CN116607351A - 一种纳米细菌纤维素疏水防油纸及其制备方法 - Google Patents

一种纳米细菌纤维素疏水防油纸及其制备方法 Download PDF

Info

Publication number
CN116607351A
CN116607351A CN202310832640.8A CN202310832640A CN116607351A CN 116607351 A CN116607351 A CN 116607351A CN 202310832640 A CN202310832640 A CN 202310832640A CN 116607351 A CN116607351 A CN 116607351A
Authority
CN
China
Prior art keywords
oil
bacterial cellulose
paper
proof
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310832640.8A
Other languages
English (en)
Other versions
CN116607351B (zh
Inventor
钟春燕
王慧庆
钟宇光
袁开宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Hainan Yeguo Foods Co Ltd
Original Assignee
Hefei University of Technology
Hainan Yeguo Foods Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology, Hainan Yeguo Foods Co Ltd filed Critical Hefei University of Technology
Publication of CN116607351A publication Critical patent/CN116607351A/zh
Application granted granted Critical
Publication of CN116607351B publication Critical patent/CN116607351B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/28Organic non-cellulose fibres from natural polymers
    • D21H13/30Non-cellulose polysaccharides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/005Microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Paper (AREA)

Abstract

本发明提供了一种纳米细菌纤维素疏水防油纸及其制备方法,属于防油纸技术领域,采用纳米细菌纤维素分散液和甲壳素纳米晶分散液混合涂布时,纳米细菌纤维素、甲壳素纳米晶分散液可填充基纸孔隙阻隔油脂渗透,改善防油性能,复配防油剂再次喷涂在基纸上,复配防油剂液显正电而纸浆纤维显负电,复配防油剂液与纸张表面的纤维结合从而减少了甲壳素纳米晶向纸张内部的渗透,提高涂布后的强度,同时漆酶可以催化多巴胺聚合,进一步提高涂布后的强度,干燥过程中,亲水基团会聚集在球状水滴界面,当干燥水分挥发完全后,亲水性的链端聚集在孔膜的表面,导致涂布干燥后起到防油效果。基纸经涂布后,平滑度提高,直接改善了牛皮纸的不均匀表面。

Description

一种纳米细菌纤维素疏水防油纸及其制备方法
技术领域
本发明属于防油纸技术领域,尤其是一种纳米细菌纤维素疏水防油纸及其制备方法。
背景技术
传统纸为做到防水防油,将合成化学物质直接添加在纸浆中,或是合成化学物质添加到由PE或PLA制成的涂层中,通常两者都会使用,这些塑料和合成化学物质使包装无法分解或回收。相对塑料薄膜紧密的结构,纸张由内到外具有疏松多孔的结构。在纸张内部,纤维结构疏松,纤维本身和纤维之间间隙较多,油脂通过毛细管作用向纸张内部渗透。同时由于纤维表面含有大量极性羟基,导致表面能较高,亲油性强。故未经防油处理的纸张吸油性较强。纸张表面的孔隙率高低直接影响纸张防油性能。孔隙率高的纸张表面,油脂渗人容易,吸油性强。为了阻止油脂渗入,必须降低纸张表面孔隙率,提高纸张表面的紧致程度。降低孔隙率的方式有两种:在纸张表面添加施胶单体和胶黏剂:提高纸张内部打浆度。例如CN201610454937.5公开了一种纸张防水防油用含氟共聚物及其分散液制备方法,纸张防水防油用含氟共聚物,防水防油效果优良。但防油纸张表面处理剂一般原材料污染性重,含氟化合物制备成本高昂,严重制约着拒油纸张表面的应用扩展。防油剂在纤维表面的吸附属于物理吸附,作用力是范德华力,具有吸附速率快、无选择性、可逆等特点。根据表面物理化学的理论,在油脂润湿及渗入纸张表面的过程中,只有纤维素的表面张力高于油脂的表面张力时,油脂才容易湿润纸张表面及渗入纸张内部。故降低纸张表面张力、减少纸张表面孔隙率可以达到降低油脂渗透,提高纸张防油性的目的。在使用过程中,防油剂亲水基部分吸附或结合在纸张表面,含氟基团朝外排列成疏水疏油膜,降低了纸张表面张力,使纸张不能被油脂润湿。张斌等在聚乙烯醇中,添加纤维素纳米纤丝和微纳化竹粉,制备了防油性能更高的PVA/CNF/MBP复合涂布液,探究了对纸张疏水防油性能。周丹丹等人以一种多羟基高分子材料为表面施胶剂对纸张表面进行处理,并喷涂硬脂酰氯溶液,制备疏水防油性能纸张,通过接触角测定检测其疏水性。但是目前以硅氟类为主,研究表明硅氟类防油剂内微量的PFOA会转移到食品内部,对人体有致癌风险1,无硅无氟型食品防油纸是未来的发展趋势。因此,本领域技术人员亟待开发一种纳米细菌纤维素防油纸的制备方法,来满足市场需求和性能要求。
发明内容
针对上述问题,本发明旨在提供一种纳米细菌纤维素疏水防油纸及其制备方法。
本发明通过以下技术方案实现:
一种纳米细菌纤维素防油纸的制备方法,第一步、酸性条件下,将纳米细菌纤维素高压均质成均匀的纳米细菌纤维素分散液,再与甲壳素纳米晶分散液混合均匀,得到混合溶液;第二步、复配防油剂:将淀粉糊化后的悬浮液与漆酶溶液按质量比1~2:1混合,得复配防油剂;第三步,在第二步得到的混合溶液中再加入其体积比例25~35%的多巴胺溶液,超声分散均匀后,在25℃~30℃下机械搅拌,得涂布液;第四步、将第三步得到的涂布液涂布在基纸上,干燥,然后将复配防油剂再次喷涂在基纸上,再次干燥,即得纳米细菌纤维素防油纸。
进一步的,所述第一步在酸性的条件下指酸性溶液,酸性溶液的pH为4~6,所述酸性溶液为醋酸-醋酸钠缓冲溶液,甲壳素纳米晶分散液含甲壳素纳米晶质量分数为1.5~2.5%的醋酸溶液,甲壳素纳米晶分散液与纳米细菌纤维素分散液的体积比为0.6∶1~1.5,纳米细菌纤维素分散液的质量浓度为2~3%。
进一步的,第二步所述淀粉糊化后的悬浮液的质量百分比浓度的1%~2%,淀粉为阳离子淀粉,漆酶溶液为6~8U/mL的漆酶溶液,糊化反应的温度为90~95℃,糊化反应时间为20~25min。
进一步的,所述第四步的涂布量为2.0~4g/m2
进一步的,所述第四步复配防油剂的喷涂量为0.5~1.0g/m2
进一步的,所述多巴胺溶液的浓度为2.5g/L~4g/L盐酸多巴胺Tris-HCl缓冲液。
进一步的,所述第四步干燥为热风干燥 ,所述干燥的温度为80℃~90℃。
牛皮纸是一种高档包装用纸,可制作商品手提袋、信封、档案袋等,也可用于食品包装。
进一步的,所述基纸为定量40~80g/m2的牛皮纸。
进一步的,由如所述的方法制备而成的纳米细菌纤维素防油纸。
本发明公开了纳米细菌纤维素防油纸的制备方法,其中纳米细菌纤维素分散液和甲壳素纳米晶分散液混合涂布时,纳米细菌纤维素既可在纸张表面形成薄膜提高纸张防油性,甲壳素纳米晶分散液可以在基纸表面形成薄膜,阻隔油脂渗透,并改善防油性能,复配防油剂再次喷涂在基纸上,复配防油剂液显正电而纸浆纤维显负电,复配防油剂液与纸张表面的纤维结合提高了涂布的结合强度,从而使得甲壳素纳米晶更多的留置在基纸表面;同时漆酶可以催化多巴胺聚合,进一步提高涂布强度;干燥过程中,亲水基团会聚集在球状水滴界面,当干燥水分挥发完全后,亲水性的链端聚集在孔膜的表面,导致涂布干燥后起到防油效果。基纸经涂布后,平滑度提高,直接改善了牛皮纸的不均匀表面,填充了基纸孔隙,纳米细菌纤维素具有组织良好的纳米纤维网络结构,使得其力学性能相较于植物纤维素也更为优异,公开的制备方法工艺简便,原料来源广泛,热稳定性高,无氟硅生物可降解。
附图说明
图1是实施例1制备的纳米细菌纤维素的透射电镜照片;图2是实施例1中的木浆纤维素纳米和纳米细菌纤维素的TG和DTG分析曲线图,其中曲线b为纳米细菌纤维素;图3是实施例1中的基纸和制备的纳米细菌纤维素防油纸的扫描电镜照片,其中a为基纸,b为纳米细菌纤维素防油纸。
具体实施方式
下面用具体实施例说明本发明,但并不是对本发明的限制。
实施例1
上海三发DZF-6020型真空干燥箱;长沙湘仪H185型离心机;新三思电子拉力机CMT4104;上海三发DHG-9140A型电热恒温鼓风干燥箱;津市市鸿鹰液体漆酶;阳离子淀粉砀山金兄弟JXD-04;将20份沪慧J12074甲壳素分散在200质量份3.0 mol/L的盐酸溶液中,在氮气保护下90℃处理100min,反应结束后用冰水冷却并稀释反应混合物,以12000r/min 离心 5 min 洗涤6 次,在105 ℃下烘干1h得到;金汉长径比50、平均直径50nm、结晶度70%纯度99%的木浆纳米纤维素;沪慧J12074甲壳素沃凯生物盐酸多巴胺;细菌纤维素海南光宇生物;纳米超高压均质机通用NCJJ-0.075/150;基纸:华丰定量50g/m2、纵向抗张强度3kN/m、横向1.5kN/m,平滑度22s,纵向撕裂强度250mN、吸水性35g/m2白卷筒牛皮纸;
纳米细菌纤维素防油纸的制备方法,第一步、酸性条件下,在酸性的条件下指酸性溶液,酸性溶液的pH为4,所述酸性溶液为醋酸-醋酸钠缓冲溶液,甲壳素纳米晶分散液含甲壳素纳米晶质量分数为1.5%的醋酸溶液,甲壳素纳米晶分散液与纳米细菌纤维素分散液的体积比为0.6∶1.5,纳米细菌纤维素分散液的质量浓度为2%,将纳米细菌纤维素150MPa、10000rpm高压均质成均匀的纳米细菌纤维素分散液;
将纳米细菌纤维素分散到25℃水中,在40kHz的频率下超声分散10min,滴加在含有碳膜的规格为200目(0.074mm)的微栅铜网上,将晾干的铜网用透射电镜观察纳米细菌纤维素形态。
使用NETSCH-TG209热重分析仪分析得到的纳米细菌纤维素和木浆纳米纤维素的热稳定性。在氮气气氛下进行,测量温度25℃-600℃,升温速率10℃/min,氮气流速30mL/min。如图2所示,纳米细菌纤维素的起始分解温度接近270℃,最大热分解速率接近380℃左右;木浆纳米纤维素的起始分解温度近180℃,最大热分解速率近230℃;因为化学酸解木浆制备的木浆纳米纤维素因含有大量磺酸基,热稳定性很差。所以虽然其结晶度很高,但不适合耐高温的防油应用。而纳米细菌纤维素的热稳定性能满足日常烘烤油炸防油纸需求。
纳米细菌纤维素分散液再与甲壳素纳米晶分散液混合均匀,得到混合溶液;第二步、复配防油剂:淀粉糊化后的悬浮液的质量百分比浓度的2%,漆酶溶液为8U/mL的漆酶溶液,糊化反应的温度为95℃,糊化反应时间为20min,将淀粉糊化后的悬浮液与漆酶溶液按质量比1:1混合,得复配防油剂;第三步,在第二步得到的混合溶液中再加入其体积比例35%的多巴胺溶液,多巴胺溶液的浓度为4g/L多巴胺Tris缓冲液,在功率4kW、频率80kHz的超声分散机超声分散15min均匀后,在25℃600rpm下机械搅拌,得涂布液;第四步、将第三步得到的涂布液涂布在基纸上,涂布量为4g/m2,90℃热风干燥至含水率6%,然后将复配防油剂喷涂在基纸上,述防油剂的喷涂量为0.5g/m2,再次干燥,90℃热风干燥至含水率4.5%,即得纳米细菌纤维素防油纸。
用扫描电子显微镜观察基纸、纳米细菌纤维素防油纸的表面形貌。取检测样品经离子溅射镀膜仪进行溅射喷金处理,进行观测。
如图3所示,基纸张纤维纵横交错,且纤维之间存在大量缝隙,这些缝隙会使得油脂渗透并顺着纤维纹路进一步扩散,防油效果差,纳米细菌纤维素可以封堵纸纸张纤维的孔隙以及在纸张表面成膜来起到阻隔油脂的作用。
防油纸产品性能:防油纸表面无尘埃、砂粒、斑点、纤维团等缺陷。
实施例2
上海三发DZF-6020型真空干燥箱;长沙湘仪H185型离心机;新三思电子拉力机CMT4104;上海三发DHG-9140A型电热恒温鼓风干燥箱;津市市鸿鹰液体漆酶;阳离子淀粉大运河枣庄YLZ-001;沪慧J12074甲壳素参照(Liu M, Huang J, Luo B, et al. Int J BioMacromol, 2015, 78: 23-31.)制备甲壳素纳米晶;沃凯生物盐酸多巴胺;细菌纤维素海南光宇生物;纳米超高压均质机通用NCJJ-0.075/250;基纸:UPM定量40g/m2、纵向抗张强度2.4kN/m、横向1.2kN/m,平滑度20s,纵向撕裂强度180mN、吸水性30g/m2的白卷筒牛皮纸;
纳米细菌纤维素防油纸的制备方法,第一步、酸性条件下,在酸性的条件下指酸性溶液,酸性溶液的pH为6,所述酸性溶液为醋酸-醋酸钠缓冲溶液,甲壳素纳米晶分散液含甲壳素纳米晶质量分数为2.5%,甲壳素纳米晶分散液与纳米细菌纤维素分散液的体积比为0.6∶1,纳米细菌纤维素分散液的质量浓度为3%,将纳米细菌纤维素高压均质成均匀的纳米细菌纤维素分散液;纳米细菌纤维素分散液再与甲壳素纳米晶分散液混合均匀,得到混合溶液;第二步、复配防油剂:淀粉糊化后的悬浮液的质量百分比浓度的1%,漆酶溶液为6U/mL的漆酶溶液,糊化反应的温度为90℃,糊化反应时间为25min,将淀粉糊化后的悬浮液与漆酶溶液按质量比2:1混合,得复配防油剂;第三步,在第二步得到的混合溶液中再加入其体积比例25%的多巴胺溶液,多巴胺溶液的浓度为2.5g/L多巴胺Tris缓冲液,功率4kW、频率80kHz的超声分散机超声分散均匀后,30℃下500rpm机械搅拌,得涂布液;第四步、将第三步得到的涂布液涂布在基纸上,涂布量为2.0g/m2,80℃热风干燥至含水率5.1%,然后将复配防油剂喷涂在基纸上,防油剂的喷涂量为1.0g/m2,再次干燥,80℃下热风干燥至含水率4.2%,即得纳米细菌纤维素防油纸。
防油纸产品性能:防油纸表面无尘埃、砂粒、斑点、纤维团等缺陷。
实施例3
上海三发DZF-6020型真空干燥箱;长沙湘仪H185型离心机;新三思电子拉力机CMT4104;上海三发DHG-9140A型电热恒温鼓风干燥箱;津市市鸿鹰液体漆酶;阳离子淀粉大运河枣庄YLZ-001;沪慧J12074甲壳素参照(Liu M, Huang J, Luo B, et al. Int J BioMacromol, 2015, 78: 23-31.)制备甲壳素纳米晶;沃凯生物盐酸多巴胺;细菌纤维素海南光宇生物;纳米超高压均质机通用NCJJ-0.075/250;基纸:金昌定量80g/m2、纵向抗张强度3.6kN/m、横向1.8kN/m,平滑度20s,纵向撕裂强度270mN、吸水性25g/m2的Ⅰ型白卷筒牛皮纸;
纳米细菌纤维素防油纸的制备方法,第一步、酸性条件下,在酸性的条件下指酸性溶液,酸性溶液的pH为5,所述酸性溶液为醋酸-醋酸钠缓冲溶液,甲壳素纳米晶分散液含甲壳素纳米晶质量分数为1.8%,甲壳素纳米晶分散液与纳米细菌纤维素分散液的体积比为0.6∶1.2,纳米细菌纤维素分散液的质量浓度为2.5%,将纳米细菌纤维素高压均质成均匀的纳米细菌纤维素分散液;纳米细菌纤维素分散液再与甲壳素纳米晶分散液混合均匀,得到混合溶液;第二步、复配防油剂:淀粉糊化后的悬浮液的质量百分比浓度的1%,漆酶溶液为6U/mL的漆酶溶液,糊化反应的温度为90℃,糊化反应时间为25min,将淀粉糊化后的悬浮液与漆酶溶液按质量比2:1混合,得复配防油剂;第三步,在第二步得到的混合溶液中再加入其体积比例30%的多巴胺溶液,多巴胺溶液的浓度为3g/L多巴胺Tris缓冲液,功率4kW、频率80kHz的超声分散机超声分散均匀后,30℃下500rpm机械搅拌,得涂布液;第四步、将第三步得到的涂布液涂布在基纸上,涂布量为3g/m2,80℃热风干燥至含水率5.0%,然后将复配防油剂喷涂在基纸上,防油剂的喷涂量为0.75g/m2,再次干燥,80℃下热风干燥至含水率4.4%,即得纳米细菌纤维素防油纸。
防油纸产品性能:防油纸表面无尘埃、砂粒、斑点、纤维团等缺陷。
实施例4
DZF-6020型真空干燥箱;湘仪H185型离心机;电子拉力机CMT4104;DHG-9140A型电热恒温鼓风干燥箱;津市市鸿鹰液体漆酶;阳离子淀粉大运河枣庄YLZ-001;甲壳素纳米晶同实施例1;沃凯生物盐酸多巴胺;细菌纤维素海南光宇生物;纳米超高压均质机通用NCJJ-0.075/250;封开嘉城定量70g/m2、纵向抗张强度3.3kN/m、横向1.7kN/m,平滑度18s,纵向撕裂强度260mN、吸水性31g/m2的Ⅰ型A级牛皮纸;
纳米细菌纤维素防油纸的制备方法,第一步、酸性条件下,在酸性的条件下指酸性溶液,酸性溶液的pH为6,所述酸性溶液为醋酸-醋酸钠缓冲溶液,甲壳素纳米晶分散液含甲壳素纳米晶的质量分数为1.5%,甲壳素纳米晶分散液与纳米细菌纤维素分散液的体积比为0.6∶1.1,纳米细菌纤维素分散液的质量浓度为2.4%,将纳米细菌纤维素高压均质成均匀的纳米细菌纤维素分散液;纳米细菌纤维素分散液再与甲壳素纳米晶分散液混合均匀,得到混合溶液;第二步、复配防油剂:淀粉糊化后的悬浮液的质量百分比浓度的1%,漆酶溶液为6U/mL的漆酶溶液,糊化反应的温度为90℃,糊化反应时间为25min,将淀粉糊化后的悬浮液与漆酶溶液按质量比2:1混合,得复配防油剂;第三步,在第二步得到的混合溶液中再加入其体积比例25%的多巴胺溶液,多巴胺溶液的浓度为2.5g/L多巴胺Tris缓冲液,功率4kW、频率80kHz的超声分散机超声分散均匀后,30℃下500rpm机械搅拌,得涂布液;第四步、将第三步得到的涂布液涂布在基纸上,涂布量为2.5g/m2,85℃热风干燥至含水率5.1%,然后将复配防油剂喷涂在基纸上,防油剂的喷涂量为0.8g/m2,再次干燥,85℃下热风干燥至含水率4.7%,即得纳米细菌纤维素防油纸。
防油纸产品性能:防油纸表面无尘埃、砂粒、斑点、纤维团等缺陷。
将实施例1~4得到的纳米细菌纤维素防油纸进行性能检测,检测结果见表1
表1 实施例1~4得到的纳米细菌纤维素防油纸的性能检测结果
注:试样的采取按GB/T450-2008纸和纸板试样的采取及试样纵横向、正反面的测定进行。试样尺寸按GB/T451.1-2002纸和纸板尺寸及偏斜度的测定进行。定量按GB/T451.2纸和纸板定量的测定进行。水分按GB/T462-2008纸、纸板和纸浆分析试样水分的测定的规定进行测定。平滑度(正面)按GB/T456-2002纸和纸板平滑度的测定(别克法)进行测定。裂断长按GB/T12914-2018纸和纸板抗张强度的测定恒速拉伸法(20mm/min)进行测定。撕裂度按GB/T455-2002纸和纸板撕裂度的测定进行测定。吸水性按GB/T1540-2002纸和纸板吸水性的测定(可勃法)进行测定。防油度按GB/T22805.2-2008纸和纸板耐脂度的测定第2部分:表面排斥法进行测定。

Claims (9)

1.一种纳米细菌纤维素防油纸的制备方法,其特征在于,包括以下步骤:第一步、酸性条件下,将纳米细菌纤维素高压均质成均匀的纳米细菌纤维素分散液,再与甲壳素纳米晶分散液混合均匀,得到混合溶液;第二步、复配防油剂:将淀粉糊化后的悬浮液与漆酶溶液按质量比1~2:1混合,得复配防油剂;第三步,在第二步得到的混合溶液中再加入其体积比例25~35%的盐酸多巴胺溶液,超声分散均匀后,在25℃~30℃下机械搅拌,得涂布液;第四步、将第三步得到的涂布液涂布在基纸上,干燥,然后将复配防油剂喷涂在基纸上,再次干燥,即得纳米细菌纤维素防油纸。
2.根据权利要求1所述纳米细菌纤维素防油纸的制备方法,其特征在于,所述第一步在酸性的条件下指酸性溶液,酸性溶液的pH为4~6,所述酸性溶液为醋酸-醋酸钠缓冲溶液,甲壳素纳米晶分散液含甲壳素纳米晶质量分数为1.5~2.5%的醋酸溶液,甲壳素纳米晶分散液与纳米细菌纤维素分散液的体积比为0.6∶1~1.5,纳米细菌纤维素分散液的质量浓度为2~3%。
3.根据权利要求1所述的纳米细菌纤维素防油纸的制备方法,其特征在于,第二步所述淀粉糊化后的悬浮液的质量百分比浓度的1%~2%,淀粉为阳离子淀粉,漆酶溶液为6~8U/mL的漆酶溶液,糊化反应的温度为90~95℃,糊化反应时间为20~25min。
4.根据权利要求1所述的纳米细菌纤维素防油纸的制备方法,其特征在于,所述第四步的涂布量为2.0~4g/m2
5.根据权利要求1所述的纳米细菌纤维素防油纸的制备方法,其特征在于,所述第四步复配防油剂的喷涂量为0.5~1.0g/m2
6.根据权利要求1所述的纳米细菌纤维素防油纸的制备方法,其特征在于,所述盐酸多巴胺溶液的浓度为2.5g/L~4g/L多巴胺Tris-HCl缓冲液。
7.根据权利要求1所述的纳米细菌纤维素防油纸的制备方法,其特征在于,所述第四步干燥为热风干燥,所述干燥的温度为80℃~90℃。
8.根据权利要求1所述的纳米细菌纤维素防油纸的制备方法,其特征在于,所述基纸为定量40~80g/m2的牛皮纸。
9.一种纳米细菌纤维素疏水防油纸,其特征在于,由如权利要求1~8任一所述的方法制备而成。
CN202310832640.8A 2023-05-22 2023-07-08 一种纳米细菌纤维素疏水防油纸及其制备方法 Active CN116607351B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310573912 2023-05-22
CN2023105739127 2023-05-22

Publications (2)

Publication Number Publication Date
CN116607351A true CN116607351A (zh) 2023-08-18
CN116607351B CN116607351B (zh) 2024-07-12

Family

ID=87680357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310832640.8A Active CN116607351B (zh) 2023-05-22 2023-07-08 一种纳米细菌纤维素疏水防油纸及其制备方法

Country Status (1)

Country Link
CN (1) CN116607351B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619645A (zh) * 2017-11-01 2018-01-23 江南大学 一种基于全酶法制备多巴胺增强淀粉基粘合剂的方法
CN111303491A (zh) * 2018-11-27 2020-06-19 南京理工大学 细菌纤维素/聚合多巴胺复合纳米材料的制备方法
CN111395044A (zh) * 2020-03-24 2020-07-10 陕西科技大学 一种可生物降解的食品包装防油纸及其制备方法
CN111519466A (zh) * 2020-03-13 2020-08-11 浙江金加浩绿色纳米材料股份有限公司 一种不含氟碳化合物且可生物降解的防油纸及其制备方法
CN114808543A (zh) * 2022-03-31 2022-07-29 浙江工业大学 一种含纳米纤丝纤维素复合涂层的高性能食品防油纸基材料的制备方法
CN115323827A (zh) * 2022-08-24 2022-11-11 山东博汇纸业股份有限公司 无氟食品接触包装纸用涂布液及其制备方法和应用
CN115821628A (zh) * 2022-09-13 2023-03-21 杭州纸友科技有限公司 一种阳离子化淀粉基纳米纤维素防油剂的制备方法及应用
CN116084209A (zh) * 2023-02-07 2023-05-09 江南大学 一种无氟可降解防水防油包装纸的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619645A (zh) * 2017-11-01 2018-01-23 江南大学 一种基于全酶法制备多巴胺增强淀粉基粘合剂的方法
CN111303491A (zh) * 2018-11-27 2020-06-19 南京理工大学 细菌纤维素/聚合多巴胺复合纳米材料的制备方法
CN111519466A (zh) * 2020-03-13 2020-08-11 浙江金加浩绿色纳米材料股份有限公司 一种不含氟碳化合物且可生物降解的防油纸及其制备方法
CN111395044A (zh) * 2020-03-24 2020-07-10 陕西科技大学 一种可生物降解的食品包装防油纸及其制备方法
CN114808543A (zh) * 2022-03-31 2022-07-29 浙江工业大学 一种含纳米纤丝纤维素复合涂层的高性能食品防油纸基材料的制备方法
CN115323827A (zh) * 2022-08-24 2022-11-11 山东博汇纸业股份有限公司 无氟食品接触包装纸用涂布液及其制备方法和应用
CN115821628A (zh) * 2022-09-13 2023-03-21 杭州纸友科技有限公司 一种阳离子化淀粉基纳米纤维素防油剂的制备方法及应用
CN116084209A (zh) * 2023-02-07 2023-05-09 江南大学 一种无氟可降解防水防油包装纸的制备方法

Also Published As

Publication number Publication date
CN116607351B (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
Jin et al. Nanofibrillated cellulose as coating agent for food packaging paper
Guan et al. Preparation of hydrophobic transparent paper via using polydimethylsiloxane as transparent agent
CN108625219B (zh) 一种疏水防油纸的制备方法
Wang et al. Effects of a chitosan coating layer on the surface properties and barrier properties of kraft paper
AU2017362950B2 (en) Cellulose/polysaccharide composites
Gu et al. Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface
JP2020537060A (ja) 酸素バリアフィルム
Chen et al. Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment
Balan et al. Improving barrier and strength properties of paper by multi-layer coating with bio-based additives
CN114808543B (zh) 一种含纳米纤丝纤维素复合涂层的高性能食品防油纸基材料的制备方法
Wang et al. Preparation of a Crosslinking Cassava Starch Adhesive and its Application in Coating Paper.
Chinga-Carrasco et al. Micro-structural characterisation of homogeneous and layered MFC nano-composites
Fadel et al. Use of sugar beet cellulose nanofibers for paper coating
Ashori et al. Effect of chitosan addition on the surface properties of kenaf (Hibiscus cannabinus) paper
Zhu et al. A facile strategy to fabricate high-barrier, water-and oil-repellent paper with carboxymethyl cellulose/collagen fiber/modified polyvinyl alcohol
Guo et al. Improving the compatibility, surface strength, and dimensional stability of cellulosic fibers using glycidyl methacrylate grafting
Chen et al. Preparation of peanut shell cellulose nanofibrils and their superhydrophobic aerogels and their application on cotton fabrics
Liu et al. Graft copolymerization of MA/(TFEA or TFPM) onto cellulosic fibers for surface hydrophobicity
CN116607351B (zh) 一种纳米细菌纤维素疏水防油纸及其制备方法
Gao et al. Effect of molecular weight of PEI on the strength and hydrophobic performance of fiber-based papers via PEI-KH560 surface sizing
Kumar et al. Influence of nanolatex addition on cellulose nanofiber film properties
CN113563762B (zh) 一种水性疏水浆料及其制备方法与应用
CN114641597A (zh) 交联的mfc
de Souza et al. Eucalyptus spp. cellulose nanocrystals obtained by acid hydrolysis and ultrasound processing for structural strengthening in paper packaging
Zhang et al. In situ chemosynthesis of TiO 2 nanoparticles to endow paper with high water-resistance and retention rate properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant