CN116543042B - Depression TMS individuation target spot positioning method and system based on group level average statistical diagram - Google Patents

Depression TMS individuation target spot positioning method and system based on group level average statistical diagram Download PDF

Info

Publication number
CN116543042B
CN116543042B CN202310526504.6A CN202310526504A CN116543042B CN 116543042 B CN116543042 B CN 116543042B CN 202310526504 A CN202310526504 A CN 202310526504A CN 116543042 B CN116543042 B CN 116543042B
Authority
CN
China
Prior art keywords
group
magnetic resonance
target
tms
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310526504.6A
Other languages
Chinese (zh)
Other versions
CN116543042A (en
Inventor
严超赣
鲁彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Psychology of CAS
Original Assignee
Institute of Psychology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Psychology of CAS filed Critical Institute of Psychology of CAS
Priority to CN202310526504.6A priority Critical patent/CN116543042B/en
Publication of CN116543042A publication Critical patent/CN116543042A/en
Application granted granted Critical
Publication of CN116543042B publication Critical patent/CN116543042B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Neurology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Quality & Reliability (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

The invention discloses a method and a system for positioning a TMS (total system management) individuation target point of depression based on a group level average statistical graph, which are used for collecting resting state functional magnetic resonance brain imaging data of subjects in a major depressive disorder group and preprocessing the data; taking spherical sgACC as a seed point, performing functional connection calculation on each subject, and extracting a sgACC functional connection diagram in a DLPFC region mask; carrying out single-sample t-test on a functional connection diagram of the major depressive disorder to be tested, and extracting brain regions with t values smaller than 0 in a single-sample t-test statistical diagram in a DLPFC mask, and taking the brain regions as horizontal positioning targets of the transcranial magnetic stimulation major depressive disorder group; combining the obtained group horizontal positioning target point and the preprocessed individual magnetic resonance brain imaging data, and obtaining an individual TMS target point by adopting a double regression algorithm. The invention fully considers the abnormal overall brain activity and individual function variation of the depression patient and realizes the accurate individual positioning of the TMS treatment of the MDD patient.

Description

Depression TMS individuation target spot positioning method and system based on group level average statistical diagram
Technical Field
The invention belongs to the technical field of transcranial magnetic stimulation target positioning, and particularly relates to a method and a system for positioning a TMS (TMS personalized target) based on a group level average statistical graph.
Background
Repetitive transcranial magnetic stimulation (repetitive transcranial magnetic stimulation, rTMS) against the left dorsal lateral prefrontal cortex (dorsal lateral prefrontal cortex, DLPFC) is a common therapy for refractory major depressive disorder (major depressive disorder, MDD) approved by the united states food and drug administration (food and drug administration, FDA). However, conventional targeting algorithms such as 5mm method, electroencephalogram (EEG) F3 site localization method, and brudmann area (Brodmann area) -based localization method, etc., are not satisfactory for the effectiveness and response rate of depression. The most important factors affecting the treatment effect are that the individuation of patients is very different, and the development conditions of the brain structures and functions of each patient are different, so that the optimal target points for treatment are also different, and the TMS positioning according to the unified target points is difficult to achieve the best treatment effect on each patient. Therefore, the personalized accurate positioning of targets according to the brain structural and functional characteristics of the individual patients is a key for improving the effect of rTMS treatment.
Currently, calculating functional connections (functional connectivity, FC) based on functional magnetic resonance brain imaging (functional magnetic resonance imaging, fMRI) is a common accurate positioning method for DLPFC of transcranial magnetic stimulation (transcranial magnetic stimulation, TMS) to treat refractory MDD patients. The method calculates the global brain level functional connection by setting the sgACC as the region of interest (region of interest, ROI), and then looks for the maximum negative connection point within the mask (mask) of the DLPFC. However, because of the low signal-to-noise ratio of functional magnetic resonance imaging, calculating TMS targets based on sgACC functional connections using individual images is very unstable, and researchers often use group-level average functional connections to get corresponding targets. Neuroscience research finds that a remarkable negative functional connection exists between a brain region of the anterior buckle strap back (subgenual anterior cingulate cortex, sgACC) below knee and a brain region of a DLPFC brain region of a TMS treatment target point of depression, and the position with the largest absolute value of the negative functional connection in the DLPFC is generally the position with the best curative effect of performing TMS stimulation treatment on the depression. However, such methods suffer from certain drawbacks: firstly, because of the lack of a large sample of a depressive brain imaging sample, researchers use magnetic resonance data of healthy people to calculate the full brain function connection, and a significant difference exists between the full brain function connection of a depressive patient and the healthy people, so that the TMS treatment cannot achieve the best curative effect for the depressive patient based on the set level DLPFC target spot positioned by the healthy people sample; secondly, the DLPFC target is calculated based on the whole brain function connection after group level averaging, and the effect of individually positioning the target is not achieved.
Disclosure of Invention
In order to solve the technical problems in the prior art, the invention provides a method and a system for positioning a TMS personalized target point of depression based on a group level average statistical graph, which use brain imaging big data of thousands of depression samples to perform subsequent target point calculation, fully consider the functional variation of spontaneous brain activities of depression patients, make the functional variation more reasonable than an algorithm based on healthy human samples, and realize accurate personalized positioning of TMS treatment of MDD patients.
The adopted specific scheme is as follows:
in one aspect, the invention provides a method for locating a TMS personalized target of depression based on a group level average statistical graph, which comprises the following steps:
step 1, acquiring resting state functional magnetic resonance brain imaging data of subjects in a plurality of major depressive disorder groups;
step 2, preprocessing the acquired resting state functional magnetic resonance brain imaging data;
step 3, on the preprocessed individual resting state functional magnetic resonance brain imaging data, taking spherical sgACC as a seed point, performing functional connection calculation based on the seed point on each subject, and extracting a sgACC functional connection diagram in a DLPFC region mask;
step 4, performing single-sample t test on the sgACC function connection diagram of the major depressive disorder group, and extracting brain regions with t values smaller than 0 in the single-sample t test statistical diagram in a DLPFC mask, and taking the brain regions as horizontal positioning targets of the transcranial magnetic stimulation major depressive disorder group;
and 5, combining the obtained horizontal positioning target point of the transcranial magnetic stimulation major depressive disorder group and the preprocessed resting state functional magnetic resonance brain imaging data of the individual major depressive disorder, and obtaining an individualized TMS target point by adopting a double regression algorithm.
Further, the resting state functional magnetic resonance brain imaging data acquired in the step 1 come from a plurality of sites, and the data is normalized by adopting a Combat algorithm of empirical Bayes.
Further, in the step 2, the acquired resting state functional magnetic resonance brain imaging data is subjected to data preprocessing, and the specific method is as follows:
step 2.1, deleting the initial time point of the acquired resting state functional magnetic resonance brain imaging data, and ensuring the uniformity of a magnetic field and the adaptation of a subject to scanning conditions;
step 2.2, converting resting state functional magnetic resonance brain imaging data into BIDS format, and preprocessing the converted magnetic resonance structural imaging and functional imaging data by using a preprocessing tool based on body space or cortex space;
step 2.3, denoising the preprocessed resting-state functional magnetic resonance brain imaging data by adopting a linear regression method;
and 2.4, filtering and smoothing the resting-state functional magnetic resonance brain imaging data by adopting a band-pass time filter and a space smoothing method.
Further, in the step 3, using a spherical sgACC ROI based on body space or a template sgACC ROI based on cortex space on the preprocessed individual resting state functional magnetic resonance imaging, calculating a global brain functional connection based on sgACC seed points; the pearson correlation computation function connection is employed.
Further, in the step 4, when a single sample t test is performed on the sgACC function connection diagram of the major depressive disorder group, the brain area point of the obtained group horizontal positioning target point is multiplied by-1, so that the group horizontal positioning target point value is expressed as a positive value on the brain diagram, and the group horizontal positioning target point is used as the MDD group sgACC average function connection target point.
Further, the specific method for obtaining the personalized TMS target by adopting the double regression algorithm based on the group level target obtained in the step 5 comprises the following steps:
step 5.1, time series X of whole brain voxel levels after pretreatment with individual major depressive disorder subjects (i) Constructing a two-dimensional matrix as a dependent variable;
step 5.2, horizontally positioning the target spot S by using the group (g) As an independent variable, a least square method is used to estimate regression coefficients of the independent variable and take the regression coefficients as corresponding to the group horizontal positioning target point S (g) Individual horizontal time series matrix a (i) The expression is as follows:
A (i) ≡X (i) S (g),T (S (g) S (g),T ) -1
step 5.3, the obtained horizontal positioning target S corresponding to the group (g) Individual horizontal time series matrix a (i) As an independent variable, a least square method is used to obtain a horizontal positioning target S corresponding to the group (g) Time series individual horizontal target spot S (i) The expression is:
step 5.4, extracting individual horizontal targets S of the time sequence (i) Is used as an individualization TMS target.
On the other hand, the invention also provides a depression TMS individuation target spot positioning system based on the group level average statistical graph, which comprises a computer, and a data acquisition module, a data preprocessing module, a function connection calculation module, a statistics average target spot acquisition module and an individuation target spot acquisition module which are operated in the computer;
the data acquisition module is used for acquiring resting state functional magnetic resonance brain imaging data of the subjects in the major depressive disorder group from each site;
the data preprocessing module is used for preprocessing the acquired resting-state functional magnetic resonance brain imaging data;
the function connection calculation module is used for carrying out function connection calculation based on the sgACC serving as a seed point on each subject on the preprocessed individual resting state function magnetic resonance brain imaging to obtain a sgACC function connection diagram in a DLPFC region mask;
the statistical average target point acquisition module is used for performing single-sample t test on the sgACC function connection diagram of the major depressive disorder group, extracting brain regions with t values smaller than 0 in the major depressive disorder group in the single-sample t test statistical diagram in the DLPFC mask, and taking the brain regions as horizontal positioning targets of the transcranial magnetic stimulation major depressive disorder group;
the personalized target spot acquisition module is used for acquiring the personalized TMS target spot by combining the obtained transcranial magnetic stimulation major depressive disorder group horizontal positioning target spot and the preprocessed individual resting state functional major depressive disorder magnetic resonance brain imaging data and adopting a double regression algorithm.
Further, the system also comprises a data normalization module running in the computer and used for performing normalization processing on data acquired from different sites.
The technical scheme of the invention has the following advantages:
A. the invention constructs an individual accurate positioning TMS target spot based on the MDD subject magnetic resonance brain imaging data of a large sample, and has more depression specificity compared with the TMS target spot constructed based on the magnetic resonance brain imaging data of a normal person by the former person.
B. The invention uses the double regression algorithm as a core algorithm of the localization of the individual target spots, and the algorithm can fully consider the group-level disease characteristics based on the robustness of large sample disease groups and the specific disease variation based on individual subjects, and has both stability and specificity; meanwhile, when the sgACC functional connection diagram of the major depressive disorder group is subjected to single-sample t test, a brain region with a t value smaller than 0 in the single-sample t test statistical diagram is directly extracted and used as a horizontal positioning target point of the transcranial magnetic stimulation major depressive disorder group, so that the reliability of the horizontal target point of the group is greatly improved, and the positioning of the transcranial magnetic stimulation target point is more accurate.
Drawings
In order to more clearly illustrate the embodiments of the present invention, the drawings that are required for the embodiments will be briefly described, and it will be apparent that the drawings in the following description are some embodiments of the present invention and that other drawings may be obtained according to the drawings without inventive effort for a person skilled in the art.
Fig. 1 is a block diagram of a method for positioning a TMS personalized target of depression based on a group level average statistical map provided by the invention;
fig. 2 is a processing flow chart of a method for positioning a TMS personalized target of depression based on a group level average statistical chart provided by the invention;
FIG. 3a is a graphical representation of the personalized positioning effect based on the MDD average template provided by the present invention;
FIG. 3b is a graphical representation of an MDD-based average template positioning effect;
FIG. 4a is a graphical representation of positioning effects based on NC average templates;
FIG. 4b is a graphical representation of personalized positioning effects based on NC average templates;
FIGS. 5a and 5b are graphs of the localization effects of the Weiand-2018 group horizontal targets and SNT therapies, respectively;
fig. 6 is a block diagram of a positioning system according to the present invention.
Detailed Description
The following description of the embodiments of the present invention will be made apparent and fully in view of the accompanying drawings, in which some, but not all embodiments of the invention are shown. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
As shown in fig. 1 and 2, the invention provides a method for positioning a TMS personalized target spot of depression based on a group level average statistical graph, which specifically comprises the following steps:
the method comprises the steps of (S01) collecting resting state functional magnetic resonance brain imaging data of subjects in a plurality of major depressive disorder groups.
The 23 study groups in china constitute the depression imaging study consortium (the depression imaging research consortium, DIRECT) and agree to share the final resting fMRI index from 1574 MDD patients and 1308 matched Normal Controls (NC). Since the data of the present invention comes from multiple stations, each using a different magnetic resonance imager and scan sequence, the data from the different stations needs to be standardized prior to subsequent processing. The method uses a Combat algorithm based on empirical bayes (empirical Bayesian) for data normalization. Age was included as covariates in the Combat model and subsequent calculations were included using the functional connectivity map normalized to Combat data.
And S02, preprocessing the acquired resting state functional magnetic resonance brain imaging data.
The present invention preferably uses dpabidurf for data preprocessing, which is a skin-based resting state fMRI data analysis kit, evolved from DPABI/DPARSF. DPABISurf invokes fMRIPrep to pre-process the magnetic resonance structural imaging and functional imaging data and provides a set of statistics and viewing tools.
The data preprocessing comprises the following contents:
(1) Deleting the initial acquisition time points, such as the first 10 time points, of the acquired resting state functional magnetic resonance brain imaging data to ensure the magnetic field uniformity and the adaptation of the subject to the scanning conditions;
(2) Converting resting state functional magnetic resonance brain imaging data into BIDS format, and preprocessing the converted magnetic resonance structure imaging and functional imaging data by using a preprocessing tool based on body space or cortex space;
(3) The anatomical data pre-processing is as follows:
correcting the intensity non-uniformity of the T1 weighted image by using N4BiasField correction, and taking the corrected intensity non-uniformity as a T1w reference in the whole workflow;
the antsBrainextraction workflow was implemented with Nipype, using OASIS30ANTs as the target template, performing skull dissection on the T1w reference;
brain tissue segmentation of structural images using FSL FAST for cerebrospinal fluid, white matter and gray matter;
the cortex was reconstructed using the recon-all.
(4) Functional data preprocessing:
the following pre-treatments were performed for each subject's resting state functional magnetic resonance BOLD sequence:
firstly, generating a reference volume and a skull stripped version thereof by using a custom method of fMRIPrep;
core registration of the blood oxygen level dependent (Blood oxygen levels dependent, BOLD) reference with the T1w reference is then performed using bbregister (FreeSurfer), enabling boundary-based registration;
time layer correction was performed on BOLD runs using 3 dTshift;
the BOLD time series is resampled onto the surface of fserverage 5 space.
(5) Noise regression:
a 24 parameter model using Friston was used to regress the interference factor of head motion. In addition, the average frame displacement is used to account for the residual effects of motion in population analysis. Other sources of noise signals (WM and CSF signals) were also removed from the data by linear regression to reduce respiratory and cardiac effects. Furthermore, the linear trend is taken into account as a regression factor for the drift of the BOLD signal.
(6) Filtration and smoothing were as follows:
finally, a bandpass temporal filter (0.01-0.1 hz) and spatial smoothing (full width half maximum (full width at half maxima, FWHM) of 6 mm) were applied to the functional image.
And S03, on the preprocessed individual resting state functional magnetic resonance brain imaging data, taking spherical sgACC as a seed point, performing functional connection calculation based on the seed point on each subject, and extracting a sgACC functional connection diagram in a DLPFC region mask.
And (3) functional connection calculation:
on the individual resting state functional magnetic resonance brain imaging after MDD pretreatment of a large sample, the global brain functional connection based on the seed points is calculated using the body space-based sgACC spherical ROI or the cortical space-based sgACC template ROI. The ROI coordinates are [6,16, -10], the radius is 10mm. And extracting a functional connection mode in a DLPFC region mask by using the pearson related calculation functional connection to perform subsequent calculation.
And S04, performing single-sample t test on the sgACC functional connection diagram of the major depressive disorder group, and extracting brain regions with t values smaller than 0 in the single-sample t test statistical diagram in a DLPFC mask, and taking the brain regions as horizontal positioning targets of the transcranial magnetic stimulation major depressive disorder group.
A single sample t-test was performed on the sgACC functional junction graph of the MDD group with a single sample t-test benchmark (base) of 0. Multiple comparison corrections are not made to the single sample t-test statistical map. The sgACC brain region has obvious negative correlation with DLPFC TMS potential target brain region, and previous group level research based on healthy people data finds that the closer the target is to the region with the maximum negative correlation absolute value, the better the TMS curative effect is, so that brain regions with t values smaller than 0 in the uncorrected parameter statistical graph DLPFC mask region are selected as DLPFC target points for treating MDD at the group level. In order to facilitate calculation of a subsequent individual horizontal accurate positioning algorithm, the brain points of the horizontal target point are multiplied by-1, so that the value of the target point is expressed as a positive value on a brain map. The group of horizontal targets is called as an MDD group sgACC average functional connection target, and is called an average target for short.
And (S05) combining the obtained horizontal positioning target of the transcranial magnetic stimulation major depressive disorder group and the pretreated resting state functional magnetic resonance brain imaging data of the individual major depressive disorder, and obtaining an individual TMS target by adopting a double regression algorithm.
TMS depression group level positioning targets based on a group level parameter statistical chart of a depression large sample can fully capture potential targets related to average abnormal states of spontaneous brain activities of depression. However, even with MDD subjects, functional partitioning, functional localization and functional abnormalities are all different, and therefore individualization is required on a large panel level target technology. The invention adopts double regression to carry out target individuation, and the double regression calculation flow is as follows:
the specific method for obtaining the personalized TMS target by adopting the double regression algorithm in the step 5 comprises the following steps:
step 5.1, time series X of whole brain voxel levels after pretreatment with individual major depressive disorder subjects (i) Constructing a two-dimensional matrix as a dependent variable;
step 5.2, horizontally positioning the target spot S by using the group (g) As an independent variable, a least square method is used to estimate regression coefficients of the independent variable and take the regression coefficients as corresponding to the group horizontal positioning target point S (g) Individual horizontal time series matrix a (i) The expression is as follows:
A (i) ≡X (i) S (g),T (S (g) S (g),T ) -1
step 5.3, the obtained horizontal positioning target S corresponding to the group (g) Individual horizontal time series matrix a (i) As an independent variable, a least square method is used to obtain a horizontal positioning target S corresponding to the group (g) Time series individual horizontal target spot S (i) The expression is:
step 5.4, extracting individual horizontal targets S of the time sequence (i) Is used as an individualization TMS target.
To verify the effectiveness of this algorithm, the present invention uses a set of functional magnetic resonance data containing 16 patients, each with a hamiltonian score greater than 7. Stimulation of patients using TMS 5Hz excitation frequency stimulates DLPFC regions based on 5mm method or electroencephalogram F3 site localization. The fraction of hamilton depression before and after 6 months of treatment was recorded for the patient, using the fraction of hamilton depression decrease as a therapeutic index. According to resting state functional magnetic resonance images of the subjects before treatment, the horizontal positioning target point of the transcranial magnetic stimulation major depressive disorder group based on the large samples of depression is calculated. The Euclidean distance between an original stimulation target point (based on a traditional positioning method) and an individualized accurate target point based on the invention is calculated, and the closer the Euclidean distance is, the lower the reduction rate of the Hamiltonian depression fraction is (namely, the TMS positioning offset distance is obviously inversely related to the Hamiltonian depression fraction). The larger the negative correlation between TMS positioning offset distance and the Hamiltonian depression fraction reduction rate is, the better the target positioning effect is.
The positioning effect of the method for positioning the TMS personalized targets based on the group level average statistical graph is tested, and the positioning effect of the group level targets based on the big data statistical graph which are not personalized is calculated in order to prove that the personalized algorithm can improve the effect of the group level targets. In addition, the localization effects of the international mainstream TMS DLPFC target for MDD treatment (Weiand-2018 group level target, MNI coordinate [ -42 44 30 ]) and the international advanced Steady neuromodulation therapy (Stanford neuromodulation therapy, SNT) were also compared. The results show that:
(1) The algorithm for obtaining the best positioning effect is an individual positioning method (r= -0.39) based on the MDD average template, which is provided by the invention, as shown in fig. 3 a; the effect of the group-level MDD average template positioning method as shown in fig. 3b (r= -0.04). The accuracy of the individual positioning method of the MDD average templates is higher than the positioning effect of the MDD average templates of the corresponding group level.
(2) As shown in fig. 4a and fig. 4b, the NC-based average template positioning effect (r=0.07) and NC-based personalized template positioning effect (r= -0.29) are far lower than the MDD-based average template-based personalized positioning method (r= -0.39) proposed by the present invention. The necessity of calculating the TMS target based on brain imaging data containing a large MDD sample proves that the brain activity mode of a healthy subject is not enough to infer the abnormal brain interaction mode of the MDD sample and calculate the optimal target.
(3) As shown in fig. 5a and 5b, the positioning effect of the personalized positioning method based on the MDD average template provided by the invention is far better than that of the international leading weiand-2018 group horizontal target (r= -0.01) and SNT therapy (r= -0.36), and the superiority of the personalized positioning method provided by the invention is proved.
As shown in fig. 6, the invention also provides a depression TMS individuation target positioning system based on the group level average statistical graph, wherein the system comprises a computer, and a data acquisition module, a data preprocessing module, a function connection calculation module, a statistics average target acquisition module and an individuation target acquisition module which are operated in the computer; the data acquisition module is used for acquiring resting state functional magnetic resonance brain imaging data of the subjects in the major depressive disorder group from each site; the data preprocessing module is used for preprocessing the acquired resting state functional magnetic resonance brain imaging data; the function connection calculation module is used for carrying out function connection calculation based on the sgACC serving as a seed point on each subject on the preprocessed individual resting state function magnetic resonance brain imaging to obtain a sgACC function connection diagram in the DLPFC region mask; the statistical average target point acquisition module is used for performing single-sample t test on the sgACC functional connection diagram of the major depressive disorder group, extracting brain regions with t values smaller than 0 in the major depressive disorder group in the single-sample t test statistical diagram in the DLPFC mask, and taking the brain regions as horizontal positioning targets of the transcranial magnetic stimulation major depressive disorder group; the personalized target spot acquisition module combines the obtained horizontal positioning target spot of the depressive disorder group and the personalized data of the preprocessed individual major depressive disorder magnetic resonance brain imaging, and adopts a double regression algorithm to obtain the personalized TMS target spot.
The system also comprises a data normalization module running in the computer and used for performing normalization processing on data acquired from different sites for subsequent calculation.
The invention constructs an individual accurate positioning TMS target spot based on the MDD subject magnetic resonance brain imaging data of a large sample, and has more depression specificity compared with the TMS target spot constructed based on the magnetic resonance brain imaging data of a normal person by the former person.
The invention is not described as being suitable for the prior art.
It is apparent that the above examples are given by way of illustration only and are not limiting of the embodiments. Other variations or modifications of the above teachings will be apparent to those of ordinary skill in the art. It is not necessary here nor is it exhaustive of all embodiments. While obvious variations or modifications are contemplated as falling within the scope of the present invention.

Claims (6)

1. A method for locating a TMS personalized target point of depression based on a group level average statistical graph, which is characterized by comprising the following steps:
step 1, acquiring resting state functional magnetic resonance brain imaging data of subjects in a plurality of major depressive disorder groups;
step 2, preprocessing the acquired resting state functional magnetic resonance brain imaging data;
step 3, on the preprocessed individual resting state functional magnetic resonance brain imaging data, taking spherical sgACC as a seed point, performing functional connection calculation based on the seed point on each subject, and extracting a sgACC functional connection diagram in a DLPFC region mask;
step 4, performing single-sample t test on the sgACC function connection diagram of the major depressive disorder group, and extracting brain regions with t values smaller than 0 in the single-sample t test statistical diagram in a DLPFC mask, and taking the brain regions as horizontal positioning targets of the transcranial magnetic stimulation major depressive disorder group;
step 5, combining the obtained horizontal positioning target point of the transcranial magnetic stimulation major depressive disorder group and the preprocessed resting state functional magnetic resonance brain imaging data of the individual major depressive disorder, and obtaining an individual TMS target point by adopting a double regression algorithm;
in the step 2, the acquired resting state functional magnetic resonance brain imaging data are subjected to data preprocessing, and the specific method comprises the following steps:
step 2.1, deleting the initial time point of the acquired resting state functional magnetic resonance brain imaging data, and ensuring the uniformity of a magnetic field and the adaptation of a subject to scanning conditions;
step 2.2, converting resting state functional magnetic resonance brain imaging data into BIDS format, and preprocessing the converted magnetic resonance structural imaging and functional imaging data by using a preprocessing tool based on body space or cortex space;
step 2.3, denoising the preprocessed resting-state functional magnetic resonance brain imaging data by adopting a linear regression method;
step 2.4, adopting a band-pass time filter and a space smoothing method to complete the filtering and smoothing treatment of resting state functional magnetic resonance brain imaging data;
the specific method for obtaining the personalized TMS target by adopting the double regression algorithm based on the group horizontal positioning target obtained in the step 5 comprises the following steps:
step 5.1, time series X of whole brain voxel levels after pretreatment with individual major depressive disorder subjects (i) Constructing a two-dimensional matrix as a dependent variable;
step 5.2, horizontally positioning the target spot S by using the group (g) As an independent variable, a least square method is used to estimate regression coefficients of the independent variable and take the regression coefficients as corresponding to the group horizontal positioning target point S (g) Individual horizontal time series matrix a (i) The expression is as follows:
A (i) =X (i) S (g),T (S (g) S (g),T ) -1
step 5.3, the obtained horizontal positioning target S corresponding to the group (g) Individual horizontal time series matrix a (i) As an independent variable, a least square method is used to obtain a horizontal positioning target S corresponding to the group (g) Time series individual horizontal target spot S (i) The expression is:
step 5.4, extracting individual horizontal targets S of the time sequence (i) Is used as an individualization TMS target.
2. The method for locating a TMS personalized target for depression based on a group level average statistical map according to claim 1, wherein the resting-state functional magnetic resonance brain imaging data acquired in the step 1 are from a plurality of sites, and the data is normalized by adopting a Combat algorithm of empirical bayes.
3. The method for positioning individual targets of TMS for depression based on group-level mean statistics according to claim 1, wherein in step 3, whole brain function connection based on sgACC seed points is calculated on preprocessed individual resting state function magnetic resonance imaging using a body space-based sgACC spherical ROI or a cortical space-based sgACC template ROI; the pearson correlation computation function connection is employed.
4. The method for positioning the personalized target spot of the depressive disorder TMS based on the group horizontal average statistical map according to claim 1, wherein in the step 4, when a single sample t test is performed on the sgACC function joint map of the major depressive disorder group, the brain area point of the obtained group horizontal positioning target spot is multiplied by-1, so that the value of the group horizontal positioning target spot is expressed as a positive value on the brain map, and the group horizontal positioning target spot is used as the MDD group sgACC average function joint target spot.
5. The system is characterized by comprising a computer, a data acquisition module, a data preprocessing module, a functional connection calculation module, a statistical average target acquisition module and an individuation target acquisition module, wherein the data acquisition module, the data preprocessing module, the functional connection calculation module, the statistical average target acquisition module and the individuation target acquisition module are operated in the computer;
the data acquisition module is used for acquiring resting state functional magnetic resonance brain imaging data of the subjects in the major depressive disorder group from each site;
the data preprocessing module is used for preprocessing the acquired resting-state functional magnetic resonance brain imaging data, and the specific method is as follows:
step 2.1, deleting the initial time point of the acquired resting state functional magnetic resonance brain imaging data, and ensuring the uniformity of a magnetic field and the adaptation of a subject to scanning conditions;
step 2.2, converting resting state functional magnetic resonance brain imaging data into BIDS format, and preprocessing the converted magnetic resonance structural imaging and functional imaging data by using a preprocessing tool based on body space or cortex space;
step 2.3, denoising the preprocessed resting-state functional magnetic resonance brain imaging data by adopting a linear regression method;
step 2.4, adopting a band-pass time filter and a space smoothing method to complete the filtering and smoothing treatment of resting state functional magnetic resonance brain imaging data;
the function connection calculation module is used for carrying out function connection calculation based on the sgACC serving as a seed point on each subject on the preprocessed individual resting state function magnetic resonance brain imaging to obtain a sgACC function connection diagram in a DLPFC region mask;
the statistical average target point acquisition module is used for performing single-sample t test on the sgACC function connection diagram of the major depressive disorder group, extracting brain regions with t values smaller than 0 in the major depressive disorder group in the single-sample t test statistical diagram in the DLPFC mask, and taking the brain regions as horizontal positioning targets of the transcranial magnetic stimulation major depressive disorder group;
the personalized target spot acquisition module is used for acquiring a personalized TMS target spot by combining the obtained horizontal positioning target spot of the transcranial magnetic stimulation major depressive disorder group and the preprocessed magnetic resonance brain imaging data of the individual resting state functional major depressive disorder by adopting a double regression algorithm;
the specific method for obtaining the personalized TMS target by adopting the double regression algorithm comprises the following steps:
step 5.1, time series X of whole brain voxel levels after pretreatment with individual major depressive disorder subjects (i) Constructing a two-dimensional matrix as a dependent variable;
step 5.2, horizontally positioning the target spot S by using the group (g) As an independent variable, a least square method is used to estimate regression coefficients of the independent variable and take the regression coefficients as corresponding to the group horizontal positioning target point S (g) Individual horizontal time series matrix a (i) The expression is as follows:
A (i) =X (i) S (g),T (S (g) S (g),T ) -1
step 5.3, the obtained horizontal positioning target S corresponding to the group (g) Individual horizontal time series matrix a (i) As an independent variable, a least square method is used to obtain a horizontal positioning target S corresponding to the group (g) Time series individual horizontal target spot S (i) The expression is:
step 5.4, extracting individual horizontal targets S of the time sequence (i) Is used as an individualization TMS target.
6. The TMS personalized target site location system for depression based on a group level average statistical map of claim 5, further comprising a data normalization module running in a computer for normalizing data collected from different sites.
CN202310526504.6A 2023-05-10 2023-05-10 Depression TMS individuation target spot positioning method and system based on group level average statistical diagram Active CN116543042B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310526504.6A CN116543042B (en) 2023-05-10 2023-05-10 Depression TMS individuation target spot positioning method and system based on group level average statistical diagram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310526504.6A CN116543042B (en) 2023-05-10 2023-05-10 Depression TMS individuation target spot positioning method and system based on group level average statistical diagram

Publications (2)

Publication Number Publication Date
CN116543042A CN116543042A (en) 2023-08-04
CN116543042B true CN116543042B (en) 2024-01-23

Family

ID=87455614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310526504.6A Active CN116543042B (en) 2023-05-10 2023-05-10 Depression TMS individuation target spot positioning method and system based on group level average statistical diagram

Country Status (1)

Country Link
CN (1) CN116543042B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113367680A (en) * 2021-07-05 2021-09-10 北京银河方圆科技有限公司 Target point determination method, device, equipment and storage medium
WO2021242960A1 (en) * 2020-05-28 2021-12-02 The Trustees Of Columbia University In The City Of New York System, method and computer-accessible medium for transcranial magnetic stimulation treatment of neuropsychiatric disorders
CN113769275A (en) * 2021-10-19 2021-12-10 南京伟思医疗科技股份有限公司 Automatic positioning method and system for transcranial magnetic treatment target
CN114732519A (en) * 2022-04-11 2022-07-12 成都焕星科技有限公司 Method for accurate positioning and navigation of individual space transcranial magnetic stimulation based on magnetic resonance imaging
CN115035124A (en) * 2022-08-15 2022-09-09 南京伟思医疗科技股份有限公司 Guide pin calculation method of follow-up positioning system based on Harris angular point detection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11311193B2 (en) * 2017-03-30 2022-04-26 The Trustees Of Columbia University In The City Of New York System, method and computer-accessible medium for predicting response to electroconvulsive therapy based on brain functional connectivity patterns
JP6722845B2 (en) * 2017-10-03 2020-07-15 株式会社国際電気通信基礎技術研究所 Discriminating apparatus, depressive symptom discriminating method, depressive symptom level determining method, depressive patient stratification method, depressive symptom therapeutic effect determining method, and brain activity training apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021242960A1 (en) * 2020-05-28 2021-12-02 The Trustees Of Columbia University In The City Of New York System, method and computer-accessible medium for transcranial magnetic stimulation treatment of neuropsychiatric disorders
CN113367680A (en) * 2021-07-05 2021-09-10 北京银河方圆科技有限公司 Target point determination method, device, equipment and storage medium
CN113769275A (en) * 2021-10-19 2021-12-10 南京伟思医疗科技股份有限公司 Automatic positioning method and system for transcranial magnetic treatment target
CN114732519A (en) * 2022-04-11 2022-07-12 成都焕星科技有限公司 Method for accurate positioning and navigation of individual space transcranial magnetic stimulation based on magnetic resonance imaging
CN115035124A (en) * 2022-08-15 2022-09-09 南京伟思医疗科技股份有限公司 Guide pin calculation method of follow-up positioning system based on Harris angular point detection

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Altered resting-state dynamic functional brain networks in major depressive disorder: Findings from the REST-meta-MDD consortium;Yicheng Long et al.;《NeuroImage: Clinical》(第26期);2213-1582 *
张斌杰 等.重复经颅磁刺激治疗抑郁症的神经机制探索及疗效预测研究进展.医疗卫生装备.2020,41(4),89-96. *
重复经颅磁刺激治疗抑郁症的神经机制探索及疗效预测研究进展;张斌杰 等;医疗卫生装备;41(4);89-96 *

Also Published As

Publication number Publication date
CN116543042A (en) 2023-08-04

Similar Documents

Publication Publication Date Title
Nourski et al. Functional organization of human auditory cortex: investigation of response latencies through direct recordings
Enatsu et al. Connections of the limbic network: a corticocortical evoked potentials study
US11733332B2 (en) Systems and method of precision functional mapping-guided interventional planning
WO2023280002A1 (en) Target determination method and apparatus, electronic device, storage medium, and neuro regulation device
US11395920B2 (en) Brain connectivity atlas for personalized functional neurosurgery targeting and brain stimulation programming
Rocchi et al. Common fronto-temporal effective connectivity in humans and monkeys
CN105708462A (en) Data processing method based on rfMRI (resting-state functional magnetic resonance imaging) of idiopathic epilepsy
Groppa et al. Subcortical substrates of TMS induced modulation of the cortico-cortical connectivity
US11857275B2 (en) Systems and methods for targeted neuromodulation
Lyu et al. Causal evidence for the processing of bodily self in the anterior precuneus
US20120163689A1 (en) Method and device for visualizing human or animal brain segments
Roland et al. A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients
Molina et al. Dorsolateral prefrontal cortex contribution to abnormalities of the P300 component of the event-related potential in schizophrenia
CN111227833B (en) Preoperative positioning method based on machine learning of generalized linear model
Conte et al. Cortical source analysis of event-related potentials: a developmental approach
CN110537915A (en) Corticospinal tract fiber tracking method based on FMRI and DTI fusion
Chu et al. Functional imaging of the brainstem during visually-guided motor control reveals visuomotor regions in the pons and midbrain
CN116543042B (en) Depression TMS individuation target spot positioning method and system based on group level average statistical diagram
CN116504363B (en) Depression TMS individuation target spot positioning method and system based on group level difference statistical diagram
US20050159670A1 (en) Method for imaging information, change in information, and computation in the brain
CN115089159A (en) System for realizing transcranial magnetic precise stimulation based on functional nuclear magnetic resonance
Bertolo et al. High sensitivity mapping of brain-wide functional networks in awake mice using simultaneous multi-slice fUS imaging
US20230190105A1 (en) Treating epilepsy and other neurological disorders by targeting therapy to the endopiriform nucleus using ultra-high field magnetic resonance imaging
WO2024059624A2 (en) System and method for interventional planning for the treatment of brain disorders
Wang et al. Evaluating the strength of functional connectivity during the resting state

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant