CN116519751A - 一种用于水合肼检测的电阻式气体传感器及其制备方法 - Google Patents

一种用于水合肼检测的电阻式气体传感器及其制备方法 Download PDF

Info

Publication number
CN116519751A
CN116519751A CN202310390735.9A CN202310390735A CN116519751A CN 116519751 A CN116519751 A CN 116519751A CN 202310390735 A CN202310390735 A CN 202310390735A CN 116519751 A CN116519751 A CN 116519751A
Authority
CN
China
Prior art keywords
gas
sensitive material
hexylthiophene
poly
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310390735.9A
Other languages
English (en)
Inventor
费钰茜
江新兵
于伟
王久洪
丁书江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202310390735.9A priority Critical patent/CN116519751A/zh
Publication of CN116519751A publication Critical patent/CN116519751A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种用于水合肼检测的电阻式气体传感器及其制备方法,包括单晶硅衬底,单晶硅衬底的两面设有二氧化硅层,一侧的二氧化硅层上设有金叉指电极,二氧化硅层及金叉指电极表面设有气体敏感材料薄膜,气体敏感材料薄膜由金属氧化物/导电聚合物二元复合材料构成;单晶硅衬底、二氧化硅层以及金叉指电极共同构成传感器芯片;气体敏感材料薄膜接触待测气体即水合肼前后电阻会发生变化,通过测量金叉指电极间电阻的变化获得传感器响应值的相关性能;本发明具有简便、响应高、稳定性好的优点。

Description

一种用于水合肼检测的电阻式气体传感器及其制备方法
技术领域
本发明属于气体传感技术领域,具体涉及一种用于水合肼检测的电阻式气体传感器及其制备方法。
背景技术
水合肼(N2H4·H2O)常温状态下为液体,作为还原剂、抗氧化剂在工业、医药产业等领域得到广泛的应用。水合肼具有极高的毒性,在常温下易挥发,在其储存、运输、取样、加工等过程中,易造成人员中毒甚至着火爆炸等事故。
目前,检测水合肼的方法有很多种,例如气相色谱法、电化学分析法、高效液相色谱法、毛细管电泳法等,但是这些传统的方法较为复杂昂贵且多为水合肼的液相检测手段,难以实现对气相水合肼的直接检测。探索一种简便、响应高、稳定性好的方法来检测水合肼气体具有重要的现实意义。
发明内容
为了克服上述现有技术的缺点,本发明的发明目的在于提供一种用于水合肼检测的电阻式气体传感器及其制备方法,具有简便、响应高、稳定性好的优点。
为实现上述目的,本发明采用的技术方案为:
一种用于水合肼检测的电阻式气体传感器,包括单晶硅衬底1,单晶硅衬底1的两面设有二氧化硅层2,一侧的二氧化硅层2上设有金叉指电极3,二氧化硅层2及金叉指电极3表面设有气体敏感材料薄膜4,气体敏感材料薄膜4由金属氧化物/导电聚合物二元复合材料构成;单晶硅衬底1、二氧化硅层2以及金叉指电极3共同构成传感器芯片;气体敏感材料薄膜4接触待测气体即水合肼前后电阻会发生变化,通过测量金叉指电极间电阻的变化获得传感器响应值的相关性能。
所述的气体敏感材料薄膜4由金属氧化物/导电聚合物二元复合材料构成,具体为二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料薄膜,采用滴涂法制备。
所述的气体敏感材料薄膜4由质量比为1:1的二氧化钛纳米颗粒、聚3-己基噻吩-2,5-二基物理混合而成,聚3-己基噻吩-2,5-二基的纯度≥90%,平均分子量为10000~100000;二氧化钛纳米颗粒平均粒径为20~40nm。
所述的一种用于水合肼检测的电阻式气体传感器的制备方法,包括以下步骤:
步骤1、制备传感器芯片:将单晶硅衬底1双面热氧化,在表面形成二氧化硅层2,再经匀胶、紫外曝光、显影、坚膜、电子束蒸发沉积及金属剥离等过程,在二氧化硅层2一侧表面得到金叉指电极3;单晶硅衬底1、二氧化硅层2与金叉指电极3共同构成传感器芯片,用乙醇和水依次超声清洗传感器芯片表面,烘干备用;
步骤2、制备二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液:称取1~25mg二氧化钛纳米颗粒与5mg聚3-己基噻吩-2,5-二基于棕色试剂瓶中,加入5ml氯仿,超声30分钟备用;
步骤3、制备气体敏感材料薄膜4:采用滴涂法成膜,使用移液枪吸取二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液0.5~2μl,垂直滴于步骤1中的传感器芯片上,在表面形成二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料薄膜;
步骤4、对上述制备的二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料电阻型气体传感器进行加热处理,70℃、3小时,使溶剂氯仿完全蒸发,得到二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料电阻型气体传感器。
本发明的有益效果是:
1、本发明选择导电聚合物类材料中的聚3-己基噻吩-2,5-二基,在室温下对水合肼响应较高的同时又有较强的环境稳定性,易于制备和改性;此外,相较于无支链的聚噻吩,其在氯仿、四氢呋喃等溶剂中具有更好的分散性,为与其它材料的复合提供了良好的条件。
2、由于所用聚噻吩以带正电的空穴导电为主,呈P型半导体特性,二氧化钛以带负电的电子导电为主,呈N型半导体特性,因此聚噻吩与二氧化钛复合可在两种材料间形成异质结,当传感器暴露在一定浓度的水合肼中时,水合肼分子中的孤对电子会与聚噻吩发生相互作用降低空穴浓度,在接触界面发生能带弯曲现象,致使界面耗尽层宽度增加,进一步阻碍载流子传输,气敏薄膜电阻显著增大,传感器响应值提高。
3、本发明采用物理混合的方式制备二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料,方法简单,易于操作,成本低廉。可简单通过对两种物质的比例进行调控来实现对水合肼的传感性能的调控。
4、本发明采用滴涂法实现二氧化钛/聚3-己基噻吩-2,5-二基复合材料电阻型气体传感器的制备,简单易操作,可以方便地进行传感器的制作,为批量生产加工提供了良好的条件,解决了传统的金属氧化物气体传感器需要高温烧结,加工复杂等问题,进一步减小能耗、缩小成本。
5、相较于其它水合肼传感器,本发明中提供的一种用于水合肼检测的电阻式气体传感器可直接实现对气相水合肼的高响应检测。
附图说明
图1为本发明实施例气体传感器结构示意图。
图2为本发明实施例1二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料的透射电镜图像。
图3为本发明实施例1二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料的X射线衍射图谱。
图4为本发明实施例1二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料电阻型气体传感器在25℃条件下对低浓度水合肼的动态响应恢复曲线。
图5为本发明实施例1、实施例2、实施例3滴涂不同用量(0.5~2μl)二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液的传感器的响应值柱状图。
图6为本发明实施例1、实施例4、实施例5、实施例6、实施例7不同含量(1~25mg)二氧化钛纳米颗粒的一系列传感器的动态响应恢复曲线。
具体实施方式
以下结合附图和实施例进一步说明本发明的一种用于水合肼检测的电阻式气体传感器及其制备方法。
实施例1,参照图1,一种用于水合肼检测的电阻式气体传感器,包括单晶硅衬底1,单晶硅衬底1的两面设有二氧化硅层2,一侧的二氧化硅层2上设有金叉指电极3,二氧化硅层2及金叉指电极3表面设有气体敏感材料薄膜4,气体敏感材料薄膜4由金属氧化物/导电聚合物二元复合材料构成;单晶硅衬底1厚度为500μm,双面二氧化硅层2厚度为2μm,金叉指电极3的叉指宽度为10μm,相邻叉指之间的间隙为10μm,金电极厚度为75nm;气体敏感材料薄膜4接触待测气体即水合肼前后电阻会发生变化,通过测量金叉指电极间电阻的变化获得传感器响应值的相关性能;
所述的气体敏感材料薄膜4由金属氧化物/导电聚合物二元复合材料构成,具体为二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料薄膜,采用滴涂法制备;
所述的气体敏感材料薄膜4由质量比为1:1的二氧化钛纳米颗粒、聚3-己基噻吩-2,5-二基物理混合而成,聚3-己基噻吩-2,5-二基的纯度≥90%,平均分子量为10000~100000;二氧化钛纳米颗粒平均粒径为20~40nm。
对本发明制备的二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料进行透射电镜测试,结果如图2所示,可以看出聚噻吩成片状,二氧化钛为20~40nm的圆形纳米颗粒,二者结合紧密;
对本发明制备的二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料进行X射线衍射测试,结果如图3所示,图像中5.472°、16.226°、21.908°三个峰为聚3-己基噻吩-2,5-二基的特征峰,25.431°、37.905°、48.165°、53.757°、55.192°、71.877°六个峰为二氧化钛的特征峰,且二氧化钛为锐钛矿型二氧化钛。
所述的一种用于水合肼检测的电阻式气体传感器的制备方法,具体步骤如下:
步骤1、制备传感器芯片:将单晶硅衬底1双面热氧化,在表面形成二氧化硅层2,再经匀胶、紫外曝光、显影、坚膜、电子束蒸发沉积及金属剥离等过程在二氧化硅层2一侧表面得到金叉指电极3;单晶硅衬底1、二氧化硅层2与金叉指电极3共同构成传感器芯片,用乙醇和水依次超声清洗传感器芯片表面,烘干备用;
步骤2、制备二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液:称取5mg二氧化钛纳米颗粒与5mg聚3-己基噻吩-2,5-二基于棕色试剂瓶中,加入5ml氯仿,超声30分钟备用;
步骤3、制备气体敏感材料薄膜4:采用滴涂法成膜,使用移液枪吸二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液1μl,垂直滴于步骤1中的传感器芯片上,在表面形成二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料薄膜;
步骤4、对上述制备的二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料电阻型气体传感器进行加热处理,70℃、3小时,使溶剂氯仿完全蒸发,得到二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料电阻型气体传感器。
利用气敏测试系统对上述电阻式气体传感器性能进行测试,在室温条件下(25℃)对浓度29ppm的水合肼气体响应情况如图4所示(图中Response=(Rg-Ra)/Ra,其中Response表示传感器响应值,Ra表示传感器在空气中的基线电阻,Rg表示传感器在目标气体中的电阻)。
结果显示,所制备的二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料电阻型气传感器对29ppm水合肼气体响应值高达260.7。
实施例2,将实施例1步骤3中二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液用量改为0.5μl,其它相同。
实施例3,将实施例1步骤3中二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液用量改为2μl,其它相同。
图5为滴涂不同用量(0.5~2μl)二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液的传感器的响应值柱状图,图中可看出实施例1、实施例2、实施例3中所制备的传感器响应值分别为260.7、215.2、232.5,经对比可得出实施例1中传感器效果更佳。
实施例4,将实施例1步骤2中二氧化钛纳米颗粒用量改为1mg,其它相同。
实施例5,将实施例1步骤2中二氧化钛纳米颗粒用量改为2.5mg,其它相同。
实施例6,将实施例1步骤2中二氧化钛纳米颗粒用量改为10mg,其它相同。
实施例7,将实施例1步骤2中二氧化钛纳米颗粒用量改为25mg,其它相同。
图6为不同含量(1~25mg)二氧化钛纳米颗粒的一系列传感器的动态响应恢复曲线,图中展示了实施例1、实施例4、实施例5、实施例6、实施例7中所制备的传感器动态响应恢复情况,经对比可得出实施例1中传感器效果更佳(图中Response=(Rg-Ra)/Ra,其中Response表示传感器响应值,Ra表示传感器在空气中的基线电阻,Rg表示传感器在目标气体中的电阻)。
同时,电极材料还可采用其它贵金属包括银或者铂。因电极材料需要根据传感器设计需求进行选择,在此不进行赘述其它材料的制备细节。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种用于水合肼检测的电阻式气体传感器,包括单晶硅衬底(1),其特征在于:单晶硅衬底(1)的两面设有二氧化硅层(2),一侧的二氧化硅层(2)上设有金叉指电极(3),二氧化硅层(2)及金叉指电极(3)表面设有气体敏感材料薄膜(4),气体敏感材料薄膜(4)由金属氧化物/导电聚合物二元复合材料构成;单晶硅衬底(1)、二氧化硅层(2)以及金叉指电极(3)共同构成传感器芯片;气体敏感材料薄膜(4)接触待测气体即水合肼前后电阻会发生变化,通过测量金叉指电极间电阻的变化获得传感器响应值的相关性能。
2.根据权利要求1所述的一种用于水合肼检测的电阻式气体传感器,其特征在于:所述的气体敏感材料薄膜(4)由金属氧化物/导电聚合物二元复合材料构成,具体为二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料薄膜,采用滴涂法制备。
3.根据权利要求1所述的一种用于水合肼检测的电阻式气体传感器,其特征在于:所述的气体敏感材料薄膜(4)由质量比为1:1的二氧化钛纳米颗粒、聚3-己基噻吩-2,5-二基物理混合而成,聚3-己基噻吩-2,5-二基的纯度≥90%,平均分子量为10000~100000;二氧化钛纳米颗粒平均粒径为20~40nm。
4.权利要求1-3任一项所述的一种用于水合肼检测的电阻式气体传感器的制备方法,其特征在于,包括以下步骤:
步骤1、制备传感器芯片:将单晶硅衬底1双面热氧化,在表面形成二氧化硅层2,再经匀胶、紫外曝光、显影、坚膜、电子束蒸发沉积及金属剥离等过程,在二氧化硅层2一侧表面得到金叉指电极3;单晶硅衬底1、二氧化硅层2与金叉指电极3共同构成传感器芯片,用乙醇和水依次超声清洗传感器芯片表面,烘干备用;
步骤2、制备二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液:称取1~25mg二氧化钛纳米颗粒与5mg聚3-己基噻吩-2,5-二基于棕色试剂瓶中,加入5ml氯仿,超声30分钟备用;
步骤3、制备气体敏感材料薄膜4:采用滴涂法成膜,使用移液枪吸取二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液0.5~2μl,垂直滴于步骤1中的传感器芯片上,在表面形成二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料薄膜;
步骤4、对上述制备的二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料电阻型气体传感器进行加热处理,70℃、3小时,使溶剂氯仿完全蒸发,得到二氧化钛/聚3-己基噻吩-2,5-二基复合气敏材料电阻型气体传感器。
5.根据权利要求4所述的方法,其特征在于:步骤2中称取5mg二氧化钛纳米颗粒与5mg聚3-己基噻吩-2,5-二基于棕色试剂瓶中;步骤3中使用移液枪吸二氧化钛/聚3-己基噻吩-2,5-二基氯仿分散液1μl。
CN202310390735.9A 2023-04-13 2023-04-13 一种用于水合肼检测的电阻式气体传感器及其制备方法 Pending CN116519751A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310390735.9A CN116519751A (zh) 2023-04-13 2023-04-13 一种用于水合肼检测的电阻式气体传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310390735.9A CN116519751A (zh) 2023-04-13 2023-04-13 一种用于水合肼检测的电阻式气体传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN116519751A true CN116519751A (zh) 2023-08-01

Family

ID=87405674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310390735.9A Pending CN116519751A (zh) 2023-04-13 2023-04-13 一种用于水合肼检测的电阻式气体传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN116519751A (zh)

Similar Documents

Publication Publication Date Title
CN109342522B (zh) 一种基于聚吡咯/石墨烯复合材料的电阻型nh3传感器、制备方法及其应用
Karunagaran et al. TiO2 thin film gas sensor for monitoring ammonia
Xu et al. NO2 gas sensing with SnO2–ZnO/PANI composite thick film fabricated from porous nanosolid
Wen et al. Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism
Naama et al. CO2 gas sensor based on silicon nanowires modified with metal nanoparticles
TWI410625B (zh) 氣體感測材料及包含其之氣體感測器
Sun et al. Study on humidity sensing property based on TiO2 porous film and polystyrene sulfonic sodium
Yang et al. A novel electronic nose based on porous In2O3 microtubes sensor array for the discrimination of VOCs
CN105891271A (zh) 一种基于石墨烯/二氧化锡/氧化锌复合材料的电阻型气体传感器、制备方法及其应用
Liao et al. Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method
Liu et al. Carbon nanotube-based field-effect transistor-type sensor with a sensing gate for ppb-level formaldehyde detection
CN109342523B (zh) 一种电阻型no2传感器、制备方法及其应用
CN102866181A (zh) 聚苯胺/二氧化钛纳米复合阻抗型薄膜气体传感器及其制备方法
Shen Properties of SnO2 based gas-sensing thin films prepared by ink-jet printing
US20140021067A1 (en) Low concentration ammonia nanosensor
Fu Sensing behavior of CdS nanoparticles to SO2, H2S and NH3 at room temperature
Alizadeh et al. Nanostructured conducting polypyrrole film prepared by chemical vapor deposition on the interdigital electrodes at room temperature under atmospheric condition and its application as gas sensor
Weber et al. A study of the SnO2· Nb2O5 system for an ethanol vapour sensor: a correlation between microstructure and sensor performance
Han et al. Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of In2O3 based gas sensor
Zeng et al. Stable Pb2+ ion-selective electrodes based on polyaniline-TiO2 solid contacts
CN104849324A (zh) 一种基于石墨烯/多壁碳纳米管/氧化锌复合材料的电阻型气体传感器及制作方法
Chou et al. A sensitive potentiometric biosensor using MBs-AO/GO/ZnO membranes-based arrayed screen-printed electrodes for AA detection and remote monitoring
Ren et al. Grain boundaries dependent hydrogen sensitivity in MAO-TiO2 thin films sensors
CN101776632A (zh) 水分散聚苯胺纳米粒子气敏元件与制作方法
CN105136869B (zh) 聚苯胺/氧化铁纳米复合电阻型材料传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination