CN116565963A - 一种分布式光伏并网系统和低电压治理方法 - Google Patents

一种分布式光伏并网系统和低电压治理方法 Download PDF

Info

Publication number
CN116565963A
CN116565963A CN202310850933.9A CN202310850933A CN116565963A CN 116565963 A CN116565963 A CN 116565963A CN 202310850933 A CN202310850933 A CN 202310850933A CN 116565963 A CN116565963 A CN 116565963A
Authority
CN
China
Prior art keywords
voltage
access point
low
grid
voltage drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310850933.9A
Other languages
English (en)
Other versions
CN116565963B (zh
Inventor
王弋飞
韩辰光
党凯
秦炜塨
范伟强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an High Voltage Electrical Apparatus Research Institute Co ltd
Original Assignee
Xi'an High Voltage Electrical Apparatus Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an High Voltage Electrical Apparatus Research Institute Co ltd filed Critical Xi'an High Voltage Electrical Apparatus Research Institute Co ltd
Priority to CN202310850933.9A priority Critical patent/CN116565963B/zh
Publication of CN116565963A publication Critical patent/CN116565963A/zh
Application granted granted Critical
Publication of CN116565963B publication Critical patent/CN116565963B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请公开了一种分布式光伏并网系统和低电压治理方法,保证了分布式光伏并网系统的稳定运行。该分布式光伏并网系统包括多条并网支路,每条并网支路上都设置有光伏逆变器,各光伏逆变器的输出端并联接入同一变电站,其中:所述多条并网支路中至少有一条目标支路,所述目标支路是指光伏逆变器输出端至所述变电站之间的输电线路的阻抗超过预设阻抗值的并网支路;所述目标支路上的光伏逆变器的输出端接入有低电压治理装置,所述低电压治理装置用于在接入点电压跌落深度超过第一预设值时,动态补偿电压跌落,使接入点电压始终处于额定电压范围内。

Description

一种分布式光伏并网系统和低电压治理方法
技术领域
本发明涉及分布式光伏并网技术领域,更具体地说,涉及一种分布式光伏并网系统和低电压治理方法。
背景技术
在分布式光伏并网系统中,各条并网支路上的光伏逆变器将太阳能板输出的直流电转换为交流电,并向上一级变电站输送,完成光伏并网发电,如图1所示。但是太阳能板大多安装在农村自建房或工厂厂房等建筑物的房顶,这类建筑物往往远离上一级变电站,致使光伏逆变器距离上一级变电站的输电线路较长、阻抗较大,而较大的线路阻抗可能导致光伏逆变器输出电压不断跌落,直至系统崩溃。
发明内容
有鉴于此,本发明提供一种分布式光伏并网系统和低电压治理方法,以保证分布式光伏并网系统的稳定运行。
一种分布式光伏并网系统,包括多条并网支路,每条并网支路上都设置有光伏逆变器,各光伏逆变器的输出端并联接入同一变电站,其中:
所述多条并网支路中至少有一条目标支路,所述目标支路是指光伏逆变器输出端至所述变电站之间的输电线路的阻抗超过预设阻抗值的并网支路;
所述目标支路上的光伏逆变器的输出端接入有低电压治理装置,所述低电压治理装置用于在接入点电压跌落深度超过第一预设值时,动态补偿电压跌落,使接入点电压始终处于额定电压范围内。
可选的,所述低电压治理装置包括主电路、旁路开关和控制单元,所述旁路开关与所述主电路并联;
所述控制单元用于检测接入点电压跌落深度,当接入点电压跌落深度超过第一预设值时,断开所述旁路开关,控制所述主电路动态补偿电压跌落,使接入点电压始终处于额定电压范围内;当接入点电压跌落深度未超过所述第一预设值时,闭合所述旁路开关。
可选的,所述低电压治理装置动态补偿电压跌落时的补偿速率根据接入点电压跌落深度确定。
可选的,所述低电压治理装置用于在接入点电压跌落深度大于第二预设值时,以第一速率补偿电压跌落,当接入点电压跌落深度不大于所述第二预设值时,以第二速率补偿电压跌落;所述第二预设值大于所述第一预设值,所述第一速率大于所述第二速率。
可选的,所述接入点电压跌落深度由所述低电压治理装置根据线路阻抗估算得到。
可选的,当光伏逆变器后端任意相邻两级变电站之间的输电线路的阻抗超过所述预设阻抗值时,所述相邻两级变电站中的第一级变电站的变压器高压侧也接入有一台所述低电压治理装置。
一种低电压治理方法,应用于分布式光伏并网系统,所述分布式光伏并网系统包括多条并网支路,每条并网支路上都设置有光伏逆变器,各光伏逆变器的输出端并联接入同一变电站,其中:
所述多条并网支路中至少有一条目标支路,所述目标支路是指光伏逆变器输出端至所述变电站之间的输电线路的阻抗超过预设阻抗值的并网支路;所述目标支路上的光伏逆变器的输出端接入有低电压治理装置;
所述方法包括:所述低电压治理装置检测自身接入点的电压跌落深度,在接入点电压跌落深度超过第一预设值时,动态补偿电压跌落,使接入点电压始终处于额定电压范围内。
可选的,所述动态补偿电压跌落,包括:
根据接入点电压跌落深度确定补偿速率,以确定的确定补偿速率动态补偿电压跌落。
可选的,所述动态补偿电压跌落,包括:
在接入点电压跌落深度大于第二预设值时,以第一速率补偿电压跌落,当接入点电压跌落深度不大于所述第二预设值时,以第二速率补偿电压跌落;所述第二预设值大于所述第一预设值,所述第一速率大于所述第二速率。
可选的,当光伏逆变器后端任意相邻两级变电站之间的输电线路的阻抗超过所述预设阻抗值时,所述相邻两级变电站中的第一级变电站的变压器高压侧也接入有一台所述低电压治理装置。
从上述的技术方案可以看出,本发明在并网支路上的光伏逆变器距离上一级变电站的输电线路较长、阻抗较大时,在该光伏逆变器的输出端接入低电压治理装置,该低电压治理装置能够动态补偿接入点的电压跌落,使接入点电压始终处于额定电压范围内,从而保证了分布式光伏并网系统的稳定运行。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术公开的一种分布式光伏并网系统结构示意图;
图2为本发明实施例公开的一种分布式光伏并网系统结构示意图;
图3为本发明实施例公开的一种低电压治理装置结构示意图;
图4为本发明实施例公开的又一种分布式光伏并网系统结构示意图;
图5为本发明实施例公开的一种低电压治理方法流程图;
图6为本发明实施例公开的又一种低电压治理方法流程图;
图7为本发明实施例公开的又一种低电压治理方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种分布式光伏并网系统,包括n(n≥2)条并网支路,每条并网支路上都设置有光伏逆变器,各光伏逆变器的输出端并联接入同一变电站即上一级变电站,其中:
这n条并网支路中至少有一条目标支路,所述目标支路是指光伏逆变器输出端至所述变电站之间的输电线路的阻抗超过预设阻抗值的并网支路;
所述目标支路上的光伏逆变器的输出端接入有低电压治理装置,所述低电压治理装置用于在接入点电压跌落深度超过第一预设值时,动态补偿电压跌落,使接入点电压始终处于额定电压范围内。
下面基于本发明实施例要解决的技术问题,对本发明实施例的工作原理进行详述:
在分布式光伏并网系统中,有的光伏逆变器到上一级变电站的输电线路较短,其线路阻抗可以忽略,但有的光伏逆变器到上一级变电站的输电线路较长,其线路阻抗就不可忽略,其线路阻抗的存在可能导致光伏逆变器输出电压不断跌落,直至系统崩溃,推理过程如下:
仍参见图1,将第k(k=1、2 、… 、n)条并网支路上的光伏逆变器、太阳能板分别定义为光伏逆变器k、太阳能板k。将光伏逆变器k的输出电压和输出电流分别定义为Uinvk 、Iinvk ,光伏逆变器k到上一级变电站的输电线路阻抗定义为Rk,线路阻抗Rk上产生的压降定义为URk ,上一级变电站的变压器T1低压侧电压定义为UT1
假设第1条并网支路上的线路阻抗R1不可忽略时,第1条并网支路满足如下关系式:
Uinv1=UT1-UR1=UT1-Iinv1×R1(1)
由于变压器T1低压侧电压UT1和线路阻抗R1不变,故光伏逆变器1输出电压Uinv1一般不变。
光伏逆变器1工作在MPPT(Maximum Power Point Tracking,最大功率追踪)控制模式下,对输出电压Uinv1不可控。MPPT控制算法,就是根据太阳能板的工作温度和太阳光辐射强度的变化,实时调整太阳能板的输出电压,使之始终工作在最大功率点。
光伏逆变器1输出功率Pinv1满足如下公式:
Pinv1=Uinv1×Iinv1 (2)
初始状态时光伏逆变器1输出电压Uinv1不变,当Uinv1由于MPPT控制算法所致而逐渐增加时,根据公式(2)可知,光伏逆变器1输出电流Iinv1会逐渐增加。进而,线路阻抗R1上产生的压降UR1会逐渐增加。
当线路阻抗R1上产生的压降UR1逐渐增加时,根据公式(1)可知,会导致光伏逆变器1输出电压Uinv1下降。但由于MPPT算法控制,公式(2)中光伏逆变器1输出功率Pinv1不变,因此光伏逆变器1输出电流Iinv1继续增加。由此形成正反馈,使得Iinv1不断增加,最终导致光伏逆变器1输出电压Uinv1不断跌落,直至系统崩溃,无法正常运行。
可见,当并网支路上光伏逆变器到上一级变电站的输电线路阻抗不可忽略时,需要针对光伏逆变器输出电压跌落进行低电压治理,以维持分布式光伏并网系统的稳定运行。对此,本发明实施例的解决方案是预先找出所有的目标支路也即线路阻抗不可忽略的并网支路,然后在各目标支路上的光伏逆变器的输出端分别接入低电压治理装置M,如图2所示(图2仅以第1条并网支路上的线路阻抗R1不可忽略作为示例),该低电压治理装置M能够动态补偿接入点的电压跌落,使接入点电压始终处于额定电压范围内,从而保证了分布式光伏并网系统的稳定运行。
本发明实施例中将接入点电压跌落深度超过第一预设值,视为接入点发生了明显的电压跌落,此时需要在启用低电压治理装置M动态补偿电压跌落。可选的,低电压治理装置M可以采用负载侧储能装置、UPQC(Unified Power Quality Conditioner,统一电能质量控制器)装置、SVG(Static Var Generator,静止无功补偿装置)装置等,并不局限。
可选的,在上述公开的任一实施例中,所述低电压治理装置动态补偿电压跌落时的补偿速率根据接入点电压跌落深度确定,比如说:当接入点电压跌落深度大于第二预设值(所述第二预设值大于所述第一预设值,所述第二预设值例如为40%)时,低电压治理装置以第一速率进行快速补偿,当接入点电压跌落深度不大于该第二预设值时,低电压治理装置以第二速率进行慢速补偿,第一速率大于第二速率。
可选的,在上述公开的任一实施例中,所述低电压治理装置处于热备用状态,如图3所示,所述低电压治理装置包括主电路、旁路开关和控制单元(控制单元未在图3中示出),所述旁路开关与所述主电路并联;
所述控制单元用于检测接入点电压跌落深度,当接入点电压跌落深度超过第一预设值时,断开所述旁路开关,控制所述主电路动态补偿电压跌落,使接入点电压始终处于额定电压范围内;当接入点电压跌落深度未超过所述第一预设值时,闭合所述旁路开关。
可选的,在上述公开的任一实施例中,所述接入点电压跌落深度由所述低电压治理装置根据线路阻抗估算得到,但并不局限。
另外,当光伏逆变器后端任意相邻两级变电站之间的输电距离较长时(例如仍参见图1,光伏逆变器上一级变电站处于配电系统末端,该上一级变电站距离上上一级变电站的输电距离较长、线路阻抗Ra不容忽略),则所述相邻两级变电站中的第一级变电站的变压器(在图1,所述相邻两级变电站中的第一级变电站的变压器就是变压器T1)高压侧也可能发生严重的电压跌落,所以也需要接入一台低电压治理装置,在接入点电压跌落深度超过第一预设值时,动态补偿电压跌落,使接入点电压始终处于额定电压范围内,如图4所示,以维持分布式光伏并网系统的稳定运行。
本发明实施例给出的解决方案灵活、便捷,可根据配电线路实际工况进行分别治理,而不需要进行大量的设备更换、线路改造,节省了人力和经济成本,具有广泛的适用性,适用于广大农村、山区或偏远地区等不同终端环境,是目前解决分布式光伏并网系统稳定性的深具性价比的系统方案。
与上述系统实施例相对应的,本发明实施例还公开了一种低电压治理方法,应用于分布式光伏并网系统,所述分布式光伏并网系统包括多条并网支路,每条并网支路上都设置有光伏逆变器,各光伏逆变器的输出端并联接入同一变电站,其中:所述多条并网支路中至少有一条目标支路,所述目标支路是指光伏逆变器输出端至所述变电站之间的输电线路的阻抗超过预设阻抗值的并网支路;所述目标支路上的光伏逆变器的输出端接入有低电压治理装置;
如图5所示,所述低电压治理方法包括:
步骤S01:所述低电压治理装置检测自身接入点的电压跌落深度;
步骤S02:在接入点电压跌落深度超过第一预设值时,动态补偿电压跌落,使接入点电压始终处于额定电压范围内,至此本轮控制结束。
可选的,所述低电压治理装置包括主电路、旁路开关和控制单元,所述旁路开关与所述主电路并联;对应的,所述低电压治理方法如图6所示,包括:
步骤S11:所述低电压治理装置检测自身接入点电压跌落深度;
步骤S12:判断接入点电压跌落深度是否超过第一预设值,若是,进入步骤S13;若否,进入步骤S14;
步骤S13:断开所述旁路开关,控制所述主电路动态补偿电压跌落,使接入点电压始终处于额定电压范围内,至此本轮控制结束。
步骤S14:闭合所述旁路开关,至此本轮控制结束。
可选的,在上述公开的任一方法实施例中,所述动态补偿电压跌落,包括:根据接入点电压跌落深度确定补偿速率,以确定的确定补偿速率动态补偿电压跌落。
可选的,如图7所示,所述低电压治理方法包括:
步骤S21:所述低电压治理装置检测自身接入点电压跌落深度;
步骤S22:判断接入点电压跌落深度超过第一预设值,若是,进入步骤S23;若否,进入步骤S24;
步骤S23:断开所述旁路开关,在接入点电压跌落深度大于第二预设值时,控制所述主电路以第一速率补偿电压跌落,当接入点电压跌落深度不大于所述第二预设值时,控制所述主电路以第二速率补偿电压跌落,使接入点电压始终处于额定电压范围内;至此本轮控制结束。其中,所述第二预设值大于所述第一预设值,所述第一速率大于所述第二速率。
步骤S24:闭合所述旁路开关,至此本轮控制结束。
可选的,在上述公开的任一方法实施例中,当光伏逆变器后端任意相邻两级变电站之间的输电线路的阻抗超过所述预设阻抗值时,所述相邻两级变电站中的第一级变电站的变压器高压侧也接入有一台所述低电压治理装置。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见系统部分说明即可。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的不同对象,而不必用于描述特定的顺序或先后次序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明实施例的精神或范围的情况下,在其它实施例中实现。因此,本发明实施例将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种分布式光伏并网系统,包括多条并网支路,每条并网支路上都设置有光伏逆变器,各光伏逆变器的输出端并联接入同一变电站,其特征在于:
所述多条并网支路中至少有一条目标支路,所述目标支路是指光伏逆变器输出端至所述变电站之间的输电线路的阻抗超过预设阻抗值的并网支路;
所述目标支路上的光伏逆变器的输出端接入有低电压治理装置,所述低电压治理装置用于在接入点电压跌落深度超过第一预设值时,动态补偿电压跌落,使接入点电压始终处于额定电压范围内。
2.根据权利要求1所述的分布式光伏并网系统,其特征在于,所述低电压治理装置包括主电路、旁路开关和控制单元,所述旁路开关与所述主电路并联;
所述控制单元用于检测接入点电压跌落深度,当接入点电压跌落深度超过第一预设值时,断开所述旁路开关,控制所述主电路动态补偿电压跌落,使接入点电压始终处于额定电压范围内;当接入点电压跌落深度未超过所述第一预设值时,闭合所述旁路开关。
3.根据权利要求1所述的分布式光伏并网系统,其特征在于,所述低电压治理装置动态补偿电压跌落时的补偿速率根据接入点电压跌落深度确定。
4.根据权利要求3所述的分布式光伏并网系统,其特征在于,所述低电压治理装置用于在接入点电压跌落深度大于第二预设值时,以第一速率补偿电压跌落,当接入点电压跌落深度不大于所述第二预设值时,以第二速率补偿电压跌落;所述第二预设值大于所述第一预设值,所述第一速率大于所述第二速率。
5.根据权利要求1所述的分布式光伏并网系统,其特征在于,所述接入点电压跌落深度由所述低电压治理装置根据线路阻抗估算得到。
6.根据权利要求1~5中任一项所述的分布式光伏并网系统,其特征在于,当光伏逆变器后端任意相邻两级变电站之间的输电线路的阻抗超过所述预设阻抗值时,所述相邻两级变电站中的第一级变电站的变压器高压侧也接入有一台所述低电压治理装置。
7.一种低电压治理方法,应用于分布式光伏并网系统,所述分布式光伏并网系统包括多条并网支路,每条并网支路上都设置有光伏逆变器,各光伏逆变器的输出端并联接入同一变电站,其特征在于:
所述多条并网支路中至少有一条目标支路,所述目标支路是指光伏逆变器输出端至所述变电站之间的输电线路的阻抗超过预设阻抗值的并网支路;所述目标支路上的光伏逆变器的输出端接入有低电压治理装置;
所述方法包括:所述低电压治理装置检测自身接入点的电压跌落深度,在接入点电压跌落深度超过第一预设值时,动态补偿电压跌落,使接入点电压始终处于额定电压范围内。
8.根据权利要求7所述的低电压治理方法,其特征在于,所述动态补偿电压跌落,包括:
根据接入点电压跌落深度确定补偿速率,以确定的确定补偿速率动态补偿电压跌落。
9.根据权利要求7所述的低电压治理方法,其特征在于,所述动态补偿电压跌落,包括:
在接入点电压跌落深度大于第二预设值时,以第一速率补偿电压跌落,当接入点电压跌落深度不大于所述第二预设值时,以第二速率补偿电压跌落;所述第二预设值大于所述第一预设值,所述第一速率大于所述第二速率。
10.根据权利要求7、8或9所述的低电压治理方法,其特征在于,当光伏逆变器后端任意相邻两级变电站之间的输电线路的阻抗超过所述预设阻抗值时,所述相邻两级变电站中的第一级变电站的变压器高压侧也接入有一台所述低电压治理装置。
CN202310850933.9A 2023-07-12 2023-07-12 一种分布式光伏并网系统和低电压治理方法 Active CN116565963B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310850933.9A CN116565963B (zh) 2023-07-12 2023-07-12 一种分布式光伏并网系统和低电压治理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310850933.9A CN116565963B (zh) 2023-07-12 2023-07-12 一种分布式光伏并网系统和低电压治理方法

Publications (2)

Publication Number Publication Date
CN116565963A true CN116565963A (zh) 2023-08-08
CN116565963B CN116565963B (zh) 2023-10-10

Family

ID=87498662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310850933.9A Active CN116565963B (zh) 2023-07-12 2023-07-12 一种分布式光伏并网系统和低电压治理方法

Country Status (1)

Country Link
CN (1) CN116565963B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118676A (en) * 1998-11-06 2000-09-12 Soft Switching Technologies Corp. Dynamic voltage sag correction
CN1977435A (zh) * 2004-03-16 2007-06-06 东京电力株式会社 电力系统保护系统
CN101902052A (zh) * 2010-08-10 2010-12-01 龙源电力集团股份有限公司 一种风电场整体低电压穿越系统
CN102435882A (zh) * 2011-09-24 2012-05-02 国网电力科学研究院 无源电抗器结构并网光伏逆变器低电压穿越检测装置
CN102629757A (zh) * 2012-04-16 2012-08-08 荣信电力电子股份有限公司 集中式低电压穿越校正系统
CN104426152A (zh) * 2013-09-03 2015-03-18 中国船舶重工集团公司第七一三研究所 一种光伏并网逆变器动态无功补偿控制方法及其系统
CN106877344A (zh) * 2015-12-11 2017-06-20 国家电网公司 一种基于功率预测的并网光伏电站无功-电压控制方法
CN111463829A (zh) * 2020-04-27 2020-07-28 江苏理工学院 一种光伏逆变器低电压穿越检测方法及系统
CN112653178A (zh) * 2019-10-12 2021-04-13 株洲变流技术国家工程研究中心有限公司 一种分布式光伏电站系统以及无功自平衡控制方法
CN113315133A (zh) * 2021-05-31 2021-08-27 广东电网有限责任公司广州供电局 电压暂降治理装置的控制方法、装置和电子设备
CN114447937A (zh) * 2022-02-10 2022-05-06 广东电网有限责任公司 一种配网线路末端低电压治理装置及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118676A (en) * 1998-11-06 2000-09-12 Soft Switching Technologies Corp. Dynamic voltage sag correction
CN1977435A (zh) * 2004-03-16 2007-06-06 东京电力株式会社 电力系统保护系统
CN101902052A (zh) * 2010-08-10 2010-12-01 龙源电力集团股份有限公司 一种风电场整体低电压穿越系统
CN102435882A (zh) * 2011-09-24 2012-05-02 国网电力科学研究院 无源电抗器结构并网光伏逆变器低电压穿越检测装置
CN102629757A (zh) * 2012-04-16 2012-08-08 荣信电力电子股份有限公司 集中式低电压穿越校正系统
CN104426152A (zh) * 2013-09-03 2015-03-18 中国船舶重工集团公司第七一三研究所 一种光伏并网逆变器动态无功补偿控制方法及其系统
CN106877344A (zh) * 2015-12-11 2017-06-20 国家电网公司 一种基于功率预测的并网光伏电站无功-电压控制方法
CN112653178A (zh) * 2019-10-12 2021-04-13 株洲变流技术国家工程研究中心有限公司 一种分布式光伏电站系统以及无功自平衡控制方法
CN111463829A (zh) * 2020-04-27 2020-07-28 江苏理工学院 一种光伏逆变器低电压穿越检测方法及系统
CN113315133A (zh) * 2021-05-31 2021-08-27 广东电网有限责任公司广州供电局 电压暂降治理装置的控制方法、装置和电子设备
CN114447937A (zh) * 2022-02-10 2022-05-06 广东电网有限责任公司 一种配网线路末端低电压治理装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. ABBEY: "Effect of Low Voltage Ride Through (LVRT) Characteristic on Voltage Stability", 《IEEE POWER ENGINEERING SOCIETY GENERAL MEETING》 *
WEIQIANG FAN等: "Research on Photovoltaic and Energy Storage Power Control System Oriented to User Low Voltage Governance", 《2021 IEEE SUSTAINABLE POWER AND ENERGY CONFERENCE (ISPEC) 》 *
梁海涛等: "综合低电压治理装置及其解耦控制研究", 《电力电容器与无功补偿》 *

Also Published As

Publication number Publication date
CN116565963B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
TWI430534B (zh) 替代來源能量管理技術
Abdul Kadir et al. Integrating photovoltaic systems in power system: power quality impacts and optimal planning challenges
Bakhshi-Jafarabadi et al. Two-level islanding detection method for grid-connected photovoltaic system-based microgrid with small non-detection zone
EP3664245B1 (en) Control system and control method for parallel converter system
US9559595B2 (en) Bidirectional multi-level DC/DC converter with an independent control module for each conversion stage
AU2022203915B2 (en) Systems and methods of DC Power Conversion and Transmission for Solar Fields
Moonem et al. Control and configuration of three-level dual-active bridge DC-DC converter as a front-end interface for photovoltaic system
CN105375510A (zh) 光伏逆变器系统及其在高开路电压的启动方法
KR20190031475A (ko) 양방향 저장 및 재생 가능한 전력 변환기를 위한 방법 및 장치
Rahman et al. Reverse power flow protection in grid connected PV systems
AU2020425507A1 (en) Photovoltaic system
Biswas et al. Power quality analysis for distributed generation and electric vehicle integrated distribution system
CN116565963B (zh) 一种分布式光伏并网系统和低电压治理方法
Vijayakumar et al. Design of public plug-in electric vehicle charging station for improving LVRT capability of grid connected wind power generation
Babqi et al. Model predictive control of H5 inverter for transformerless PV systems with maximum power point tracking and leakage current reduction
CN109617098B (zh) 一种适宜于微电网群的内部三相不平衡扰动抑制方法
Zubieta Demonstration of a microgrid based on a DC bus backbone at an industrial building
CN104104104A (zh) 光伏逆变器在发电模式与svg模式之间的自动切换方法
CN115912488A (zh) 一种新能源发电装置耦合系统及耦合方法
AU2021101279A4 (en) Fuzzy logic based grid connected hybrid energy system with modified luo converter
Dixit et al. A hybrid islanding detection scheme for grid-tied PV microgrid
Kumar et al. Low voltage ride through (LVRT) strategies for single phase grid connected PV fed cascaded multilevel inverter
Naqvi et al. Implementation of a modified distributed normalized least mean square control for a multi-objective single stage SECS
Ramos-Ruiz et al. Power electronics intelligence at the grid edge-enables energy budgeting
Vallejos et al. Enhancing Power Balancing and Fault Interruption in an Autonomous Smart Microgrid Design

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant