CN116602967B - Lly-507用于制备抗革兰氏阳性细菌感染药物中的应用 - Google Patents

Lly-507用于制备抗革兰氏阳性细菌感染药物中的应用 Download PDF

Info

Publication number
CN116602967B
CN116602967B CN202310597513.4A CN202310597513A CN116602967B CN 116602967 B CN116602967 B CN 116602967B CN 202310597513 A CN202310597513 A CN 202310597513A CN 116602967 B CN116602967 B CN 116602967B
Authority
CN
China
Prior art keywords
lly
staphylococcus aureus
gram
biofilm
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310597513.4A
Other languages
English (en)
Other versions
CN116602967A (zh
Inventor
李佩玉
余治健
李惟芬
彭壬海
黄金连
蓝棋棋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Shenzhen Hospital of Huazhong University of Science and Technology
Original Assignee
Union Shenzhen Hospital of Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Shenzhen Hospital of Huazhong University of Science and Technology filed Critical Union Shenzhen Hospital of Huazhong University of Science and Technology
Priority to CN202310597513.4A priority Critical patent/CN116602967B/zh
Publication of CN116602967A publication Critical patent/CN116602967A/zh
Application granted granted Critical
Publication of CN116602967B publication Critical patent/CN116602967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/204Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with nitrogen-containing functional groups, e.g. aminoxides, nitriles, guanidines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了LLY‑507用于制备抗革兰氏阳性细菌感染药物中的应用,所述LLY‑507,CAS编号为1793053‑37‑8;所述LLY‑507具有抑制革兰氏阳性细菌的生长和生物被膜形成的作用。本发明的技术方案公开了LLY‑507的医药新用途,LLY‑507对多种革兰氏阳性细菌表现出较佳的抗菌活性,能够显著抑制生物被膜的形成;且比利奈唑胺、万古霉素、氨苄西林这些临床常用抗生素表现出更显著的杀菌活性。

Description

LLY-507用于制备抗革兰氏阳性细菌感染药物中的应用
技术领域
本发明属于医药技术领域,尤其涉及LLY-507用于制备抗革兰氏阳性细菌感染药物中的应用。
背景技术
革兰阳性细菌(包括金黄色葡萄球菌、屎肠球菌和粪肠球菌等)是医院内和社区感染的常见病原体。随着长期住院治疗、多种广谱抗生素使用的患者增多,近年来革兰阳性细菌对一线抗生素耐药的相关报道逐渐增加,给临床抗感染治疗带来巨大挑战。在美国和欧盟,耐药细菌每年导致超过23,000人死亡。如耐甲氧西林金葡菌(MRSA)以及耐万古霉素的屎肠球菌的检出率不断上升,在世卫组织抗生素耐药“重点病原体”清单中处于高度优先地位。金黄色葡萄球菌(以下简称“金葡菌”)有着相对较高的毒力和巨大的可塑性,能够适应各种环境条件,已经进化出对治疗中使用的几乎所有抗菌药的耐药机制。因此,一旦出现顶级抗生素耐药,可能会面临无药可用的境地,因此开发新型抗生素迫在眉睫。
当浮游菌附着在可用表面并开始定植时,部分细菌就会开始形成生物被膜。生物被膜(biofilm)是细菌自身分泌的胞外基质相互粘连形成的具有特定结构和功能的群体,在细菌性感染疾病的发生和发展中,大约80%都与生物被膜形成密切相关。生物被膜内细菌细胞更能抵抗更多压力条件及宿主免疫系统。常见革兰阳性细菌中有较高比例的细菌容易形成生物被膜,是临床治疗革兰阳性细菌感染效果不佳的重要原因之一。金葡菌相关感染常由于形成生物被膜而难以治疗,宿主免疫系统和抗生素对金葡菌生物被膜无效导致慢性感染性疾病的发展。当抗生素浓度下降时,细菌会增殖重新填充生物被膜,并脱落到周围组织和血液中,导致复发及感染迁延不愈。因此,开发既能抑制细菌生长又能抑制生物被膜形成的新型抗感染药物已经成为当前的研究热点方向之一
发明内容
针对以上技术问题,本发明公开了LLY-507用于制备抗革兰氏阳性细菌感染药物中的应用,LLY-507具有高效的抗革兰氏阳性细菌生长和抗生物被膜的活性。
对此,本发明采用的技术方案为:
LLY-507用于制备抗革兰氏阳性细菌感染药物中的应用,所述LLY-507,CAS编号为1793053-37-8;所述LLY-507具有抑制革兰氏阳性细菌的生长和生物被膜形成的作用。
其中,所述LLY-507的结构式如式(1)所示:
LLY-507,是一种赖氨酸甲基转移酶SMYD2的细胞活性和选择性抑制剂,通过人工合成获得。过度表达的SMYD2蛋白与肿瘤浸润、肿瘤增殖、淋巴结转移、淋巴管侵袭等因素密切相关,是癌症预后不良的一个重要因素。LLY-507靶向小部分组蛋白分子集,高选择性结合并抑制赖氨酸甲基转移酶SMYD2对p53肽段和对H4的甲基化,用于解析SMYD2在癌症和其他生物过程中的功能。此外,有研究报道SMYD2是可通过调节STAT3的磷酸化来调节脂肪细胞分化的一个新的调节器,而LLY507可抑制SMYD2蛋白,因此可能具有抗脂肪生成作用,具有缓解人类与肥胖有关疾病的潜力。
经过大量的实验研究发现,LLY-507对多种革兰阳性细菌表现出广谱的生长抑制作用,然而,目前未见LLY-507在抗菌作用方面的报道,且在金葡菌以及粪肠球菌中没有发现SMYD2蛋白。
作为本发明的进一步改进,所述革兰氏阳性细菌为金黄色葡萄球菌、粪肠球菌、屎肠球菌、表皮葡萄球菌或肺炎链球菌中的至少一种。
作为本发明的进一步改进,所述LLY-507在处理体系中的浓度为不小于12.5μM。
作为本发明的进一步改进,所述药物为药物组合物或制剂。进一步的,所述药物为注射剂、片剂、丸剂、胶囊、悬浮剂、颗粒剂、喷剂或乳剂。
本发明还公开了LLY-507用于制备抑制革兰氏阳性细菌的涂料中的应用,所述涂料用于医疗器械的表面,所述LLY-507的CAS编号为1793053-37-8,结构式如式(1)所示;所述LLY-507具有抑制革兰氏阳性细菌的生长和生物被膜形成的作用。
作为本发明的进一步改进,所述涂料中,所述LLY-507的浓度为不小于12.5μM。
本发明还公开了LLY-507用于制备抗革兰氏阳性细菌抗菌剂的应用,所述LLY-507的CAS编号为1793053-37-8,结构式如式(1)所示;所述LLY-507具有抑制革兰氏阳性细菌的生长和生物被膜形成的作用。
与现有技术相比,本发明的有益效果为:
本发明的技术方案公开了LLY-507的医药新用途,LLY-507对多种革兰阳性细菌具有良好的抗菌活性和抗生物被膜活性;且比利奈唑胺、万古霉素、氨苄西林这些临床常用抗生素表现出更显著的杀菌活性。LLY-507通过抑制细菌初级代谢和引发氧化还原失衡达到抑菌效果;LLY-507的抗菌活性与破坏细胞膜密切相关,作用靶点可能是细胞膜上的心磷脂。
LLY-507对金葡菌及粪肠球菌的MIC50/MIC90均为25μM;LLY-507对指数生长期和稳定期的金葡菌,以及对稳定期的粪肠球菌均具有强大的杀菌活性,且显著强于利奈唑胺、万古霉素。亚抑菌浓度LLY-507(1/2×MIC)显著抑制金葡菌形成生物被膜,生物被膜中粘附细胞也明显减少。高浓度LLY-507(16×MIC)显著清除金葡菌已经形成的生物被膜及其中的粘附细胞。
进一步的,通过蛋白质组学检测发现亚抑菌浓度LLY-507(1/2×MIC)处理金葡菌后,菌株中51个蛋白的丰度发生了显著变化,其中22个表达上调,29个表达下调。通过GO分析发现,这些差异表达蛋白主要富集在有机氮化合物代谢过程和碳水化合物衍生物代谢过程。通过KEGG分析发现这些差异表达蛋白参与的代谢通路富集于香叶醇降解、上皮细胞的细胞侵袭、核糖体组分蛋白、肽聚糖的生物合成、硫辛酸代谢、氯代烷烃和氯代烯烃降解、抗坏血酸和醛缩酸代谢、β-丙酮酸代谢、硒化合物代谢、戊糖和葡萄糖醛酸相互转化。通过全基因组测序发现对LLY-507耐药的金葡菌株有6个SNP,5个非同义突变和1个同义突变,其中在非同义突变中,脂肪酸激酶结合亚单位FakB1与革兰氏阳性细菌膜磷脂的合成密切相关。PI和DiBAC4(3)染色检测发现LLY-507处理后金黄色葡萄球菌细胞膜短时间内分别发生显著的通透性升高和去极化。加入不同浓度的4种膜磷脂后,心磷脂可导致LLY-507对金葡菌的MIC值明显升高。
附图说明
图1是本发明实施例不同浓度LLY-507对金葡菌临床株和粪肠球菌临床株浮游菌生长曲线的影响;其中A为CHS101菌株的生长曲线;B为SA113菌株的生长曲线;C为YuSA145菌株的生长曲线;D为EF16C152菌株的生长曲线;EOG1RF菌株的生长曲线。数据以Mean±SEM表示。N=3。
图2是本发明实施例LLY-507与常用的抗生素对金葡菌临床MRSA株YuSA145和粪肠球菌EF16C51的杀菌曲线对比结果;其中A为YuSA145对数生长期,B为YuSA145平台期,C为EF16C51平台期。Van:万古霉素;Amp:氨苄西林;LZD:利奈唑胺。数据以Mean±SEM表示。
图3是本发明实施例的LLY-507抑制金葡菌的生物被膜活性分析实验结果图;其中,A为亚抑菌浓度LLY-507处理MSSA 24h的OD600;B为亚抑菌浓度LLY-507处理MSSA 24h的OD570;C为亚抑菌浓度LLY-507处理MRSA 24h的OD600;D为亚抑菌浓度LLY-507处理MRSA24h的OD570。
图4是本发明实施例的LLY-507对金葡菌生物被膜的清除作用结果图;其中A为LLY-507对MSSA菌株生物被膜的清除能力;B为LLY-507对MRSA菌株生物被膜的清除能力。
图5是本发明实施例的LLY-507抑制和清除生物被膜后的活菌计数;其中,A为压抑菌浓度的LLY-507抑制SA113菌株生物被膜后的活菌计数,B为亚抑菌浓度的LLY-507抑制YuSA145菌株生物被膜后的活菌计数,C为高浓度的LLY-507清除SA113菌株形成的生物被膜后的活菌计数,D为高浓度的LLY-507清除YuSA145菌株形成的生物被膜后的活菌计数,E为用1/2×MIC(12.5μM)LLY-507处理金葡菌YuSA145菌株24小时后使用SYTO 9/PI核酸染料染色后的激光共聚焦图片。SYTO 9染活细胞,发绿光;PI染死细胞,发红光。图为SYTO 9和PI荧光通道合并效果图。数据以平均误±SEM表示。*表示p<0.05,***表示p<0.001,***表示p<0.001,具有统计学差异。
图6是本发明实施例的金葡菌YuSA145在LLY-507处理后的蛋白质组变化和相关富集分析结果;其中,A和B分别为亚抑制浓度1/2×MIC(12.5μM)LLY-507处理2h后差异蛋白火山图及差异统计(Foldchange=1.5),C为对差异表达蛋白进行基因本体论(GeneOntology)的富集分析。N=3。
图7是本发明实施例的金葡菌YuSA145在LLY-507处理后的KEGG通路富集和蛋白质相互作用结果;其中A为差异蛋白质的KEGG通路分析,B为差异表达蛋白相互作用网络分析。
图8是本发明实施例的LLY-507诱导金葡菌耐药结果。
图9是本发明实施例的LLY-507对金葡菌和粪肠球菌细胞膜的影响结果;其中A为LLY-507引起金葡菌细菌膜通透性的变化,N=3;B为LLY-507引起金葡菌细菌膜电位的变化,N=5-6;C和D分别为不同浓度不同种类磷脂加入后,LLY-507对金葡菌YuSA145和粪肠球菌EF16C51的MIC值变化。PC:磷脂酰胆碱;PE:磷脂酰乙醇胺;PG:磷脂酰甘油;CL:心磷脂。
具体实施方式
下面对本发明的较优的实施例作进一步的详细说明。
实施例1
利用微量肉汤稀释法测定LLY-507对27株金葡菌(包括23株MSSA以及15株MRSA)及对19株粪肠球菌(18株临床菌株和1株质量控制菌株)的MIC,具体步骤包括:
在96孔板中所有孔中加入CAMHB培养基100μL,在第一行前11个孔各加入100μL含800μM LLY-507的CAMHB,吹打混匀,随后第一行每孔吸取100μL加入到第二行对应的孔中,继续吹打混匀,往下对半稀释,最后孔的200μL弃去100μL,最后按列加入用无抗CAMHB稀释了500倍的经过夜培养的菌液,吹打混匀。最终菌液终浓度为1:1000,药物梯度分别为200,100,50,25,12.5,6.25,3.125,1.56μM。37℃恒温静置培养箱培养18-24h后观察结果,以肉眼不能看见菌液沉淀的最小药物浓度作为LLY对该菌的MIC值。
MIC值结果如表1和表2所示,可见,LLY-507对MSSA和粪肠球菌的MIC50/MIC90均为25μM(≈11μg/mL),对MRSA的MIC50/MIC90为25/50μM,但对肺炎克雷伯、大肠杆菌、鲍曼不动杆菌、铜绿假单胞菌等革兰阴性杆菌无抗菌活性。
表1 LLY-507对各种菌株的最低抑菌浓度MIC(μM)
表2 LLY-507对金葡菌、粪肠球菌等细菌的MIC值统计表
注:MRSA:耐甲氧西林金黄色葡萄球菌;MSSA:甲氧西林敏感的金黄色葡萄球菌;E.faecalis:粪肠球菌;S.epidermidis:表皮葡萄球菌;E.faecium:屎肠球菌;n为所测菌株数量。
实施例2
LLY-507对金黄色葡萄球菌和粪肠球菌的生长影响实验。
具体步骤:实验中所用菌株稳定生长期菌液稀释500倍后加入生长曲线分析仪适配的100孔蜂窝状孔板中,并且分别加入等体积的含有不同浓度LLY-507的对应培养基,同时设置阴性对照组。实验孔板放置于全自动微生物生长分析仪中,在37℃,200rpm震荡培养的条件下,每隔1h测定一次OD600,实验时间24h,绘制生长曲线。
得到的生长曲线如图1所示,可见,在1×MIC浓度(25μM),LLY-507基本完全抑制MSSA菌株CHS101和SA113的生长,且能完全抑制粪肠球菌的生长,但对于MRSA菌株YuSA145,其MIC为25μM,但在2×MIC浓度能够才能够完全抑制生长,原因可能是MIC测定和生长曲线测定方法中所用培养基不同导致的差异。这些结果初步表明LLY-507对金葡菌及粪肠球菌具有较好的抑制活性。
实施例3
LLY-507对金葡菌和粪肠球菌的杀菌活性实验。
为对比LLY-507与常用抗生素的杀菌能力,本实施例进行杀菌曲线分析。对处于对数生长期、平台稳定期的金葡菌做了杀菌试验,步骤为:处于对数生长期(过夜培养的菌液稀释200倍,37℃,220rpm震荡培养2.5h~3h)的YuSA145菌液,分别加入2×MIC的LLY-507、Van、LZD处理后,不同时间点的细菌计数绘制杀菌曲线,得到结果如图2A。过夜培养的YuSA145菌液(平台期),分别加入5×MIC的LLY-507、Van、LZD,绘制杀菌曲线,得到结果如图2B。过夜培养的EF16C51菌液(平台期),分别加入5×MIC的LLY-507、Van、Amp、LZD,绘制杀菌曲线,得到结果如图2C。可见,LLY-507对于金葡菌的对数生长期、平台期均表现出较强的杀菌能力,且显著强于相同倍数MIC的利奈唑胺、万古霉素这些临床常用抗生素;而目前的结果显示LLY-507对EF16C51平台期也具有高效的杀菌活性,效果优于相同倍数MIC的对照抗生素。本结果进一步提示LLY-507对金葡菌和粪肠球菌具有较好的杀菌效果。
实施例4
通过生长曲线测定亚抑菌浓度下LLY-507对金葡菌的抑制生物被膜的活性实验。
为研究亚抑菌状态下LLY-507抑制生物被膜形成的活性,用结晶紫染色法测定生物被膜。步骤为:过夜培养的菌液,用含2%葡萄糖的TSB培养基稀释250倍后每孔100μL加入到96孔板中,加入等体积的含不同亚抑制浓度LLY-507的培养基,阴性对照为溶剂DMSO(二甲基亚砜),37℃恒温培养箱孵育24h。为了排除在此培养条件下细菌生长状态受到影响从而影响对生物被膜结果的判断,先测定此时每个孔的OD600。吸去上清,100μL无菌水洗三次洗去浮游菌,稍加干燥后用100μL甲醇固定15min。吸去甲醇,干燥10min,最后加入100μL0.5%结晶紫染色15min,洗去结晶紫染液,烘干,最后在570nm波长测定吸光度。
得到的结果如图3所示,可见,当用结晶紫染色法对其孔板的生物被膜进行染色后,亚浓度下,LLY-507能够微弱抑制细菌的生长,如图3A所示。除了抑制细菌生长导致的生物被膜减少外,亚抑菌浓度越高,被检测的金葡菌株(无论是MSSA还是MRSA),形成的生物被膜生物量减少非常明显。例如6.25μM亚抑菌浓度下,LLY-507不能够抑制MSSA菌株YuSA10的生长,但可以显著减少生物被膜的形成生物量;对于YuSA152,3.125μM亚抑菌浓度下,LLY-507不能够抑制其生长,但可以显著降低其生物被膜形成的生物量,如图3A和图3B所示。对MRSA菌株,压抑菌浓度的LLY-507不能抑制菌株的生长,但是可以显著降低生物被膜的生物量形成,如1/2×、1/4×、1/8×MIC的LLY-507均能抑制CHS707、YuSA142、YuSA145菌株的生物被膜形成,如图3C和图3D所示。
实施例5
LLY-507对金葡菌的清除生物被膜的活性研究实验。通过杀菌曲线比较LLY-507与目前临床常用抗菌药物对金黄色葡萄球菌和粪肠球菌的快速杀菌活性。
取过夜培养的菌液用含2%葡萄糖的TSB培养基稀释500倍,然后每孔200μL加入到96孔板中。37℃静置培养24h后吸去上清,加入200μL含不同浓度的LLY-507的含2%葡萄糖的TSB培养基,每个浓度三复孔,阴性对照组为DMSO。采用结晶紫染色并且在570nm波长测定吸光度。
LLY-507具有抑制金葡菌生物被膜的效果,但是是否均有清除成熟的生物被膜的效果不清楚,因此我们设计实验在形成成熟的生物被膜后加不同浓度的LLY-507,检测其是否能够清除生物被膜。得到的结果如图4所示。可见,LLY-507对MRSA菌株具有较好的清除效果,如LLY-507在2倍MIC即50μM条件下便可以显著清除YuSA139、YuSA142菌株形成的生物被膜;随着浓度的增高,清除的生物被膜生物量逐渐增大,200μM可以清除YuSA139、YuSA142、YuSA145几乎一半的生物被膜。对MSSA菌株的清除生物被膜效果较对MRSA菌效果稍弱。
实施例6
LLY-507抑制和清除生物被膜过程对物被膜粘附的细菌含量影响实验。通过结晶紫染色法、激光共聚焦、生物被膜粘附细菌计数检测LLY-507对金黄色葡萄球菌生物被膜形成的抑制活性,对成熟生物被膜的清除活性以及对被膜粘附细菌的杀菌活性。
采用不同浓度的LLY-507处理金葡菌24小时后或形成生物被膜后加药处理24小时后,计数的生物被膜中的活菌含量。结果如图5所示。生物被膜抑制和清除实验中的菌落粘附计数实验结果显示,LLY-507处理后,金葡菌(包括MSSA、MRSA)形成的生物被膜中的粘附细菌显著减少,包括抑制后的(如图5A和图5B所示)和清除后的(如图5C和图5D所示)。LLY-507抑制SA113后,生物被膜中细菌含量可由10的八次方降低至几十个活菌,效果十分显著。用激光共聚焦显微镜观察LLY-507对生物被膜细胞的影响,SYTO9和PI分别可将活细胞和死细胞染为绿色和红色。当LLY-507浓度为1/2×MIC时,与对照组相比,死亡细胞的比例(红色)显著增加,如图5E所示,进一步说明亚抑制浓度LLY-507处理后,金葡菌形成的生物被膜中的粘附细菌显著下降。
实施例7
通过蛋白组学分析探索LLY-507对金黄色葡萄球菌的抗菌活性机制。
为分析LLY-507对金葡菌的抗菌机制,本实验采用蛋白质组学分析金葡菌1/2×MIC(12.5μM)浓度的LLY-507作用2小时后的蛋白质表达差异。将表达变化Fold Change大于1.5且p值小于0.05作为截断值确定显著差异表达蛋白,如图6A和图6B所示,火山图显示共有51个差异表达蛋白,其中22个表达上调,29个表达下调。
为分析LLY-507对金葡菌生理功能及代谢通路的影响,对这些差异蛋白进行基因本体论(Gene Onotology,GO)注释分析,根据差异蛋白的生物过程、细胞组分、分子功能对其进行分组,如图6C所示。对生物过程分析显示,应对抗生素相关和核糖体小亚基组成最显著等;细胞组分富集最显著的是细胞质小核糖体亚基和小核糖体亚基等;最显著的分子功能富集为mRNA结合等。KEGG分析显示差异蛋白参与的代谢通路富集于香叶醇降解、上皮细胞的细菌侵袭、核糖体、肽聚糖的生物合成、硫辛酸代谢、氯烷烃和氯烯烃降解、抗坏血酸和醛糖二酸盐代谢、β-丙氨酸代谢等,如图7A所示。利用差异蛋白构建了蛋白与蛋白相互作用网络,如图7B所示,结果显示表达下调蛋白之间相互作用主要集中在SAOUHSC_00139,SAOUHSC_02654,femA蛋白,femX蛋白,LipM酶,这些蛋白质主要参与的代谢路径为香叶醇降解、硒化合物代谢、肽聚糖生物合成及硫辛酸代谢。表达上调蛋白富集于核糖体组分蛋白如rpsE,rpsG,rpsQ及rpsK,纤连蛋白结合蛋白fnbA,SAOUHSC_02363,这些蛋白质主要参与的代谢路径为核糖体相关、上皮细胞的细菌侵袭、戊糖和葡萄糖醛酸的相互转化。
实施例8
LLY-507诱导金葡菌耐药株全基因组测序实验。采用连续传代诱导法产生对LLY-507耐药的金黄色葡萄球菌株,通过全基因组测序探索LLY-507的抗菌机制。
为了寻找LLY-507对金葡菌的作用机制和靶点,本实验选取临床分离菌株YuSA145,在LLY-507压力下连续传代60代诱导耐药,60代后YuSA145的MIC由25μM上升至200μM,如图8所示。将诱导后耐药株命名为YuSA145M60。对敏感的原始菌株和诱导耐药菌株进行全基因组测序,如表3所示,耐药株YuSA145M60中存在6个SNP(包括5个非同义突变和1个无义突变)。值得关注的是脂肪酸激酶结合亚单位FakB1发生的非同义突变。脂肪酸激酶产生酰基磷酸盐,用于合成革兰氏阳性细菌病原体中的膜磷脂(详见文献J BiolChem.2019Jan 4;294(1):38–49.Published online 2018Nov 14.doi:10.1074/jbc.RA118.006160)
表3诱导耐药YuSA145M60菌株的SNP
实施例9
LLY-507对金葡菌的抗菌活性与破坏细胞膜相关联实验。通过荧光染料PI和DiBAC4(3)荧光染料分别检测LLY-507对金黄色葡萄球菌细胞膜通透性和膜电位的作用;通过棋盘法检测4种不同膜磷脂对LLY-507抑制金黄色葡萄球菌的活性变化。
结果如图9所示。通过蛋白质组,可以观察到在LLY-507处理后femA表达下调,研究发现femA与细胞壁或膜生物合成相关,同时全基因组测序观察到金葡菌耐药株中与革兰氏阳性细菌膜磷脂合成的相关基因发生突变,表明LLY-507可能是通过破坏细胞表面完整性来发挥抗菌活性的。荧光染料PI(碘化丙啶)是一种用于检测膜渗透性的荧光染料。当其通过被破坏的细胞膜进入细菌与核酸结合时,荧光强度会增加。如图9A所示,经过LLY-507处理后的金葡菌PI荧光强度显著升高。如图9B所示,DiBAC4(3)荧光染料反映膜电位的变化,发现LLY-507处理后的金葡菌DiBAC4(3)荧光强度显著升高,这表明LLY-507使细胞膜电位发生变化。这些结果表明LLY-507能够引起金葡菌细胞膜损伤。
本实施例进一步验证了LLY-507对金葡菌细胞膜的影响,通过棋盘法检测4种不同膜磷脂对LLY-507抑制金黄色葡萄球菌的活性变化,结果如图9C和图9D所示,可见,当加入不同浓度和不同种类的膜磷脂后,尤其是加入心磷脂CL后,LLY-507对金葡菌YuSA145和粪肠球菌EF16C51的MIC值呈倍数增长,最高可达16×MIC。由于磷脂是细胞膜的主要组成部分,磷脂的加入中和了LLY-507的抗菌活性,使其MIC升高,这提示细胞膜心磷脂可能是LLY-507抗菌活性的主要作用靶位。
上述实施例的实验均使用GraphPad Prism8.0软件进行数据处理及绘制图像。P<0.05被认为具有统计学差异。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (4)

1. LLY-507用于制备抗革兰氏阳性细菌感染药物中的应用,其特征在于:所述LLY-507,CAS编号为1793053-37-8;所述革兰氏阳性细菌为金黄色葡萄球菌、粪肠球菌中的至少一种。
2.根据权利要求1所述的LLY-507用于制备抗革兰氏阳性细菌感染药物中的应用,其特征在于:所述药物为注射剂、片剂、丸剂、胶囊、悬浮剂、颗粒剂、喷剂或乳剂。
3. LLY-507用于制备抑制革兰氏阳性细菌的涂料中的应用,其特征在于:所述涂料用于医疗器械的表面,所述LLY-507的CAS编号为1793053-37-8,所述革兰氏阳性细菌为金黄色葡萄球菌、粪肠球菌中的至少一种。
4. LLY-507用于制备抗革兰氏阳性细菌消毒剂的应用,其特征在于:所述LLY-507的CAS编号为1793053-37-8,所述革兰氏阳性细菌为金黄色葡萄球菌、粪肠球菌中的至少一种。
CN202310597513.4A 2023-05-25 2023-05-25 Lly-507用于制备抗革兰氏阳性细菌感染药物中的应用 Active CN116602967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310597513.4A CN116602967B (zh) 2023-05-25 2023-05-25 Lly-507用于制备抗革兰氏阳性细菌感染药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310597513.4A CN116602967B (zh) 2023-05-25 2023-05-25 Lly-507用于制备抗革兰氏阳性细菌感染药物中的应用

Publications (2)

Publication Number Publication Date
CN116602967A CN116602967A (zh) 2023-08-18
CN116602967B true CN116602967B (zh) 2024-04-12

Family

ID=87681419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310597513.4A Active CN116602967B (zh) 2023-05-25 2023-05-25 Lly-507用于制备抗革兰氏阳性细菌感染药物中的应用

Country Status (1)

Country Link
CN (1) CN116602967B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016061131A1 (en) * 2014-10-14 2016-04-21 The J. David Gladstone Institutes Compositions and methods for reactivating latent immunodeficiency virus
CN109223796A (zh) * 2018-08-24 2019-01-18 江苏理工学院 一种化合物b6作为组蛋白甲基转移酶nsd3活性抑制剂及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016061131A1 (en) * 2014-10-14 2016-04-21 The J. David Gladstone Institutes Compositions and methods for reactivating latent immunodeficiency virus
CN109223796A (zh) * 2018-08-24 2019-01-18 江苏理工学院 一种化合物b6作为组蛋白甲基转移酶nsd3活性抑制剂及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蛋白质甲基化修饰的蛋白质组学分析方法新进展;王科云;叶明亮;邹汉法;;色谱;20161208(第12期);1161-1167 *

Also Published As

Publication number Publication date
CN116602967A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
Wu et al. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria
Khawaldeh et al. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection
Bandara et al. Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation
She et al. Antibiofilm efficacy of the gold compound auranofin on dual species biofilms of Staphylococcus aureus and Candida sp.
Xia et al. In vitro antimicrobial activity and the mechanism of berberine against methicillin-resistant Staphylococcus aureus isolated from bloodstream infection patients
Wright et al. Proteome profiling of Pseudomonas aeruginosa PAO1 identifies novel responders to copper stress
Chadha In vitro effects of sub‐inhibitory concentrations of amoxicillin on physiological responses and virulence determinants in a commensal strain of Escherichia coli
CN115869306B (zh) Iowh-032用于制备抗革兰氏阳性细菌感染药物中的应用
Abdel-Karim et al. Promising FDA-approved drugs with efflux pump inhibitory activities against clinical isolates of Staphylococcus aureus
Li et al. Hormesis effect of berberine against klebsiella pneumoniae is mediated by up-regulation of the efflux pump kmrA
Pertusati et al. Drug repurposing: Phosphate prodrugs of anticancer and antiviral FDA-approved nucleosides as novel antimicrobials
Paprocka et al. New β-lactam antibiotics and ceragenins–a study to assess their potential in treatment of infections caused by multidrug-resistant strains of Pseudomonas aeruginosa
Yue et al. Effects of tigecycline combined with azithromycin against biofilms of multidrug-resistant Stenotrophomonas maltophilia isolates from a patient in China
Miranda et al. Inhibitory effect on biofilm formation of pathogenic bacteria induced by rubrolide lactam analogues
Zheng et al. AMXT-1501 targets membrane phospholipids against Gram-positive and-negative multidrug-resistant bacteria
Xiong et al. Effects of the antimicrobial peptide L12 against multidrug‑resistant Staphylococcus aureus
CN116602967B (zh) Lly-507用于制备抗革兰氏阳性细菌感染药物中的应用
Ren et al. Down-regulation of β-lactam antibiotics resistance and biofilm formation by Staphylococcus epidermidis is associated with isookanin
Han et al. Synergistic effects of baicalin and levofloxacin against hypervirulent Klebsiella pneumoniae biofilm in vitro
Behera et al. Incidence of colistin-resistant Acinetobacter baumannii in an Indian tertiary care teaching hospital
Jia et al. Multi-armed antibiotics for Gram-positive bacteria
Sudha et al. Antibiofilm analysis, synergistic potential and biocompatibility evaluation of a bacteriocin from Bacillus subtilis (MK733983)
Tsuji et al. Antimicrobial-induced release of endotoxin from Pseudomonas aeruginosa: comparison of in vitro and animal models
Chen et al. A hydrophilic polyimidazolium antibiotic targeting the membranes of Gram-negative bacteria
Zhang et al. A novel small-molecule compound S-342-3 effectively inhibits the biofilm formation of Staphylococcus aureus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant