CN116552804A - 一种低速无人机验证实用升限指标的试飞规划方法 - Google Patents

一种低速无人机验证实用升限指标的试飞规划方法 Download PDF

Info

Publication number
CN116552804A
CN116552804A CN202310836269.2A CN202310836269A CN116552804A CN 116552804 A CN116552804 A CN 116552804A CN 202310836269 A CN202310836269 A CN 202310836269A CN 116552804 A CN116552804 A CN 116552804A
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
practical limit
climbing
practical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310836269.2A
Other languages
English (en)
Inventor
宋艳平
竹军
彭宇轩
张涛
何怡君
郭亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Tengdun Technology Co Ltd
Original Assignee
Sichuan Tengdun Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Tengdun Technology Co Ltd filed Critical Sichuan Tengdun Technology Co Ltd
Priority to CN202310836269.2A priority Critical patent/CN116552804A/zh
Publication of CN116552804A publication Critical patent/CN116552804A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种低速无人机验证实用升限指标的试飞规划方法,其包括:在爬升至实用升限高度之前,无人机以最大连续功率和最佳上升率速度继续爬升,直到爬升至爬升率为零;根据最小二乘法对瞬时爬升率随高度变化的曲线进行拟合,以得到实用升限;根据实用升限和预设无人机实用升限指标,判断是否满足实用升限指标。本发明能够规避紊流对实用升限的影响,综合保证了实用升限的最大化,满足实用升限处最大爬升率0.5米/秒的定义要求,达到了符合实际客观规律,数据准确可用的目标。

Description

一种低速无人机验证实用升限指标的试飞规划方法
技术领域
本发明涉及无人机技术领域,特别是一种低速无人机验证实用升限指标的试飞规划方法。
背景技术
无人机设计主要是围绕着实现其性能与使用特性要求而展开的。因此,如何验证其性能指标与使用特性的要求,对于无人机而言,是至关重要的。
在所有飞行性能指标中,实用升限表征了无人机能够巡航飞行的最大飞行高度,对于侦察类、高空探测类无人机有相当重要的意义,飞的越高越安全。同时,当无人机的飞行高度逐渐增加时,空气的密度随高度增加而降低,从而影响发动机的进气量,飞行真空速同步增加,其推力一般也将减小。达到一定高度时,推力不足,已无爬高能力只能维持平飞。
考虑实用性,低速无人机实用升限广泛定义为无人机以特定的重量和给定的发动机工作状态(一般为最大连续功率状态)做等速水平直线飞行时,还具有最大爬升率为0.5米/秒的飞行高度。
实用升限验证方式主要有以下三种:理论经验公式、计算仿真和实飞验证。其中最直接、最有效的手段是实飞验证。通过在无人机内部安装经过权威标定或鉴定的位置传感器(主要含高度信息),可以实时记录无人机高度以及瞬时爬升率信息。
另外,由于低速无人机爬升率较小,容易受到大气紊流的干扰,无人机实飞爬升率曲线基本全程波动,特别是下降气流的影响,会抑制无人机的爬升能力,甚至造成无人机高度丢失,出现局部高度层瞬时爬升率低于0.5米/秒的情况,但并不代表无人机不具备继续爬升能力。
发明内容
鉴于此,本发明提供一种低速无人机验证实用升限指标的试飞规划方法,规避紊流对实用升限的影响,综合保证了实用升限的最大化,满足实用升限处最大爬升率0.5米/秒的定义要求,达到符合实际客观规律,数据准确可用的目标。
本发明公开了一种低速无人机验证实用升限指标的试飞规划方法,其包括:
步骤1:在爬升至实用升限高度之前,无人机以最大连续功率和最佳上升率速度继续爬升,直到爬升至爬升率为零;
步骤2:根据最小二乘法对瞬时爬升率随高度变化的曲线进行拟合,以得到实用升限;
步骤3:根据实用升限和预设无人机实用升限指标,判断是否满足实用升限指标。
进一步地,所述步骤1之前,还包括:
确定无人机的起飞构型状态和起飞重量;
无人机经历起飞滑跑、离地、爬升。
进一步地,所述确定无人机的起飞构型状态和起飞重量之前,还包括:
通过无人机位置传感器记录无人机的高度以及对应的瞬时爬升率。
进一步地,在所述步骤1中:
在无人机爬升至爬升率为零的过程中,保持直线和无侧滑状态飞行。
进一步地,所述步骤1之后,还包括:
无人机开始下滑着陆;无人机着陆后称重。
进一步地,所述步骤2包括:
步骤21:获取随高度变化的瞬时爬升率/>,共n组;
步骤22:定义二次多项式,根据第i组对应的二次多项式/>与瞬时爬升率差值的平方,然后将获取的n组差值的平方进行累加和,并使该累加和最小化;i的取值范围为1至n;
步骤23:通过对最小化的累加和求导,得到最小二乘法拟合多项式;
步骤24:利用二次函数求根公式,得到实用升限。
进一步地,所述步骤22包括:
定义二次多项式,最小化/>,即:
其中,、/>、/>分别为二次多项式/>的系数,/>为第i组的高度。
进一步地,所述步骤23包括:
假设,则
将方程整理,得到如下方程组:
求解方程组,得到、/>、/>,从而得到最小二乘法拟合多项式:
其中,、/>、/>分别为二次多项式/>的系数,/>为第i组的高度,/>为瞬时爬升率,/>的j为/>的指数,其取值为1、/>、/>、/>、/>
进一步地,所述步骤24包括:
,利用二次函数求根公式,得到实用升限:
其中,为实用升限。
进一步地,所述步骤3包括:
若实用升限大于或等于预设实用升限指标/>,即
则满足实用升限指标;否则不满足实用升限指标。
由于采用了上述技术方案,本发明具有如下的优点:
1.一种低速无人机验证实用升限指标的试飞规划方法,基于实飞验证,按照最小二乘法二次多项式曲线拟合的方法规避大气紊流对爬升率的影响,符合实际客观规律,数据准确可用;
2.一种低速无人机验证实用升限指标的试飞规划方法,明确了起飞加油量,规划了试飞全过程,对实飞实用升限过程提出约束,并提出实用升限指标是否达标的条件,过程完整,条件清晰,判据可行;
3.一种低速无人机验证实用升限指标的试飞规划方法,可实时记录无人机高度以及瞬时爬升率信息,为无人机开展实用升限提供支撑;
4.一种低速无人机验证实用升限指标的试飞规划方法,提出了一种瞬时爬升率最小二乘法二次多项式曲线拟合方法,利用二次函数求根公式进行爬升率是否大于0.5米/秒的判读,简单方便;
5.一种低速无人机验证实用升限指标的试飞规划方法,提出了在即将到达实用升限处无人机应保持直线、无侧滑飞行的试飞方法,综合保证了实用升限的最大化;
6.一种低速无人机验证实用升限指标的试飞规划方法,适用于低速无人机。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本发明实施例的一种低速无人机验证实用升限指标的试飞规划方法的流程示意图;
图2为本发明实施例的实用升限飞行剖面示意图;
图3为本发明实施例的实用升限数据后处理范例示意图。
具体实施方式
结合附图和实施例对本发明作进一步说明,显然,所描述的实施例仅是本发明实施例一部分实施例,而不是全部的实施例。本领域普通技术人员所获得的所有其他实施例,都应当属于本发明实施例保护的范围。
参见图1,本发明提供了一种低速无人机验证实用升限指标的试飞规划方法的实施例,其利用在无人机内部安装位置传感器(主要含高度信息),记录无人机高度以及瞬时爬升率信息,且在即将到达实用升限处应保持直线、无侧滑状态飞行,最后通过最小二乘法二次多项式曲线拟合的数据后处理方法规避紊流对实用升限的影响,综合保证了实用升限的最大化,满足实用升限处最大爬升率0.5米/秒的定义要求,达到符合实际客观规律,数据准确可用的目标。
具体地,本实施例包括以下步骤:
S1:按设计要求或者用户规定,确定起飞构型状态和起飞重量。
对于无人机构型而言,基于任务需求,不同的构型对应不同的任务载荷设备,一般含多种构型,需要提前确认起飞前的构型状态,或基于设计要求,或基于用户规定。
实用升限对于起飞重量的设计要求主要有:总油量的35%以上起飞等;实用升限对于起飞重量的用户规定主要有:满油起飞、半油以上起飞、实用升限处半油以上或者着陆半油以上等。
S2:无人机经历起飞滑跑、离地、爬升至接近实用升限高度,无人机以最大连续功率、最佳上升率速度飞行。可参见图2。
S3:无人机持续爬升至爬升率为零,过程中应保持直线、无侧滑状态飞行。可参见图2。
曲线飞行,造成升力损失,不利于爬高;带侧滑飞行,阻力增加,不利于爬高。
S4:无人机下滑着陆。可参见图2。
S5:无人机着陆后称重。
该步骤S5可以用于满足用户可能对着陆重量有规定的要求。
S6:实用升限数据后处理。
参见图3,采用最小二乘法对瞬时爬升率随高度变化曲线进行拟合,根据变化关系,二次多项式拟合较为合适。
原理如下:
已知随高度变化的瞬时爬升率/>,共n组;
定义二次多项式,使得
其中,第i组对应的二次多项式为,高度为/>,瞬时爬升率为/>,i的取值范围为1至n;
假设,则
其中,的j为/>的指数;j为整数,其取值为0、1、2、3、4,对应的/>的取值分别为1、/>、/>、/>、/>
将方程整理,得到
求解方程组,得到,/>,/>,从而得到最小二乘法拟合多项式:
,利用二次函数求根公式,可得实用升限:
S7:实用升限指标符合性判据:
若实际测得的实用升限大于等于实用升限指标/>,即
则满足指标要求;否则不满足指标要求。
本发明对于低速无人机,通过实飞验证,在大气紊流客观存在的情况下,利用无人机位置传感器记录无人机高度以及瞬时爬升率信息,通过科学合理的试飞规划以及数据后处理方式,规避紊流对实用升限的影响,并满足无人机实用升限处最大爬升率0.5米/秒的定义要求。
下面通过范例进一步说明上述实施例中的推导过程:
实用升限指标要求值为6000米,按此方法进行试飞规划,通过试飞得到无人机随高度变化的瞬时爬升率,见表1。
表 1 随高度变化的瞬时爬升率(范例)
根据以上推导过程,范例所示的多项式的三个系数分别是:
范例所示的实用升限达6662米(爬升率为0.5米/秒),该值大于指标要求值6000米,满足实用升限指标。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

1.一种低速无人机验证实用升限指标的试飞规划方法,其特征在于,包括:
步骤1:在爬升至实用升限高度之前,无人机以最大连续功率和最佳上升率速度继续爬升,直到爬升至爬升率为零;
步骤2:根据最小二乘法对瞬时爬升率随高度变化的曲线进行拟合,以得到实用升限;
步骤3:根据实用升限和预设无人机实用升限指标,判断是否满足实用升限指标。
2.根据权利要求1所述的方法,其特征在于,所述步骤1之前,还包括:
确定无人机的起飞构型状态和起飞重量;
无人机经历起飞滑跑、离地、爬升。
3.根据权利要求2所述的方法,其特征在于,所述确定无人机的起飞构型状态和起飞重量之前,还包括:
通过无人机位置传感器记录无人机的高度以及对应的瞬时爬升率。
4.根据权利要求1所述的方法,其特征在于,在所述步骤1中:
在无人机爬升至爬升率为零的过程中,保持直线和无侧滑状态飞行。
5.根据权利要求1所述的方法,其特征在于,所述步骤1之后,还包括:
无人机开始下滑着陆;无人机着陆后称重。
6.根据权利要求1所述的方法,其特征在于,所述步骤2包括:
步骤21:获取随高度变化的瞬时爬升率/>,共n组;
步骤22:定义二次多项式,根据第i组对应的二次多项式/>与瞬时爬升率/>差值的平方,然后将获取的n组差值的平方进行累加和,并使该累加和最小化;i的取值范围为1至n;
步骤23:通过对最小化的累加和求导,得到最小二乘法拟合多项式;
步骤24:利用二次函数求根公式,得到实用升限。
7.根据权利要求6所述的方法,其特征在于,所述步骤22包括:
定义二次多项式,最小化/>,即:
其中,、/>、/>分别为二次多项式/>的系数,/>为第i组的高度。
8.根据权利要求6所述的方法,其特征在于,所述步骤23包括:
假设,则
将方程整理,得到如下方程组:
求解方程组,得到、/>、/>,从而得到最小二乘法拟合多项式:
其中,、/>、/>分别为二次多项式/>的系数,/>为第i组的高度,/>为瞬时爬升率,的j为/>的指数,其取值为1、/>、/>、/>、/>
9.根据权利要求8所述的方法,其特征在于,所述步骤24包括:
,利用二次函数求根公式,得到实用升限:
其中,为实用升限。
10.根据权利要求1所述的方法,其特征在于,所述步骤3包括:
若实用升限大于或等于预设实用升限指标/>,即
则满足实用升限指标;否则不满足实用升限指标。
CN202310836269.2A 2023-07-10 2023-07-10 一种低速无人机验证实用升限指标的试飞规划方法 Pending CN116552804A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310836269.2A CN116552804A (zh) 2023-07-10 2023-07-10 一种低速无人机验证实用升限指标的试飞规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310836269.2A CN116552804A (zh) 2023-07-10 2023-07-10 一种低速无人机验证实用升限指标的试飞规划方法

Publications (1)

Publication Number Publication Date
CN116552804A true CN116552804A (zh) 2023-08-08

Family

ID=87496901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310836269.2A Pending CN116552804A (zh) 2023-07-10 2023-07-10 一种低速无人机验证实用升限指标的试飞规划方法

Country Status (1)

Country Link
CN (1) CN116552804A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312041A (en) * 1978-02-22 1982-01-19 Lear Siegler, Inc. Flight performance data computer system
US20110208374A1 (en) * 2010-02-24 2011-08-25 Honeywell International Inc. Methods and systems for displaying predicted downpath parameters in a vertical profile display
EP3121676A1 (en) * 2015-07-24 2017-01-25 The Boeing Company Air vehicle navigation system and method of flying an air vehicle
CN108883824A (zh) * 2016-03-23 2018-11-23 冯春魁 飞行器的数据的获取、处理及飞行状况监控的方法及系统
CN110462708A (zh) * 2017-03-27 2019-11-15 湾流航空航天公司 航空器飞行包线保护和恢复自动驾驶仪
CN112053593A (zh) * 2020-06-23 2020-12-08 中国民用航空总局第二研究所 一种基于风险评估的机场无人机管控区域划设方法
CN114491793A (zh) * 2021-12-31 2022-05-13 中国航空工业集团公司西安飞机设计研究所 一种运输类飞机爬升性能数据实时计算方法
CN114647994A (zh) * 2022-05-24 2022-06-21 中国航空工业集团公司西安飞机设计研究所 一种爬升性能快速处理方法
CN115031897A (zh) * 2022-04-20 2022-09-09 中国航空工业集团公司沈阳飞机设计研究所 一种飞机试飞测试方法
CN116127842A (zh) * 2023-01-17 2023-05-16 南京航空航天大学 基于径向基-反向传播神经网络的故障后飞行包线在线预测方法
CN116560412A (zh) * 2023-07-10 2023-08-08 四川腾盾科技有限公司 一种低速无人机验证最大平飞速度指标的试飞规划方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312041A (en) * 1978-02-22 1982-01-19 Lear Siegler, Inc. Flight performance data computer system
US20110208374A1 (en) * 2010-02-24 2011-08-25 Honeywell International Inc. Methods and systems for displaying predicted downpath parameters in a vertical profile display
EP3121676A1 (en) * 2015-07-24 2017-01-25 The Boeing Company Air vehicle navigation system and method of flying an air vehicle
CN108883824A (zh) * 2016-03-23 2018-11-23 冯春魁 飞行器的数据的获取、处理及飞行状况监控的方法及系统
CN110462708A (zh) * 2017-03-27 2019-11-15 湾流航空航天公司 航空器飞行包线保护和恢复自动驾驶仪
CN112053593A (zh) * 2020-06-23 2020-12-08 中国民用航空总局第二研究所 一种基于风险评估的机场无人机管控区域划设方法
CN114491793A (zh) * 2021-12-31 2022-05-13 中国航空工业集团公司西安飞机设计研究所 一种运输类飞机爬升性能数据实时计算方法
CN115031897A (zh) * 2022-04-20 2022-09-09 中国航空工业集团公司沈阳飞机设计研究所 一种飞机试飞测试方法
CN114647994A (zh) * 2022-05-24 2022-06-21 中国航空工业集团公司西安飞机设计研究所 一种爬升性能快速处理方法
CN116127842A (zh) * 2023-01-17 2023-05-16 南京航空航天大学 基于径向基-反向传播神经网络的故障后飞行包线在线预测方法
CN116560412A (zh) * 2023-07-10 2023-08-08 四川腾盾科技有限公司 一种低速无人机验证最大平飞速度指标的试飞规划方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
叶叶沛: "涡桨飞机飞行性能和升阻特性的试飞确定", 《飞行力学》, pages 45 - 49 *
杨旭: "面向无人机集群路径规划的智能优化算法综述", 《控制理论与应用》, pages 34 - 38 *
欧飞: "共轴式直升机配平和飞行性能计算方法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, pages 55 - 57 *
邵绪威: "基于试飞数据的无人机性能分析与试验技术研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, pages 10 - 11 *
邵绪威: "基于试飞数据的无人机性能分析与试验技术研究", 《优秀硕士论文全文数据库工程科技Ⅱ辑》 *
陈仁良: "直升机垂直飞行状态气动参数辨识方法研究", 《空气动力学学报》, pages 59 - 63 *

Similar Documents

Publication Publication Date Title
CN112528407B (zh) 一种固定翼飞机亚音速巡航航程优化设计方法
CN111767609B (zh) 一种基于试飞数据标准重量下爬升率的修正方法
CN109814593B (zh) 一种可自主寻热的低空太阳能无人机飞行控制方法和系统
CN110046735A (zh) 基于飞行数据分析的飞机离场燃油消耗评估方法
BR102013004148A2 (pt) Método para voo de uma aeronave
CN109710961B (zh) 一种基于gps数据的高空无人机升限数据处理方法
CN106768123A (zh) 一种无人直升机燃油预估方法
CN111382522A (zh) 一种基于起飞滑跑数据的航空发动机安装推力评估方法
CN105701552B (zh) 一种飞行航路垂直剖面的确定方法
CN114065399B (zh) 一种考虑复杂气象条件下的无人飞行器飞行性能计算方法
CN110794866B (zh) 一种集爬升-巡航-下降为整体的航时性能优化方法
CN105279290A (zh) 一种四发螺旋桨飞机续航性能计算方法
CN113589847B (zh) 一种柔性飞行器飞行半径确定方法
CN116560412B (zh) 一种低速无人机验证最大平飞速度指标的试飞规划方法
CN112800578B (zh) 一种无人机飞行剖面快速高精度仿真方法
CN114004021B (zh) 用于飞行管理系统性能管理的巡航燃油流量计算方法
CN110502790A (zh) 飞行程序综合评价方法及计算机存储介质
Salgueiro et al. Operational Noise Abatement through Control of Climb Profile on Departure
CN111717411B (zh) 一种基于试飞数据标准重量下巡航推力增量的修正方法
CN116552804A (zh) 一种低速无人机验证实用升限指标的试飞规划方法
Olson Aircraft performance flight testing
Clarke et al. Evaluating the Performance and Acoustic Footprint of Aircraft for Regional and Urban Air Mobility
CN111767608B (zh) 一种基于试飞数据标准重量下巡航段耗油的修正方法
CN116594430A (zh) 一种活塞动力无人机验证最大航时指标的试飞规划方法
CN107688689B (zh) 一种基于分层加权的飞行程序噪声评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20230808