CN1165956A - 钻井时为声波测井的传送器 - Google Patents
钻井时为声波测井的传送器 Download PDFInfo
- Publication number
- CN1165956A CN1165956A CN96123081A CN96123081A CN1165956A CN 1165956 A CN1165956 A CN 1165956A CN 96123081 A CN96123081 A CN 96123081A CN 96123081 A CN96123081 A CN 96123081A CN 1165956 A CN1165956 A CN 1165956A
- Authority
- CN
- China
- Prior art keywords
- axle collar
- sound wave
- boring
- rock stratum
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 36
- 230000005405 multipole Effects 0.000 claims abstract description 26
- 230000035945 sensitivity Effects 0.000 claims abstract description 5
- 239000011435 rock Substances 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims 3
- 238000005424 photoluminescence Methods 0.000 claims 2
- 230000000712 assembly Effects 0.000 claims 1
- 238000000429 assembly Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 claims 1
- 238000000691 measurement method Methods 0.000 claims 1
- 238000006386 neutralization reaction Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 229920001971 elastomer Polymers 0.000 abstract description 2
- 239000000806 elastomer Substances 0.000 abstract 1
- 230000005404 monopole Effects 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 11
- 230000000644 propagated effect Effects 0.000 description 6
- 230000001902 propagating effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 241000283153 Cetacea Species 0.000 description 1
- 208000035126 Facies Diseases 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/01—Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
- E21B47/017—Protecting measuring instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/52—Structural details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/52—Structural details
- G01V2001/526—Mounting of transducers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Geophysics (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Acoustics & Sound (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
一种在钻孔时用于声波测井的声波传送器,它包括围绕钻孔轴环周向安装的传送器元件的一个排列。元件被固定弹性环内,弹性环被容纳在轴环上的外槽里,并被带窗口的护罩所保护。元件被并联地电连接起来,以便当它被电脉冲激发时,元件产生向外传播到地层中的单极声波。当用作接收器时,元件探测从围绕轴环圆周的岩层中传来的中和声波,并对通过钻孔轴环传播的多极波有最小的灵敏度。
Description
本发明涉及在钻井期间用声波测定钻孔周围的岩层,特别是新改进的声波测井方法和设备,它使用了能优先把激发和接收通过岩层传播的单极声波而抑制通过钻井轴环传播的多极波的传送器,该传送器被安装在钻井轴环上。
声波在地下传播的速度随不同的地质结构而改变。例如,在砂石岩中,声波约以每秒4000米的速度传播,在石灰石岩中,约以每秒5000米的速度传播,在岩石中的声波可分为两类:纵向和横向。纵(压缩)波是介质在其中平行于传播方法前后振动的波。横(剪切)波是介质的振动垂直于波能运动方向的波。声波通过介质的速度与介质的孔隙率有关,就它包含烃类的潜能而言,是岩层的一个重要特征。
为了测量声波的速度,一测井仪器一般有两个接收器,从声波发送器沿仪器的轴线,它们被以不同的距离间隔开,利用到达各自接收器的波之间的相位或传播时间差可确定声速。利用两个接收器能消除在钻探泥浆中的传播时间,以及补偿不同的工具和钻孔影响。
声波通过多孔隙岩石会传播得更慢,这一点是重要的,因为有着商业利益的石油产品一般在具有好的孔隙率的岩石中发现。声波在页岩中传播时间的不规则一般随着深度的以可预测的方式增加,这一点能作为钻孔正接近一高压多孔区的警告,因而成为发生断裂危险的预兆。虽然其它一些利用声波的技术已被试验,但主要用途仍保持在声速的测量上,它们连同著名的Wyllie公式一起被用来计算岩石的孔隙率。特别是与中子和密度测井结合,声波测井对地震相关性和水库测定已经是基本的了
上述的声波测井技术已主要用在露天矿井测量,其中探测器被悬挂在电缆上(钻具组在孔外)。然而,最近几年以来,在钻井正在进行时,各种仪器和设备都可用来测井。在美国专利号4,879,463和4,899,112中分别描述了用核子和电阻率测定的这样仪器的例子。测量装置与位于钻头附近的特殊钻井轴环结合,大体在实际时间探测,显示和/或记录的各种测量结果在泥浆流中向上以压力脉冲的形式被远距离测量。然而,由于在钻孔里有一大的金属钻井轴环,这给声波测量造成一定困难。主要问题是从传送器沿钻井轴环传播的某些能量同通过岩层传播的能量大体上同时到达接收器,因而干涉了从岩层来的能量的测量。对这个已经提出的问题的一个解决方法是在钻井轴环上切环形槽,用来消弱某些频率段波的传播。另一种解决方法是在某一频率段操作发送器的减小钻井轴环到达波。这些方法都被描述过,例如:在欧洲专利号0,375,549B1中。
另一种被尝试的波源采用压电元件组,其沿安装在钻井轴环上的中心接收器垂直和对称于钻井轴环的纵向轴而安装。这样一种发送器在美国专利号5,387,767中被描述。这些发送器在钻井轴环和岩层中都激发声波。接收器探测两种波。它能产生单极波,遗憾的是也产生四极和更高极的多极波。中心接收器对所有波都是毫无差别地敏感。因为每一多极波有不同的波传播特性,所以,用在钻井轴环截面上开槽的方法消弱多极波是很难的。
被垂直安装的压电组件传送器有很强的四极输出,因为它产生两个从钻井轴环传播束的分开但同相和几乎相同的压力脉冲。这些波发生干涉,产生强的四极波模式,它传播得慢一些,但比单极钻井轴环到达波的振幅要大。此到达波能产生干涉,与真正的单极岩层压缩声波混淆,因此给出错误的结果。在努力克服这个问题的过程中,发送器以相对于接收器成45°被定向。这样,四极波的振幅最小。然而,此最小值在一小角度范围时,四极波能可以稍微旋转。在一方面,本发明用传送器简化了解决钻井轴环波的问题,传送器在抑制难于用钻井轴环开槽的方法消弱的多极波的同时,增强单极声波。
尽管过去与电测井仪器和设备一起为声波传送器的很多提议被提出过,几乎没有在钻井操作时有用在测井方面的潜在用途。使用压电柱面的设备不能很容易地放置在钻井轴环上。这种传送器的变型已被提出,以产生多极波。因为这些波都应被消除,为此,它们也不是特别有用。另一些传送器已被提出,但也不能在钻井轴环上试用,如铁磁性设备。在另一方面,本发明采用了一传送器,它被安装在钻井轴环的外圆周上,以在减小钻井轴环多极波的同时,增大岩层声波的激发。
本发明总的目的是提供新改进的在钻井时声波测井方法和设备,它使用了在减小多极钻井轴环波的同时增强单极声波激发的传送器,以便能探测单极岩层压缩声波。
根据本发明的原理,并通过包括轴环外表分配的多个元件的声波传送器的保证,轴环是钻孔时测并仪器组的一部分,将得到这个和其它的目的。元件有大致相等的角间距,并离轴环轴线以相等的径向距离被安装。由于这样的布置,第M等级多极波的振幅是:其中An是第n个元件的振幅因数,Qn是绕轴环圆周的角位置,N是元件的总数,作为参考,多极是M=1(二极),它是cosθ的函数,一直到M=5(十极),它是cos5θ的函数。如此类推,单极(M=0)不依赖于角θ。
在最佳实施例中,对每个传送器元件来说,振幅因数A是相同时,因此是一个常数,元件围绕轴环平均地分布。因此,第M等级多极波变成:因此,除了单极波,如果N不等于M,第M等级的多极波振幅为0(即被消除)。因此,由被消除的最高等级多极波来确定所用单个传送器元件的个数。
实际上,具有尽可能多的传送器元件是最好的。本发明的传送器能被用作发送器,其减小多极波部分(M>0)的激发,而增强单极波(M=0)振幅。传送器也能用作位于轴环上的接收器,其减小对沿轴环传播多极波的灵敏度,而增加岩层单极波部分。在两种情况下,传送器都包括以环形排列的多个压电陶瓷元件。这些元件被并联连接,其被压制在合适的弹性材料,如橡胶中,并被安装在轴环外圆周上的浅槽中,再用钢护罩盖上以保护它们。传送器组件是竖固的,小的且定型的,以易于维修。
另一方面,本发明包括使用上述的环形发送器,并结合在美国专利号5,387,767中所描述的具有压电元件叠层的横向发送器,这里将美国专利5,387,767合并来作为参考。而且,本发明也能用环接收器结合横向叠层压电元件发送器来实现。在每种情况下,环形传送器被安装在轴环上的浅外槽中,以便坚固和易于维修。
本发明除有上述目的,特点和优点之外,还有其它目的,特点和优点。在对照附图,并结合下面优选实施例的详细描述后,这将变得更明显。
图1是根据本发明用声波传送器在钻井操作时测井的示意图;
图2是根据本发明被安装在钻井轴环槽表面的发送器组件的纵向局部剖视图;
图3是图2中的发送器在移去护罩和弹性环后的局部展开平面图;
图4是被安装在钻井轴环上发送器组件的横剖图;
图5和6是根据本发明接收器组件图,它们分别与图2和3相似;
图7是图5和6中所示接收器的横向半剖图;
图8A和8B是根据本发明发送器—接收器装置的其它实施例的示意图。
首先参照图1,连接在钻孔轴环组11下端的钻头10正常钻孔12进入地层,一个紧接钻头10并经特别制造的钻孔轴环13中有一个或多个测井装置安装在其上或其内,以便随着钻孔12的深入,将钻孔贯穿过的岩层的不同特定性能测定出来。代表这样测量结果的电信号被送到钻孔时测量仪器14,它包括一旋转阀或“汽笛”,其能在轴环组11内的泥浆流中产生压力脉冲,并通过钻孔管传送到表面。旋转阀根据测量的信号而被控制,在泥浆中产生经编码的压力脉冲,它们在表面被探测、解码和显示和/或记录。泥浆脉冲遥测装置的具体结构已被公开,例如,在美国专利号4,100,528,4,103,281,4,167,000和5,237,540,关于岩层特性多种测定装置都能制得,比如:电阻率或导电率,自然γ射线,中子,密度和其它,除此之外,还有各种钻井参数测量,比如:钻头上的重量和扭矩,涉及测量的钻孔方向,例如:倾斜和方位。
本发明在此公开和主张的是一种声波测井技术,其中,在钻井时,通过与钻孔12相邻岩层的声波的速度或传播时间被测量下来,沿孔被向上传送,并被记录或相对于深度测定以作为孔隙率的指示。在一最佳装置中,此项技术用声波发送器19和两个接收17和18来实现,两个接收器相对于发送器以不同的轴向距离分隔开。由发送器19发出的声能以声波的方式在环形套筒15中通过泥浆而传播,并如图1所示意的箭头16进入岩层到达钻孔12的外面。声波以较小的时间差到达接收器17,18。当钻孔12通过各种岩层而延伸时,通过对接收器17,18的输出信号进行电分析,以确定在连续地层上的声速。使用两个间隔开的接收器17,18允许补偿在环形套筒里通过钻探泥浆向上传播的声波,以及可能有的钻孔12直径的变化。在钻井时用声波和其它测量装置显著的优点是:由于泥浆岩层粘结在钻孔壁上,在测量装置的平面上将不会发生泥浆岩层的侵入。
图2是根据本发明以当激发时产生声波能的发送器中的形式显示了传送器,发送器19包括许多细长压电陶瓷元件20,它们被安装和压制在一环形弹性体21内,环形弹性体定位于钻孔轴环13外壁上的环形槽或凹槽22表面。弹性性体21被一护罩组件23所覆盖,护罩组件包括上下环24,25和一圆筒形外壳26,外壳上有在每个元件20径向向外处形成的窗口27。一负引出线28从每个元件20的下端连接处向下延伸,一正引出线29从它与每个元件的连接处向上延伸。如图3中的展开图所示,为了便于图解说明,移去了护罩组件23和弹性体21,元件20以大致相等角度间距围绕槽22沿圆周方向间隔布置,它们离钻孔轴环13的中心轴有大致相等的径向距离。正引出线29一般被连接到环形正集合线30上,而负引出线28一般被连接到环线负集合线31上,导线30,31被分别连接到引出线32,33上,引出线如图示那样通过纵向槽延伸,并借助于高压馈通到图1中标号8所示的发送器发射回路。当元件20承受以电脉冲形式的发射信号时,每个元件体积增大,并共同产生一向前的声波,此声波通过弹性体21,窗口28和轴环13外的环形套筒15内的钻探泥浆向外传播,然后传播到钻孔12周围的岩层里。由于很多元件20围绕轴环13的圆周以循环排列的方式分布,当被激发时,它们便产生单极声波。
图4显示了在声波发送器19平面上贯通钻孔轴环13的横向全剖图。轴环13有一中心孔32,钻探泥浆通过此中心孔被抽吸到钻头10处,并通过那里的喷管冒出,从而通过环形套筒15返回到表面。为了将弹性体21定位于槽22里,或从槽中移去,其中设置了一径向薄片33。在图4中,外壳26上的窗户或开口27被更清楚地显示出来,它们具有相等的角间距,压电陶瓷元件20相对于轴环13的中心轴径向定位。为了便于图解说明,只示出了24个元件20。然而应该考虑到也能采用不同的个数,优选的是:对给定尺寸的轴环13尽可能地用较多的个数。因为如果它们中任一个在使用时损坏或出故障,单极对多极的振幅比是同元件20的个数成比例的。在一典型的实施例中,每个元件20横截面有0.1平方英寸,长2英寸,并由钛酸铅或偏铌酸铅制成,它们都具有高压电容量常数。在长度共振以下的频率范围内,每个元件20体积膨胀,因此形成一中心压力源。陶瓷在电极区域和压电常数上相匹配,这更便于从相同的坯料上切下它们。引出线28,29通过接头片被连接,以便在温度和压力变化时提供同向弹性和强度,从而确保导线和接头的牢固。除此之外,又将元件20安装在合适的角向和径向位置,弹性体21防止元件20遭受冲击载荷。
本发明的另一特征是发送器19的压电陶瓷元件能连成多个子排列,每个覆盖一角扇区。每个子排列能有它自己的发射回路,或被一回路以一种方式发射,这样它们优先地被以一种方式激发,从而产生单极、正交二极,四极或其它高级多极声波。
图5-7是根据本发明以能检测到达声波能并产生连续输出信号的接收器17或18的形式显示声波传送器。每个接收器17或18包括以大体相等的角间距和径向距离沿周向间隔分布的压电陶瓷元件41。元件被压制在环形弹性体42中,弹性体装配在轴环13的环形槽43表面。元件41的环形排列被护罩组件44所保护,护罩组件包括上、下环45,46以及外壳47。外壳上有一与每个元件41径向相对的窗口48。正如在前述实施例中那样,环45,46和外壳47如图示那样有螺钉固定在轴环上。正、负集合线50,51(图6)并列地连接所有元件41,引出线52,53通过槽和高压馈通到接收器前置放大器7的输入端(图1)。弹性体42在54处被切开,以允许安装和移出。在此例中,每个元件41横截面为0.25平方英寸,厚0.1英寸,在典型的声波频率范围内,提供不定向的中心压力接收器。元件41在电极区域和压电应变常数上相匹配,可优先地从同一坯料上切下它们。集合线50,51能如图示那样被编织或成环形,以便为安装和移去提供周向弹性。弹性体42通过环形套筒内的泥浆从岩层将压力波传导到元件41,元件将压力波转移为电信号。这些电信号被图示的并列导线结构累加到一起,单独总和被电荷前置放大器放大。
本发明的另外实施例在图8A和8B中被示意性地显示出来。例如图8A中的发送器19′可以是由压电陶瓷元件20组成的环形组件,元件20如图2所示离钻孔轴环13的纵向轴大致相等的径向距离以及以大致相等的角间距绕槽22间隔布置。元件20被封闭在一环形弹性体21中,并根据图2上述描述的那样被保护地隔离。分离开的接收器17′和18′象图1中的接收器17和18那样定位,它们如上述美国专利号5,387,767中公开的那样是一横向组件。每个接收器17′和18′有从中间板向外伸出的压电陶瓷元件组,元件组被装在筒形外壳里,外壳有沿直径方向伸入到轴环对置孔中的对应端部分。装配时双向对称轴环对置孔中的对应端部分。装配时双向对称并平衡装配力,使用弹性隔离器用来消弱声波发送到钻孔轴环13。如图8B所示,在本发明的另一实施例中,发送器19″位于图1中环形发送器19′所在的钻孔轴环13处,它是一横向元件组,如美国专利号5,387,767中所公开的那样。而间隔开的接收器17″和18″是环形接收器,如图5和6所示。
在操作和使用本发明时,声波发送器19和接收器17和18都装在各自的位于钻孔轴环13内的槽22和43中。钻孔轴环被连接在钻头10以上的钻具组内。用来激发发送器19及探测和处理从接收器17和18来的信号的各种电子回路一般位于轴环13壁内的常压室内。装置的输出信号以一种适当的方式送到钻孔时的测量仪器14,仪器发送编码泥浆脉冲到表面,以便声波测井结果在真实的时间内大致被记录下来。
当发送器19的压电陶瓷元件20遭受从发射回路8来的电脉冲时,每个元件的体积稍微膨胀,以建立一个在弹性体21内产生压力波的压力源。由于每个元件20体积的膨胀,压力源的振幅和相位都相等,因此这些源彼此增强,并产生不依赖于方位的输出波,即单极波。这些波通过环形套筒15内的钻探泥浆传播,也在钻孔12外的岩石内位移。因而,这些波按图1中箭头16所示的那样纵向传播,也通过泥浆向内回到接收器17和18。在那里它激发元件41而产生电流输出。利用接收到的声波之间的相位或传播时间差和发送器19与接收器17和18之间的纵向间距可以确定通过岩层的声速,这个速度与岩石的孔隙率有关。
当发送器19被激发时,声波也与钻孔轴环13耦合,这样的波直接传播到接收器17,18,然而,本发明的单极环形发送器不产生多极波,以便轴环到达波有一较小的振幅。岩层四级,六级和八极波的干涉能量也被抑制。
由于压电陶瓷元件20是并联的,输出信号是独立的和数,也不依赖于陶瓷元件的结构或机械连接,如果在钻井期间一些元件被损坏或它们的输出信号由于某种原因丢失,只会对整个输出信号产生较小的影响。由于发送器和接收器是定型装置,它们很容易被安装或移开,只需通过紧固或松开护罩和它的螺钉,而不影响仪器的电子线路。
单极环形接收器17,18消除或大大抑制多极波,因而对轴环形到达波不敏感。由于钻孔在轴环和钻孔中传播的噪音信号将倾向于以各种多极波的型式传播。因而,高级型或波的消除将减小接收到的钻孔噪音等级。
再值得注意的是:由于压电陶瓷元件41是并联的,以便它们的输出信号是单独的和数;也由于此输出信号不依赖于元件的结构或机械连接,在钻孔期间一些元件的损坏或丢失只会对整个输出信号有较小的影响。
现在,应该承认在钻井期间用声波测井的新改进的方法和设备已被公开了,由于可在有脱离本发明涉及的原理的基础上对所公开的实施例进行某些改变和变更,为了覆盖落在本发明范围内的各种改变和变更,这是所附权利要求的目的。
Claims (31)
1.一种在钻井时安装在管状钻具组件上以用于在钻孔中进行声波测量的声波传送器,所述的传送器包括:围绕所述的钻具组件的一种排列安装的多个传送器元件,所述的元件以大致相等的角间距定位,并被布置成激发和产生或探测声波。
2.如权利要求1所述的传送器,其特征在于:传送器元件是压电元件。
3.如权利要求1所述的传送器,其特征在于:所述的传送器元件以离所述排列的中心大致相等的径向距离而定位。
4.如权利要求1所述的传送器,其特征在于:所述元件的激发优先地产生或探测单极声波,而抑制多极波。
5.如权利要求1所述的传送器,其特征在于:所述的元件被安装和固定在一弹性环中,而弹性环的大小与所述管状钻具组件上的外环形槽相配。
6.如权利要求5所述的传送器,还包括为保护所述环和所述元件的包围装置,所述包围装置有在每个所述元件径向向外处形成的窗口。
7.如权利要求6所述的传送器,其特征在于:所述的弹性环在周向是不连续的,以便提高它定位于所述槽中或从所述槽中移去的能力。
8.如权利要求1所述的传送器,还包括并联连接所述元件的电子回路装置,以便从那儿出来的输出信号是每个元件输出信号的独立和数。
9.如权利要求1所述的传送器,还包括并联连接所述元件以探测所述钻具组周向周围中和的声波的电子回路装置,以便减小对多极波的灵敏性,并根据被探测到的波路放大器提供输出信号。
10.一种在钻孔钻入地层期间用于声波测井的声波发送器,其包括:有着纵向轴的管状钻孔轴环;围绕所述钻孔轴环安装的单个传送器元件的环形排列;连接所述元件的电路装置,以便施加的电刺激引起所述的元件产生围绕钻孔传播到地层里的单极声波。
11.如权利要求10所述的发送器,其特征在于:所述元件被压制在一环形弹性体中,所述的弹性性体在它圆周上的某一点被切开,以便于在所述的轴环中定位或从所述轴环中移去。
12.如权利要求11所述的发送器,还包括围绕所述排列的护罩装置,其上在每个所述元件的径向向外处形成有单个的窗口,以允许声波通过,同时将所述弹性体和所述元件保护在钻孔内。
13.如权利要求10所述的发送器,还包括激发大致均匀地围绕所述排列的所述元件的发射装置,以减小所述钻孔轴环中多极波的产生,同时产生向外传播到钻孔周围地层中去的单极波。
14.一种在钻孔期间确定通过钻孔周围岩层的声速并在钻具组下带有钻头的声波测井装置,包括:一适于连接在钻头以上的钻具组上的管状轴环;所述的轴环有固定在其上的第一,第二,和第三传送器元件的圆周排列;电刺激围绕所述圆周的所述第一排列的装置,以产生传播到岩层中去的声波;探测在第二和第三排列处的所述到达波,从而利用被探测到的波计算通过岩层的声波。
15.如权利要求14所述的测井装置,其特征在于:所述的第一排列被安装在所述轴环的第一外环形槽中,所述第二和第三排列被分别安装在所述轴环的一对第二环形槽中,还包括分别围绕所述槽的护罩装置,其上在每个所述元件径向向外处形成有单个的窗口。
16.如权利要求14所述的测井装置,其特征在于:每个所述的排列被安装在一环形弹性体中,每个所述的弹性体在周向是不连续的,以便从所述轴环中移出和定位于所述的轴环中。
17.如权利要求14所述的测井装置,其特征在于:所述的激发装置包括并联连接所述第一排列中每个所述元件的电路装置,以便得到大致均匀的激发。
18.如权利要求14所述的测井装置,其特征在于:所述的探测装置包括并联连接每个述第二和第三排列中所述元件的电路装置,以便围绕每个所述排列的周向的中和声波被探测。
19.一种在钻孔期间确定通过钻孔周围岩层的声速并在钻具组下端带有钻头的声波测井装置,包括:一适于连接在钻头以上的钻具组上的管状轴环;一安装在所述轴环上的单个发送传送器元件的环形组件,其用于产生向外传播到岩层中的声波;至少一个安装在所述轴环上的接收传送器元件组件,它们在纵向离所述的环形组件一选定距离,以探测所述声波的到达,从而能计算通过岩层的声波速度。
20.如权利要求19所述的装置,其特征在于:所述的发送器元件是被安装在所述轴环外环形槽中的压电元件,所述元件有着大致相等的角间距,并在离所述轴环的纵向轴大致相等的半径处定位。
21.如权利要求19所述的装置,其特征在于:所述的接收传送器元件是压电元件组,其被双向对称地安装在具有对应端部分的筒形外壳里,对应端部分沿直径方向定位于所述轴环壁的对置孔中。
22.一种在钻进期间确定通过钻孔周围岩层的声速,并在钻具组下端带有钻头的声波测井装置,包括:一在所述轴环内的发送传送器元件组横向组件,其用于产生向外传播到岩层中的声波;至少一个安装在所述轴环上的单个接收传送器元件的环形组件,它们在纵向离所述的发送传送器元件一选定距离,以探测所述声波的到达,从而能计算通过岩层的声波速度。
23.如权利要求22所述的装置,其特征在于:所述的发送传送器元件是压电元件组,其被双向对称地安装在具有对应端部分的筒形外壳里,对应端部分沿直径方向定位于所述轴环壁的对置孔中。
24.如权利要求22所述的装置,其特征在于:所述的接收传送器元件是被安装在所述轴环外径形槽中的压电元件,所述元件有着大致相等的角间距,并在离所述轴环的纵向轴大致相等的半径处定位。
25.一种在钻孔里产生和探测声波以在钻进时获得通过钻孔周围岩层所述波速的测井记录的方法,包括下列步骤:利用沿钻孔轴环周向安装的声波产生元件的第一环形排列,以产生向外传播到岩层中的单极波;利用沿钻孔轴环周向安装的声波探测元件的至少一个第二环形排列,其与所述第一环形排列纵向分开,以探测从岩层来的所述单极波的到达波。
26.如权利要求25所述的方法,还包括下一步骤,即并联地由连接所述第一环形排列的所述元件,以便绕圆周大致均匀地激发所述元件。
27.如权利要求25所述的方法,还包括下一步骤,即并联地电连接所述第二环形排列的所述元件,以使中和的声波被探测,减小对多极波的灵敏度。
28.如权利要求25所述的方法,还包括下一步骤即安装每一所述的环形排列在各自的环形弹性体中,安装所述弹性体在所述钻孔轴环外表面上各自的环形槽中。
29.如权利要求28所述的方法,还包括下一步骤即隔离每个所述的弹性体,以保护弹性体和所述元件;在每个所述外壳上提供窗口,窗口位于每个所述元件的径向向外处。
30.一种在钻孔时确定通过钻孔周围岩层的声波速度的方法,包括下列步骤;使用纵向分开的传送器元件的第一和第二组件,所述组件之一是单个压电元件的环形排列,另一个是单个压电元件的叠层排列;用所述组件之一产生向外传播到岩层中的声波;用所述组件中的另一个探测声波的到达,以便能计算出所述声波通过岩层的速度。
31.一种产生声波能用来在钻孔里进行声波测量的方法,所述的方法包括下列步骤:提供安装在环形排列中的多个传送器元件;优先地以一种方式激发所述的传送器元件,以使所产生的声波极性是多极的。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/569,027 US5753812A (en) | 1995-12-07 | 1995-12-07 | Transducer for sonic logging-while-drilling |
US569027 | 1995-12-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1165956A true CN1165956A (zh) | 1997-11-26 |
CN1102742C CN1102742C (zh) | 2003-03-05 |
Family
ID=24273794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN96123081A Expired - Fee Related CN1102742C (zh) | 1995-12-07 | 1996-12-06 | 为声波测井的声波传送器、发送器、测井装置和测井方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US5753812A (zh) |
EP (1) | EP0778473B1 (zh) |
CN (1) | CN1102742C (zh) |
AU (1) | AU721408B2 (zh) |
BR (1) | BR9605866B1 (zh) |
CA (1) | CA2192276C (zh) |
DE (1) | DE69632300D1 (zh) |
NO (1) | NO328922B1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101583885B (zh) * | 2005-07-12 | 2012-09-05 | 贝克休斯公司 | 自动调整nmr脉冲序列以基于实时分析优化snr |
CN103711476A (zh) * | 2012-09-28 | 2014-04-09 | 罗斯蒙德公司 | 检测井中活塞的位置 |
US9534491B2 (en) | 2013-09-27 | 2017-01-03 | Rosemount Inc. | Detection of position of a plunger in a well |
CN110709581A (zh) * | 2017-05-31 | 2020-01-17 | 沙特阿拉伯石油公司 | 用于井下随钻测井应用的声波耦合器 |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6196335B1 (en) * | 1998-06-29 | 2001-03-06 | Dresser Industries, Inc. | Enhancement of drill bit seismics through selection of events monitored at the drill bit |
US6366531B1 (en) | 1998-09-22 | 2002-04-02 | Dresser Industries, Inc. | Method and apparatus for acoustic logging |
US6564899B1 (en) | 1998-09-24 | 2003-05-20 | Dresser Industries, Inc. | Method and apparatus for absorbing acoustic energy |
US6213250B1 (en) | 1998-09-25 | 2001-04-10 | Dresser Industries, Inc. | Transducer for acoustic logging |
US6429784B1 (en) | 1999-02-19 | 2002-08-06 | Dresser Industries, Inc. | Casing mounted sensors, actuators and generators |
US7028806B2 (en) * | 1999-06-03 | 2006-04-18 | Baker Hughes Incorporated | Acoustic isolator for downhole applications |
US6915875B2 (en) * | 1999-06-03 | 2005-07-12 | Baker Hughes Incorporated | Acoustic isolator for downhole applications |
US6930616B2 (en) * | 2000-11-13 | 2005-08-16 | Baker Hughes Incorporated | Method and apparatus for LWD shear velocity measurement |
US6985086B2 (en) | 2000-11-13 | 2006-01-10 | Baker Hughes Incorporated | Method and apparatus for LWD shear velocity measurement |
US6850168B2 (en) * | 2000-11-13 | 2005-02-01 | Baker Hughes Incorporated | Method and apparatus for LWD shear velocity measurement |
US6909666B2 (en) | 2000-11-13 | 2005-06-21 | Baker Hughes Incorporated | Method and apparatus for generating acoustic signals for LWD shear velocity measurement |
US6631327B2 (en) * | 2001-09-21 | 2003-10-07 | Schlumberger Technology Corporation | Quadrupole acoustic shear wave logging while drilling |
US6782970B2 (en) | 2002-04-25 | 2004-08-31 | Schlumberger Technology Corporation | Acoustic source using a shaftless electrical hammer |
US7098858B2 (en) * | 2002-09-25 | 2006-08-29 | Halliburton Energy Services, Inc. | Ruggedized multi-layer printed circuit board based downhole antenna |
US6995500B2 (en) * | 2003-07-03 | 2006-02-07 | Pathfinder Energy Services, Inc. | Composite backing layer for a downhole acoustic sensor |
US7513147B2 (en) * | 2003-07-03 | 2009-04-07 | Pathfinder Energy Services, Inc. | Piezocomposite transducer for a downhole measurement tool |
US7075215B2 (en) * | 2003-07-03 | 2006-07-11 | Pathfinder Energy Services, Inc. | Matching layer assembly for a downhole acoustic sensor |
US7036363B2 (en) * | 2003-07-03 | 2006-05-02 | Pathfinder Energy Services, Inc. | Acoustic sensor for downhole measurement tool |
US7063144B2 (en) * | 2003-07-08 | 2006-06-20 | Klamath Falls, Inc. | Acoustic well recovery method and device |
US7207397B2 (en) * | 2003-09-30 | 2007-04-24 | Schlumberger Technology Corporation | Multi-pole transmitter source |
PL1700001T3 (pl) * | 2003-12-31 | 2013-12-31 | Varco I/P Inc | Oprzyrządowany, wewnętrzny zawór przeciwerupcyjny do mierzenia parametrów wiercenia kolumny eksploatacyjnej |
US7460435B2 (en) * | 2004-01-08 | 2008-12-02 | Schlumberger Technology Corporation | Acoustic transducers for tubulars |
US7364007B2 (en) * | 2004-01-08 | 2008-04-29 | Schlumberger Technology Corporation | Integrated acoustic transducer assembly |
US7367392B2 (en) * | 2004-01-08 | 2008-05-06 | Schlumberger Technology Corporation | Wellbore apparatus with sliding shields |
US7730967B2 (en) * | 2004-06-22 | 2010-06-08 | Baker Hughes Incorporated | Drilling wellbores with optimal physical drill string conditions |
US20060062082A1 (en) * | 2004-09-23 | 2006-03-23 | Halliburton Energy Services, Inc. | Method and apparatus for generating acoustic signal with single mode of propagation |
US8125848B2 (en) * | 2005-02-22 | 2012-02-28 | Halliburton Energy Services, Inc. | Acoustic logging-while-drilling tools having a hexapole source configuration and associated logging methods |
US7372777B2 (en) * | 2005-09-23 | 2008-05-13 | Probe Technology Services, Inc. | Sonic instrumentation apparatus and method for cement bond logging |
US7637161B2 (en) * | 2006-04-19 | 2009-12-29 | Raytheon Utd Inc. | Substrate penetrating acoustic sensor |
US8467266B2 (en) | 2006-06-13 | 2013-06-18 | Seispec, L.L.C. | Exploring a subsurface region that contains a target sector of interest |
US7382684B2 (en) | 2006-06-13 | 2008-06-03 | Seispec, L.L.C. | Method for selective bandlimited data acquisition in subsurface formations |
US7587936B2 (en) * | 2007-02-01 | 2009-09-15 | Smith International Inc. | Apparatus and method for determining drilling fluid acoustic properties |
CA2673243C (en) * | 2007-05-21 | 2015-07-07 | Halliburton Energy Services, Inc. | Logging systems and methods with tilt compensation for sector-based acoustic tools |
US8279713B2 (en) * | 2007-07-20 | 2012-10-02 | Precision Energy Services, Inc. | Acoustic transmitter comprising a plurality of piezoelectric plates |
US7864629B2 (en) * | 2007-11-20 | 2011-01-04 | Precision Energy Services, Inc. | Monopole acoustic transmitter comprising a plurality of piezoelectric discs |
US8336394B2 (en) * | 2008-01-10 | 2012-12-25 | Metering & Technology Sas | Device for measuring the flow rate of a fluid flowing in a pipe |
EP2104111A1 (de) * | 2008-03-20 | 2009-09-23 | Nanoworld AG | SPM-Sonde mit verkürztem Federbalken |
GB2465504C (en) | 2008-06-27 | 2019-12-25 | Rasheed Wajid | Expansion and sensing tool |
US20100020638A1 (en) * | 2008-07-24 | 2010-01-28 | Precision Energy Services, Inc. | Monopole acoustic transmitter ring comprising piezoelectric material |
US8117907B2 (en) * | 2008-12-19 | 2012-02-21 | Pathfinder Energy Services, Inc. | Caliper logging using circumferentially spaced and/or angled transducer elements |
EP2770347A3 (en) * | 2009-06-24 | 2014-10-22 | Bergen Technology Center AS | Transducer assembly |
WO2011051776A2 (en) | 2009-10-26 | 2011-05-05 | Schlumberger Technology B.V. | Apparatus for logging while drilling accoustic measurment |
CN101845942B (zh) * | 2010-05-21 | 2012-08-15 | 中国海洋石油总公司 | 一种可插拔式密封电路装置 |
US8944183B2 (en) | 2010-08-11 | 2015-02-03 | Baker Hughes Incorporated | Low frequency formation shear slowness from drilling noise derived quadrupole array data |
US9181798B2 (en) | 2012-03-29 | 2015-11-10 | Schlumberger Technology Corporation | Removable modular antenna assembly for downhole applications |
CN102877827B (zh) * | 2012-10-10 | 2015-03-11 | 中国石油天然气集团公司 | 一种随钻声波测井的声系模块 |
US9664016B2 (en) | 2013-03-15 | 2017-05-30 | Chevron U.S.A. Inc. | Acoustic artificial lift system for gas production well deliquification |
US9587470B2 (en) * | 2013-03-15 | 2017-03-07 | Chevron U.S.A. Inc. | Acoustic artificial lift system for gas production well deliquification |
US9568629B2 (en) | 2014-10-02 | 2017-02-14 | Saudi Arabian Oil Company | Evaluation of rock boundaries and acoustic velocities using drill bit sound during vertical drilling |
US20160109322A1 (en) * | 2014-10-20 | 2016-04-21 | HGST Netherlands B.V. | Leak detection using acoustic wave transducer |
WO2016141110A1 (en) * | 2015-03-03 | 2016-09-09 | Schlumberger Technology Corporation | Multi-mode acoustic tool and method |
CN105158805B (zh) * | 2015-08-11 | 2017-10-27 | 中国石油天然气集团公司 | 声波测井相控方位接收换能器安装结构 |
US11143022B2 (en) | 2016-08-14 | 2021-10-12 | Halliburton Energy Services, Inc. | Telemetry system |
CN106522925B (zh) * | 2016-11-21 | 2018-04-13 | 中国科学院地质与地球物理研究所 | 一种随钻方位声波信号接收换能器封装装置 |
US11493657B2 (en) | 2018-02-08 | 2022-11-08 | Schlumberger Technology Corporation | Ultrasonic transducers for measuring formation velocities |
US11921249B2 (en) | 2018-02-08 | 2024-03-05 | Schlumberger Technology Corporation | Ultrasonic acoustic sensors for measuring formation velocities |
US11346213B2 (en) | 2018-05-14 | 2022-05-31 | Schlumberger Technology Corporation | Methods and apparatus to measure formation features |
US10851641B2 (en) | 2018-09-05 | 2020-12-01 | Saudi Arabian Oil Company | Acoustic testing of core samples |
CN111119869B (zh) * | 2018-11-01 | 2023-04-04 | 中国石油化工股份有限公司 | 超声换能器检测装置及随钻超声换能器检测方法 |
US11726223B2 (en) | 2019-12-10 | 2023-08-15 | Origin Rose Llc | Spectral analysis and machine learning to detect offset well communication using high frequency acoustic or vibration sensing |
US11248455B2 (en) | 2020-04-02 | 2022-02-15 | Saudi Arabian Oil Company | Acoustic geosteering in directional drilling |
EP4158154A1 (en) | 2020-05-26 | 2023-04-05 | Saudi Arabian Oil Company | Water detection for geosteering in directional drilling |
US11781419B2 (en) | 2020-05-26 | 2023-10-10 | Saudi Arabian Oil Company | Instrumented mandrel for coiled tubing drilling |
WO2021240197A1 (en) | 2020-05-26 | 2021-12-02 | Saudi Arabian Oil Company | Geosteering in directional drilling |
US11920460B2 (en) | 2021-12-08 | 2024-03-05 | Saudi Arabian Oil Company | Identifying formation layer tops while drilling a wellbore |
US11920467B2 (en) | 2022-01-13 | 2024-03-05 | Saudi Arabian Oil Company | Minimization of drill string rotation rate effect on acoustic signal of drill sound |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2350371A (en) * | 1940-07-23 | 1944-06-06 | Sperry Sun Well Surveying Co | Borehole logging apparatus |
US2596023A (en) * | 1944-12-16 | 1952-05-06 | Eastman Oil Well Survey Co | Audio caliper device |
US2596024A (en) * | 1944-12-16 | 1952-05-06 | Eastman Oil Well Survey Co | Audio caliper device |
US2757358A (en) * | 1953-04-03 | 1956-07-31 | Socony Mobil Oil Co Inc | Mechanically coupled acoustic well logging system |
US2788510A (en) * | 1953-07-06 | 1957-04-09 | United Geophysical Corp | Seismic prospecting apparatus |
GB752296A (en) * | 1954-08-15 | 1956-07-11 | Socony Mobil Oil Co | Mechanically coupled acoustic well logging system |
US3063035A (en) * | 1957-12-26 | 1962-11-06 | Shell Oil Co | Coupling for transducers in a well-logging device |
US3144090A (en) * | 1959-02-10 | 1964-08-11 | Texaco Inc | Acoustical well logging tool having low acoustical velocity between transducers |
US3054471A (en) * | 1960-01-15 | 1962-09-18 | California Research Corp | Acoustic filters for attenuating vertically propagated interference in borehole seismology |
US3093810A (en) * | 1960-02-01 | 1963-06-11 | Pan American Petroleum Corp | Seismic well logging data display |
US3136381A (en) * | 1960-05-03 | 1964-06-09 | Halliburton Co | Directed acoustic velocity logging |
US3190388A (en) * | 1961-05-16 | 1965-06-22 | Schlumberger Well Surv Corp | Acoustic logging tools with acoustic attenuating structure |
US3191141A (en) * | 1961-05-16 | 1965-06-22 | Schlumberger Well Surv Corp | Logging tool housing with acoustic delay |
US3191142A (en) * | 1961-05-16 | 1965-06-22 | Schlumberger Well Surv Corp | Low acoustic velocity support member for logging tools |
US3191143A (en) * | 1961-05-16 | 1965-06-22 | Schlumberger Well Surv Corp | Acoustic delay member for well logging tools |
US3161256A (en) * | 1961-05-16 | 1964-12-15 | Schiumberger Well Surveying Co | Acoustic logging tools |
US3213415A (en) * | 1962-08-27 | 1965-10-19 | Schlumberger Well Surv Corp | Pressure equalizing arrangement for acoustic logging |
US3271733A (en) * | 1964-07-08 | 1966-09-06 | Schlumberger Well Surv Corp | Acoustic well logging device |
US3288245A (en) * | 1964-12-04 | 1966-11-29 | Halliburton Co | Rigid acoustically isolated well logging tool |
US3340953A (en) * | 1966-02-18 | 1967-09-12 | Mobil Oil Corp | Acoustic logging of cased boreholes at a frequency determined by casing thickness |
US3364463A (en) * | 1966-07-01 | 1968-01-16 | Schlumberger Technology Corp | Well logging tool |
US3381267A (en) * | 1966-07-26 | 1968-04-30 | Schlumberger Technology Corp | Well logging tool |
US3493921A (en) * | 1968-02-05 | 1970-02-03 | Gearhart Owen Industries | Sonic wave energy apparatus and systems |
US3608373A (en) * | 1968-11-04 | 1971-09-28 | Dresser Ind | Method and well logging apparatus having acoustic and neutron pads |
US3504757A (en) * | 1968-11-20 | 1970-04-07 | Schlumberger Technology Corp | Acoustic well-logging apparatus |
US3811529A (en) * | 1970-04-07 | 1974-05-21 | Schlumberger Technology Corp | Acoustic logging apparatus for travel time and cement bond logging |
US4020452A (en) * | 1971-05-24 | 1977-04-26 | Schlumberger Technology Corporation | Apparatus for use in investigating earth formations |
US4855963A (en) * | 1972-11-08 | 1989-08-08 | Exxon Production Research Company | Shear wave logging using acoustic multipole devices |
US3997867A (en) * | 1973-09-17 | 1976-12-14 | Schlumberger Technology Corporation | Well bore data-transmission apparatus |
US3982606A (en) * | 1975-01-22 | 1976-09-28 | Mobil Oil Corporation | Acoustical logging apparatus having signal delay means |
US4103281A (en) | 1976-09-29 | 1978-07-25 | Schlumberger Technology Corporation | Measuring-while-drilling system having motor speed detection during encoding |
US4100528A (en) | 1976-09-29 | 1978-07-11 | Schlumberger Technology Corporation | Measuring-while-drilling method and system having a digital motor control |
US4167000A (en) | 1976-09-29 | 1979-09-04 | Schlumberger Technology Corporation | Measuring-while drilling system and method having encoder with feedback compensation |
US4293936A (en) * | 1976-12-30 | 1981-10-06 | Sperry-Sun, Inc. | Telemetry system |
US4149409A (en) * | 1977-11-14 | 1979-04-17 | Shosei Serata | Borehole stress property measuring system |
SU716013A1 (ru) * | 1978-01-05 | 1980-02-15 | Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин | Акустический изол тор дл скважинных приборов акустического каротажа |
US4265305A (en) * | 1979-08-27 | 1981-05-05 | Teleco Oilfield Services Inc. | Mounting and shock absorber assembly for borehole telemetry apparatus |
US4302826A (en) * | 1980-01-21 | 1981-11-24 | Sperry Corporation | Resonant acoustic transducer system for a well drilling string |
US4494072A (en) * | 1980-04-21 | 1985-01-15 | Exploration Logging, Inc. | Well logging apparatus with replaceable sensor carrying insulating sleeve disposed in rotation restrained position around a drill string |
US4541081A (en) * | 1982-02-25 | 1985-09-10 | Dresser Industries, Inc. | Electroacoustic transducer |
US4932003A (en) * | 1982-05-19 | 1990-06-05 | Exxon Production Research Company | Acoustic quadrupole shear wave logging device |
US5027331A (en) * | 1982-05-19 | 1991-06-25 | Exxon Production Research Company | Acoustic quadrupole shear wave logging device |
US4546459A (en) * | 1982-12-02 | 1985-10-08 | Magnavox Government And Industrial Electronics Company | Method and apparatus for a phased array transducer |
FR2570916B1 (fr) * | 1983-06-23 | 1988-04-15 | France Etat Armement | Procede et transducteur electro-acoustique pour emettre ou recevoir des ondes acoustiques dans plusieurs bandes passantes |
US4636999A (en) * | 1983-06-30 | 1987-01-13 | Nl Industries, Inc. | Magnetostrictive pulse generator |
US4649526A (en) * | 1983-08-24 | 1987-03-10 | Exxon Production Research Co. | Method and apparatus for multipole acoustic wave borehole logging |
US4665511A (en) * | 1984-03-30 | 1987-05-12 | Nl Industries, Inc. | System for acoustic caliper measurements |
US4682308A (en) * | 1984-05-04 | 1987-07-21 | Exxon Production Research Company | Rod-type multipole source for acoustic well logging |
US4685091A (en) * | 1984-05-10 | 1987-08-04 | Exxon Production Research Co. | Method and apparatus for acoustic well logging |
US4641520A (en) * | 1984-08-23 | 1987-02-10 | The United States Of America As Represented By The United States Department Of Energy | Shear wave transducer for stress measurements in boreholes |
US4870627A (en) * | 1984-12-26 | 1989-09-26 | Schlumberger Technology Corporation | Method and apparatus for detecting and evaluating borehole wall fractures |
US4888740A (en) * | 1984-12-26 | 1989-12-19 | Schlumberger Technology Corporation | Differential energy acoustic measurements of formation characteristic |
US4759000A (en) * | 1985-06-13 | 1988-07-19 | Reitz Ronald P | Acoustic energy absorbing material |
US4752895A (en) * | 1985-12-31 | 1988-06-21 | The Boeing Company | Ultrasonic inspection system apparatus and method using multiple receiving transducers |
US4964085A (en) * | 1986-02-25 | 1990-10-16 | Baroid Technology, Inc. | Non-contact borehole caliber measurement |
US4791797A (en) * | 1986-03-24 | 1988-12-20 | Nl Industries, Inc. | Density neutron self-consistent caliper |
US4744245A (en) * | 1986-08-12 | 1988-05-17 | Atlantic Richfield Company | Acoustic measurements in rock formations for determining fracture orientation |
JPS63207300A (ja) * | 1987-02-24 | 1988-08-26 | Toshiba Corp | 超音波プロ−ブ |
US4832148A (en) * | 1987-09-08 | 1989-05-23 | Exxon Production Research Company | Method and system for measuring azimuthal anisotropy effects using acoustic multipole transducers |
US4899112A (en) | 1987-10-30 | 1990-02-06 | Schlumberger Technology Corporation | Well logging apparatus and method for determining formation resistivity at a shallow and a deep depth |
US4850450A (en) * | 1987-11-19 | 1989-07-25 | Schlumberger Technology Corporation | Logging tool housing with acoustic delay |
US4879463A (en) | 1987-12-14 | 1989-11-07 | Schlumberger Technology Corporation | Method and apparatus for subsurface formation evaluation |
US5164548A (en) * | 1988-02-08 | 1992-11-17 | Chevron Research And Technology Company | Method and apparatus for ultrasonic scanning of a borehole having improved sensor array and timing circuit |
US5274606A (en) * | 1988-04-21 | 1993-12-28 | Drumheller Douglas S | Circuit for echo and noise suppression of accoustic signals transmitted through a drill string |
US4872526A (en) * | 1988-07-18 | 1989-10-10 | Schlumberger Technology Corporation | Sonic well logging tool longitudinal wave attenuator |
CN1025368C (zh) * | 1988-12-22 | 1994-07-06 | 施户默格海外有限公司 | 在井孔中进行声波勘探的设备和方法 |
US5309404A (en) * | 1988-12-22 | 1994-05-03 | Schlumberger Technology Corporation | Receiver apparatus for use in logging while drilling |
US5036945A (en) * | 1989-03-17 | 1991-08-06 | Schlumberger Technology Corporation | Sonic well tool transmitter receiver array including an attenuation and delay apparatus |
US5030873A (en) * | 1989-08-18 | 1991-07-09 | Southwest Research Institute | Monopole, dipole, and quadrupole borehole seismic transducers |
US4969129A (en) * | 1989-09-20 | 1990-11-06 | Texaco Inc. | Coding seismic sources |
US5214251A (en) * | 1990-05-16 | 1993-05-25 | Schlumberger Technology Corporation | Ultrasonic measurement apparatus and method |
FR2678074B1 (fr) * | 1991-06-18 | 1996-05-24 | Schlumberger Services Petrol | Procede d'exploration geophysique. |
US5237540A (en) | 1992-08-21 | 1993-08-17 | Schlumberger Technology Corporation | Logging while drilling tools utilizing magnetic positioner assisted phase shifts |
US5460047A (en) * | 1992-11-13 | 1995-10-24 | Panametrics, Inc. | Flow measurement system including ultrasonic transducers |
US5377160A (en) * | 1993-08-05 | 1994-12-27 | Computalog Research, Inc. | Transmitter and receiver to radially scan the cementing conditions in cased wells |
CA2133286C (en) * | 1993-09-30 | 2005-08-09 | Gordon Moake | Apparatus and method for measuring a borehole |
US5387767A (en) * | 1993-12-23 | 1995-02-07 | Schlumberger Technology Corporation | Transmitter for sonic logging-while-drilling |
NO308264B1 (no) * | 1994-03-22 | 2000-08-21 | Western Atlas Int Inc | Brønnloggesonde med tilnærmet sylindrisk oppstilling av piezo- elektriske akustiske transdusere for elektronisk styring og fokusering av akustiske signaler |
-
1995
- 1995-12-07 US US08/569,027 patent/US5753812A/en not_active Expired - Lifetime
-
1996
- 1996-12-03 AU AU74107/96A patent/AU721408B2/en not_active Ceased
- 1996-12-04 DE DE69632300T patent/DE69632300D1/de not_active Expired - Lifetime
- 1996-12-04 EP EP96308801A patent/EP0778473B1/en not_active Expired - Lifetime
- 1996-12-05 BR BRPI9605866-8A patent/BR9605866B1/pt not_active IP Right Cessation
- 1996-12-06 CA CA002192276A patent/CA2192276C/en not_active Expired - Lifetime
- 1996-12-06 NO NO19965241A patent/NO328922B1/no not_active IP Right Cessation
- 1996-12-06 CN CN96123081A patent/CN1102742C/zh not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101583885B (zh) * | 2005-07-12 | 2012-09-05 | 贝克休斯公司 | 自动调整nmr脉冲序列以基于实时分析优化snr |
CN103711476A (zh) * | 2012-09-28 | 2014-04-09 | 罗斯蒙德公司 | 检测井中活塞的位置 |
US9453407B2 (en) | 2012-09-28 | 2016-09-27 | Rosemount Inc. | Detection of position of a plunger in a well |
US9534491B2 (en) | 2013-09-27 | 2017-01-03 | Rosemount Inc. | Detection of position of a plunger in a well |
CN110709581A (zh) * | 2017-05-31 | 2020-01-17 | 沙特阿拉伯石油公司 | 用于井下随钻测井应用的声波耦合器 |
Also Published As
Publication number | Publication date |
---|---|
NO965241D0 (no) | 1996-12-06 |
EP0778473A3 (en) | 1999-08-11 |
DE69632300D1 (de) | 2004-06-03 |
CA2192276C (en) | 2005-02-08 |
AU721408B2 (en) | 2000-07-06 |
BR9605866A (pt) | 1998-08-25 |
AU7410796A (en) | 1997-06-12 |
CA2192276A1 (en) | 1997-06-08 |
US5753812A (en) | 1998-05-19 |
EP0778473A2 (en) | 1997-06-11 |
EP0778473B1 (en) | 2004-04-28 |
BR9605866B1 (pt) | 2008-11-18 |
NO328922B1 (no) | 2010-06-14 |
NO965241L (no) | 1997-06-09 |
CN1102742C (zh) | 2003-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1102742C (zh) | 为声波测井的声波传送器、发送器、测井装置和测井方法 | |
CN110095809B (zh) | 井中光纤时频电磁和四分量地震数据采集装置及方法 | |
EP0753161B1 (en) | Acoustic sensor | |
CN1307434C (zh) | 声学测井装置及其获得地表下层的参数信息的方法 | |
JP4879494B2 (ja) | 管状体のための音響変換器 | |
RU2358292C2 (ru) | Многополюсный источник | |
USH1561H (en) | Method and apparatus for detection of seismic and electromagnetic waves | |
US8902700B2 (en) | Borehole seismic acquisition system | |
US20100157737A1 (en) | Microhydraulic fracturing with downhole acoustic measurement | |
US20050078555A1 (en) | Method and apparatus for LWD shear velocity measurement | |
GB2235047A (en) | Seismic pofiling using drilling vibrations | |
JP2005210738A5 (zh) | ||
CN1064913A (zh) | 在钻井的同时进行测井的系统 | |
WO2006033661A1 (en) | Method and apparatus for generating acoustic signals for lwd shear velocity measurement | |
CN209911570U (zh) | 井中光纤时频电磁和四分量地震数据采集装置 | |
AU2001211709B2 (en) | Sonic logging tool including receiver and spacer structure | |
GB2343951A (en) | Drilling apparatus | |
CN103109208A (zh) | 使用方位角和/或间隙面元划分的声波波形叠加 | |
AU2001211709A1 (en) | Sonic logging tool including receiver and spacer structure | |
US6868036B2 (en) | Oil well acoustic logging tool with baffles forming an acoustic waveguide | |
GB2308190A (en) | Acoustic reflection borehole logging apparatus | |
CN114026467A (zh) | 用于检测地质地层中的不连续界面和/或孔隙压力的异常的检测系统 | |
GB2288020A (en) | Borehole acoustic sensor | |
MXPA06003237A (en) | Multi-pole transmitter source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20030305 Termination date: 20141206 |
|
EXPY | Termination of patent right or utility model |