CN1165444A - 识别波分复用光学网络中故障的方法 - Google Patents

识别波分复用光学网络中故障的方法 Download PDF

Info

Publication number
CN1165444A
CN1165444A CN97102195A CN97102195A CN1165444A CN 1165444 A CN1165444 A CN 1165444A CN 97102195 A CN97102195 A CN 97102195A CN 97102195 A CN97102195 A CN 97102195A CN 1165444 A CN1165444 A CN 1165444A
Authority
CN
China
Prior art keywords
channel
power
image intensifer
monitor
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN97102195A
Other languages
English (en)
Inventor
约翰·列赫尔·兹肯德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of CN1165444A publication Critical patent/CN1165444A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/296Transient power control, e.g. due to channel add/drop or rapid fluctuations in the input power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

在采用了光放大器的WDM网络中,一种检测掺铒光纤放大器(EDFA)中信道数目变化的方法,其中这种信道数目的变化是由于故障或系统结构引起的。根据本发明的技术,一个信号信道的功率和由本地EDFA’s产生的放大的自发辐射功率都受到监视。

Description

识别波分复用光学网络中故障的方法
本申请是1996年2月16日提交的题为“识别WDM光学网络中故障的方法”在先申请60/023,665的继续申请。
本发明总体上涉及光纤通信网络,更具体地讲,涉及监视这种网络中所用光纤线路性能特性的方法。
在基于透过式传输光学的有掺铒光纤放大器(EDFA’s)的WDM光学网络中,大量信号可以同时分路地进行传输。在这种网络中,需要在因设备或网络结构变化及网络故障而导致信道增加或丢失时,确保其他工作信道不受损害。由于EDFA’s饱和度特性的缘故,需要调整EDFA的增益,以使信道的功率保持在可接受的范围内。
设备和/或网络结构的改变可以是增加或损失信道,但是原则上讲,这些变化可以由网络控制和管理(NC&M)系统预知和校正。然而,还需要检测系统故障出现时的状态,因为它们不能由NC&M系统控制或预见到。这些故障很可能是由于光学传输线路中的信道不足或失效所致。当出现这两种问题时,要确定将被检测的对象,以进行适合的测量。
仅监视一个信道功率或者监视所有信道的全部功率,不能提供足以确定进行适当校正所需的信息。上游光损耗或上游光放大器输出功率的变化,不能从信道的减少/增加来鉴别,然而两者又需要截然不同的校正。适合的方法是确定现存的信道数。一种可能性是多路复用这些信道(或在传输线路中或在分接头之后),并分别检测各个信道的情况。但是这种方法复杂而昂贵。
根据本发明,上述缺陷将被克服,并且通过监视信道数目变化和所有信道公共的功率变化这样一个方法,带来技术上的进步。
由于该系统传输的信号功率和本地EDFA产生的放大的自发辐射(ASE)功率,在信道数目变化时表现得很相似,但当上游损耗变化时它们又表现得很不同,所以这种检测是可行的。也就是说,如果上游损耗变化了,监视器信道和ASE的功率变化是相反的。如果增加或减少了一或多个信道,监视器信道和ASE的功率变化是同方向的。
本发明的上述特征与优点,将通过结合附图对几个优选实施例的说明而更为清楚,其中:
图1描述了一个示例的光学网络,根据本发明,它采用一个第一分布反馈(DFB)激光器作为多信号信道源,并采用一个第二DFB激光器作为监视器信道源;
图2是一个曲线图,它描述了当信道数减少时,图1的多个信道和示例的系统中放大的自发辐射(ASE)测量结果;及
图3是一个曲线图,它描述了当信道数减少时,图1示例的系统中ASE功率的测量结果。
图1示意性地表示了用于示例的WDM光学网络10。如图1中所看到的,工作于1552.6nm的第一DFB激光器12用做监视器信道源,而工作于1557.8nm的第二DFB激光器14用于模拟其他信号信道。两个被泵浦激励的中级放大器,即采用一对980nm泵浦源的两级EDFA’s[16,18],用于放大DFB激光器发出的光,以使每个信道都可以获得适合的输出功率值。这些输出功率按照有八个信号信道的网络而设定,其每一个信道在示例性EDFA20的输入端有3.5dBm的功率,该EDFA20与两个输入EDFA’s结构相似。通过调节泵浦功率,EDFA20的增益定为10.5dB。当所有八个信道都存在时,总输入功率是5.5dBm,而总输出功率是16dBm。
10%的分接头22被置于EDFA的输出端,以监视和分析其输出功率。在图1的示例性结构中,监视器信道和ASE,由其后接有滤波器26,28的带通WDM24选出。为了精确地测量ASE,使用了两个滤波器,以便使ASE的以1525.9nm为中心大约1nm的全波半最大值(FWHM)频带透过去。EDFA中的中级滤波器,阻挡本区域内上游EDFA’s产生的ASE。因此,要测量的ASE功率仅仅是第二级EDFA中已经产生的那部分。
当失去多个信道时,监视系统所获得的功率是图2所绘出的样子。当失去一个信道时,由于放大器有更高的增益,监视器信道中的功率和ASE信道中的功率都增加大约0.5dB。这个变化很大,足以进行实际的检测了。如果失去的信道越多,就有越多的放大器输出功率可被重新分布到较少的其余信道中。这意味着:每个余下的信道功率增加很多,对比之下信道数目的检测更为便利。监视器信道中的功率变化比ASE的功率变化大,这是因为监视器信道中的信号通过了两级EDFA,而ASE是在第二级初次产生的。
在图1的示例性结构中,如上所述其中采用了两个带通滤波器,所以被测的ASE功率比实际系统中有的小。但是这个功率被认为够大了,足以说明本发明的方法。例如,采用单一一个窄带通滤波器,预计ASE功率将改善至少3dB,该带通滤波器的中心波长位于被两级EDFA的中级滤波器所阻挡的波长区内。
图3表示了当总的输入功率减少时监视系统所得到的功率。当上游损耗增加时,由于输入功率比较低而使监视器信道的功率减少,同时由于较低的饱和度及其较大的增益而使ASE功率增加。如果这种损耗增加3dB,监视器信道的功率将减小约0.5dB,而ASE信道功率将增加2dB以上。于是这种监视器信道和ASE功率的变化截然相反的情况,能够与两者变化相同时的信道数减少的情况区分开。
如本领域普通技术人员所能迅速理解的,本文所讨论的本发明的方法意味着存在一个适合的监视器信道。在一些光学网络中,有一个信道是由NC&M内部使用的。在这种网络中,这个信道永远存在,用它作为监视器信道是一个理想的选择。当然对于没有这样的优选信道存在的网络而言,可以选择一个信号信道作为监视器信道。万一原来的监视器信号信道丢失了,监视器信道必须被转换到一个存在的信道中。
上游损耗和信号信道的五种情况被列于表1中。
表1
  监视器信道功率   ASE功率
    上游损耗↑     ↓     ↑
    上游损耗↓     ↑     ↓
   其他信道数目↑     ↓     ↓
   其他信道数目↓     ↑     ↑
  监视器信道的丢失     0     ↑
本领域的普通技术人员从前文可以迅速地了解到,本发明的方法允许网络维护人员在WDM网络的任何一个放大器处监视所存在的信道数目。为了优化工作信道的性能,这种监视可以有效地调节该放大器的增益,比如通过调节第二级泵浦功率。
从前文所述,应该清楚地可知,本发明不局限于上述仅仅作为举例而存在的实施例,而且可以是包括在所附权利要求书限定的保护范围内的各种方式的改进。

Claims (7)

1.一种运行光通信网络的方法,该网络包括一个具有一上游端和一下游端的光通信线路,及至少一个沿着该通信线路的光放大器,其方法包含:
在所述上游端与下游端之间传输一波分复用光信号,所述的波分复用光信号具有一组光信道;
在所述的至少一个光放大器处接收所述的波分复用光信号;
在第一监视步骤中,监视所述一组光信道中第一信道的信号功率;以及
在第二监视步骤中,监视所述至少一个光放大器产生的放大的自发辐射(ASE)功率变化。
2.权利要求1的方法,其中光放大器是一个掺铒光纤放大器。
3.权利要求1的方法,还包含调整所述至少一个光放大器增益的步骤,所述的增益调整步骤是响应于所述第一光信道功率和所述至少一个光放大器产生的ASE功率的增加而进行的。
4.权利要求1的方法,其中所述的第二监视步骤是通过对光信号实行带通滤波而实现的。
5.权利要求1的方法,其中所述一组光信道中的至少一个是用数字数据调制的。
6.权利要求5的方法,还包含在所述下游端接收所述多路复用光信号的步骤。
7.一种监视光放大器中所存在的光信道数目的方法,该光放大器沿着通信网络的光通信线路设置,所述的通信线路具有一个上游端和一个下游端,该方法包括:
在第一监视步骤,监视波分复用光信号中一组光信道之中的一个信道内信号功率的改变;以及
在第二监视步骤,监视光放大器产生的放大的自发辐射(ASE)功率变化。
CN97102195A 1996-02-16 1997-02-13 识别波分复用光学网络中故障的方法 Pending CN1165444A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2366596P 1996-02-16 1996-02-16
US08/733,591 US6008915A (en) 1996-02-16 1996-10-18 Method of identifying faults in WDM optical networks
US733591 1996-10-18

Publications (1)

Publication Number Publication Date
CN1165444A true CN1165444A (zh) 1997-11-19

Family

ID=26697459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97102195A Pending CN1165444A (zh) 1996-02-16 1997-02-13 识别波分复用光学网络中故障的方法

Country Status (4)

Country Link
US (1) US6008915A (zh)
EP (1) EP0790718A3 (zh)
CN (1) CN1165444A (zh)
CA (1) CA2195034C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128386A1 (fr) * 2005-06-03 2006-12-07 Huawei Technologies Co., Ltd. Procede pour effectuer une protection de securite contre le rayonnement laser, un amplificateur optique et procede pour ajouter un signal identificateur
WO2007065368A1 (fr) * 2005-12-09 2007-06-14 Huawei Technologies Co., Ltd. Procede, appareil, et systeme de traitement de panne de ligne a fibres optiques
WO2007107065A1 (fr) * 2006-03-20 2007-09-27 Zte Corporation Système d'optimisation de puissance de la couche de multiplexage optique et procédé correspondant

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898801A (en) 1998-01-29 1999-04-27 Lockheed Martin Corporation Optical transport system
JPH10327108A (ja) * 1997-05-23 1998-12-08 Nec Corp Nb−wdmシステムおよびnb−wdmシステムの波長数設定方式
US6545799B1 (en) 1998-09-02 2003-04-08 Corning Incorporated Method and apparatus for optical system link control
US6115154A (en) * 1998-09-18 2000-09-05 Telcordia Technologies, Inc. Method and system for detecting loss of signal in wavelength division multiplexed systems
AU4653699A (en) 1998-11-06 2000-05-29 Sumitomo Electric Industries, Ltd. Method and apparatus for optical communication monitoring, optical amplifier system, method of controlling optical amplifier system, and optical communication system
KR20000037800A (ko) * 1998-12-02 2000-07-05 정선종 편광에 무관한 광 역다중화기
US6571030B1 (en) 1999-11-02 2003-05-27 Xros, Inc. Optical cross-connect switching system
US6597826B1 (en) 1999-11-02 2003-07-22 Xros, Inc. Optical cross-connect switching system with bridging, test access and redundancy
US6650803B1 (en) 1999-11-02 2003-11-18 Xros, Inc. Method and apparatus for optical to electrical to optical conversion in an optical cross-connect switch
US6882765B1 (en) 1999-11-02 2005-04-19 Xros, Inc. Connection protection between clients and optical cross-connect switches
US6792174B1 (en) 1999-11-02 2004-09-14 Nortel Networks Limited Method and apparatus for signaling between an optical cross-connect switch and attached network equipment
JP2001285323A (ja) * 2000-04-03 2001-10-12 Hitachi Ltd 光ネットワーク
EP1133082A1 (en) * 2000-03-10 2001-09-12 Corning Incorporated Optical monitoring system
DE10146001B4 (de) * 2001-09-18 2008-04-03 Nokia Siemens Networks Gmbh & Co.Kg Schaltungsanordnung und Verfahren zur Sicherheitsabschaltung eines optischen Verstärkers
WO2006005174A1 (en) * 2004-07-13 2006-01-19 Tropic Networks Inc. A method for network commissioning using amplified spontaneous emission (ase) sources
JP4625372B2 (ja) 2005-05-26 2011-02-02 富士通株式会社 光伝送装置およびその導通試験方法並びに光伝送システム
EP3098988B1 (en) * 2015-05-28 2019-01-09 Alcatel Lucent Reliable and flexible optical device for loading ase signal between multiplexed channels in a transmission line, and associated apparatus
US10707638B2 (en) 2017-11-13 2020-07-07 Neptune Subsea Ip Limited Integrated signal loss detection in Raman amplified fiber spans or other fiber spans

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117303A (en) * 1990-08-23 1992-05-26 At&T Bell Laboratories Method of operating concatenated optical amplifiers
US5128800A (en) * 1991-06-19 1992-07-07 At&T Bell Laboratories Gain switchable optical fiber amplifier
FR2703531B1 (fr) * 1993-03-30 1995-05-19 Cit Alcatel Dispositif d'évaluation de la qualité de transmission d'un équipement amplificateur optique.
US5394265A (en) * 1993-10-25 1995-02-28 At&T Corp. In-line two-stage erbium doped fiber amplifier system with in-band telemetry channel
US5513029A (en) * 1994-06-16 1996-04-30 Northern Telecom Limited Method and apparatus for monitoring performance of optical transmission systems
CA2155693C (en) * 1994-08-25 1999-12-14 Daniel A. Fishman Performance monitoring and fault location in optical transmission systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128386A1 (fr) * 2005-06-03 2006-12-07 Huawei Technologies Co., Ltd. Procede pour effectuer une protection de securite contre le rayonnement laser, un amplificateur optique et procede pour ajouter un signal identificateur
US8036538B2 (en) 2005-06-03 2011-10-11 Huawei Technologies Co., Ltd. Method and optical amplifier for laser safety protection and method for loading identification signal
WO2007065368A1 (fr) * 2005-12-09 2007-06-14 Huawei Technologies Co., Ltd. Procede, appareil, et systeme de traitement de panne de ligne a fibres optiques
CN1852052B (zh) * 2005-12-09 2010-04-14 华为技术有限公司 光纤线路故障下游告警的抑制方法、装置及系统
US8254778B2 (en) 2005-12-09 2012-08-28 Huawei Technologies Co., Ltd. Method, apparatus and system for handling fiber line fault
WO2007107065A1 (fr) * 2006-03-20 2007-09-27 Zte Corporation Système d'optimisation de puissance de la couche de multiplexage optique et procédé correspondant
CN101043288B (zh) * 2006-03-20 2011-09-21 中兴通讯股份有限公司 一种光复用层功率优化系统及其方法

Also Published As

Publication number Publication date
US6008915A (en) 1999-12-28
CA2195034A1 (en) 1997-08-17
EP0790718A2 (en) 1997-08-20
EP0790718A3 (en) 2002-02-27
CA2195034C (en) 2002-12-17

Similar Documents

Publication Publication Date Title
CN1165444A (zh) 识别波分复用光学网络中故障的方法
US6819875B2 (en) Optical wavelength multiplexing transmission apparatus and optical output control method for optical wavelength multiplexing transmission apparatus
US6414770B2 (en) Optical communications system
EP0988727B1 (en) Span management system for wavelength division multiplexed network
US6798567B2 (en) Method and apparatus for controlling power transients in an optical communication system
US7113709B2 (en) Redundant WDM transmission system optical receiver with reduced variable optical attenuators and/or variable dispersion compensation modules
US6377396B1 (en) Optical amplifiers with variable optical attenuation for use in fiber-optic communications systems
US7689131B2 (en) WDM system
US20020027704A1 (en) Method, apparatus, and system for optical amplification
US6633430B1 (en) Booster amplifier with spectral control for optical communications systems
EP1748581A1 (en) Optical WDM transmission system with Raman amplifiers comprising optical supervisory channel and controlling system
EP1514366A1 (en) Method and system for power control of optical transmission span
US6831777B2 (en) Optical transmission system and method
US6683713B2 (en) Method, device, and system for level equalization
JP4302881B2 (ja) 光増幅器の制御
US6907201B1 (en) Optical power transient control system and method
CN1977476A (zh) 光分插放大设备
DE60304088T2 (de) Optischer Faserverstärker mit automatischer Leistungsregelungsfunktion und automatisches Leistungssteuerungsverfahren
US6327075B1 (en) Optical gain equalization unit, optical gain equalization method, and optical fiber transmission line
US7206512B2 (en) Method of controlling optical wavelength division multiplexing transmission apparatus
US6687050B2 (en) Amplifier gain error
US6782199B1 (en) Optical communications systems with optical subsystem communications links
JP3215645B2 (ja) Wdm光ネットワークの欠陥識別方法
Sun et al. Fault identification for amplified WDM optical networks
JP2003273429A (ja) 光増幅装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication