CN116525063A - 基于时频分析的睡眠周期性检测及调节方法、系统和装置 - Google Patents
基于时频分析的睡眠周期性检测及调节方法、系统和装置 Download PDFInfo
- Publication number
- CN116525063A CN116525063A CN202310771780.9A CN202310771780A CN116525063A CN 116525063 A CN116525063 A CN 116525063A CN 202310771780 A CN202310771780 A CN 202310771780A CN 116525063 A CN116525063 A CN 116525063A
- Authority
- CN
- China
- Prior art keywords
- sleep
- curve
- characteristic
- time
- periodic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007958 sleep Effects 0.000 title claims abstract description 572
- 238000004458 analytical method Methods 0.000 title claims abstract description 250
- 238000000034 method Methods 0.000 title claims abstract description 138
- 238000001514 detection method Methods 0.000 title claims abstract description 75
- 230000000737 periodic effect Effects 0.000 claims abstract description 217
- 230000000694 effects Effects 0.000 claims abstract description 91
- 230000004622 sleep time Effects 0.000 claims abstract description 74
- 230000035790 physiological processes and functions Effects 0.000 claims abstract description 62
- 230000008878 coupling Effects 0.000 claims abstract description 28
- 238000010168 coupling process Methods 0.000 claims abstract description 28
- 238000005859 coupling reaction Methods 0.000 claims abstract description 28
- 230000001276 controlling effect Effects 0.000 claims abstract description 12
- 230000001105 regulatory effect Effects 0.000 claims abstract description 11
- 230000036578 sleeping time Effects 0.000 claims abstract description 10
- 238000001914 filtration Methods 0.000 claims description 73
- 230000000638 stimulation Effects 0.000 claims description 50
- 230000008569 process Effects 0.000 claims description 49
- 238000012545 processing Methods 0.000 claims description 42
- 238000007726 management method Methods 0.000 claims description 36
- 230000009466 transformation Effects 0.000 claims description 33
- 238000012937 correction Methods 0.000 claims description 31
- 238000004364 calculation method Methods 0.000 claims description 27
- 238000011156 evaluation Methods 0.000 claims description 18
- 238000005457 optimization Methods 0.000 claims description 18
- 238000011002 quantification Methods 0.000 claims description 15
- 230000000007 visual effect Effects 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000012216 screening Methods 0.000 claims description 9
- 238000013135 deep learning Methods 0.000 claims description 7
- 238000009432 framing Methods 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 7
- 210000000467 autonomic pathway Anatomy 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 6
- 230000001755 vocal effect Effects 0.000 claims description 6
- 238000010220 Pearson correlation analysis Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 4
- 238000013519 translation Methods 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 claims description 4
- 241001123248 Arma Species 0.000 claims description 3
- 206010062519 Poor quality sleep Diseases 0.000 claims description 3
- 238000012952 Resampling Methods 0.000 claims description 3
- 241000728173 Sarima Species 0.000 claims description 3
- 230000036760 body temperature Effects 0.000 claims description 3
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000010219 correlation analysis Methods 0.000 claims description 3
- 238000013500 data storage Methods 0.000 claims description 3
- 238000013079 data visualisation Methods 0.000 claims description 3
- 238000012217 deletion Methods 0.000 claims description 3
- 230000037430 deletion Effects 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 3
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 238000009499 grossing Methods 0.000 claims description 3
- 230000003862 health status Effects 0.000 claims description 3
- 238000002582 magnetoencephalography Methods 0.000 claims description 3
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 claims description 3
- 230000036385 rapid eye movement (rem) sleep Effects 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 239000008280 blood Substances 0.000 claims description 2
- 210000004369 blood Anatomy 0.000 claims description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 1
- 230000033764 rhythmic process Effects 0.000 description 9
- 230000007613 environmental effect Effects 0.000 description 4
- 238000013139 quantization Methods 0.000 description 4
- 230000004617 sleep duration Effects 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036403 neuro physiology Effects 0.000 description 1
- 230000008452 non REM sleep Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000004461 rapid eye movement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003860 sleep quality Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4812—Detecting sleep stages or cycles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
- A61B5/02055—Simultaneously evaluating both cardiovascular condition and temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4815—Sleep quality
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H15/00—ICT specially adapted for medical reports, e.g. generation or transmission thereof
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/30—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H80/00—ICT specially adapted for facilitating communication between medical practitioners or patients, e.g. for collaborative diagnosis, therapy or health monitoring
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Primary Health Care (AREA)
- Surgery (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physical Education & Sports Medicine (AREA)
- Pulmonology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明提供了基于时频分析的睡眠周期性检测及调节方法、系统和装置,包括:采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线;对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和曲线;对睡眠时相曲线、睡眠状态特征曲线和睡眠周期性指数曲线进行动态预测分析并动态调控;根据睡眠时相曲线、睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,建立并更新用户数据库,动态优化时频分析的检测量化和动态调节方法。本发明能够实现对用户睡眠周期的高效干预调节。
Description
技术领域
本发明涉及睡眠周期性检测量化及辅助调节领域,特别涉及基于时频分析的睡眠周期性及调节方法、系统和装置。
背景技术
健康优质的人类睡眠过程具备非常好的周期性,即非快速眼动睡眠NREM和快速眼动睡眠REM的周期性循环交替,每个周期持续90-120分钟。睡眠周期性是人类睡眠健康和睡眠质量的一个非常重要的衡量指标,但由于精神压力、生理状况和睡眠环境等多种因素,睡眠周期性受到很多干扰和挑战。
申请人提出的在先解决方案中申请CN115910351A提供了一种睡眠周期性检测量化及辅助干预的方法,包括以下步骤:采集用户睡眠过程的生理状态数据和环境状态数据,进行信号数据预处理和时帧处理,得到生理状态信息和环境状态信息;对所述生理状态信息和所述环境状态信息进行时帧状态特征分析,生成生理状态特征和环境状态特征;对所述生理状态特征进行睡眠状态分析、时序成分分析和周期性量化分析,评价用户睡眠状态的睡眠基线周期变化强度、基线周期变化趋势和变化模式合理性,提取睡眠周期性指数,生成睡眠周期性量化日报;重复上述步骤,对用户睡眠过程进行连续监测和跟踪分析,评估睡眠环境对睡眠周期性的影响,提取最佳睡眠周期性环境方案并对睡眠环境进行动态优化调整,生成睡眠周期性量化报告。该技术方案提出了睡眠周期性指数作为睡眠循环周期规律量化的创新评价指标,通过时间序列分解方法从睡眠持续期状态特征曲线中提取睡眠持续期状态时序周期成分,计算睡眠周期性强度并得到睡眠周期性指数,已经能够初步解决睡眠周期性量化的问题。但还存在可以提升的空间,主要包括:首先,时间序列分解方法在计算效率、多场景评价和人群适应度上表现出局限性;其次,睡眠持续期状态特征曲线是基于阶梯式睡眠时相分期值平滑得到的,仅能对用户睡眠状态进行简要描述,而不能细致地刻画和量化,最终了带来了睡眠周期性的评价不够细致和灵敏;其次,如何更优地通过睡眠环境调节来实现对用户睡眠周期性的高效干预调节;最后,如何实现用户长期的、个性化的睡眠周期性指数检测量化和动态调节并持续提升检测准确性和调节高效性。
如何更全面深入地描述用户睡眠状态特征和连续变化;如何更准确快速地完成不同人群的睡眠周期性评价;如何实现更精准高效的、多手段的用户睡眠周期性动态调节;如何构建睡眠周期性检测量化和动态调节的一体化协同机制,提高用户个性化的检测量化和干预调节的效率效果,是目前国内外产品技术方案和实际应用场景中需要进一步优化或解决的问题。
发明内容
针对现有方法的以上缺陷及改进需求,本发明的目的在于提供一种基于时频分析的睡眠周期性检测及调节方法,通过对睡眠生理状态信号的采集处理和多特征分析提取得到睡眠状态特征曲线,进而通过去趋势处理和时频分析提取得到睡眠周期TF成分信号,通过周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数并生成睡眠周期性指数曲线;进一步,对用户睡眠状态的动态预测分析并生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估;其次,对检测量化和动态调节过程进行相关性和分布特征分析,生成用户睡眠周期性检测及调节报告;最后,建立并动态更新用户睡眠周期特征数据库,反向反馈优化检测量化和动态调节过程中的方法和策略,实现用户个性化的、检测量化和干预调节的效率效果的不断提升。本发明还提供了基于时频分析的睡眠周期性检测及调节系统,用于实现上述方法。本发明还提供了基于时频分析的睡眠周期性检测及调节装置,用于实现上述系统。
根据本发明的目的,本发明提出了一种基于时频分析的睡眠周期性检测及调节方法,包括以下步骤:
采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线;
对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线;
对所述睡眠时相曲线、所述睡眠状态特征曲线和所述睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估;
根据所述睡眠时相曲线、所述睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告;
建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、所述周期边界频率、动态预测分析方法参数和所述睡眠周期动态调节策略。
更优地,所述采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线的具体步骤还包括:
对用户的睡眠生理状态信号进行采集监测和信号处理,生成睡眠生理状态时帧数据;
对所述睡眠生理状态时帧数据中的全部时帧数据进行特征分析和特征选择,生成所述睡眠状态特征曲线;
对所述睡眠生理状态时帧数据中的全部时帧数据进行睡眠时相分析,生成所述睡眠时相曲线。
更优地,所述睡眠生理状态信号至少包括脑中枢状态信号、自主神经状态信号中的任一项;其中,所述脑中枢状态信号至少包括脑电图信号、脑磁图信号、血氧水平依赖信号中的任一项,所述自主神经状态信号至少包括中血氧水平依赖信号、心电信号、脉搏信号、呼吸信号、血氧信号、体温信号和皮肤电信号的任一项。
更优地,所述信号处理至少包括AD数模转换、重采样、重参考、降噪、去伪迹、工频陷波、低通滤波、高通滤波、带阻滤波、带通滤波、矫正处理和分帧处理;其中,所述矫正处理具体为对目标信号中的包含伪迹或失真的信号数据片段进行信号矫正、信号预测和平滑处理,所述分帧处理是指根据信号采样率,以预设时间窗口长度和预设时间平移步长对目标信号进行连续滑动分割。
更优地,所述特征分析至少包括数值分析、包络分析、时频分析、熵分析、分形分析和复杂度分析中的任一项。
更优地,所述睡眠状态特征曲线具体为准确刻画用户在不同睡眠时期、不同睡眠时相的睡眠生理状态连续变化的特征曲线,由从所述特征分析得到的目标特征集中筛选出预设特征数量的目标特征并进行加权计算组合得到;其中,所述睡眠时期至少包括入睡前、睡眠中和睡眠后,所述睡眠时相至少包括清醒觉醒期、浅睡眠期、深睡眠期和快速眼动睡眠期。
更优地,所述睡眠时相曲线的生成方法具体为:
1)通过深度学习算法对规模睡眠用户样本的所述睡眠生理状态时帧数据及其对应睡眠时相分期数据进行学习训练和数据建模,得到睡眠时相分期识别模型;
2)将当前用户的所述睡眠生理状态时帧数据输入所述睡眠时相分期识别模型,得到所对应的睡眠时相分期并按时序生成所述睡眠时相曲线。
更优地,所述对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线的具体步骤还包括:
对所述睡眠状态特征曲线进行去趋势处理,得到睡眠状态特征基线曲线;
根据所述睡眠状态特征曲线的特征组合生成方式,确定所述周期边界频率和时频分析的方法参数;
对所述睡眠状态特征基线曲线进行时频分析,得到睡眠状态曲线时频特征集合;
从所述睡眠状态曲线时频特征集合中,时频信号逆变换和或直接提取满足所述周期边界频率的周期TF成分信号的所述功率特征和或所述幅值特征;
根据所述功率特征和或所述幅值特征,计算得到所述睡眠周期性指数并按时序生成所述睡眠周期性指数曲线。
更优地,所述去趋势处理具体为移除目标信号中线性趋势成分和极低频趋势成分,至少包括去均值处理、低通滤波处理、去趋势分析FDA、多重分形去趋势分析MFDFA、非对称消除趋势波动分析ADFA中的任意一项。
更优地,所述时频分析至少包括时频变换、时域滤波和频域滤波中的任一项;其中,所述时频变换至少包括标准傅里叶变换、快速傅里叶变换、短时傅里叶变换、S变换、Gabor变换、希尔伯特黄变换、Wigner-Ville分布、平滑Wigner-Ville分布、伪Wigner-Ville分布、平滑伪Wigner-Ville分布、Choi-Williams分布中的任一项,所述时域滤波至少包括平均值滤波、中值滤波、卡尔曼滤波和Savitzky-Golay滤波中的任一项,所述频域滤波至少包括低通滤波、高通滤波、带通滤波、带阻滤波中的任一项。
更优地,所述周期边界频率至少包括带通截止频率、低通截止频率中的任一项。
更优地,所述功率特征至少包括功率密度曲线、总功率、功率均值、功率均方根、最大功率值、最小功率值、功率标准差、功率变异系数、功率占比、中心频率;其中,所述功率占比具体为周期TF成分信号与所述睡眠状态特征基线曲线的功率比值,所述中心频率具体为周期TF成分信号的最大功率处对应的频率值,所述功率标准差具体为周期TF成分信号对应功率密度曲线的标准差,所述功率变异系数具体为周期TF成分信号对应功率密度曲线的变异系数。
更优地,所述幅值特征至少包括幅值曲线、幅值均值、幅值均方根、最大幅值、最小幅值、幅值标准差、幅值变异系数、幅值峰度、幅值偏度。
更优地,所述睡眠周期性指数的计算方法,具体为:
1)获取周期TF成分信号的所述功率特征和或所述幅值特征;
2)对所述功率特征中的数值特征进行筛选并进行组合计算,得到周期性功率特征系数;
3)对所述幅值特征中的数值特征进行筛选并进行组合计算,得到周期性幅值特征系数;
4)根据所述周期性功率特征系数、所述周期性幅值特征系数、所述时频分析的方法对应预设方法修正系数和用户生物状态信息相关的预设用户个性修正系数,计算得到所述睡眠周期性指数。
更优地,所述睡眠周期性指数的一种计算公式,具体为:
;
其中,为所述睡眠周期性指数,/>分别为预设用户个性修正系数和预设方法修正系数,/>分别为所述周期性功率特征系数和所述周期性幅值特征系数。
更优地,所述周期性功率特征系数的一种计算公式,具体为:
;
其中,为所述周期性功率特征系数,/>为所述功率特征中的功率占比,/>为所述功率特征中的功率标准差。
更优地,所述周期性幅值特征系数的一种计算公式,具体为:
;
其中,为所述周期性幅值特征系数,/>为所述幅值特征中的幅值标准差。
更优地,所述用户生物状态信息至少包括性别、年龄、职业、健康状态、疾病状态和教育程度。
更优地,所述对所述睡眠时相曲线、所述睡眠状态特征曲线和所述睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估的具体步骤还包括:
对所述睡眠时相曲线进行趋势预测分析,得到睡眠时相预测值;
对所述睡眠状态特征曲线进行趋势预测分析,得到睡眠状态周期特征预测值;
对所述睡眠周期性指数曲线进行趋势预测分析,得到睡眠周期性指数预测值;
按照预设动态调节周期,根据所述睡眠时相预测值、所述睡眠状态周期特征预测值、所述睡眠周期性指数预测值和预设睡眠周期调控知识库,动态生成所述睡眠周期动态调节策略;
根据所述睡眠周期动态调节策略,连接并控制睡眠周期调节外围设备,对用户睡眠过程进行动态干预调节;
对动态干预调节的效果进行动态跟踪评估,提取动态调节效果系数并生成动态调节效果曲线,计算得到调节效果综合指数。
更优地,所述趋势预测分析的方法至少包括AR、MR、ARMA、ARIMA、SARIMA、VAR、深度学习中的任一项。
更优地,所述睡眠周期动态调节策略至少包括睡眠场景、睡眠时相、调节方式、执行方式、调节方法、调节强度、调节时点、持续时间、目标调节值和装置控制参数;其中,所述调节方式至少包括声乐刺激、超声刺激、光刺激、电刺激、磁刺激、温度刺激、湿度刺激、触觉刺激和浓度调控中的任一方式,所述执行方式至少包括离体式和接触式中的任一方式。
更优地,所述睡眠周期调节外围设备至少包括声乐刺激设备、超声刺激设备、光刺激设备、电刺激设备、磁刺激设备、温度刺激设备、湿度刺激设备、触觉刺激设备和浓度调控设备中的任一项,并由具体的调节方式决定。
更优地,所述动态调节效果系数的一种计算方式,具体为:
;
其中,为所述动态调节效果系数,/>为预设用户个性修正系数,分别为动态调节前的所述睡眠状态特征曲线中睡眠状态周期特征数值和所述睡眠周期性指数,/>分别为动态调节后的所述睡眠状态特征曲线中的睡眠状态周期特征数值和所述睡眠周期性指数,/>为动态调节前的所述睡眠周期性指数预测值,/>为取绝对值算符。
更优地,所述动态调节效果系数将用于后续时频分析方法参数、动态预测分析方法参数、所述趋势预测分析的方法选择、所述睡眠周期动态调节策略的动态优化。
更优地,所述调节效果综合指数具体为所述动态调节效果曲线的平均值或均方根。
更优地,所述根据所述睡眠时相曲线、所述睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告的具体步骤还包括:
计算所述睡眠时相曲线和所述睡眠周期性指数曲线的相关性,得到所述时相周期性耦合指数;
根据所述睡眠时相曲线、所述睡眠周期性指数曲线和所述动态调控效果曲线,计算不同睡眠时相下所述睡眠周期性指数、动态调节效果系数的分布特征,得到所述时相调节分布特征;
计算所述睡眠周期性指数曲线和所述动态调控效果曲线的相关性,得到所述周期指数调控系数;
按照预设报告周期,生成所述用户睡眠周期性检测及调节报告。
更优地,所述相关性的计算方法至少包括相干性分析、皮尔逊相关分析、杰卡德相似分析、线性互信息分析、线性相关分析、欧氏距离分析、曼哈顿距离分析、切比雪夫距离分析中的任意一项。
更优地,所述分布特征至少包括平均值、均方根、最大值、最小值、方差、标准差、变异系数、峰度和偏度中的任意一项。
更优地,所述用户睡眠周期性检测及调节报告至少包括用户生物状态信息、所述睡眠状态特征曲线、所述睡眠时相曲线、所述睡眠周期性指数曲线、所述动态调控效果曲线、所述时相周期性耦合指数、所述时相调节分布特征、所述周期指数调控系数、检测及调节小结。
更优地,所述建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、所述周期边界频率、动态预测分析方法参数和所述睡眠周期动态调节策略的具体步骤还包括:
初始化建立并持续动态更新所述用户睡眠周期特征数据库;
根据所述用户睡眠周期特征数据库,动态优化时频分析方法参数、动态预测分析方法参数和所述睡眠周期动态调节策略,提升用户睡眠周期性检测量化和动态调节的质量和效能。
更优地,所述用户睡眠周期特征数据库至少包括所述用户生物状态信息、所述睡眠状态特征曲线、所述睡眠时相曲线、所述睡眠周期性指数曲线、所述动态调控效果曲线、所述时相周期性耦合指数、所述时相调节分布特征、所述周期指数调控系数、时频分析方法、趋势预测分析方法、所述睡眠周期动态调节策略。
根据本发明的目的,本发明提出了一种基于时频分析的睡眠周期性检测及调节系统,包括以下模块:
状态采集分析模块,用于采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线;
时频指数分析模块,用于对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线;
动态策略调控模块,用于对所述睡眠时相曲线、所述睡眠状态特征曲线和所述睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估;
检测调节分析模块,用于根据所述睡眠时相曲线、所述睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告;
检测调节优化模块,用于建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、所述周期边界频率、动态预测分析方法参数和所述睡眠周期动态调节策略;
数据运行管理模块,用于对所述系统的全部过程数据进行可视化管理、统一存储和运行管理。
更优地,所述状态采集分析模块还包括以下功能单元:
状态采集处理单元,用于对用户的睡眠生理状态信号进行采集监测和信号处理,生成睡眠生理状态时帧数据;
状态曲线提取单元,用于对所述睡眠生理状态时帧数据中的全部时帧数据进行特征分析和特征选择,生成所述睡眠状态特征曲线;
睡眠时相分析单元,用于对所述睡眠生理状态时帧数据中的全部时帧数据进行睡眠时相分析,生成所述睡眠时相曲线。
更优地,所述时频指数分析模块还包括以下功能单元:
曲线趋势处理单元,用于对所述睡眠状态特征曲线进行去趋势处理,得到睡眠状态特征基线曲线;
分析参数选择单元,用于根据所述睡眠状态特征曲线的特征组合生成方式,确定所述周期边界频率和时频分析的方法参数;
信号时频分析单元,用于对所述睡眠状态特征基线曲线进行时频分析,得到睡眠状态曲线时频特征集合;
周期特征提取单元,用于从所述睡眠状态曲线时频特征集合中,时频信号逆变换和或直接提取满足所述周期边界频率的周期TF成分信号的所述功率特征和或所述幅值特征;
周期指数计算单元,用于根据所述功率特征和或所述幅值特征,计算得到所述睡眠周期性指数并按时序生成所述睡眠周期性指数曲线。
更优地,所述动态策略调控模块还包括以下功能单元:
睡眠时相预测单元,用于对所述睡眠时相曲线进行趋势预测分析,得到睡眠时相预测值;
周期特征预测单元,用于对所述睡眠状态特征曲线进行趋势预测分析,得到睡眠状态周期特征预测值;
周期指数预测单元,用于对所述睡眠周期性指数曲线进行趋势预测分析,得到睡眠周期性指数预测值;
调节策略生成单元,用于按照预设动态调节周期,根据所述睡眠时相预测值、所述睡眠状态周期特征预测值、所述睡眠周期性指数预测值和预设睡眠周期调控知识库,动态生成所述睡眠周期动态调节策略;
动态调节执行单元,用于根据所述睡眠周期动态调节策略,连接并控制睡眠周期调节外围设备,对用户睡眠过程进行动态干预调节;
动态效果评估单元,用于对动态干预调节的效果进行动态跟踪评估,提取动态调节效果系数并生成动态调节效果曲线,计算得到调节效果综合指数。
更优地,所述检测调节分析模块还包括以下功能单元:
时相耦合分析单元,用于计算所述睡眠时相曲线和所述睡眠周期性指数曲线的相关性,得到所述时相周期性耦合指数;
时相分布分析单元,用于根据所述睡眠时相曲线、所述睡眠周期性指数曲线和所述动态调控效果曲线,计算不同睡眠时相下所述睡眠周期性指数、动态调节效果系数的分布特征,得到所述时相调节分布特征;
周期调控分析单元,用于计算所述睡眠周期性指数曲线和所述动态调控效果曲线的相关性,得到所述周期指数调控系数;
用户报告生成单元,用于按照预设报告周期,生成所述用户睡眠周期性检测及调节报告;
用户报告输出单元,用于对所述用户睡眠周期性检测及调节报告的格式输出、展现形式进行统一管理。
更优地,所述检测调节优化模块还包括以下功能单元:
数据库管理单元,用于初始化建立并持续动态更新所述用户睡眠周期特征数据库;
检测调节优化单元,用于根据所述用户睡眠周期特征数据库,动态优化时频分析方法参数、动态预测分析方法参数和所述睡眠周期动态调节策略,提升用户睡眠周期性检测量化和动态调节的质量和效能。
更优地,所述数据运行管理模块还包括以下功能单元:
用户信息管理单元,用于用户基本信息的登记输入、编辑、查询、输出和删除;
数据可视化管理单元,用于对所述系统中所有数据的可视化展现管理;
数据存储管理单元,用于对所述系统中所有数据的统一存储管理;
数据运营管理单元,用于对所述系统中所有数据的备份、迁移和导出。
根据本发明的目的,本发明提出了一种基于时频分析的睡眠周期性检测及调节装置,包括以下模组:
状态采集分析模组,用于采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线;
时频指数分析模组,用于对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线;
动态策略调控模组,用于对所述睡眠时相曲线、所述睡眠状态特征曲线和所述睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估;
检测调节分析模组,用于根据所述睡眠时相曲线、所述睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告;
检测调节优化模组,用于建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、所述周期边界频率、动态预测分析方法参数和所述睡眠周期动态调节策略;
数据可视化模组,用于对所述装置中所有过程数据和/或结果数据的统一可视化展示管理;
数据管理中心模组,用于对所述装置中所有过程数据和/或结果数据的统一存储和数据运营管理。
本发明在申请人的在先研究基础上进一步优化睡眠周期性指数量化的具体设计,进一步优化睡眠状态特征曲线的提取方式,进一步将去趋势处理、时频变换、时域滤波和频域滤波等时频分析方法应用于睡眠周期性信息的提取,其考量了完整睡眠时期的连续状态特征,更加全面、适应度广;本申请还进一步改进了睡眠周期性指数的计算方式,提升了评价的细粒度和灵敏度;还进一步提供了动态调节效果系数的计算方案和反馈应用框架,以及用户个性化的用户睡眠周期特征数据库的建立更新和反馈应用框架,使得对于检测量化和动态调节过程的协同控制有了有力依据。本发明能够提供更加科学高效的睡眠周期性检测量化及动态调节的实施方法和落地方案。在实际应用场景中,本发明提供的基于时频分析的睡眠周期性检测及调节方法、系统和装置,能够赋能相关睡眠量化或调节的产品及服务,满足不同用户场景需求,辅助用户睡眠。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1是本发明一实施例所提供的一种基于时频分析的睡眠周期性检测及调节方法的流程步骤示意图;
图2是本发明一实施例所提供的一种基于时频分析的睡眠周期性检测及调节系统的模块组成示意图;
图3是本发明一实施例所提供的基于时频分析的睡眠周期性检测及调节装置的模组构成示意图。
具体实施方式
为了更清楚地说明本发明的目的和技术方案,下面将结合本发明申请实施例中的附图,对本发明进行进一步介绍说明。显而易见地,下面描述的实施例仅是本发明一部分实施例,而不是全部的实施例。在没有创造性劳动前提下,本领域普通技术人员基于本发明的实施例所得到的其他实施例,都应属于本发明的保护范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
申请人发现在通常情况下,人类睡眠生理状态连续变化过程是个非平稳时序过程,固睡眠状态特征描述时序曲线也是一个非平稳信号。而对于非平稳信号的信息处理和信息提取,申请人通过去趋势处理、时频变换、时域滤波和频域滤波等时频分析方法来从睡眠状态特征曲线中提取睡眠状态特征曲线,并进一步优化睡眠周期性的检测量化和动态调节过程。其中,时频变换是一种信号时频分布特征分析的方法,提供了时间域与频率域的联合分布信息,清楚地描述了信号频率随时间变化的关系;常用的时频变换方法包括标准傅里叶变换FT、快速傅里叶变换FFT、短时傅里叶变换STFT、S变换、Gabor变换、希尔伯特黄变换HHT、Wigner-Ville分布WVD、平滑Wigner-Ville分布SWVD、伪Wigner-Ville分布PWVD、平滑伪Wigner-Ville分布SPWVD、Choi-Williams分布CWD等,广泛用于线性平稳信号和非线性平稳信号的时频分析。时频滤波是一种信号时频特征分析提取的方法,分为时域滤波和频域滤波,广泛应用于信号处理各个领域;时域滤波可分为平均值滤波、中值滤波、卡尔曼滤波和Savitzky-Golay滤波等,频域滤波可分为低通滤波、高通滤波、带通滤波、带阻滤波等。
结合图1所示,本发明实施例提供的一种基于时频分析的睡眠周期性检测及调节方法,包括以下步骤:
P100:采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线。
第一步、对用户的睡眠生理状态信号进行采集监测和信号处理,生成睡眠生理状态时帧数据。
本实施例中,睡眠生理状态信号至少包括脑中枢状态信号、自主神经状态信号中的任一项;其中,脑中枢状态信号至少包括脑电图信号、脑磁图信号、血氧水平依赖信号中的任一项,自主神经状态信号至少包括中血氧水平依赖信号、心电信号、脉搏信号、呼吸信号、血氧信号、体温信号和皮肤电信号的任一项。
本实施例中,信号处理至少包括AD数模转换、重采样、重参考、降噪、去伪迹、工频陷波、低通滤波、高通滤波、带阻滤波、带通滤波、矫正处理和分帧处理;其中,矫正处理具体为对目标信号中的包含伪迹或失真的信号数据片段进行信号矫正、信号预测和平滑处理,分帧处理是指根据信号采样率,以预设时间窗口长度和预设时间平移步长对目标信号进行连续滑动分割。
本实施例中,采集监测用户睡眠过程的脑电信号和心电信号作为睡眠生理状态信号,来陈述本技术方案的具体实施过程。首先,通过脑电图机对用户睡眠脑电进行采集记录,采样率为1024Hz,记录电极为F3、F4、C3和C4,参考电极M1、M2;对脑电信号进行统一信号处理,包括以M1和M2进行左右交叉重参考、去伪迹、小波降噪、50Hz倍频工频陷波、0.8-75hz带通滤波和矫正处理,得到纯净脑电信号。通过便携式单导心电仪对用户心电信号进行采集提取,采集位置在左胸上方,采样率512Hz;对心电信号进行统一信号处理,包括去伪迹、小波降噪、0.5-40hz带通滤波和矫正处理,得到纯净心电信号。
其次,依次对纯净脑电信号进行信号频带提取,包括δ节律(0.8-4Hz)、θ节律(4-8Hz)、α节律(8-12Hz)、β节律(12-30Hz)、γ节律(30-75Hz),得到频带脑电信号;进而,以预设时间窗口长度20s和预设时间平移步长10s对纯净脑电信号、频带脑电信号和纯净心电信号进行连续滑动分割,得到睡眠生理状态时帧数据。
第二步、对睡眠生理状态时帧数据中的全部时帧数据进行特征分析和特征选择,生成睡眠状态特征曲线。
本实施例中,特征分析至少包括数值分析、包络分析、时频分析、熵分析、分形分析和复杂度分析中的任一项。
本实施例中,睡眠状态特征曲线具体为准确刻画用户在不同睡眠时期、不同睡眠时相的睡眠生理状态连续变化的特征曲线,由从特征分析得到的目标特征集中筛选出预设特征数量的目标特征并进行加权计算组合得到;其中,睡眠时期至少包括入睡前、睡眠中和睡眠后,睡眠时相至少包括清醒觉醒期、浅睡眠期、深睡眠期和快速眼动睡眠期。
本实施例中,逐帧对睡眠生理状态时帧数据中的脑电数据进行时频分析(频带功率、频带功率占比)、熵分析(样本熵)和复杂度分析(LZC指数:Lempel-Ziv复杂性指数);逐帧对睡眠生理状态时帧数据中的心电数据进行数值分析,提取用户心率变化特征(心率均值、心率变异系数)。通过特征选择,将F4-M1通道的δ-θ(δ节律+θ节律)联合频带功率占比、取负后再归一化的样本熵、取负后再归一化的LZC指数、取负后再归一化的心率均值进行直接加和得到睡眠状态特征曲线,这使得用户睡眠状态、皮层电生理和自主神经生理的状态特征的描述粒度和时变性更好,能够精准及时地刻画睡眠生理状态连续变化。
第三步、对睡眠生理状态时帧数据中的全部时帧数据进行睡眠时相分析,生成睡眠时相曲线。
本实施例中,睡眠时相曲线的生成方法具体为:
1)通过深度学习算法对规模睡眠用户样本的睡眠生理状态时帧数据及其对应睡眠时相分期数据进行学习训练和数据建模,得到睡眠时相分期识别模型;
2)将当前用户的睡眠生理状态时帧数据输入睡眠时相分期识别模型,得到所对应的睡眠时相分期并按时序生成睡眠时相曲线。
在实际使用场景中,通过用户样本的数据积累和分期模型的深度学习,睡眠时相分期识别模型的准确性会越来越高。
P200:对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线。
第一步、对睡眠状态特征曲线进行去趋势处理,得到睡眠状态特征基线曲线。
本实施例中,去趋势处理具体为移除目标信号中线性趋势成分和极低频趋势成分,至少包括去均值处理、低通滤波处理、去趋势分析FDA、多重分形去趋势分析MFDFA、非对称消除趋势波动分析ADFA中的任意一项。
本实施例中,选择去均值处理对睡眠状态特征曲线进行去趋势处理。
第二步、根据睡眠状态特征曲线的特征组合生成方式,确定周期边界频率和时频分析的方法参数。
本实施例中,周期边界频率至少包括带通截止频率、低通截止频率中的任一项。
本实施例中,以δ-θ(δ节律+θ节律)联合频带功率占比、取负后再归一化的样本熵、取负后再归一化的LZC指数、取负后再归一化的心率均值进行直接加和得到睡眠状态特征曲线,且分帧处理的参数为预设时间窗口长度20s和预设时间平移步长10s,所以选择选择窗口长度为15个样本点的Savitzky-Golay滤波、0.013Hz低通截止频率(周期边界频率)。
第三步、对睡眠状态特征基线曲线进行时频分析,得到睡眠状态曲线时频特征集合。
本实施例中,时频分析至少包括时频变换、时域滤波和频域滤波中的任一项;其中,时频变换至少包括标准傅里叶变换、快速傅里叶变换、短时傅里叶变换、S变换、Gabor变换、希尔伯特黄变换、Wigner-Ville分布、平滑Wigner-Ville分布、伪Wigner-Ville分布、平滑伪Wigner-Ville分布、Choi-Williams分布中的任一项,时域滤波至少包括平均值滤波、中值滤波、卡尔曼滤波和Savitzky-Golay滤波中的任一项,频域滤波至少包括低通滤波、高通滤波、带通滤波、带阻滤波中的任一项。
本实施例中,通过短时傅里叶变换、希尔伯特黄变换、Savitzky-Golay滤波、低通滤波、带通滤波对睡眠状态特征基线曲线进行时频分析,分别提取功率谱特征、信号幅值特征和信号频带特征,得到睡眠状态曲线时频特征集合。
第四步、从睡眠状态曲线时频特征集合中,时频信号逆变换和或直接提取满足周期边界频率的周期TF成分信号的功率特征和或幅值特征。
本实施例中,功率特征至少包括功率密度曲线、总功率、功率均值、功率均方根、最大功率值、最小功率值、功率标准差、功率变异系数、功率占比、中心频率;其中,功率占比具体为周期TF成分信号与睡眠状态特征基线曲线的功率比值,中心频率具体为周期TF成分信号的最大功率处对应的频率值,功率标准差具体为周期TF成分信号对应功率密度曲线的标准差,功率变异系数具体为周期TF成分信号对应功率密度曲线的变异系数。
本实施例中,幅值特征至少包括幅值曲线、幅值均值、幅值均方根、最大幅值、最小幅值、幅值标准差、幅值变异系数、幅值峰度、幅值偏度。
本实施例中,从睡眠状态曲线时频特征集合中,提取0.013Hz低通截止频率的周期TF成分信号的功率特征和幅值特征,包括功率密度曲线、功率均值、功率标准差、功率变异系数、功率占比、中心频率,以及幅值曲线、幅值均值、幅值标准差、幅值变异系数。
第五步、根据功率特征和或幅值特征,计算得到睡眠周期性指数并按时序生成睡眠周期性指数曲线。
本实施例中,睡眠周期性指数的计算方法,具体为:
1)获取周期TF成分信号的功率特征和或幅值特征;
2)对功率特征中的数值特征进行筛选并进行组合计算,得到周期性功率特征系数;
3)对幅值特征中的数值特征进行筛选并进行组合计算,得到周期性幅值特征系数;
4)根据周期性功率特征系数、周期性幅值特征系数、时频分析的方法对应预设方法修正系数和用户生物状态信息相关的预设用户个性修正系数,计算得到睡眠周期性指数。
本实施例中,睡眠周期性指数的一种计算公式,具体为:
;
其中,为睡眠周期性指数,/>分别为预设用户个性修正系数和预设方法修正系数,/>分别为周期性功率特征系数和周期性幅值特征系数。
本实施例中,周期性功率特征系数的一种计算公式,具体为:
;
其中,为周期性功率特征系数,/>为功率特征中的功率占比,/>为功率特征中的功率标准差。
本实施例中,周期性幅值特征系数的一种计算公式,具体为:
;
其中,为周期性幅值特征系数,/>为幅值特征中的幅值标准差。
本实施例中,用户生物状态信息至少包括性别、年龄、职业、健康状态、疾病状态和教育程度。
P300:对所述睡眠时相曲线、所述睡眠状态特征曲线和所述睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估。
第一步、对睡眠时相曲线进行趋势预测分析,得到睡眠时相预测值。
本实施例中,趋势预测分析的方法至少包括AR、MR、ARMA、ARIMA、SARIMA、VAR、深度学习中的任一项。
本实施例中,应用VAR方法得到睡眠时相预测值。
第二步、对睡眠状态特征曲线进行趋势预测分析,得到睡眠状态周期特征预测值。
本实施例中,应用VAR方法得到睡眠状态周期特征预测值。
第三步、对睡眠周期性指数曲线进行趋势预测分析,得到睡眠周期性指数预测值。
本实施例中,应用VAR方法得到睡眠周期性指数预测值。
第四步、按照预设动态调节周期,根据睡眠时相预测值、睡眠状态周期特征预测值、睡眠周期性指数预测值和预设睡眠周期调控知识库,动态生成睡眠周期动态调节策略。
本实施例中,睡眠周期动态调节策略至少包括睡眠场景、睡眠时相、调节方式、执行方式、调节方法、调节强度、调节时点、持续时间、目标调节值和装置控制参数;其中,调节方式至少包括声乐刺激、超声刺激、光刺激、电刺激、磁刺激、温度刺激、湿度刺激、触觉刺激和浓度调控中的任一方式,执行方式至少包括离体式和接触式中的任一方式。
在实际使用场景中,可以根据用户个性化情况、睡眠环境或设施设备条件选择制定不同基线睡眠周期动态调节策略,应选择对用户睡眠干扰小、体验感好的调节方式和执行方式。
第五步、根据睡眠周期动态调节策略,连接并控制睡眠周期调节外围设备,对用户睡眠过程进行动态干预调节。
本实施例中,睡眠周期调节外围设备至少包括声乐刺激设备、超声刺激设备、光刺激设备、电刺激设备、磁刺激设备、温度刺激设备、湿度刺激设备、触觉刺激设备和浓度调控设备中的任一项,并由具体的调节方式决定。
第六步、对动态干预调节的效果进行动态跟踪评估,提取动态调节效果系数并生成动态调节效果曲线,计算得到调节效果综合指数。
本实施例中,动态调节效果系数的一种计算方式,具体为:
;
其中,为动态调节效果系数,/>为预设用户个性修正系数,/>分别为动态调节前的睡眠状态特征曲线中睡眠状态周期特征数值和睡眠周期性指数,分别为动态调节后的睡眠状态特征曲线中的睡眠状态周期特征数值和睡眠周期性指数,/>为动态调节前的睡眠周期性指数预测值,/>为取绝对值算符。
本实施例中,动态调节效果系数将用于后续时频分析方法参数、动态预测分析方法参数、趋势预测分析的方法选择、睡眠周期动态调节策略的动态优化。
本实施例中,调节效果综合指数具体为动态调节效果曲线的平均值或均方根。在大多数实际使用场景中,使用平均值即可。
P400:根据所述睡眠时相曲线、所述睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告。
第一步、计算睡眠时相曲线和睡眠周期性指数曲线的相关性,得到时相周期性耦合指数。
本实施例中,相关性的计算方法至少包括相干性分析、皮尔逊相关分析、杰卡德相似分析、线性互信息分析、线性相关分析、欧氏距离分析、曼哈顿距离分析、切比雪夫距离分析中的任意一项。
本实施例中,选择皮尔逊相关分析来得到时相周期性耦合指数。
第二步、根据睡眠时相曲线、睡眠周期性指数曲线和动态调控效果曲线,计算不同睡眠时相下睡眠周期性指数、动态调节效果系数的分布特征,得到时相调节分布特征。
本实施例中,分布特征至少包括平均值、均方根、最大值、最小值、方差、标准差、变异系数、峰度和偏度中的任意一项。
本实施例中,时相调节分布特征包括不同睡眠时相下睡眠周期性指数、动态调节效果系数的平均值、最大值、最小值、标准差。
第三步、计算睡眠周期性指数曲线和动态调控效果曲线的相关性,得到周期指数调控系数。
本实施例中,选择皮尔逊相关分析来得到周期指数调控系数。
第四步、按照预设报告周期,生成用户睡眠周期性检测及调节报告。
本实施例中,用户睡眠周期性检测及调节报告至少包括用户生物状态信息、睡眠状态特征曲线、睡眠时相曲线、睡眠周期性指数曲线、动态调控效果曲线、时相周期性耦合指数、时相调节分布特征、周期指数调控系数,检测及调节小结。在实际使用过程中,可以根据用户具体情况来制定不同报告周期,如每小时、每5小时、每完整次、每天等,以满足不同睡眠健康管理和睡眠周期深入分析等需求。
P500:建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、所述周期边界频率、动态预测分析方法参数和所述睡眠周期动态调节策略。
第一步、初始化建立并持续动态更新用户睡眠周期特征数据库。
本实施例中,用户睡眠周期特征数据库至少包括用户生物状态信息、睡眠状态特征曲线、睡眠时相曲线、睡眠周期性指数曲线、动态调控效果曲线、时相周期性耦合指数、时相调节分布特征、周期指数调控系数、时频分析方法、趋势预测分析方法、睡眠周期动态调节策略。
第二步、根据用户睡眠周期特征数据库,动态优化时频分析方法参数、动态预测分析方法参数和睡眠周期动态调节策略,提升用户睡眠周期性检测量化和动态调节的质量和效能。
本实施例中,根据用户睡眠周期特征数据库和上个动态调节周期的动态调节效果系数,应用于当前次睡眠周期性检测量化的方法选择和优化上,如时频分析具体方法的选取、以及周期边界频率的调整,从而实现检测量化结果准确率和合理性的不断提升;应用于当前次睡眠周期性动态调节的方法选择和优化上,如动态预测分析方法的选取、睡眠周期动态调节策略中的详细参数组合优化,从而实现动态调节效果和用户体验体感的不断提升;最后,实现整个检测调节过程的质量和效能。
结合图2所示,本发明实施例提供的一种基于时频分析的睡眠周期性检测及调节系统,所述系统被构造以用于执行上述各个方法步骤。所述系统包括如下模块:
状态采集分析模块S100,用于采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线;
时频指数分析模块S200,用于对睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线;
动态策略调控模块S300,用于对睡眠时相曲线、睡眠状态特征曲线和睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估;
检测调节分析模块S400,用于根据睡眠时相曲线、睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告;
检测调节优化模块S500,用于建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、周期边界频率、动态预测分析方法参数和睡眠周期动态调节策略;
数据运行管理模块S600,用于对系统的全部过程数据进行可视化管理、统一存储和运行管理。
本实施例中,状态采集分析模块S100还包括以下功能单元:
状态采集处理单元,用于对用户的睡眠生理状态信号进行采集监测和信号处理,生成睡眠生理状态时帧数据;
状态曲线提取单元,用于对睡眠生理状态时帧数据中的全部时帧数据进行特征分析和特征选择,生成睡眠状态特征曲线;
睡眠时相分析单元,用于对睡眠生理状态时帧数据中的全部时帧数据进行睡眠时相分析,生成睡眠时相曲线。
本实施例中,时频指数分析模块S200还包括以下功能单元:
曲线趋势处理单元,用于对睡眠状态特征曲线进行去趋势处理,得到睡眠状态特征基线曲线;
分析参数选择单元,用于根据睡眠状态特征曲线的特征组合生成方式,确定周期边界频率和时频分析的方法参数;
信号时频分析单元,用于对睡眠状态特征基线曲线进行时频分析,得到睡眠状态曲线时频特征集合;
周期特征提取单元,用于从睡眠状态曲线时频特征集合中,时频信号逆变换和或直接提取满足周期边界频率的周期TF成分信号的功率特征和或幅值特征;
周期指数计算单元,用于根据功率特征和或幅值特征,计算得到睡眠周期性指数并按时序生成睡眠周期性指数曲线。
本实施例中,动态策略调控模块S300还包括以下功能单元:
睡眠时相预测单元,用于对睡眠时相曲线进行趋势预测分析,得到睡眠时相预测值;
周期特征预测单元,用于对睡眠状态特征曲线进行趋势预测分析,得到睡眠状态周期特征预测值;
周期指数预测单元,用于对睡眠周期性指数曲线进行趋势预测分析,得到睡眠周期性指数预测值;
调节策略生成单元,用于按照预设动态调节周期,根据睡眠时相预测值、睡眠状态周期特征预测值、睡眠周期性指数预测值和预设睡眠周期调控知识库,动态生成睡眠周期动态调节策略;
动态调节执行单元,用于根据睡眠周期动态调节策略,连接并控制睡眠周期调节外围设备,对用户睡眠过程进行动态干预调节;
动态效果评估单元,用于对动态干预调节的效果进行动态跟踪评估,提取动态调节效果系数并生成动态调节效果曲线,计算得到调节效果综合指数。
本实施例中,检测调节分析模块S400还包括以下功能单元:
时相耦合分析单元,用于计算睡眠时相曲线和睡眠周期性指数曲线的相关性,得到时相周期性耦合指数;
时相分布分析单元,用于根据睡眠时相曲线、睡眠周期性指数曲线和动态调控效果曲线,计算不同睡眠时相下睡眠周期性指数、动态调节效果系数的分布特征,得到时相调节分布特征;
周期调控分析单元,用于计算睡眠周期性指数曲线和动态调控效果曲线的相关性,得到周期指数调控系数;
用户报告生成单元,用于按照预设报告周期,生成用户睡眠周期性检测及调节报告;
用户报告输出单元,用于对用户睡眠周期性检测及调节报告的格式输出、展现形式进行统一管理。
本实施例中,检测调节优化模块S500还包括以下功能单元:
数据库管理单元,用于初始化建立并持续动态更新用户睡眠周期特征数据库;
检测调节优化单元,用于根据用户睡眠周期特征数据库,动态优化时频分析方法参数、动态预测分析方法参数和睡眠周期动态调节策略,提升用户睡眠周期性检测量化和动态调节的质量和效能。
本实施例中,数据运行管理模块S600还包括以下功能单元:
用户信息管理单元,用于用户基本信息的登记输入、编辑、查询、输出和删除;
数据可视化管理单元,用于对系统中所有数据的可视化展现管理;
数据存储管理单元,用于对系统中所有数据的统一存储管理;
数据运营管理单元,用于对系统中所有数据的备份、迁移和导出。
结合图3所示,本发明实施例提供的一种基于时频分析的睡眠周期性检测及调节装置,包括以下模组:
状态采集分析模组M100,用于采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线;
时频指数分析模组M200,用于对睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线;
动态策略调控模组M300,用于对睡眠时相曲线、睡眠状态特征曲线和睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估;
检测调节分析模组M400,用于根据睡眠时相曲线、睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告;
检测调节优化模组M500,用于建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、周期边界频率、动态预测分析方法参数和睡眠周期动态调节策略;
数据可视化模组M600,用于对装置中所有过程数据和/或结果数据的统一可视化展示管理;
数据管理中心模组M700,用于对装置中所有过程数据和/或结果数据的统一存储和数据运营管理。
所述装置被构造以用于对应执行图1的方法中的各个步骤,在此不再赘述。
本发明还提供了可编程的各类处理器(FPGA、ASIC或其他集成电路),所述处理器用于运行程序,其中,所述程序运行时执行上述实施例中的步骤。
本发明还提供了对应的计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述存储器执行所述程序时实现上述实施例中的步骤。
虽然本发明所揭露的实施方式如上,但所述的 内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和原则的前提下,可以在实施的形式及细节上进行任何的修改与变化、等同替换等,这些都属于本发明的保护范围。因此,本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
Claims (39)
1.一种基于时频分析的睡眠周期性检测及调节方法,其特征在于,包括以下步骤:
采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线;
对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线;
对所述睡眠时相曲线、所述睡眠状态特征曲线和所述睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估;
根据所述睡眠时相曲线、所述睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告;
建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、所述周期边界频率、动态预测分析方法参数和所述睡眠周期动态调节策略。
2.如权利要求1所述的方法,其特征在于,所述采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线的具体步骤还包括:
对用户的睡眠生理状态信号进行采集监测和信号处理,生成睡眠生理状态时帧数据;
对所述睡眠生理状态时帧数据中的全部时帧数据进行特征分析和特征选择,生成所述睡眠状态特征曲线;
对所述睡眠生理状态时帧数据中的全部时帧数据进行睡眠时相分析,生成所述睡眠时相曲线。
3.如权利要求2所述的方法,其特征在于:所述睡眠生理状态信号至少包括脑中枢状态信号、自主神经状态信号中的任一项;其中,所述脑中枢状态信号至少包括脑电图信号、脑磁图信号、血氧水平依赖信号中的任一项,所述自主神经状态信号至少包括中血氧水平依赖信号、心电信号、脉搏信号、呼吸信号、血氧信号、体温信号和皮肤电信号的任一项。
4.如权利要求2所述的方法,其特征在于:所述信号处理至少包括AD数模转换、重采样、重参考、降噪、去伪迹、工频陷波、低通滤波、高通滤波、带阻滤波、带通滤波、矫正处理和分帧处理;其中,所述矫正处理具体为对目标信号中的包含伪迹或失真的信号数据片段进行信号矫正、信号预测和平滑处理,所述分帧处理是指根据信号采样率,以预设时间窗口长度和预设时间平移步长对目标信号进行连续滑动分割。
5.如权利要求2或3所述的方法,其特征在于:所述特征分析至少包括数值分析、包络分析、时频分析、熵分析、分形分析和复杂度分析中的任一项。
6.如权利要求2或3所述的方法,其特征在于:所述睡眠状态特征曲线具体为准确刻画用户在不同睡眠时期、不同睡眠时相的睡眠生理状态连续变化的特征曲线,由从所述特征分析得到的目标特征集中筛选出预设特征数量的目标特征并进行加权计算组合得到;其中,所述睡眠时期至少包括入睡前、睡眠中和睡眠后,所述睡眠时相至少包括清醒觉醒期、浅睡眠期、深睡眠期和快速眼动睡眠期。
7.如权利要求2或3所述的方法,其特征在于,所述睡眠时相曲线的生成方法具体为:
1)通过深度学习算法对规模睡眠用户样本的所述睡眠生理状态时帧数据及其对应睡眠时相分期数据进行学习训练和数据建模,得到睡眠时相分期识别模型;
2)将当前用户的所述睡眠生理状态时帧数据输入所述睡眠时相分期识别模型,得到所对应的睡眠时相分期并按时序生成所述睡眠时相曲线。
8.如权利要求1或2所述的方法,其特征在于,所述对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线的具体步骤还包括:
对所述睡眠状态特征曲线进行去趋势处理,得到睡眠状态特征基线曲线;
根据所述睡眠状态特征曲线的特征组合生成方式,确定所述周期边界频率和时频分析的方法参数;
对所述睡眠状态特征基线曲线进行时频分析,得到睡眠状态曲线时频特征集合;
从所述睡眠状态曲线时频特征集合中,时频信号逆变换和或直接提取满足所述周期边界频率的周期TF成分信号的所述功率特征和或所述幅值特征;
根据所述功率特征和或所述幅值特征,计算得到所述睡眠周期性指数并按时序生成所述睡眠周期性指数曲线。
9.如权利要求8所述的方法,其特征在于:所述去趋势处理具体为移除目标信号中线性趋势成分和极低频趋势成分,至少包括去均值处理、低通滤波处理、去趋势分析FDA、多重分形去趋势分析MFDFA、非对称消除趋势波动分析ADFA中的任意一项。
10.如权利要求9所述的方法,其特征在于:所述时频分析至少包括时频变换、时域滤波和频域滤波中的任一项;其中,所述时频变换至少包括标准傅里叶变换、快速傅里叶变换、短时傅里叶变换、S变换、Gabor变换、希尔伯特黄变换、Wigner-Ville分布、平滑Wigner-Ville分布、伪Wigner-Ville分布、平滑伪Wigner-Ville分布、Choi-Williams分布中的任一项,所述时域滤波至少包括平均值滤波、中值滤波、卡尔曼滤波和Savitzky-Golay滤波中的任一项,所述频域滤波至少包括低通滤波、高通滤波、带通滤波、带阻滤波中的任一项。
11.如权利要求8所述的方法,其特征在于:所述周期边界频率至少包括带通截止频率、低通截止频率中的任一项。
12.如权利要求8所述的方法,其特征在于:所述功率特征包括功率密度曲线、总功率、功率均值、功率均方根、最大功率值、最小功率值、功率标准差、功率变异系数、功率占比、中心频率至少一项;其中,所述功率占比具体为周期TF成分信号与所述睡眠状态特征基线曲线的功率比值,所述中心频率具体为周期TF成分信号的最大功率处对应的频率值,所述功率标准差具体为周期TF成分信号对应功率密度曲线的标准差,所述功率变异系数具体为周期TF成分信号对应功率密度曲线的变异系数。
13.如权利要求8所述的方法,其特征在于,所述幅值特征包括幅值曲线、幅值均值、幅值均方根、最大幅值、最小幅值、幅值标准差、幅值变异系数、幅值峰度、幅值偏度至少一项。
14.如权利要求8所述的方法,其特征在于,所述睡眠周期性指数的计算方法,具体为:
1)获取周期TF成分信号的所述功率特征和或所述幅值特征;
2)对所述功率特征中的数值特征进行筛选并进行组合计算,得到周期性功率特征系数;
3)对所述幅值特征中的数值特征进行筛选并进行组合计算,得到周期性幅值特征系数;
4)根据所述周期性功率特征系数、所述周期性幅值特征系数、所述时频分析的方法对应预设方法修正系数和用户生物状态信息相关的预设用户个性修正系数,计算得到所述睡眠周期性指数。
15.如权利要求14所述的方法,其特征在于,所述睡眠周期性指数的一种计算公式,具体为:
;
其中,为所述睡眠周期性指数,/>分别为预设用户个性修正系数和预设方法修正系数,/>分别为所述周期性功率特征系数和所述周期性幅值特征系数。
16.如权利要求14或15所述的方法,其特征在于,所述周期性功率特征系数的一种计算公式,具体为:
;
其中,为所述周期性功率特征系数,/>为所述功率特征中的功率占比,/>为所述功率特征中的功率标准差。
17.如权利要求14或15所述的方法,其特征在于,所述周期性幅值特征系数的一种计算公式,具体为:
;
其中,为所述周期性幅值特征系数,/>为所述幅值特征中的幅值标准差。
18.如权利要求14或15所述的方法,其特征在于,所述用户生物状态信息至少包括性别、年龄、职业、健康状态、疾病状态和教育程度。
19.如权利要求1或2所述的方法,其特征在于,所述对所述睡眠时相曲线、所述睡眠状态特征曲线和所述睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估的具体步骤还包括:
对所述睡眠时相曲线进行趋势预测分析,得到睡眠时相预测值;
对所述睡眠状态特征曲线进行趋势预测分析,得到睡眠状态周期特征预测值;
对所述睡眠周期性指数曲线进行趋势预测分析,得到睡眠周期性指数预测值;
按照预设动态调节周期,根据所述睡眠时相预测值、所述睡眠状态周期特征预测值、所述睡眠周期性指数预测值和预设睡眠周期调控知识库,动态生成所述睡眠周期动态调节策略;
根据所述睡眠周期动态调节策略,连接并控制睡眠周期调节外围设备,对用户睡眠过程进行动态干预调节;
对动态干预调节的效果进行动态跟踪评估,提取动态调节效果系数并生成动态调节效果曲线,计算得到调节效果综合指数。
20.如权利要求19所述的方法,其特征在于,所述趋势预测分析的方法至少包括AR、MR、ARMA、ARIMA、SARIMA、VAR、深度学习中的任一项。
21.如权利要求19所述的方法,其特征在于:所述睡眠周期动态调节策略至少包括睡眠场景、睡眠时相、调节方式、执行方式、调节方法、调节强度、调节时点、持续时间、目标调节值和装置控制参数;其中,所述调节方式至少包括声乐刺激、超声刺激、光刺激、电刺激、磁刺激、温度刺激、湿度刺激、触觉刺激和浓度调控中的任一方式,所述执行方式至少包括离体式和接触式中的任一方式。
22.如权利要求19所述的方法,其特征在于,所述睡眠周期调节外围设备至少包括声乐刺激设备、超声刺激设备、光刺激设备、电刺激设备、磁刺激设备、温度刺激设备、湿度刺激设备、触觉刺激设备和浓度调控设备中的任一项,并由具体的调节方式决定。
23.如权利要求19所述的方法,其特征在于,所述动态调节效果系数的一种计算方式,具体为:
;
其中,为所述动态调节效果系数,/>为预设用户个性修正系数,/>分别为动态调节前的所述睡眠状态特征曲线中睡眠状态周期特征数值和所述睡眠周期性指数,分别为动态调节后的所述睡眠状态特征曲线中的睡眠状态周期特征数值和所述睡眠周期性指数,/>为动态调节前的所述睡眠周期性指数预测值,/>为取绝对值算符。
24.如权利要求20-23任一项所述的方法,其特征在于,所述动态调节效果系数将用于后续时频分析方法参数、动态预测分析方法参数、所述趋势预测分析的方法选择、所述睡眠周期动态调节策略的动态优化。
25.如权利要求20-23任一项所述的方法,其特征在于,所述调节效果综合指数具体为所述动态调节效果曲线的平均值或均方根。
26.如权利要求1或2所述的方法,其特征在于:所述根据所述睡眠时相曲线、所述睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告的具体步骤还包括:
计算所述睡眠时相曲线和所述睡眠周期性指数曲线的相关性,得到所述时相周期性耦合指数;
根据所述睡眠时相曲线、所述睡眠周期性指数曲线和所述动态调控效果曲线,计算不同睡眠时相下所述睡眠周期性指数、动态调节效果系数的分布特征,得到所述时相调节分布特征;
计算所述睡眠周期性指数曲线和所述动态调控效果曲线的相关性,得到所述周期指数调控系数;
按照预设报告周期,生成所述用户睡眠周期性检测及调节报告。
27.如权利要求26所述的方法,其特征在于:所述相关性的计算方法至少包括相干性分析、皮尔逊相关分析、杰卡德相似分析、线性互信息分析、线性相关分析、欧氏距离分析、曼哈顿距离分析、切比雪夫距离分析中的任意一项。
28.如权利要求26所述的方法,其特征在于:所述分布特征至少包括平均值、均方根、最大值、最小值、方差、标准差、变异系数、峰度和偏度中的任意一项。
29.如权利要求26所述的方法,其特征在于:所述用户睡眠周期性检测及调节报告至少包括用户生物状态信息、所述睡眠状态特征曲线、所述睡眠时相曲线、所述睡眠周期性指数曲线、所述动态调控效果曲线、所述时相周期性耦合指数、所述时相调节分布特征、所述周期指数调控系数、检测及调节小结。
30.如权利要求1或2所述的方法,其特征在于:所述建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、所述周期边界频率、动态预测分析方法参数和所述睡眠周期动态调节策略的具体步骤还包括:
初始化建立并持续动态更新所述用户睡眠周期特征数据库;
根据所述用户睡眠周期特征数据库,动态优化时频分析方法参数、动态预测分析方法参数和所述睡眠周期动态调节策略,提升用户睡眠周期性检测量化和动态调节的质量和效能。
31.如权利要求30所述的方法,其特征在于:所述用户睡眠周期特征数据库至少包括用户生物状态信息、所述睡眠状态特征曲线、所述睡眠时相曲线、所述睡眠周期性指数曲线、所述动态调控效果曲线、所述时相周期性耦合指数、所述时相调节分布特征、所述周期指数调控系数、时频分析方法、趋势预测分析方法、所述睡眠周期动态调节策略。
32.一种基于时频分析的睡眠周期性检测及调节系统,其特征在于,包括以下模块:
状态采集分析模块,用于采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线;
时频指数分析模块,用于对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线;
动态策略调控模块,用于对所述睡眠时相曲线、所述睡眠状态特征曲线和所述睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估;
检测调节分析模块,用于根据所述睡眠时相曲线、所述睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告;
检测调节优化模块,用于建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、所述周期边界频率、动态预测分析方法参数和所述睡眠周期动态调节策略;
数据运行管理模块,用于对所述系统的全部过程数据进行可视化管理、统一存储和运行管理。
33.如权利要求32所述的系统,其特征在于,所述状态采集分析模块还包括以下功能单元:
状态采集处理单元,用于对用户的睡眠生理状态信号进行采集监测和信号处理,生成睡眠生理状态时帧数据;
状态曲线提取单元,用于对所述睡眠生理状态时帧数据中的全部时帧数据进行特征分析和特征选择,生成所述睡眠状态特征曲线;
睡眠时相分析单元,用于对所述睡眠生理状态时帧数据中的全部时帧数据进行睡眠时相分析,生成所述睡眠时相曲线。
34.如权利要求32所述的系统,其特征在于,所述时频指数分析模块还包括以下功能单元:
曲线趋势处理单元,用于对所述睡眠状态特征曲线进行去趋势处理,得到睡眠状态特征基线曲线;
分析参数选择单元,用于根据所述睡眠状态特征曲线的特征组合生成方式,确定所述周期边界频率和时频分析的方法参数;
信号时频分析单元,用于对所述睡眠状态特征基线曲线进行时频分析,得到睡眠状态曲线时频特征集合;
周期特征提取单元,用于从所述睡眠状态曲线时频特征集合中,时频信号逆变换和或直接提取满足所述周期边界频率的周期TF成分信号的所述功率特征和或所述幅值特征;
周期指数计算单元,用于根据所述功率特征和或所述幅值特征,计算得到所述睡眠周期性指数并按时序生成所述睡眠周期性指数曲线。
35.如权利要求32所述的系统,其特征在于,所述动态策略调控模块还包括以下功能单元:
睡眠时相预测单元,用于对所述睡眠时相曲线进行趋势预测分析,得到睡眠时相预测值;
周期特征预测单元,用于对所述睡眠状态特征曲线进行趋势预测分析,得到睡眠状态周期特征预测值;
周期指数预测单元,用于对所述睡眠周期性指数曲线进行趋势预测分析,得到睡眠周期性指数预测值;
调节策略生成单元,用于按照预设动态调节周期,根据所述睡眠时相预测值、所述睡眠状态周期特征预测值、所述睡眠周期性指数预测值和预设睡眠周期调控知识库,动态生成所述睡眠周期动态调节策略;
动态调节执行单元,用于根据所述睡眠周期动态调节策略,连接并控制睡眠周期调节外围设备,对用户睡眠过程进行动态干预调节;
动态效果评估单元,用于对动态干预调节的效果进行动态跟踪评估,提取动态调节效果系数并生成动态调节效果曲线,计算得到调节效果综合指数。
36.如权利要求32-35任一项所述的系统,其特征在于,所述检测调节分析模块还包括以下功能单元:
时相耦合分析单元,用于计算所述睡眠时相曲线和所述睡眠周期性指数曲线的相关性,得到所述时相周期性耦合指数;
时相分布分析单元,用于根据所述睡眠时相曲线、所述睡眠周期性指数曲线和所述动态调控效果曲线,计算不同睡眠时相下所述睡眠周期性指数、动态调节效果系数的分布特征,得到所述时相调节分布特征;
周期调控分析单元,用于计算所述睡眠周期性指数曲线和所述动态调控效果曲线的相关性,得到所述周期指数调控系数;
用户报告生成单元,用于按照预设报告周期,生成所述用户睡眠周期性检测及调节报告;
用户报告输出单元,用于对所述用户睡眠周期性检测及调节报告的格式输出、展现形式进行统一管理。
37.如权利要求36所述的系统,其特征在于,所述检测调节优化模块还包括以下功能单元:
数据库管理单元,用于初始化建立并持续动态更新所述用户睡眠周期特征数据库;
检测调节优化单元,用于根据所述用户睡眠周期特征数据库,动态优化时频分析方法参数、动态预测分析方法参数和所述睡眠周期动态调节策略,提升用户睡眠周期性检测量化和动态调节的质量和效能。
38.如权利要求32所述的系统,其特征在于,所述数据运行管理模块还包括以下功能单元:
用户信息管理单元,用于用户基本信息的登记输入、编辑、查询、输出和删除;
数据可视化管理单元,用于对所述系统中所有数据的可视化展现管理;
数据存储管理单元,用于对所述系统中所有数据的统一存储管理;
数据运营管理单元,用于对所述系统中所有数据的备份、迁移和导出。
39.一种基于时频分析的睡眠周期性检测及调节装置,其特征在于,包括以下模组:
状态采集分析模组,用于采集分析用户睡眠生理状态,得到睡眠状态特征曲线和睡眠时相曲线;
时频指数分析模组,用于对所述睡眠状态特征曲线进行去趋势处理和时频分析,确定周期边界频率并识别周期TF成分信号的功率特征和或幅值特征,计算得到睡眠周期性指数和睡眠周期性指数曲线;
动态策略调控模组,用于对所述睡眠时相曲线、所述睡眠状态特征曲线和所述睡眠周期性指数曲线进行动态预测分析,生成睡眠周期动态调节策略,对用户睡眠过程进行动态调控和调控效果评估;
检测调节分析模组,用于根据所述睡眠时相曲线、所述睡眠周期性指数曲线和动态调控效果曲线,提取时相周期性耦合指数、时相调节分布特征和周期指数调控系数,生成用户睡眠周期性检测及调节报告;
检测调节优化模组,用于建立并更新用户睡眠周期特征数据库,动态优化时频分析方法参数、所述周期边界频率、动态预测分析方法参数和所述睡眠周期动态调节策略;
数据可视化模组,用于对所述装置中所有过程数据和/或结果数据的统一可视化展示管理;
数据管理中心模组,用于对所述装置中所有过程数据和/或结果数据的统一存储和数据运营管理。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310771780.9A CN116525063B (zh) | 2023-06-28 | 2023-06-28 | 基于时频分析的睡眠周期性检测及调节方法、系统和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310771780.9A CN116525063B (zh) | 2023-06-28 | 2023-06-28 | 基于时频分析的睡眠周期性检测及调节方法、系统和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116525063A true CN116525063A (zh) | 2023-08-01 |
CN116525063B CN116525063B (zh) | 2024-03-22 |
Family
ID=87390501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310771780.9A Active CN116525063B (zh) | 2023-06-28 | 2023-06-28 | 基于时频分析的睡眠周期性检测及调节方法、系统和装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116525063B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116779110A (zh) * | 2023-08-07 | 2023-09-19 | 安徽星辰智跃科技有限责任公司 | 基于模态分解的睡眠可持续性检测调节方法、系统和装置 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050143617A1 (en) * | 2003-12-31 | 2005-06-30 | Raphael Auphan | Sleep and environment control method and system |
US20050209643A1 (en) * | 2004-03-16 | 2005-09-22 | Heruth Kenneth T | Controlling therapy based on sleep quality |
US20060235315A1 (en) * | 2002-09-19 | 2006-10-19 | Solange Akselrod | Method, apparatus and system for characterizing sleep |
JP2015013046A (ja) * | 2013-07-05 | 2015-01-22 | 富士通株式会社 | 睡眠支援装置、睡眠支援方法及びプログラム |
US20170360363A1 (en) * | 2014-12-18 | 2017-12-21 | Koninklijke Philips N.V. | System and method for slow wave sleep detection |
TWM553614U (zh) * | 2017-08-09 | 2018-01-01 | Wu wen chun | 睡眠監測及輔助系統 |
CN110623665A (zh) * | 2019-09-26 | 2019-12-31 | 川北医学院 | 一种智能睡眠时相检测与睡眠质量评估系统及方法 |
CN111467644A (zh) * | 2013-07-08 | 2020-07-31 | 瑞思迈传感器技术有限公司 | 用于睡眠管理的方法和系统 |
WO2021220247A1 (en) * | 2020-04-30 | 2021-11-04 | Resmed Sensor Technologies Limited | Systems and methods for promoting a sleep stage of a user |
US20220059201A1 (en) * | 2020-08-21 | 2022-02-24 | Stimscience Inc. | Systems, methods, and devices for sleep intervention quality assessment |
CN114141330A (zh) * | 2021-11-26 | 2022-03-04 | 上海梅斯医药科技有限公司 | 一种睡眠管理方法、系统、智能移动设备和存储介质 |
CN114159024A (zh) * | 2021-11-17 | 2022-03-11 | 青岛海信日立空调系统有限公司 | 一种睡眠分期方法及装置 |
CN115137374A (zh) * | 2022-06-23 | 2022-10-04 | 武汉大学 | 面向睡眠分期的脑电可解释性分析方法以及相关设备 |
CN115171850A (zh) * | 2022-09-07 | 2022-10-11 | 深圳市心流科技有限公司 | 一种睡眠方案生成方法、装置、终端设备及存储介质 |
CN115206491A (zh) * | 2022-08-26 | 2022-10-18 | 安徽讯飞医疗股份有限公司 | 睡眠干预设备控制方法、装置、存储介质及计算机设备 |
CN115251845A (zh) * | 2022-07-28 | 2022-11-01 | 纽锐思(苏州)医疗科技有限公司 | 基于TB-TF-BiGRU模型处理脑电波信号的睡眠监测方法 |
CN115910351A (zh) * | 2023-03-03 | 2023-04-04 | 安徽星辰智跃科技有限责任公司 | 一种睡眠周期性检测量化及辅助干预的方法、系统和装置 |
CN116058805A (zh) * | 2023-03-29 | 2023-05-05 | 安徽星辰智跃科技有限责任公司 | 一种睡眠记忆活跃水平动态调节的方法、系统和装置 |
-
2023
- 2023-06-28 CN CN202310771780.9A patent/CN116525063B/zh active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060235315A1 (en) * | 2002-09-19 | 2006-10-19 | Solange Akselrod | Method, apparatus and system for characterizing sleep |
US20050143617A1 (en) * | 2003-12-31 | 2005-06-30 | Raphael Auphan | Sleep and environment control method and system |
US20050209643A1 (en) * | 2004-03-16 | 2005-09-22 | Heruth Kenneth T | Controlling therapy based on sleep quality |
JP2015013046A (ja) * | 2013-07-05 | 2015-01-22 | 富士通株式会社 | 睡眠支援装置、睡眠支援方法及びプログラム |
CN111467644A (zh) * | 2013-07-08 | 2020-07-31 | 瑞思迈传感器技术有限公司 | 用于睡眠管理的方法和系统 |
US20170360363A1 (en) * | 2014-12-18 | 2017-12-21 | Koninklijke Philips N.V. | System and method for slow wave sleep detection |
TWM553614U (zh) * | 2017-08-09 | 2018-01-01 | Wu wen chun | 睡眠監測及輔助系統 |
CN110623665A (zh) * | 2019-09-26 | 2019-12-31 | 川北医学院 | 一种智能睡眠时相检测与睡眠质量评估系统及方法 |
WO2021220247A1 (en) * | 2020-04-30 | 2021-11-04 | Resmed Sensor Technologies Limited | Systems and methods for promoting a sleep stage of a user |
US20220059201A1 (en) * | 2020-08-21 | 2022-02-24 | Stimscience Inc. | Systems, methods, and devices for sleep intervention quality assessment |
CN114159024A (zh) * | 2021-11-17 | 2022-03-11 | 青岛海信日立空调系统有限公司 | 一种睡眠分期方法及装置 |
CN114141330A (zh) * | 2021-11-26 | 2022-03-04 | 上海梅斯医药科技有限公司 | 一种睡眠管理方法、系统、智能移动设备和存储介质 |
CN115137374A (zh) * | 2022-06-23 | 2022-10-04 | 武汉大学 | 面向睡眠分期的脑电可解释性分析方法以及相关设备 |
CN115251845A (zh) * | 2022-07-28 | 2022-11-01 | 纽锐思(苏州)医疗科技有限公司 | 基于TB-TF-BiGRU模型处理脑电波信号的睡眠监测方法 |
CN115206491A (zh) * | 2022-08-26 | 2022-10-18 | 安徽讯飞医疗股份有限公司 | 睡眠干预设备控制方法、装置、存储介质及计算机设备 |
CN115171850A (zh) * | 2022-09-07 | 2022-10-11 | 深圳市心流科技有限公司 | 一种睡眠方案生成方法、装置、终端设备及存储介质 |
CN115910351A (zh) * | 2023-03-03 | 2023-04-04 | 安徽星辰智跃科技有限责任公司 | 一种睡眠周期性检测量化及辅助干预的方法、系统和装置 |
CN116058805A (zh) * | 2023-03-29 | 2023-05-05 | 安徽星辰智跃科技有限责任公司 | 一种睡眠记忆活跃水平动态调节的方法、系统和装置 |
Non-Patent Citations (5)
Title |
---|
DECHUN ZHAO: "Comparative analysis of different characteristics of automatic sleep stages", COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, pages 53 - 72 * |
MENDEZ M O: "On arousal from sleep: time-frequency analysis", MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, vol. 46, no. 4, pages 341 - 351, XP019835213 * |
杨慧;郭爱敏;: "ICU患者睡眠障碍及干预策略的研究进展", 中国护理管理, no. 04, pages 140 - 143 * |
江丽仪;吴效明;: "睡眠时相与心率变异性的关系研究", 生物医学工程学杂志, no. 01, pages 154 - 158 * |
郑捷文;张悦舟;兰珂;刘晓莉;张政波;俞梦孙;: "基于心率变异性分析的睡眠分期算法研究和验证", 中国生物医学工程学报, no. 04, pages 51 - 58 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116779110A (zh) * | 2023-08-07 | 2023-09-19 | 安徽星辰智跃科技有限责任公司 | 基于模态分解的睡眠可持续性检测调节方法、系统和装置 |
CN116779110B (zh) * | 2023-08-07 | 2024-05-31 | 安徽星辰智跃科技有限责任公司 | 基于模态分解的睡眠可持续性检测调节方法、系统和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN116525063B (zh) | 2024-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116509337B (zh) | 基于局部分解的睡眠周期性检测及调节方法、系统和装置 | |
CN116392085B (zh) | 基于趋势分析的睡眠趋稳性量化及调节方法、系统和装置 | |
CN116509338B (zh) | 基于模态分析的睡眠周期性检测及调节方法、系统和装置 | |
CN116369866B (zh) | 基于小波变换的睡眠趋稳性量化及调节方法、系统和装置 | |
CN116392083B (zh) | 基于局部变换的睡眠趋稳性量化及调节方法、系统和装置 | |
CN116392087B (zh) | 基于模态分解的睡眠趋稳性量化及调节方法、系统和装置 | |
CN116058805B (zh) | 一种睡眠记忆活跃水平动态调节的方法、系统和装置 | |
CN115881305B (zh) | 一种睡眠趋稳性检测量化及辅助干预的方法、系统和装置 | |
CN115804573A (zh) | 一种睡眠深度量化及干预的方法、系统和装置 | |
CN116525063B (zh) | 基于时频分析的睡眠周期性检测及调节方法、系统和装置 | |
CN115969330B (zh) | 一种睡眠情绪活跃水平检测量化的方法、系统和装置 | |
CN116013470B (zh) | 一种睡眠行为活跃水平动态调节的方法、系统和装置 | |
CN116509336B (zh) | 基于波形分析的睡眠周期性检测及调节方法、系统和装置 | |
CN116504357B (zh) | 基于小波分析的睡眠周期性检测及调节方法、系统和装置 | |
CN116035536B (zh) | 一种睡眠行为活跃水平检测量化的方法、系统和装置 | |
CN116392088B (zh) | 基于时频分析的睡眠趋稳性量化及调节方法、系统和装置 | |
CN116779110B (zh) | 基于模态分解的睡眠可持续性检测调节方法、系统和装置 | |
CN116705247B (zh) | 基于局部分解的睡眠可持续性检测调节方法、系统和装置 | |
CN116092641B (zh) | 一种睡眠感官应激水平动态调节的方法、系统和装置 | |
CN115966308A (zh) | 一种睡眠记忆活跃水平检测量化的方法、系统和装置 | |
CN116687356B (zh) | 基于时频分析的睡眠可持续性检测调节方法、系统和装置 | |
CN116682535B (zh) | 基于数值拟合的睡眠可持续性检测调节方法、系统和装置 | |
CN116671875B (zh) | 基于小波变换的睡眠可持续性检测调节方法、系统和装置 | |
CN116312972B (zh) | 基于眼刺激的睡眠记忆情感张力调节方法、系统和装置 | |
Wan et al. | Emotion recognition based on a limited number of multimodal physiological signals channels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |