CN116562655A - 一种流程柔性稀疏结构设计方法、设备及存储介质 - Google Patents

一种流程柔性稀疏结构设计方法、设备及存储介质 Download PDF

Info

Publication number
CN116562655A
CN116562655A CN202310816907.4A CN202310816907A CN116562655A CN 116562655 A CN116562655 A CN 116562655A CN 202310816907 A CN202310816907 A CN 202310816907A CN 116562655 A CN116562655 A CN 116562655A
Authority
CN
China
Prior art keywords
sparse
optimal transmission
demand
supply
spfd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310816907.4A
Other languages
English (en)
Other versions
CN116562655B (zh
Inventor
罗迪新
许洪腾
余婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202310816907.4A priority Critical patent/CN116562655B/zh
Publication of CN116562655A publication Critical patent/CN116562655A/zh
Application granted granted Critical
Publication of CN116562655B publication Critical patent/CN116562655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及人工智能技术领域,特别涉及一种流程柔性稀疏结构设计方法、设备及存储介质,包括如下步骤:利用连接工厂和产品的二分图表示所述流程柔性稀疏结构设计问题,即SPFD问题,将所述SPFD问题表述为双层优化问题;将所述SPFD问题建模为群稀疏最优传输问题;针对所述群稀疏最优传输问题构建基于ADMM的交替优化算法框架进行求解;通过所述交替优化算法框架求解所述群稀疏最优传输问题,根据所得最优传输方案构造制造网络;得到流程柔性结构。本发明将SPFD问题转化为求解群稀疏最优传输问题,并设计了一种基于ADMM的交替优化算法框架对此进行求解,在供应与需求平衡及不平衡的条件下都适用。

Description

一种流程柔性稀疏结构设计方法、设备及存储介质
技术领域
本发明涉及人工智能技术领域,特别涉及一种流程柔性稀疏结构设计方法、设备及存储介质。
背景技术
流程柔性稀疏结构设计,简称SPFD, 起源于汽车制造,是一个运筹学和运营管理的经典问题,现广泛应用于工业、服务业等产业中,如汽车制造业中供应链设计、客服中心人力资源的分配、机场的航班调度、医疗资源管理、快递系统优化等。
其中,“流程柔性”指的是“在同一制造工厂或同一时间在同一生产线上制造不同类型的产品”的能力,“柔性”即灵活性,它是工厂能否应对不确定的变动的市场需求的关键。“柔性结构设计”指的是确定每个工厂应该生产哪些产品的决策集(即每个工厂生产哪些产品)。在完全灵活的情况下,每个工厂都能够制造每个产品。但完全灵活通常是非常昂贵且不必要的,通过有限的(稀疏)灵活就可以近似达到完全灵活的效益。一般将这样的柔性结构称为制造网络,用二部图来表示。
现有的SPFD方法大多是基于启发式的,通过一步步向空的二部图中添加边或者从完全灵活的二部图中删减边来设计制造网络,大致可以分为以下三种:
(1)基于优化的方法。给定当前制造网络,这种方法通过解决最大流问题或者它的对偶问题或者加入随机性后的最大流问题,来确定下一步要添加或删减的一条或多条边,不断迭代,直到完成制造网络的设计。
(2)基于图扩展器的节点扩展法。这种方法使用贪心算法,总是选择当前扩展率最低的工厂节点和扩展率最低的产品节点,添加它们之间的边。通过不断迭代提高节点扩展比率,以提高制造网络的连通性,实现柔性结构设计。
(3)基于学习的方法。这种方法将添加边及其对制造网络的影响,模拟为强化学习中的行动状态序列,并通过训练策略模型来优化制造网络。相比于基于优化的方法需要在每个步骤中解决一个最大流问题,这种方法避免了迭代。
现有技术中大多是基于启发式的两阶段优化策略,首先估计当前制造网络中边的重要性,再根据边的重要性通过添加或删除边,更新制造网络的拓扑。重复上述两步形成的启发式的方法没有考虑共同优化边的重要性和网络拓扑结构,这通常会导致局部最优。同时,这些方法和它们的理论常常建立在特定的假设基础上,例如每条边的收益相同,相同大小的供应和需求,指定的网络拓扑类型(如长链或k链)等等,这将限制它们在更为一般的实际场景中的适应性。
发明内容
针对现有技术的上述部分或全部不足,本发明所要解决的技术问题是如何设计一种灵活的结构,使得工厂的生产线能够根据需求的动态变化快速转移和重分配生产资料,实现生产过程的灵活性和可持续性。为此,本发明提供了一种流程柔性稀疏结构设计方法,包括如下步骤:
利用连接工厂和产品的二分图表示所述流程柔性稀疏结构设计问题即SPFD问题,将所述SPFD问题表述为双层优化问题;
将所述SPFD问题建模为群稀疏最优传输问题;
针对所述群稀疏最优传输问题构建基于ADMM的交替优化算法框架;
通过所述交替优化算法框架求解所述群稀疏最优传输问题,根据所得最优传输方案构造制造网络,得到流程柔性结构。
优选地,所述群稀疏最优传输问题包括:
引入一个变量,所述变量的输入为产品需求的向量,输出为一个传输矩 阵;
计算所述传输矩阵的期望,所述期望表示所述制造网络的拓扑结构,具有稀 疏约束,所述期望中的每个元素表示所述二分图每条边上预期的产品数量。
优选地,所述变量的引入将双层优化问题转化为嵌套的函数优化问题,内层的优 化问题为给定产品需求量对传输矩阵进行优化,外层的优化为在带有稀疏约束的整 个函数上进行优化。
优选地,将所述传输矩阵组表示为张量,且使用稀疏正则 项来取代所述稀疏约束,得到了最终的群稀疏最优传输问题,其中,M代表工厂数,N代表产 品数,K代表所述方法中用于设计制造网络的供需对数量。
优选地,所述群稀疏最优传输问题的求解方法包括如下步骤:
输入工厂的供应量、产品的需求量、每个工厂生产每种产品的利润以及所述制造网络的最大边数;
构建基于ADMM的交替优化算法框架,将变量分别做初始化,其中为对偶变量;
迭代更新
构造制造网络。
优选地,所述迭代更新,将所述群稀疏最优传输问题分为三个子问题,在 每一次迭代中依次求解三个子问题来分别更新
优选地,所述更新,分别考虑供需平衡和供需不平衡两种情况,固定, 求解K个独立的二次正则化最优传输问题,其中表示第次迭代时的值。
本发明还提供了一种电子设备,所述电子设备包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的方法。
本发明还提供了一种非暂态计算机可读存储介质,其特征在于,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使该计算机执行上述的方法。
有益效果:
1、本发明不采用两阶段启发式优化策略,而是在联合优化框架下解决一个凸优化问题来近似解决SPFD问题,保证其在理论上收敛到全局最优。
2、本发明提供的群稀疏最优传输问题,将SPFD问题转化为求解群稀疏最优传输问题,并设计了一种基于ADMM的交替优化算法框架对此进行求解,形成一种通用的算法框架。
3、本发明实施例提供的新型方法在供应与需求平衡及不平衡的条件下都适用。
附图说明
图1为本发明实施例流程柔性稀疏结构设计方法流程图;
图2为本发明实施例群稀疏最优传输问题的示意图;
图3为本发明实施例SPFD问题的示意图;
图4为本发明实施例群稀疏最优传输问题求解方法流程图;
图5为本发明实施例条件梯度算法中求梯度部分流程图。
具体实施方式
下面结合附图,具体说明本发明的优选实施方式。
首先介绍本发明实施例中需要使用的物理量及数学表示:
最优传输(Optimal Transport):一种用于测量两个概率分布之间距离的数学理论。该理论通过比较两个分布之间最小成本的传输方案,来度量它们之间的差异。在工厂的生产中,给定工厂供应与产品需求,其最优传输问题为如何将各工厂的供应分配给各产品需求才能使得总的利润最大,这个分配方案就是最优传输方案,表示为一个矩阵。
L-BFGS算法,一种拟牛顿法,这个算法可以调用python现有的库函数。
条件梯度算法,可调用POT的库实现,算法流程图如图5所示。
平滑OT(smooth ot)算法,包括如下步骤:
原始问题
其松弛对偶问题为:
所述原始问题的最优解的求解过程如下:
用L-BFGS算法,求解所述松弛对偶问题得到(): 调用python库里的 scipy.optimize import minimize函数,目标函数为负的所述松弛对偶问题,方法字段 “method”设置为“L-BFGS-B”,因为的形式已知,所以可以调用minimize函数直接 求解;根据得到的(),通过计算得到
核技巧,在高维甚至无限维的正则化泛函可以由数据样本张成的有限维空间表示,也即将数据样本通过核函数映射到高维特征空间中,然后在这个高维空间中使用核函数的线性组合来近似目标函数或者泛函。
如图1所示,本发明实施例中流程柔性稀疏结构设计方法,包括如下步骤:
利用连接工厂和产品的二分图表示所述流程柔性稀疏结构设计问题即SPFD问题,将所述SPFD问题表述为双层优化问题;
将所述SPFD问题建模为群稀疏最优传输问题;
针对所述群稀疏最优传输问题构建基于ADMM的交替优化算法框架;
通过所述交替优化算法框架求解群稀疏最优传输问题,根据所得最优传输方案构造制造网络,得到流程柔性结构。
本发明实施例提供的流程柔性稀疏结构设计方法(Sparse Process FlexibilityDesign,SPFD),是一种生产过程设计方法,针对SPFD问题提出了一种新型的数学建模:群稀疏最优传输问题,群稀疏最优传输(Group Sparse Optimal Transpor, GSOT), 通过将流程柔性稀疏结构设计问题转化为求解群稀疏最优传输问题,并设计了一种基于交替方向乘子法(Alternating Direction Method of Multipliers,ADMM )的优化算法框架对此进行求解,所述优化算法框架为一种通用的算法框架,不限于本发明实施例中的工厂制造问题,在实际上SPFD问题是一类问题,具有相似的数学模型,而所述优化算法框架都可以对形如本发明实施例的数学模型进行求解。本发明实施例提供的方法在供应与需求平衡及不平衡的条件下都适用,能有效地解决各类SPFD问题。
在本发明的一个具体实施例中,给定个工厂和种产品,SPFD的目标是设计一个 灵活的制造网络,得到所述的流程柔性结构,使得工厂可以根据需求的变动调整供应资源 的分配,从而稳定且高效地满足产品需求。工厂的供应已知,表示为,产品需求 未知的,但可以从已知的某种分布中进行抽样,即 ,其中是定义在样 本空间中的需求分布。SPFD问题可用连接工厂和产品的二分图表示。在数学上,这个问题 可以被表述为下面的双层优化问题:
将每个最大流问题的变量分解为制造网络拓扑和运输矩阵 ,其中,是表示所述制造网络拓扑结构的矩阵,表示在工厂 节点m和产品节点n之间存在一条边表示两个矩阵的哈达玛积,它的非零元 素表示通过边供应的产品数量。目标为制 造网络获得的总利润,即为当网络拓扑结构为且需求为时获得的最大利润。其中是记录每个工厂生产产品的利润矩阵,表示从工厂m制造产品n的利润。进一 步考虑的稀疏性,限制其非零元素的数量等于或小于阈值,即,其中是矩 阵的L0-范数。
本发明实施例提出的群稀疏最优传输问题通过求解上述双层优化问题构造制造网络,得到所述的流程柔性结构。
在本发明的一个实施例中,如图2所示是群稀疏最优传输问题的示意图,图中,Supplies:工厂的供应量/产能; Demands:产品的需求; Grounding Profit:实际利润;.Group sparse Optimal Transport:群稀疏最优传输; Sampling Demands:通过抽样得到的产品需求; A Sparse Flexibility Network:一个稀疏灵活的制造网络。
在所述群稀疏最优传输问题中引入变量代替,则公式 (1)重写为:
变量的输入是产品需求的向量,通过求解
得到输出的传输矩阵,所述传输矩阵的期望表示所述制造网络的拓 扑结构,具有稀疏约束,其中的每个元素表示每条边上预期的产品数量。
本发明实施例通过变量的引入,将双层优化问题转化为一个嵌套的函数优化 问题,内层的优化问题为给定进行优化,而外层则在带有稀疏约束的整个函数上进行优化。为了近似变量,根据核技巧,假设从中采样得到了一组需求,则,其中,表示:第k个供需对所对应的传输 矩阵,可以是任意预定义的核函数,包括但不限于有线性核函数、高斯核函数。因 此,公式(2)重写为:
公式(3)表明,需要解决一组K个最优输运问题,并且施加一个正则项来保证传输 矩阵组的稀疏性。将传输矩阵组表示为一个张量,且使用稀疏正则项来 取代原有的严格的稀疏约束,得到了最终的群稀疏最优传输(GSOT)问题:
其中, 表示群稀疏的正则项,的元素。 所述正则项控制传输矩阵组得到相同的稀疏的网络结构,由超参数来控制。相对于 公式(1)所述的SPFD问题,公式(4)表示的GSOT问题是凸函数,可以高效地求解,而且在理论 上保证其收敛。SPFD问题的目标是设计一个灵活的制造网络,本发明实施例提出的方法是 将工厂到产品的制造网络设计(即每个工厂生产哪些产品)看作解决带有稀疏正则项的K个 供需对所对应的K个最优传输问题。
本发明实施例不采用启发式两阶段优化启发式策略,而是在联合优化框架下解决一个凸优化问题来近似解决SPFD问题,保证其在理论上收敛到全局最优。
在本发明的一个具体实施例中,从SPFD问题到群稀疏最优传输问题的建模按如下方法进行:
如图3所示,一家汽车制造厂,有5个生产工厂,M=5,且供应量都为100;需要生产5 种不同类型的汽车产品,N=5,产品需求不确定,但都服从均值为100、方差为20的正态分布, 记为N(100,20)。假设每个工厂生产每种产品的利润都为1,即是一个全为1的的矩阵,设计 一个灵活的制造网络,使得总利润达到最大。按照GSOT,首先对5种产品的需求进行采样,假 设采样40次,每个样本为一个5维向量,记录5种产品的需求。假设用其中20个样本用于本方 法设计制造网络,则产品的需求向量,它是5*20维的。工厂的供应量是确定的,为100,为 了对应产品需求(即一组供应,对应一组需求,这样称为一个供需对),应该是5*20维,即 我们得到了20对供需对,因此K=20,其中每一对都为:一组供应向量[100,100,100,100, 100],及其对应的一组产品需求(样本)。由于一对供需对,确定一个从5个工厂的供应到5种 产品的需求的最优传输问题,因此,在该群稀疏最优传输问题的求解中,需要对应解决20个 最优传输问题。
在本发明的一个实施例中,引入辅助变量和对偶变量, 将公式(4)重写为以下增广拉格朗日形式:
其中,代表矩阵的F-范数。求解公式(5)以实现制造网络的优化设计。
在本发明的一个实施例中,如图4所示,提供了群稀疏最优传输问题求解方法流程图,以实现公式(5)的求解,所述群稀疏最优传输问题求解方法包括如下步骤:
步骤1:输入数据,所述交替优化算法框架的输入是M个工厂的供应量/产能维向量)、N个产品的需求维向量,通过采样得到)、每个工厂生产每种产品 的利润的矩阵)、两个超参数以及所设计的制造网络的最大边数,所述两个超参 数无输入取默认值,优选值为1,可根据算法的效果进行调整。
步骤2:构建基于ADMM的交替优化算法框架,将变量分别做初始化。
步骤3:设置迭代次数,在本实施例中优选设置迭代次数400次,迭代更新 。将所述GSOT问题分为三个子问题,所述三个子问题仍然是凸函数,在每一次迭代中,如第 次迭代,依次求解所述三个子问题来更新
步骤3.1:更新:固定,求解K个独立的带有L2正则项最优传输问题,其 中,L2=表示第次迭代时的值。对,有
忽略与无关的项,等价地将公式(6)表示为一个带有二次正则项的最优传输问 题:
其中分别指第次迭代时的表示第k 个供需对所对应的最优传输问题的对偶变量,表示:第k个供需对所对应的最优传输问题 的辅助变量,P表示:利润矩阵,C表示代价矩阵,为常量(把所有常量(P、)进行合 并,变为一个常量)。具体而言,需要考虑以下两种情况:
供需平衡:采用平滑OT算法更新
时,表示工厂的总供应量与产品的总需求量相等,对所述传输矩 阵组施加双重随机约束,即可行域为,在供 需平衡时,将公式(7)重写为平滑松弛的对偶形式:
其中,表示将元素中的负数置为零,是对偶变量,该对偶问题是无约束的, 通过L-BFGS算法可以高效地求解,得到对偶问题的最优解 后,计算出最优的传输 矩阵:
②供需不平衡:利用FISTA算法或者条件梯度算法求解
时,可行域为
在这种情况下,将问题(7)放松为半松弛平滑形式:不失一般性,假设的L1范数 小于的L1范数,则公式(7)被重写为:
再通过条件梯度算法求解,如图5所示,令
,即可得到
步骤3.2:更新:固定,通过解决以下组稀疏问题来更新
采用如下公式(11)所示的软阈值方法来求解公式(10),进行 次独立的更 新:
其中,分别为的元素。
步骤3.3:更新
根据公式(12)进行计算,更新
通过所述交替优化算法框架求解群稀疏最优传输问题,根据所得最优传输方案构造优化制造网络。
通过上述基于ADMM的交替优化算法框架求解得到最优变量,而因为 的聚合T*是稀疏的,即是稀疏的,且对应了本发明实施例设计的的制造网 络的拓扑结构。因为,的每一个元素代表工厂生产产品的数量,所以制造网络的 总利润表示为,其中每个元素表示制造网络的边产生的的利润,所以 将作为边的权重,再根据边的权重对边进行排序,前L条边即为该构造制造网络的 边。
通过公式(13)构造优化制造网络。由于GSOT问题是一个凸优化问题,并且三个子问题也是凸函数,因此应用此交替优化框架可以保证算法的收敛性。
现有的方法及其理论大多建立在特定的假设基础上,例如每条边的收益相同,相同大小的供应和需求,指定的网络拓扑类型(如长链或k链)等等,不适用于更为一般的实际场景。为解决该问题,本发明实施例提供了一种新型的方法。该方法通过将SPFD问题转化为求解群稀疏最优传输问题,并设计了一种基于ADMM的优化算法框架对此进行求解,并形成了一种通用的算法框架。本发明提供的新型解决SPFD问题的方法不同于传统的两阶段优化方法,而是在一个联合框架下通过解决一个凸优化问题,来实现制造网络的构建,从而解决了SPFD问题。该方法在供应与需求平衡及不平衡的条件下都适用。
为了说明本发明的内容及实施方法,本说明书给出了具体实施例。在实施例中引入细节的目的不是限制权利要求书的范围,而是帮助理解本发明所述方法。本领域的技术人员应理解:在不脱离本发明及其所附权利要求的精神和范围内,对最佳实施例步骤的各种修改、变化或替换都是可能的。因此,本发明不应局限于最佳实施例及附图所公开的内容。

Claims (9)

1.一种流程柔性稀疏结构设计方法,其特征在于,包括如下内容:
利用连接工厂和产品的二分图表示流程柔性稀疏结构设计问题,即SPFD问题,将所述SPFD问题表述为双层优化问题;
将所述SPFD问题建模为群稀疏最优传输问题;
针对所述群稀疏最优传输问题构建基于ADMM的交替优化算法框架;
通过所述交替优化算法框架求解所述群稀疏最优传输问题,根据所得最优传输方案构造制造网络。
2.如权利要求1所述的流程柔性稀疏结构设计方法,其特征在于,所述群稀疏最优传输问题包括:
引入一个函数变量,所述函数变量/>的输入为产品需求ν的向量,输出为一个传输矩阵/>
计算所述传输矩阵的期望,所述期望表示所述制造网络的拓扑结构,具有稀疏约束,所述期望中的每个元素表示所述二分图每条边上预期的产品数量。
3.如权利要求2所述的流程柔性稀疏结构设计方法,其特征在于,所述变量的引入将双层优化问题转化为嵌套的函数优化问题,内层的优化问题为给定产品需求量/>对所述传输矩阵/>进行优化,外层的优化为在带有稀疏约束的整个函数上进行优化。
4.如权利要求 3所述的流程柔性稀疏结构设计方法,其特征在于,将所述传输矩阵组表示为张量/>,且使用稀疏正则项来取代所述稀疏约束,得到了最终的群稀疏最优传输问题,其中,M代表工厂数,N代表产品数,K代表用于设计制造网络的供需对数量,/>表示第k个供需对所对应的传输矩阵。
5.如权利要求 4所述的流程柔性稀疏结构设计方法,其特征在于,所述群稀疏最优传输问题的求解方法包括如下内容:
输入工厂的供应量、产品的需求量、每个工厂生产每种产品的利润以及所述制造网络的最大边数;
构建基于ADMM的交替优化算法框架,将变量、/>和/>分别做初始化,其中表示第k个供需对所对应的最优传输问题的辅助变量,/>为对偶变量,/>表示第k个供需对所对应的最优传输问题的对偶变量;
迭代更新、/>和/>
构造制造网络。
6.如权利要求 5所述的流程柔性稀疏结构设计方法,其特征在于,所述迭代更新、/>和/>,将所述群稀疏最优传输问题分为三个子问题,在每一次迭代中依次求解三个子问题来分别更新/>、/>和/>
7.如权利要求 6所述的流程柔性稀疏结构设计方法,其特征在于,所述更新,分别考虑供需平衡和供需不平衡两种情况,固定/>和/>,求解/>个独立的的最优输运问题,其中/>、/>表示第/>次迭代时/>、/>的值。
8.一种电子设备,其特征在于,所述电子设备包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行前述权利要求1~7所述的方法。
9.一种非暂态计算机可读存储介质,其特征在于,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使该计算机执行前述权利要求1~7所述的方法。
CN202310816907.4A 2023-07-05 2023-07-05 一种流程柔性稀疏结构设计方法、设备及存储介质 Active CN116562655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310816907.4A CN116562655B (zh) 2023-07-05 2023-07-05 一种流程柔性稀疏结构设计方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310816907.4A CN116562655B (zh) 2023-07-05 2023-07-05 一种流程柔性稀疏结构设计方法、设备及存储介质

Publications (2)

Publication Number Publication Date
CN116562655A true CN116562655A (zh) 2023-08-08
CN116562655B CN116562655B (zh) 2023-09-15

Family

ID=87496813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310816907.4A Active CN116562655B (zh) 2023-07-05 2023-07-05 一种流程柔性稀疏结构设计方法、设备及存储介质

Country Status (1)

Country Link
CN (1) CN116562655B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090164405A1 (en) * 2007-12-21 2009-06-25 Honda Motor Co., Ltd. Online Sparse Matrix Gaussian Process Regression And Visual Applications
CN110726992A (zh) * 2019-10-25 2020-01-24 中国人民解放军国防科技大学 基于结构稀疏和熵联合约束的sa-isar自聚焦法
CN112396179A (zh) * 2020-11-20 2021-02-23 浙江工业大学 一种基于通道梯度剪枝的柔性深度学习网络模型压缩方法
CN113850365A (zh) * 2021-07-28 2021-12-28 浙江大华技术股份有限公司 卷积神经网络的压缩和移植方法、装置、设备及存储介质
CN114237166A (zh) * 2021-10-29 2022-03-25 陕西科技大学 基于改进spea2算法求解多转速节能调度问题的方法
CN114839531A (zh) * 2022-05-25 2022-08-02 淮阴工学院 基于组群式稀疏自编码及群智能的电机故障检测方法
CN115877312A (zh) * 2022-10-26 2023-03-31 国家电网有限公司 一种基于台区电能量守恒的电能表信息化评价校准模型

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090164405A1 (en) * 2007-12-21 2009-06-25 Honda Motor Co., Ltd. Online Sparse Matrix Gaussian Process Regression And Visual Applications
CN110726992A (zh) * 2019-10-25 2020-01-24 中国人民解放军国防科技大学 基于结构稀疏和熵联合约束的sa-isar自聚焦法
CN112396179A (zh) * 2020-11-20 2021-02-23 浙江工业大学 一种基于通道梯度剪枝的柔性深度学习网络模型压缩方法
CN113850365A (zh) * 2021-07-28 2021-12-28 浙江大华技术股份有限公司 卷积神经网络的压缩和移植方法、装置、设备及存储介质
CN114237166A (zh) * 2021-10-29 2022-03-25 陕西科技大学 基于改进spea2算法求解多转速节能调度问题的方法
CN114839531A (zh) * 2022-05-25 2022-08-02 淮阴工学院 基于组群式稀疏自编码及群智能的电机故障检测方法
CN115877312A (zh) * 2022-10-26 2023-03-31 国家电网有限公司 一种基于台区电能量守恒的电能表信息化评价校准模型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
任慧;王东宇;: "部分备货条件下生产系统柔性配置决策研究", 工业工程与管理, no. 01, pages 194 - 201 *

Also Published As

Publication number Publication date
CN116562655B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN110533183B (zh) 流水线分布式深度学习中异构网络感知的任务放置方法
JP6574503B2 (ja) 機械学習方法および装置
Mes et al. Approximate dynamic programming by practical examples
US20230196202A1 (en) System and method for automatic building of learning machines using learning machines
JP2016197389A (ja) 学習システム、学習プログラムおよび学習方法
EP3948692A1 (en) Process and system including an optimization engine with evolutionary surrogate-assisted prescriptions
CN113361680A (zh) 一种神经网络架构搜索方法、装置、设备及介质
JP2019046422A (ja) 学習制御システム及び学習制御方法
CN105631528A (zh) 一种基于nsga-ii和近似动态规划的多目标动态最优潮流求解方法
CN110019420A (zh) 一种数据序列预测方法及计算设备
KR20210039921A (ko) 신경망 모델을 최적화하도록 구성된 심층 신경망 시스템의 동작 방법
Wu et al. MG-CNN: A deep CNN to predict saddle points of matrix games
Zheng et al. Efficient solution concepts and their application in uncertain multiobjective programming
CN116562655B (zh) 一种流程柔性稀疏结构设计方法、设备及存储介质
Luo et al. SGD-rα: A real-time α-suffix averaging method for SGD with biased gradient estimates
Barreiro-Gomez et al. Non-centralized control for flow-based distribution networks: A game-theoretical insight
Chantada et al. Cosmology-informed neural networks to solve the background dynamics of the Universe
CN112381591A (zh) 基于lstm深度学习模型的销售预测优化方法
CN115552424A (zh) 用于训练包含量化参数的人工神经网络的方法
CN109299725B (zh) 一种张量链并行实现高阶主特征值分解的预测系统和装置
CN117011118A (zh) 模型参数更新方法、装置、计算机设备以及存储介质
CN111027709B (zh) 信息推荐方法、装置、服务器及存储介质
Paszynski et al. Supermodeling of tumor dynamics with parallel isogeometric analysis solver
CN113705801A (zh) 一种神经网络模型的训练装置、方法及相关设备
Hull et al. TensorFlow 2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant