CN116532659A - 一种高强塑积的tc11激光熔化沉积构件及其制备方法 - Google Patents

一种高强塑积的tc11激光熔化沉积构件及其制备方法 Download PDF

Info

Publication number
CN116532659A
CN116532659A CN202310515708.XA CN202310515708A CN116532659A CN 116532659 A CN116532659 A CN 116532659A CN 202310515708 A CN202310515708 A CN 202310515708A CN 116532659 A CN116532659 A CN 116532659A
Authority
CN
China
Prior art keywords
laser
component
laser melting
melting deposition
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310515708.XA
Other languages
English (en)
Inventor
张辉
郭文姗
郭宁
肖光春
赵伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202310515708.XA priority Critical patent/CN116532659A/zh
Publication of CN116532659A publication Critical patent/CN116532659A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)

Abstract

本发明公开了一种高强塑积的TC11激光熔化沉积构件及其制备方法,属于TC11激光增材构件技术领域,包括以下步骤:S1在TC11基体上采用同轴同步送粉的激光熔化沉积方法制备激光增材构件;S2在真空环境下,对TC11激光熔化沉积构件进行后热处理,所述的激光熔化沉积方法采用粒径范围为75~250μm的TC11钛合金粉末,所述的后热处理包括以下步骤:A1将激光增材构件在950℃保温1h后空冷至室温;A2将冷却至室温的激光增材构件升温至530℃后保温6h,然后空冷至室温,相较于现有技术,本发明后热处理步骤简单,制得的TC11激光熔化沉积构件具有较高的强塑积。

Description

一种高强塑积的TC11激光熔化沉积构件及其制备方法
技术领域
本发明涉及TC11激光增材构件技术领域,具体为一种高强塑积的TC11激光熔化沉积构件及其制备方法。
背景技术
激光增材制造技术通过直接熔化金属粉末或金属丝逐层制造出近净成型的金属构件,在制造复杂金属构件等领域具有原材料利用率高、生产周期短、产品可靠性高等优点。TC11钛合金具有密度小、比强度高、服役温度范围大、耐蚀性强及生物无毒性的特点,被广泛应用于航空、航海、化工及医疗领域。采用传统技术制造(锻、铸)大型钛合金构件存在生产成本高、制造周期长等难题。激光熔化沉积作为一种高效激光增材制造技术,为TC11钛合金在航空、航天等领域提供了技术支持。由于激光熔化沉积分层制造的特性,沉积层经历重熔和反复加热,TC11激光熔化沉积构件中存在贯穿多层的粗大柱状β晶以及大量的非平衡组织,其力学性能通常表现出高强度、低塑性、各向异性等特点。
后热处理是改善显微组织,优化力学性能的有效方法,成本低且应用普遍。激光熔化沉积构件采用固溶+时效处理可以获得强度和塑性的良好结合。对TC11激光熔化沉积构件在α+β相区进行双重热处理,晶内α相长径比变小,αGB球化、不连续、部分消失,其塑性提高,强度下降,当后热处理温度高于β相变点,其塑性下降。
对于钛合金在增材制造过程中产生的不平衡组织以及其特殊的力学性能,中国专利号CN115609007A公开了一种高效激光增材制造钛合金及改善其各向异性的热处理方法,对中间体进行热处理,“将中间体加热至910℃并保温1小时,然后风冷至600℃~800℃后,空冷至室温;将经一次退火热处理的中间体加热至530℃并保温6小时,然后空冷至室温”,需要先将中间体冷却至600℃~800℃,再冷却至室温,冷却工艺较为复杂,虽然塑性得到了一定的提高,但该处理工艺仍会造成构件一部分力学性能的损失。
发明内容
本发明要解决的技术问题是:提供一种高强塑积的TC11激光熔化沉积构件及其制备方法。
为了解决上述技术问题,本发明高强塑积的TC11激光熔化沉积构件的制备方法,包括以下步骤:
S1在TC11基体上采用同轴同步送粉的激光熔化沉积方法制备激光增材构件;
S2在真空环境下,对TC11激光熔化沉积构件进行后热处理,
所述的激光熔化沉积方法采用粒径范围为75~250μm的TC11钛合金粉末,所述的后热处理包括以下步骤:
A1将激光增材构件在950℃保温1h后空冷至室温;
A2将冷却至室温的激光增材构件升温至530℃后保温6h,然后空冷至室温
优选的,所述的激光熔化沉积方法中激光功率为4000W,扫描速度为800mm/min,光斑直径为8mm,送粉速率为18g/min,Z轴提升量为1mm,采用Z字形扫描路径。
优选的,所述的A1步骤中冷却速率15-25℃/min,平均20℃/min,所述的A2步骤中冷却速率15-21℃/min,平均18℃/min
本发明高强塑积的TC11激光熔化沉积构件采用前述任意一项高强塑积的TC11激光熔化沉积构件的制备方法制得。
本发明的有益效果是:
本发明制得的后热处理后TC11激光熔化沉积构件,在950℃保温1h空冷至室温的试样的微观组织均匀化,高能态的α′分解为α+β相,β晶界出现球化、不连续现象。抗拉强度相对于未后热处理试样降低较小,但断裂伸长率明显提高,相较于未后热处理试样提高55.6%,强塑积提高56.2%,这归因于热处理引起的晶界α相断裂,且较快的一级热处理冷却速度促进细小的网篮状组织形成,从而抗拉强度相对较高。在530℃保温6h作为一种时效手段,获得更稳定的显微组织,消除残余应力,增强构件塑性,在此过程中析出具有强化作用Ti3Al颗粒,缓解组织粗化导致的强度降低现象。相较于现有技术,本发明后热处理步骤简单,制得的TC11激光熔化沉积构件具有较高的强塑积。
附图说明
图1本发明对照例1所获得TC11激光熔化沉积构件的显微形貌;
图2本发明对照例2所获得TC11激光熔化沉积构件的显微形貌;
图3本发明对照例3所获得TC11激光熔化沉积构件的显微形貌;
图4本发明对照例4所获得TC11激光熔化沉积构件的显微形貌;
图5本发明对照例5所获得TC11激光熔化沉积构件的显微形貌;
图6本发明实施例1所获得TC11激光熔化沉积构件的显微形貌;
图7本发明实施例与对照例所获得TC11激光熔化沉积构件拉伸应力—应变曲线;
图7中:
a为对照例1所获得TC11激光熔化沉积构件的拉伸应力—应变曲线;
b为对照例2所获得TC11激光熔化沉积构件的拉伸应力—应变曲线;
c为对照例3所获得TC11激光熔化沉积构件的拉伸应力—应变曲线;
d为对照例4所获得TC11激光熔化沉积构件的拉伸应力—应变曲线;
e为对照例5所获得TC11激光熔化沉积构件的拉伸应力—应变曲线;
f为实施例1所获得TC11激光熔化沉积构件的拉伸应力—应变曲线;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,本发明中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
高强塑积的TC11激光熔化沉积构件的制备方法包括如下步骤:
S1在TC11基体上采用同轴同步送粉的激光熔化沉积方法制备激光增材构件;
S2在真空环境下,对TC11激光熔化沉积构件进行后热处理,
所述的激光熔化沉积方法采用粒径范围为75~250μm的TC11钛合金粉末。
所述的激光熔化沉积方法中激光功率为4000W,外部扫描轮廓速度为800mm/min,光斑直径为8mm,送粉速率为18g/min,Z轴提升量为1mm,采用Z字形扫描路径。
实施例1:
一种高强塑积的TC11激光熔化沉积构件,后热处理包括以下步骤:
A1将激光增材构件在950℃保温1h后空冷至室温,冷却速率15-25℃/min,平均20℃/min;
A2将冷却至室温的激光增材构件升温至530℃后保温6h,然后空冷至室温,冷却速率15-21℃/min,平均18℃/min。
对照例1:
一种高强塑积的TC11激光熔化沉积构件,不进行后热处理。
对照例2:
一种高强塑积的TC11激光熔化沉积构件,后热处理包括以下步骤:
B1将激光增材构件在950℃保温1h后风冷至室温,冷却速率30-50℃/min,平均40℃/min;
B2将冷却至室温的激光增材构件升温至530℃后保温6h,然后炉冷至室温,冷却速率6-8℃/min,平均7℃/min。
对照例3:
一种高强塑积的TC11激光熔化沉积构件,后热处理包括以下步骤:
C1将激光增材构件在950℃保温1h后炉冷至室温,冷却速率6-8℃/min,平均7℃/min;
C2将冷却至室温的激光增材构件升温至530℃后保温6h,然后炉冷至室温,冷却速率6-8℃/min,平均7℃/min。
对照例4:
一种高强塑积的TC11激光熔化沉积构件,后热处理包括以下步骤:
D1将激光增材构件在950℃保温1h后风冷至室温,冷却速率30-50℃/min,平均40℃/min;
D2将冷却至室温的激光增材构件升温至530℃后保温6h,然后空冷至室温,冷却速率15-21℃/min,平均18℃/min。
对照例5:
一种高强塑积的TC11激光熔化沉积构件,后热处理包括以下步骤:
E1将激光增材构件在950℃保温1h后炉冷至室温,冷却速率冷却速率6-8℃/min,平均7℃/min;
E2将冷却至室温的激光增材构件升温至530℃后保温6h,然后空冷至室温,冷却速率15-21℃/min,平均18℃/min。
本具体实施例获得的TC11激光熔化沉积构件的组织与性能见图1-7。
参见图1-6,本发明实施例与对照例所获得TC11激光熔化沉积构件二次电子形貌,可以看出在后热处理后,α相粗化、长径比显著减小,αGB粗化、球化、破碎。
参见图7与表1,可以看出在后热处理后,破碎αGB有效改善了TC11激光熔化沉积构件的塑性。经过后热处理的实施例1与未经过后热处理的对照例1相比,断裂伸长率提高了55.6%,强塑积提高56.2%。
表1本具体实施例所得TC11激光熔化沉积构件的力学性能数据
实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (4)

1.一种高强塑积的TC11激光熔化沉积构件的制备方法,其特征在于,包括以下步骤:
S1在TC11基体上采用同轴同步送粉的激光熔化沉积方法制备激光增材构件;
S2在真空环境下,对TC11激光熔化沉积构件进行后热处理,
所述的激光熔化沉积方法采用粒径范围为75~250μm的TC11钛合金粉末,所述的后热处理包括以下步骤:
A1将激光增材构件在950℃保温1h后空冷至室温;
A2将冷却至室温的激光增材构件升温至530℃后保温6h,然后空冷至室温。
2.根据权利要求1所述的高强塑积的TC11激光熔化沉积构件的制备方法,其特征在于:所述的激光熔化沉积方法中激光功率为4000W,扫描速度为800mm/min,光斑直径为8mm,送粉速率为18g/min,Z轴提升量为1mm,采用Z字形扫描路径。
3.根据权利要求1所述的高强塑积的TC11激光熔化沉积构件的制备方法,其特征在于:所述的A1步骤中冷却速率15-25℃/min,平均20℃/min,所述的A2步骤中冷却速率15-21℃/min,平均18℃/min。
4.一种高强塑积的TC11激光熔化沉积构件,其特征在于:采用如权利要求1或2中任意一项制得的高强塑积的TC11激光熔化沉积构件。
CN202310515708.XA 2023-05-09 2023-05-09 一种高强塑积的tc11激光熔化沉积构件及其制备方法 Pending CN116532659A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310515708.XA CN116532659A (zh) 2023-05-09 2023-05-09 一种高强塑积的tc11激光熔化沉积构件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310515708.XA CN116532659A (zh) 2023-05-09 2023-05-09 一种高强塑积的tc11激光熔化沉积构件及其制备方法

Publications (1)

Publication Number Publication Date
CN116532659A true CN116532659A (zh) 2023-08-04

Family

ID=87455579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310515708.XA Pending CN116532659A (zh) 2023-05-09 2023-05-09 一种高强塑积的tc11激光熔化沉积构件及其制备方法

Country Status (1)

Country Link
CN (1) CN116532659A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275596A (zh) * 2021-07-25 2021-08-20 北京煜鼎增材制造研究院有限公司 一种复合制造钛合金零件
CN115609007A (zh) * 2022-10-08 2023-01-17 齐鲁工业大学 一种高效激光增材制造钛合金及改善其各向异性的热处理方法
KR20230052359A (ko) * 2021-10-12 2023-04-20 주식회사 삼기 형상적응형 냉각채널을 가지는 금형의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275596A (zh) * 2021-07-25 2021-08-20 北京煜鼎增材制造研究院有限公司 一种复合制造钛合金零件
KR20230052359A (ko) * 2021-10-12 2023-04-20 주식회사 삼기 형상적응형 냉각채널을 가지는 금형의 제조방법
CN115609007A (zh) * 2022-10-08 2023-01-17 齐鲁工业大学 一种高效激光增材制造钛合金及改善其各向异性的热处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
郭明海,张英伟,相泽锋,高佩宝,刘斌,李广生,李澄: "激光沉积及热处理工艺对 TC11 钛合金组织和性能的影响", 钢管, vol. 51, no. 1, 15 February 2022 (2022-02-15), pages 7 - 12 *
黄瑜;陈静;张凤英;林鑫;黄卫东;: "热处理对激光立体成形TC11钛合金组织的影响", 稀有金属材料与工程, no. 12, 15 December 2009 (2009-12-15) *

Similar Documents

Publication Publication Date Title
EP2565289B1 (en) Thermal treatment process of an amorphous alloy die casting
CN113355666B (zh) 一种激光熔覆增材制造tc18钛合金组织细化和等轴化方法
CN109022985B (zh) 一种高强度、高塑性的双相(α+β相)镁锂合金材料及其制备方法
CN113604695B (zh) 一种通过添加稀土合金优化增材制造钛合金组织的方法
CN101348890B (zh) 提高高强度变形镁合金阻尼性能的热处理工艺
US11351585B2 (en) Preparation method for a high-strength extruded profile of Mg—Zn—Sn—Mn alloy
CN113462948A (zh) 一种ZrTiNbAlV低中子吸收截面难熔高熵合金及其制备方法
CN115537600A (zh) 一种增材制造高强韧β钛合金材料及其制备方法
CN113403508A (zh) 一种喷射成形高硅耐磨铝合金的热处理工艺
CN109609824A (zh) 一种高塑性铸造镁合金及其制备方法
CN112247156A (zh) 内生纳米TiC颗粒的钛合金粉体及其制备方法和应用
CN116532659A (zh) 一种高强塑积的tc11激光熔化沉积构件及其制备方法
CN110964959A (zh) 一种高强度镁锂合金
CN110923589A (zh) 一种用于700~750℃的短纤维增强高温钛合金Ti-101AM
CN116287913A (zh) 一种增材制造用微量元素改性铝锂合金粉末及其制备方法
CN114686735A (zh) 一种具有梯度结构变形铝合金及其制备方法
CN115094261A (zh) 一种粗晶-细晶复合结构钛合金及其制备方法和用途
CN111945088B (zh) 一种低合金化Al-Mg-Si合金的热处理方法
CN112048653A (zh) 一种超细晶的变形镁合金材料及其制备方法
CN115369339B (zh) 一种镁锂合金模锻件的热处理方法
CN111363990B (zh) 一种无铅易切削铝合金挤压棒材的热处理方法
CN113881863B (zh) 一种NiTi-Al基合金的制备方法
CN115584419B (zh) 一种耐热双相镁锂合金及其制备方法
CN113927031B (zh) 一种Ti-5Al-5Mo-5V-3Cr-Zr合金掺杂Y提升钛合金性能的方法
CN117187644A (zh) 一种电弧增材制造用镁锂基复合材料丝材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination