CN116574684B - 清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载药系统、制备方法与应用 - Google Patents

清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载药系统、制备方法与应用 Download PDF

Info

Publication number
CN116574684B
CN116574684B CN202310210092.5A CN202310210092A CN116574684B CN 116574684 B CN116574684 B CN 116574684B CN 202310210092 A CN202310210092 A CN 202310210092A CN 116574684 B CN116574684 B CN 116574684B
Authority
CN
China
Prior art keywords
macrophage
functionalized
drug
mononuclear
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310210092.5A
Other languages
English (en)
Other versions
CN116574684A (zh
Inventor
宁蓬勃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202310210092.5A priority Critical patent/CN116574684B/zh
Publication of CN116574684A publication Critical patent/CN116574684A/zh
Application granted granted Critical
Publication of CN116574684B publication Critical patent/CN116574684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5063Compounds of unknown constitution, e.g. material from plants or animals
    • A61K9/5068Cell membranes or bacterial membranes enclosing drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Toxicology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载药系统、制备方法与应用,属于医药技术领域。本发明提供了一种清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体为具有活性的在胞外表达可结合促癌因子的受体结构的单核/巨噬细胞。还提供了一种清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载药系统,包括功能化单核/巨噬细胞载体和抗肿瘤药物。本发明对单核/巨噬细胞实现合成生物学的重编程构建,使其活细胞状态在胞外表达促癌因子清道夫的功能臂,使其在机体动态游走趋向肿瘤转移病灶的过程中,动态清除肿瘤转移促癌因子,根本改变机体肿瘤转移微环境,同时特定天然靶向与活细胞载药策略相互配伍,实现高效抗肿瘤转移。

Description

清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载 药系统、制备方法与应用
技术领域
本发明属于医药技术领域,具体涉及清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载药系统、制备方法与应用。
背景技术
肿瘤转移是指恶性肿瘤细胞从原发部位,经淋巴道、血管或体腔等途径,到达机体其他部位继续生长的这一过程。恶性肿瘤的转移扩散往往是肿瘤治疗失败的主要原因。而癌细胞早期发生的扩散、转移,往往很难判断,一个癌细胞直径约为10微米,而当前的检测技术能够明确的看到肿块时,通常其直径已超过1cm(即已增大到1000倍)。肿瘤细胞从初始侵袭到转移发生涉及了许多途径机制。在癌症患者诊断时,大多数患者就已经发生了这些过程。局部手术或放疗和全身方法(包括化疗、靶向治疗和免疫治疗)是当前肿瘤治疗的主要方法。然而,在肿瘤转移的隐匿期,癌细胞从原发肿瘤扩散,侵入血管,并在循环中存活,在到达远处器官后,定植形成微小转移灶,进而形成恶化。虽然目前手术切除是肿瘤治疗中的首选治疗方案,在术后辅助治疗中也以化疗作为辅助,但是治疗效果仍不理想,对于患者来说,手术过程中可以对病灶进行切除,但没有办法对微小病灶以及游离在血管里的肿瘤细胞进行切除。
化疗药物常常用于治疗早期的恶性肿瘤,虽然也能杀伤转移病灶的肿瘤细胞,但是作用效果有限,无法根除转移病灶,同时,化药对于患者的肺部和肾脏毒副反应较大,并有黏膜炎、胃肠道反应、影响性功能、骨髓抑制等其他不良反应。靶向药物技术对转移癌细胞有一定疗效,近年来研究也在利用纳米载药技术来提高靶向药物的肿瘤富集性,但是靶向药物作为全身治疗的被动给药方式,药物代谢过程中仍然无法高效降低药物毒副作用对其他组织脏器的累积。被动靶向的药物仍无法抗衡转移病灶形成的复杂机制,使得转移瘤临床治愈率及病死率未形成突破性的改善。目前肿瘤转移的治疗目标是预防高危患者的初始转移,缩小已建立的病变,并预防有限生命疾病患者的额外转移。
肿瘤细胞发生转移的一个重要生物学事件是在侵袭和转移过程中必需穿透一系列天然组织屏障—基底膜和细胞外基质(ECM)。其合成及分泌大量基质降解酶,降解细胞外基质是肿瘤细胞侵袭、转移的重要步骤。目前已知这其中最为重要的一种PLAU编码的丝氨酸蛋白水解酶为尿激酶型纤溶酶原激活物(uPA),uPA蛋白具有破坏细胞外基质(ECM)、促使ECM和血管基膜的降解,促进肿瘤细胞浸润增殖的作用,最终导致恶性肿瘤的转移。uPA同时能够诱导一些增殖信号通路的级联反应,通过激活细胞生长因子促进细胞的增殖,高水平的uPA还可以通过上调VEGFA或直接激活VEGF诱导肿瘤血管生成,也可以通过活化MMPs或直接降解细胞外基质,使游离肿瘤细胞定植,促进肿瘤侵袭转移。针对uPA/uPAR相互作用的小分子抑制剂、抗体等,虽然表现出有效的抗转移作用,但在体内药物代谢不理想、容易被清除,并且缺乏靶向性、给药效率低。
在少数情况下恶性肿瘤细胞也会进化出耐药机制,来逃避药物的杀伤作用。一旦肿瘤细胞形成耐药,即使在治疗过程中,恶性肿瘤细胞也能不受影响,继续生长、繁殖而出现复发、转移。也因此单一给药机制无法有效对抗肿瘤恶性转移。临床迫切需求创新型抗转移治疗策略。以吉西他滨为例,其作为部分肿瘤的一线抗肿瘤用药,它存在的剂量限制性毒性骨髓抑制等副反应限制其更广泛的临床用药。当患者癌细胞发生转移后,吉西他滨等抗肿瘤药物,对原发癌细胞或转移癌细胞,可以起到一定的消灭作用,减轻患者部分病情。
纳米治疗药物虽然可通过增强渗透性和滞留(EPR)效应有效地靶向肿瘤,但EPR效应仅限于直径大于约4.6mm的血管化肿瘤。由于转移通常是侵袭器官中高度多发性和分散性的小的癌细胞群,因此当转移灶直径小于1-2mm时,转移灶血管构筑差,血管生成休眠,这阻碍了纳米疗法针对小的、未血管化的转移瘤的使用。巨噬细胞作为机体天然免疫防护的重要免疫细胞,先天具有趋向肿瘤组织吞噬病变细胞的免疫特性。我们基于肿瘤转移时的生物学机制,开发了基于巨噬细胞清道夫来清除uPA、VEGFA等促癌蛋白的活细胞抗转移疗法。巨噬细胞作为人体免疫细胞的重要组成部分,其本身就在抗原呈递、肿瘤杀伤等方面起作用,是免疫系统的防线之一。作为天然免疫细胞和抗原呈递细胞,巨噬细胞具有较长的血液半衰期,并能特异性结合到肿瘤组织。因此,将巨噬细胞应用于化学药物递送将导致肿瘤中药物积聚的显著增加。由于巨噬细胞可以吞噬自然界中的外来颗粒,它们可以直接吞噬药物,然后将药物输送到肿瘤。因此,活巨噬细胞可以作为药物载体,显著提高药物的肿瘤靶向能力。
我们将巨噬细胞进行基因工程重编程构建,不仅给予了它作为清道夫捕获uPA、VEGFA等促转移因子的新功能,同时也解决了药物研发要避免自身毒性的问题。通过表达uPAR及VEGFR清道夫结构的巨噬细胞搭载药物,不仅能利用巨噬细胞的天然趋向性,使药物进一步递送到肿瘤病灶部位,也提高了生物安全性。同时,捕获肿瘤转移中的uPA等关键性因子,与杀伤肿瘤细胞相结合,不仅切断了肿瘤转移的道路,同时摧毁了肿瘤病灶大本营。当前部分抗转移疗法中断了定植途径,而不能杀死增殖的肿瘤细胞,它们具有细胞抑制作用,而非细胞毒性。只有当生物抑制与化学杀伤效应协同作用时,它们才会缩小已建立的病变。因此,本专利提出一种清道夫型抗肿瘤转移的功能化单核/巨噬细胞体系、载药系统及其制备方法与应用,既可以作为一种手术辅助治疗,防止癌症隐匿期形成显性病变,抑制复发转移,同时对于已形成的转移瘤,也可以作为一种直接治疗手段,缩小已建立的显性病变。
肿瘤复发转移是造成肿瘤患者死亡的主要原因。目前临床给药仍属于被动给药方式,当前国际最新研究进展,基于纳米仿生递送抗肿瘤药物,即便是应用巨噬细胞膜包被载药的纳米药物,一定程度降低了化药对其他组织器官的毒副作用,然而膜载药的仿生机制仍属机体被动给药,作用周期短,治疗效果有限,副反应很大。而本专利的创新性在于对巨噬细胞实现合成生物学的重编程构建,使其活细胞状态在胞外表达uPA及VEGFA清道夫的功能臂,重新赋予先天免疫细胞特异抗肿瘤效应生物学功能,使其在机体动态游走趋向肿瘤转移病灶的过程中,动态清除uPA、VEGFA等肿瘤转移促癌因子,根本改变机体肿瘤转移微环境,同时特定天然靶向与活细胞搭载抗癌化药策略相互配伍,从而实现高效抗肿瘤转移。
发明内容
针对上述现有技术中存在的问题,本发明的目的在于设计提供清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载药系统、制备方法与应用。本发明通过合成生物学策略改造单核/巨噬细胞,在其胞外表达促癌因子清道夫(uPAR、VEGFR)来捕获uPA、VEGFA。在肿瘤侵袭转移过程中,无论癌细胞是从原发灶侵出还是定植,都需要降解细胞外基质/血管基底膜。肿瘤转移需要uPA蛋白水解酶的作用,uPA在蛋白水解级联中起核心作用,可以降解细胞外基质/血管基底膜。通过阻断uPA/uPAR相互作用,阻断癌症转移。
本发明利用单核/巨噬细胞对肿瘤病灶的天然趋向性,在单核/巨噬细胞内负载纳米材料(如PLGA、PEG-PLGA)包裹的抗肿瘤药物(如吉西他滨),清除原发肿瘤病灶的同时,功能化单核/巨噬细胞载体循环进一步清除促癌因子(如uPA、VEGFA),在释放药物杀伤癌细胞的同时,阻止循环肿瘤细胞通过ECM效应形成和转移,从而在杀灭原位肿瘤、捕获血液循环促转移因子、清除转移病灶肿瘤形成转移的三个层面形成立体化抗转移策略提高对肿瘤的天然靶向杀伤性,以达到抑制肿瘤侵袭转移的目的。
为了实现上述目的,本发明采用以下技术方案:
一方面,本发明提供了一种清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体,所述功能化单核/巨噬细胞载体为具有活性的在胞外表达可结合促癌因子的受体结构的单核/巨噬细胞。
所述的一种清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体,所述促癌因子包括uPA(即尿激酶型纤溶酶原激活物)、VEGFA(即血管内皮生长因子A);所述可结合促癌因子的受体结构包括uPAR、VEGFR。
所述的一种清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体的制备方法,包括:构建可结合促癌因子的受体结构质粒,通过转染方法构建胞外表达上述受体结构的单核/巨噬细胞。
所述的制备方法,所述转染方法包括慢病毒转染、腺病毒转染、顺转质粒、电转染;所述受体结构质粒携带荧光蛋白标签,优选荧光蛋白标签包括BFP标签、GFP标签、OFP标签。
所述的制备方法,其特征在于,所述慢病毒转染的具体操作为:设计慢病毒质粒,包含编码可结合促癌因子的受体结构的DNA序列,可选地包含编码荧光蛋白的DNA序列,并通过信号肽和跨膜结构域连接,再对单核/巨噬细胞进行转导构建完成。
第二方面,本发明提供了一种清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载药系统,所述功能化单核/巨噬细胞载药系统包括所述的功能化单核/巨噬细胞载体和抗肿瘤药物。
所述的功能化单核/巨噬细胞载药系统,所述抗肿瘤药物包括吉西他滨(GEM)。
所述的功能化单核/巨噬细胞载药系统的制备方法,包括:称取纳米材料/PEG-纳米材料,和抗肿瘤药物,合成得到包载抗肿瘤药物的纳米材料颗粒,再将纳米材料颗粒与功能化单核/巨噬细胞载体共孵育后,利用巨噬细胞的摄取能力成功摄取纳米粒子,得到包载有包载抗肿瘤药物的纳米材料颗粒的功能化单核/巨噬细胞载体,即功能化单核/巨噬细胞载药系统。
所述的制备方法,所述纳米材料包括PLGA。
第三方面,本发明提供了所述的功能化单核/巨噬细胞载体或所述的功能化单核/巨噬细胞载药系统在制备抗肿瘤转移的药物中的应用。
与现有技术相比,本发明具有以下有益效果:
1、本发明提供的新型生物治疗药物载体和载药系统,对患者不会产生手术带来的机体伤害。通过纳米材料(如PLGA、PEG-PLGA)对抗肿瘤药物(如吉西他滨)进行包载,通过纳米材料包载后的缓慢释放,解决了药物输注时毒性大的问题。本专利活细胞载药系统进一步在保证疗效的同时,提高了药物的安全性。
2、本发明通过设计胞外表达可结合促癌因子的受体结构(如uPAR、VEGFR)的单核/巨噬细胞,并利用单核/巨噬细胞对化疗药物进行伪装,使其更好更快输送至人体内。胞外构建的受体结构(如uPAR、VEGFR)可以通过竞争性结合促癌因子(如uPA、VEGFA)起到阻止肿瘤细胞定植,而化疗药物的释放可以进一步杀伤癌细胞,清除转移病灶,起到抗肿瘤转移的作用。
3、本发明对单核/巨噬细胞实现合成生物学的重编程构建,使其活细胞状态在胞外表达促癌因子(如uPA、VEGFA)清道夫的功能臂,重新赋予先天免疫细胞特异抗肿瘤效应生物学功能,使其在机体动态游走趋向肿瘤转移病灶的过程中,动态清除肿瘤转移促癌因子如uPA、VEGFA,根本改变机体肿瘤转移微环境,同时特定天然靶向与活细胞载药策略相互配伍,从而实现高效抗肿瘤转移。
附图说明
图1为实施例1制备的巨噬细胞uPAR-M、GEM@PLGA@uPAR-M及其uPA的清除能力过程图,其中,a为巨噬细胞uPAR-M制备过程;b为GEM@PLGA@uPAR-M制备过程;c为GEM@PLGA@uPAR-M清除uPA的过程图;
图2为uPA清道夫型巨噬细胞的构建与表征图,其中,a为巨噬细胞uPAR-M质粒构建示意图,b为uPAR-M构建示意图,c为uPA清道夫型巨噬细胞构建成功,d为uPAR的表达;
图3为VEGFA清道夫型巨噬细胞的构建表征图,其中,a为巨噬细胞VEGFR-M质粒构建示意图,b为示意VEGFA清道夫型巨噬细胞构建成功;
图4为uPAR-M抑制癌细胞迁移及捕获uPA能力的结果图;
图5为GEM@PLGA纳米粒子的表征图;
图6为Rh6G@PLGA纳米粒子的表征图;
图7为uPAR-M搭载Rh6G@PLGA的摄取结果图;
图8为GEM@PLGA@uPAR-M的体外杀伤结果图;
图9为GEM@PLGA@uPAR-M的体内抗转移效果图。
具体实施方式
以下将通过附图和实施例对本发明作进一步说明。
实施例1:uPA清道夫型巨噬细胞的构建与表征
为了设计出能在胞外表达uPAR的巨噬细胞,我们以J774A.1巨噬细胞为示例进行了基因工程改造,使uPAR能够在细胞膜上稳定表达,以达到竞争性结合uPA的目的。如图1为实施例1制备的巨噬细胞uPAR-M、GEM@PLGA@uPAR-M及其uPA的清除能力过程图。通过设计慢病毒质粒,包含编码uPAR的DNA序列,以及编码蓝色荧光蛋白(BFP)的DNA序列,两者之间通过信号肽和跨膜结构域连接,BFP在胞内也起到了标签作用(图2a)。我们通过该质粒进行慢病毒的包装,然后再对J774A.1细胞进行转导,使功能化的uPAR可以稳定表达(图2b)。利用细胞膜染料DiI对细胞膜进行标记,在共聚焦显微镜下成像后,我们可以观察到转染的巨噬细胞在细胞膜发出蓝色荧光,通过共定位证实了uPA清道夫型巨噬细胞构建成功(图2c),并使用uPAR引物在mRNA水平进行验证,佐证了uPAR的表达(图2d)。同样的技术体系,我们通过该质粒进行慢病毒的包装,然后再对J774A.1细胞进行转导,使功能化的VEGFA可以稳定表达(图3a)。利用细胞膜染料DiI对细胞膜进行标记,在共聚焦显微镜下成像后,我们可以观察到转染的巨噬细胞在细胞膜发出绿色荧光,通过共定位证实了VEGFA清道夫型巨噬细胞构建成功(图3b)。
实施例2:uPAR-M抑制癌细胞迁移的能力
我们将成功基因转导的巨噬细胞命名为uPAR-M,未转导的巨噬细胞命名为UTD-M。接下来,我们评估了这种uPAR-M与uPA的结合能力,我们使用0.4μm孔径聚碳酸酯膜的Transwell六孔板,在上室接种4T1-Luc细胞,下室接种UTD-M或者uPAR-M(如图4a)。与4T1-Luc共培养的UTD-M未表现出对uPA的清除能力(如图4b),来自4T1-Luc的细胞上清液对uPAR-M表现出剂量依赖的特性,这表明4T1-Luc分泌的uPA可以通过被结合而达到清除的效果。这种结合能力依赖于uPAR,因为uPA的清除效果与uPAR-M的数量相关。与未经细胞互作的4T1-Luc细胞上清液相比,在效靶比1:1的条件下,4T1-Luc细胞上清中的uPA含量大约降低了3.53μg.mL-1(如图4c)。总而言之,这些结果表明我们成功构建了胞外表达uPAR的uPA清道夫型巨噬细胞,可以通过竞争性结合uPA从而实现对uPA清除的效果。
我们首先在体外对uPAR-M的抗转移效果进行评估,具体来说,如图4d所示,4T1-Luc被接种于Transwell孔板下室,UTD-M或uPAR-M被接种于上室,待4T1-Luc细胞汇合度达到90%,使用枪头进行划痕,并通过划痕面积判断4T1-Luc的迁移能力。24h后,与不同比例UTD-M共培养的4T1-Luc表现出无差别的细胞汇合度(如图4g和图4h),这表明未经过改造的巨噬细胞不具有抑制癌细胞侵袭转移的作用。而与uPAR-M共培养的4T1-Luc则表现出剂量依赖的特性(如图4e和图4f),在1:1效靶比的条件下,划痕面积仅降低了约10%。这表明通过构建uPAR过表达的巨噬细胞抑制癌细胞转移是可行的,抑制效果也与uPAR-M的数量成正相关,PAR-M具有抑制癌细胞迁移的能力。
实施例3:GEM负载的PLGA纳米颗粒(GEM@PLGA)的表征
我们合成了GEM负载的PLGA纳米颗粒(GEM@PLGA),并对其进行表征。PLGA作为一种被FDA批准的生物医用材料,被选为纳米载体,并通过原位封装对GEM进行负载。为了更好的研究GEM在纳米载体中的作用,我们合成了不含药物的PLGA纳米颗粒,含有GEM的PLGA纳米颗粒以及被不同巨噬细胞内吞的纳米颗粒,并将其命名为PLGA,GEM@PLGA,GEM@PLGA@UTD-M,GEM@PLGA@uPAR-M。流体力学直径显示,未包药的PLGA纳米颗粒的粒径在166.8nm左右,包载GEM后,纳米粒子的尺寸增加到205.7nm(图5a)。两者的PDI分别为200.7和0.178(图5b),分散性较好。Zeta电位的变化则从-11.93mV到-15.53mV,表明GEM的成功负载(图5c)。GEM是一种酸性的化疗药物,在269nm处有吸收峰,被装载到PLGA纳米颗粒的内部,装载率约为10%。GEM@PLGA在269nm处有一个明显的吸收峰,表明GEM的成功装载(图5d)。
另外,我们对GEM@PLGA的稳定性进行了评估,在PBS条件下,纳米颗粒的尺寸在48h内没有明显变化,这说明我们合成的纳米颗粒具有良好的稳定性。而FBS条件下,纳米颗粒出现降解和团聚现象,表明在静脉单独输注纳米粒子时,会出现由于稳定性差导致药效不佳的现象,因此在之后的实验中,我们才用活细胞载药这一递送策略,避免血清对纳米粒子的降解(图5e)。药物递送,需要进行缓慢释放,通过不同pH条件(7.4和5.5),对PLGA纳米颗粒中GEM的释放进行评估。GEM@PLGA表现出持续的释放动力学,在pH5.5的条件下,48h内总共释放了将近50%,而在pH7.4时释放不到40%,表明酸性条件可以加速GEM@PLGA的释放(图5f)。为了从直观层面上了解纳米粒子的物理形貌和分散程度,我们通过透射电镜对纳米粒子进行了表征。透射电子显微镜(TEM)显示,PLGA呈球形,形貌完整,粒径大小均一(图5g),装载GEM后PLGA纳米颗粒仍保持圆球型,形貌完整,粒径大小均一(图5h和图5i)。
实施例4:纳米工程化uPAR-M对Rh6G@PLGA的摄取
利用PEG-PLGA和吉西他滨(GEM)合成包载GEM的PLGA纳米颗粒,将纳米颗粒与巨噬细胞共孵育后,利用巨噬细胞的摄取能力成功摄取纳米粒子,我们就得到了包载GEM@PLGA的uPAR-M,即GEM@PLGA@uPAR-M。为了证明巨噬细胞的药物递送能力,我们使用Rh6G这种水溶性荧光染料代替GEM在细胞水平进行验证。Rh6G在530nm处有吸收峰,紫外数据显示,Rh6G@PLGA在530nm处有一个明显的吸收峰,这证实了Rh6G被PLGA成功包载。流体力学直径显示,Rh6G@PLGA的平均粒径值为203.5nm,PDI为0.179,符合实验所需纳米颗粒的尺寸(图6a,b,c)。
基于此,我们对巨噬细胞对Rh6G@PLGA的摄取进行了评估。游离Rh6G或Rh6G@PLGA分别与细胞共孵育,4h后去除培养基并用PBS润洗,使用DAPI细胞核染料对巨噬细胞进行标记,并在荧光显微镜下成像。荧光显微镜结果显示,Rh6G@PLGA的被摄取量高于游离的Rh6G,这可能是因为小粒径的纳米粒子更容易被巨噬细胞吞噬,而UTD-M和UPAR-M在摄取能力方面没有差异,这说明巨噬细胞的基因工程化并没有改变其对纳米粒子的吞噬能力(图7a,b)。
另外,我们通过流式细胞仪对细胞摄取结果进行定量分析,产生的结果与之类似,游离Rh6G的细胞摄取低于Rh6G@PLGA,将Rh6G用PLGA包载后,不仅能够降低其毒性,还可以提高该荧光染料的细胞摄取量(图7c,d)。
实施例5:uPAR-M载药体系对4T1-Luc的体外杀伤
为了制备负载GEM@PLGA的uPAR-M,我们允许巨噬细胞对GEM@PLGA进行摄取,为了减少化疗药物对细胞产生的影响,我们对巨噬细胞的最佳载药浓度进行摸索。已转导的巨噬细胞分别与不同浓度的GEM共孵育,而巨噬细胞与GEM@PLGA共孵育4h后,需要更换培养基以去除残留的GEM@PLGA,分别在0h、24h、48h、72h测定其细胞活性。与游离GEM相比,经PLGA包载之后的GEM毒性明显降低,GEM@PLGA浓度为100nM时,48h内细胞仍能保持85%以上的活性(图8a)。与观察到的低凋亡率相一致,这些结果表现出GEM@PLGA具有良好的生物相容性。基于此,在后续实验中,我们选择100nM浓度的GEM@PLGA作为巨噬细胞载药浓度。我们先探究了不同效靶比的uPAR-M或GEM@PLGA@uPAR-M对4T1-Luc的杀伤效果,结果显示,uPAR-M对4T1-Luc几乎不具备杀伤作用,而载药的uPAR-M则随效靶比的提高,杀伤效果不断增强,这主要是由于化疗药物产生的杀伤,当效靶比为1:1时,4T1-Luc的存活率仅为34.53%(图8b)。
我们通过MTT和活死细胞染色对Control、UTD-M、uPAR-M、GEM@PLGA、GEM@PLGA@uPAR-M的杀伤效果进行了评价,不同实验组分别与4T1-Luc孵育48h后进行定量或者定性分析,由实验结果可知,UTD-M或uPAR-M都不具备杀伤作用,GEM@PLGA可以造成将近50%的细胞死亡,经uPAR-M包载后的GEM@PLGA,也可以产生杀伤效果,约65%的细胞死亡(图8c)。活死细胞染色也说明,活细胞包载的GEM@PLGA仍旧具有杀伤4T1-Luc的能力,与GEM@PLGA产生的杀伤效果基本一致(图8d)。
实施例6:GEM@PLGA@uPAR-M的在体抗转移效果
细胞水平验证GEM@PLGA@uPAR-M对uPA的清除能力,以及对癌细胞的杀伤能力之后,我们通过在小鼠体内构建肺转移模型验证uPA清道夫型巨噬细胞递药体系的体内抗转移效果。体内抗转移效果使用4T1-Luc小鼠乳腺癌模型进行评价,通过静脉注射4T1-Luc细胞系,每只50万,完成尾静脉转移模型的构建。在2天和10天后,分别接受PBS、UTD-M、uPAR-M、GEM@PLGA、GEM@PLGA@uPAR-M的治疗(图9a)。同时,使用体内成像系统(IVIS)对4T1-Luc的生物发光进行监测,判断肿瘤的发生发展。尾静脉注射的4T1-Luc在肺部大量积聚,进而定植形成肺部转移瘤。IVIS成像结果显示,经PBS或J774A.1治疗后的小鼠,肿瘤发展迅速,肺转移率显著高于其他实验组(图9b)。PBS治疗的小鼠有66.7%在第14天就达到了108的肺部荧光强度,而剩下的33.3%在第21天也达到了108。经J774A.1治疗的小鼠在第7天出现一只小鼠达到108强度,占总数的16.7%,剩余小鼠也分别在第14天和第21天达到108(图9c)。与接受PBS治疗的小鼠相比,未经过改造的巨噬细胞可能并不具备杀伤效果,打入体内后,反而在受到癌细胞分泌的趋化因子作用后趋向癌细胞,促进癌症的发生发展。经过改造的巨噬细胞uPAR-M,也会受到癌细胞的趋化作用,但由于表面表达uPAR,可以竞争性结合肿瘤分泌的uPA,因此可以减少癌细胞的定植及转移。癌细胞的定植减少,在血液中被清除的几率就会增加。由成像结果可知,uPAR-M减缓了4T1-Luc的肿瘤发展速度,经uPAR-M治疗后的小鼠部分抑制了肿瘤的生长,只有两只达到了108,其余小鼠中荧光信号都在106左右,这说明通过构建胞外表达uPAR的巨噬细胞避免癌细胞的侵袭转移是可行的。
GEM是一种化疗药物,其可以竞争性掺入DNA复制过程中,造成癌细胞死亡。但在临床过程中,由于GEM在体内极易被清除,因此需要通过静脉给药的方式缓慢注射,而将药物纳米化是提高给药量的重要途径之一。经PLGA包裹后的GEM@PLGA具有更好的稳定性,经GEM@PLGA治疗后的小鼠荧光强度相较于uPAR-M明显降低,这表明PLGA的包载可以有效提高GEM的疗效,并且避免了静脉缓慢输注的问题。GEM@PLGA@uPAR-M显著抑制肿瘤生长,小鼠抑转移率几乎达到了100%(图9c)。
此外,我们对体内生物安全性做了评估,在实验过程中,所有治疗组并未出现明显的体重减轻(图9g),并且,GEM@PLGA@uPAR-M的治疗不仅在体内清除了转移灶,还显著提高了小鼠的存活时间和生存率,与其他治疗组在30天内出现整体死亡或半数死亡率相比,uPAR-M载药组没有一只小鼠死亡(图9h)。在30后统一解剖小鼠发现,几乎所有小鼠都在肺部形成了转移瘤,但uPAR-M和GEM@PLGA的肺转移瘤都有明显的减少,这表明uPAR-M通过抗定植抑制转移和GEM通过杀伤细胞抑制转移都是有效果的,GEM@PLGA@uPAR-M的肺部转移瘤最少,说明巨噬细胞载药体系可以起到递送药物、逃避免疫监视的作用,并且在巨噬细胞和化疗药物的双重疗效下,发挥的效果更好(图9d,e)。
我们猜想uPAR-M的抗转移效果源于uPA的清除,导致癌细胞定植减少,从而被血液清除增多,因此我们对血液中的uPA含量进行了测定。Elisa结果显示,uPAR-M组的uPA含量有明显的降低,而PBS组、J77组无明显差异,GEM组的uPA含量较对照组降低了0.54ng.mL-1,这可能是因为GEM对癌细胞产生的杀伤作用,导致癌细胞数量变少,因此分泌的uPA量也减少。GEM@PLGA@uPAR-M的uPA含量是所有治疗组中最低的,这可能是因为uPAR-M本身清除uPA的同时,释放出GEM@PLGA对癌细胞杀伤,减少了肿瘤的数量,因此血液中uPA含量最低(图9f),这表明uPAR-M载药并没有对其功能产生损害,GEM@PLGA@uPAR-M很好地继承了uPAR-M的uPA捕获能力。
最后,我们使用HE染色对肺转移灶进行染色分析,GEM@PLGA@uPAR-M组可见清晰肺泡,肿瘤部分占比很少,其他治疗组可见部分肺泡和一些比较大的肿瘤,对照组肿瘤致密,基本看不到肺泡(图9i)。这些观察结果表明,uPAR-M可以抑制肿瘤的转移,合成生物学方法修饰的巨噬细胞可以作为一种药物载体,提高抗转移效果。

Claims (10)

1.一种清道夫型活细胞抗肿瘤转移的功能化巨噬细胞载体,其特征在于,所述功能化巨噬细胞载体为具有活性的在胞外表达可结合促癌因子的受体结构的巨噬细胞;
所述促癌因子为uPA;所述可结合促癌因子的受体结构为uPAR;
所述功能化巨噬细胞载体包含信号肽和跨膜结构域连接的细胞外uPAR结构、跨膜结构域及作为荧光蛋白标签的细胞胞内结构。
2.如权利要求1所述的一种清道夫型活细胞抗肿瘤转移的功能化巨噬细胞载体的制备方法,其特征在于,包括:构建可结合促癌因子的受体结构质粒,通过转染方法构建胞外表达上述受体结构的巨噬细胞。
3.如权利要求2所述的制备方法,其特征在于,所述转染方法为慢病毒转染、腺病毒转染或电转染;所述受体结构质粒携带荧光蛋白标签。
4.如权利要求3所述的制备方法,其特征在于,所述荧光蛋白标签为BFP标签、GFP标签或OFP标签。
5.如权利要求3所述的制备方法,其特征在于,所述慢病毒转染的具体操作为:设计慢病毒质粒,包含编码可结合促癌因子的受体结构的DNA序列,包含编码荧光蛋白的DNA序列,并通过信号肽和跨膜结构域连接,再对巨噬细胞进行转导构建完成。
6.一种清道夫型活细胞抗肿瘤转移的功能化巨噬细胞载药系统,其特征在于,所述功能化巨噬细胞载药系统包括如权利要求1所述的功能化巨噬细胞载体和抗肿瘤药物。
7.如权利要求6所述的功能化巨噬细胞载药系统,其特征在于,所述抗肿瘤药物为吉西他滨。
8.如权利要求6或7所述的功能化巨噬细胞载药系统的制备方法,其特征在于,包括:称取纳米材料,和抗肿瘤药物,合成得到包载抗肿瘤药物的纳米材料颗粒,再将纳米材料颗粒与功能化巨噬细胞载体共孵育后,得到包载有包载抗肿瘤药物的纳米材料颗粒的功能化巨噬细胞载体,即功能化巨噬细胞载药系统。
9.如权利要求8所述的制备方法,其特征在于,所述纳米材料为PLGA。
10.如权利要求1所述的功能化巨噬细胞载体或如权利要求6或7所述的功能化巨噬细胞载药系统在制备抗肿瘤转移的药物中的应用。
CN202310210092.5A 2023-03-07 2023-03-07 清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载药系统、制备方法与应用 Active CN116574684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310210092.5A CN116574684B (zh) 2023-03-07 2023-03-07 清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载药系统、制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310210092.5A CN116574684B (zh) 2023-03-07 2023-03-07 清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载药系统、制备方法与应用

Publications (2)

Publication Number Publication Date
CN116574684A CN116574684A (zh) 2023-08-11
CN116574684B true CN116574684B (zh) 2024-04-02

Family

ID=87534728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310210092.5A Active CN116574684B (zh) 2023-03-07 2023-03-07 清道夫型活细胞抗肿瘤转移的功能化单核/巨噬细胞载体、载药系统、制备方法与应用

Country Status (1)

Country Link
CN (1) CN116574684B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733139A (zh) * 2020-01-13 2020-10-02 西安电子科技大学 一种基于功能化巨噬细胞/单核细胞的靶向递送系统及其构建与应用
CN113456613A (zh) * 2021-07-07 2021-10-01 中山大学 一种近红外光激活型巨噬细胞-纳米前药靶向递药系统的构建及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111315882B (zh) * 2017-11-09 2024-09-24 国立大学法人东京医科齿科大学 癌症促进因子表达抑制剂、其有效成分的筛选方法、对该方法有用的表达盒、诊断药和诊断方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733139A (zh) * 2020-01-13 2020-10-02 西安电子科技大学 一种基于功能化巨噬细胞/单核细胞的靶向递送系统及其构建与应用
CN113456613A (zh) * 2021-07-07 2021-10-01 中山大学 一种近红外光激活型巨噬细胞-纳米前药靶向递药系统的构建及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Activation of urokinase plasminogen activator and its receptor axis is essential for macrophage infiltration in a prostate cancer mouse model;Jian Zhang等人;Neoplasia;第23-30页 *
保留肾单位手术治疗肾肿瘤的疗效及对患者血清皮质醇、uPA、VEGF和T细胞亚群的影响;凌强 等人;微创泌尿外科杂志;第23-26页 *

Also Published As

Publication number Publication date
CN116574684A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
Tian et al. JQ1-loaded polydopamine nanoplatform inhibits c-MYC/programmed cell death ligand 1 to enhance photothermal therapy for triple-negative breast cancer
Li et al. Cell-based drug delivery systems for biomedical applications
Lin et al. GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy
Yu et al. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages
Chen et al. Tailored chemodynamic nanomedicine improves pancreatic cancer treatment via controllable damaging neoplastic cells and reprogramming tumor microenvironment
Wang et al. 3-Carboxyphenylboronic acid-modified carboxymethyl chitosan nanoparticles for improved tumor targeting and inhibitory
Kiran et al. Tumor microenvironment and nanotherapeutics: intruding the tumor fort
Xie et al. Immunoengineering with biomaterials for enhanced cancer immunotherapy
Liu et al. Sericin microparticles enveloped with metal-organic networks as a pulmonary targeting delivery system for intra-tracheally treating metastatic lung cancer
CN111973758B (zh) 一种肿瘤微环境中性粒细胞胞外诱捕网调控的智能药物递送系统及其制备方法
Feng et al. Emerging nanomedicines strategies focused on tumor microenvironment against cancer recurrence and metastasis
Xiao et al. Nanodrug simultaneously regulates stromal extracellular matrix and glucose metabolism for effective immunotherapy against orthotopic pancreatic cancer
Wang et al. Laser-triggered polymeric lipoproteins for precision tumor penetrating theranostics
CN110114072A (zh) 聚合物纳米颗粒
Ma et al. Size-shrinkable and protein kinase Cα-recognizable nanoparticles for deep tumor penetration and cellular internalization
Kong et al. Tumor microenvironmental responsive liposomes simultaneously encapsulating biological and chemotherapeutic drugs for enhancing antitumor efficacy of NSCLC
Lee et al. Targeted lung cancer therapy using ephrinA1-loaded albumin microspheres
Hu et al. Nanomaterial manipulation of immune microenvironment in the diseased liver
Wu et al. Emerging nanomedicine-based therapeutics for hematogenous metastatic cascade inhibition: interfering with the crosstalk between “seed and soil”
Liu et al. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors
Nozhat et al. Advanced biomaterials for human glioblastoma multiforme (GBM) drug delivery
Peng et al. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy
Zhang et al. Colorectal cancer therapy mediated by nanomedicines
Lu et al. Revolutionizing cancer treatment: The power of cell-based drug delivery systems
Hu et al. Orally-administered nanomedicine systems targeting colon inflammation for the treatment of inflammatory bowel disease: latest advances

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant