对所述第三指令列表中的指令进行等效编译,得到所述第二指令列表。
11.根据权利要求10所述的方法,其中,所述基于所述第二有向无环图,对所述第一指令列表中的指令进行重排序,得到第三指令列表,包括:
获取所述第二有向无环图对应的拓扑排序列表,所述拓扑排序列表中,针对所述第二有向无环图中的每个有向边,所述有向边的源节点排序在所述有向边的目标节点之前;
基于所述拓扑排序列表,对所述第一指令列表中的指令进行重排序,得到所述第三指令列表。
12.根据权利要求10所述的方法,其中,所述基于所述第一目标列表,对所述第三指令列表中的指令进行等效编译,得到所述第二指令列表,包括:
针对所述第一目标列表中每个所述第二有向边,将所述第三指令列表中各第二目标指令所作用的第二量子位更新为第三量子位,所述第二量子位为所述第二有向边中目标节点对应指令所作用的量子位,所述第三量子位为所述第二有向边中源节点对应指令所作用的量子位。
13.一种量子电路处理装置,包括:
获取模块,用于获取第一量子电路的第一指令列表;
第一确定模块,用于基于所述第一指令列表,确定第一有向无环图,所述第一有向无环图包括所述第一指令列表中指令对应的节点和第一有向边,所述第一有向边用于表征所述第一指令列表中不同指令间的时序关系;
第二确定模块,用于确定所述第一有向无环图的第一可连接信息,所述第一可连接信息用于表征输出节点到输入节点的可连接性,所述输入节点为所述第一指令列表中类型为重置操作指令对应的节点,所述输出节点为所述第一指令列表中类型为量子测量操作指令对应的节点;
第三确定模块,用于基于所述第一有向无环图和所述第一可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图,所述第二有向无环图包括所述第二有向边和所述第一有向边,所述第二有向边和所述第一有向边构成的路径不包括有向环路,所述第二有向无环图中各输出节点无可连接的输入节点,所述第二有向边为基于所述第一可连接信息确定的输出节点到输入节点可连接的M个候选有向边中评分值最大的候选有向边,所述评分值用于表征第三有向无环图中输出节点到输入节点可连接的有向边数量中的最大值,所述第三有向无环图是在所述第一有向无环图中添加候选有向边后得到的,M为正整数;
等效编译模块,用于基于所述第二有向无环图、所述第二有向边构成的第一目标列表和所述第一指令列表,对所述第一量子电路进行等效编译,得到与所述第一量子电路等效的第二量子电路的第二指令列表;
等效编译模块,具体用于:
基于第二有向无环图,确定各个节点之间的时序关系;
基于时序关系,对第一指令列表进行重排序;
利用第一目标列表中输入节点与输出节点之间的关系,将量子测量操作指令之后作用在其他量子比特的指令,等效编译成作用到该量子测量操作指令所作用的量子比特上,得到与第一量子电路等效的第二量子电路的第二指令列表;所述其他量子比特为与输出节点有向连接的输入节点对应指令所作用的量子比特。
14.根据权利要求13所述的装置,其中,所述第三确定模块包括:
第一确定子模块,用于从所述第一可连接信息确定的M个候选有向边中确定一条第二有向边;
添加子模块,用于在所述第一有向无环图中添加一条所述第二有向边,得到第四有向无环图;
第二确定子模块,用于基于所述第四有向无环图和所述第四有向无环图的第二可连接信息,确定所述第二有向无环图。
15.根据权利要求14所述的装置,其中,所述第一可连接信息用第一矩阵表示,所述第一确定子模块,包括:
更新单元,用于针对每个候选有向边,在所述第一有向无环图中模拟添加所述候选有向边的情况下,对所述第一矩阵进行更新,得到第二矩阵,所述第二矩阵用于表征在所述第一有向无环图中添加所述候选有向边后得到的有向无环图中输出节点到输入节点的可连接性;
第一确定单元,用于基于所述第二矩阵,确定所述候选有向边的评分值;
第二确定单元,用于将所述M个候选有向边中评分值最大的候选有向边确定为第二有向边。
16.根据权利要求15所述的装置,其中,所述第一矩阵中每个元素用于表征所述第一有向无环图中一输出节点到一输入节点的可连接性,所述更新单元,具体用于:
将所述第一矩阵中所述候选有向边对应元素值更新为第一目标值;
将所述第一矩阵中所述候选有向边对应元素的行中各元素值更新为所述第一目标值,以及将所述第一矩阵中所述候选有向边对应元素的列中各元素值更新为所述第一目标值;
将所述第一矩阵中目标行坐标和目标列坐标确定的位置的元素值更新为所述第一目标值,所述目标行坐标为所述候选有向边对应元素的列中元素值为所述第一目标值的行坐标,所述目标列坐标为所述候选有向边对应元素的行中元素值为所述第一目标值的列坐标;
其中,所述第一目标值用于表征有向无环图中输出节点到输入节点不可连接。
17.根据权利要求15所述的装置,其中,所述第一确定单元,具体用于:
获取所述第二矩阵中存在元素值为第二目标值的行数量和列数量;
基于所述行数量和所述列数量,确定所述候选有向边的评分值。
18.根据权利要求17所述的装置,其中,所述第一确定单元,具体用于:
将第三目标值确定为所述候选有向边的评分值,所述第三目标值是所述行数量和列数量中的小者加上1得到。
19.根据权利要求14所述的装置,其中,所述第二确定子模块,具体用于:
在所述第二可连接信息表征所述第四有向无环图中存在输出节点到输入节点可连接的有向边的情况下,基于所述第四有向无环图和所述第二可连接信息,依次确定第二有向边,并依次添加所述第二有向边,得到第二有向无环图。
20.根据权利要求13所述的装置,其中,所述第一确定模块,具体用于:
对所述第一指令列表按照从左至右的指令排列顺序进行遍历,并获取第二目标列表和当前遍历的指令所作用的第一量子位,所述第二目标列表包括所述第一指令列表中排序在所述当前遍历的指令之前的指令;
对所述第二目标列表按照从右至左的指令排列顺序进行遍历,并获取第一目标指令,所述第一目标指令所作用的量子位与所述第一量子位存在交集;
将所述第一目标指令的标识作为源节点,所述当前遍历的指令的标识作为目标节点,构建所述第一有向边;
在所述第一指令列表遍历完成的情况下,基于所构建的第一有向边,获取所述第一有向无环图。
21.根据权利要求13所述的装置,其中,所述第二确定模块,具体用于:
确定所述第一有向无环图的可达性信息,所述可达性信息用于表征所述第一有向无环图中输入节点到输出节点的可达性,所述可达性指示输入节点是否存在到达输出节点的通路;
基于所述可达性信息,确定所述第一可连接信息。
22.根据权利要求13所述的装置,其中,所述等效编译模块包括:
重排序子模块,用于基于所述第二有向无环图,对所述第一指令列表中的指令进行重排序,得到第三指令列表;
等效编译子模块,用于基于所述第一目标列表,对所述第三指令列表中的指令进行等效编译,得到所述第二指令列表。
23.根据权利要求22所述的装置,其中,所述重排序子模块,具体用于:
获取所述第二有向无环图对应的拓扑排序列表,所述拓扑排序列表中,针对所述第二有向无环图中的每个有向边,所述有向边的源节点排序在所述有向边的目标节点之前;
基于所述拓扑排序列表,对所述第一指令列表中的指令进行重排序,得到所述第三指令列表。
24.根据权利要求22所述的装置,其中,所述等效编译子模块,具体用于:
针对所述第一目标列表中每个所述第二有向边,将所述第三指令列表中各第二目标指令所作用的第二量子位更新为第三量子位,所述第二量子位为所述第二有向边中目标节点对应指令所作用的量子位,所述第三量子位为所述第二有向边中源节点对应指令所作用的量子位。
25.一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-12中任一项所述的方法。
26.一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行根据权利要求1-12中任一项所述的方法。
27.一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现根据权利要求1-12中任一项所述的方法。
CN202310579860.4A 2023-05-22 2023-05-22 量子电路处理方法、装置及电子设备 Active CN116611527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310579860.4A CN116611527B (zh) 2023-05-22 2023-05-22 量子电路处理方法、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310579860.4A CN116611527B (zh) 2023-05-22 2023-05-22 量子电路处理方法、装置及电子设备

Publications (2)

Publication Number Publication Date
CN116611527A CN116611527A (zh) 2023-08-18
CN116611527B true CN116611527B (zh) 2023-11-21

Family

ID=87676023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310579860.4A Active CN116611527B (zh) 2023-05-22 2023-05-22 量子电路处理方法、装置及电子设备

Country Status (1)

Country Link
CN (1) CN116611527B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114881237A (zh) * 2022-03-29 2022-08-09 北京百度网讯科技有限公司 量子计算处理方法、装置及电子设备
CN114902225A (zh) * 2020-02-13 2022-08-12 英特尔公司 多租户环境中的密码计算
EP4064058A1 (en) * 2021-03-26 2022-09-28 Intel Corporation Data relocation for inline metadata
CN115860128A (zh) * 2022-12-21 2023-03-28 北京百度网讯科技有限公司 量子电路运行方法、装置及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11972126B2 (en) * 2021-03-26 2024-04-30 Intel Corporation Data relocation for inline metadata

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114902225A (zh) * 2020-02-13 2022-08-12 英特尔公司 多租户环境中的密码计算
EP4064058A1 (en) * 2021-03-26 2022-09-28 Intel Corporation Data relocation for inline metadata
CN114881237A (zh) * 2022-03-29 2022-08-09 北京百度网讯科技有限公司 量子计算处理方法、装置及电子设备
CN115860128A (zh) * 2022-12-21 2023-03-28 北京百度网讯科技有限公司 量子电路运行方法、装置及电子设备

Also Published As

Publication number Publication date
CN116611527A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
CN115860128B (zh) 量子电路运行方法、装置及电子设备
CN112528591A (zh) 一种基于联合蒙特卡洛树搜索的pcb板自动布线方法
CN114970865A (zh) 量子芯片上的量子电路处理方法、装置及电子设备
CN113127697B (zh) 图布局优化方法和系统、电子设备及可读存储介质
CN114580645A (zh) 随机量子测量的模拟方法、装置、设备及存储介质
CN116167446B (zh) 量子计算处理方法、装置及电子设备
CN116167445B (zh) 量子测量模式的处理方法、装置及电子设备
CN116611527B (zh) 量子电路处理方法、装置及电子设备
CN116151381B (zh) 量子电路处理方法、装置及电子设备
CN116151384B (zh) 量子电路处理方法、装置及电子设备
CN116629370B (zh) 量子电路处理方法、装置及电子设备
CN115458040A (zh) 蛋白质的生成方法、装置、电子设备及存储介质
CN117313880A (zh) 量子电路处理方法、装置及电子设备
CN116629370A (zh) 量子电路处理方法、装置及电子设备
CN113590912A (zh) 融合节点相对位置和绝对度分布的跨社交网络对齐方法
CN116187458B (zh) 量子电路处理方法、装置及电子设备
CN117744813A (zh) 量子电路处理方法、装置及电子设备
CN116167447B (zh) 量子电路处理方法、装置及电子设备
CN117787424A (zh) 量子电路处理方法、装置及电子设备
CN112580803B (zh) 模型获取方法、装置、电子设备、存储介质和程序产品
CN116227607B (zh) 量子电路的分类方法、装置、电子设备、介质和产品
CN116579435B (zh) 量子电路的分类方法、装置、电子设备、介质和产品
CN116187464B (zh) 盲量子计算处理方法、装置及电子设备
CN116187463B (zh) 量子测量模式至量子电路的编译方法、装置及电子设备
CN117313883A (zh) 量子电路处理方法、装置及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant