CN116514234B - Stack type electrochemical ammonia recovery device and method loaded with pulsed electric field - Google Patents
Stack type electrochemical ammonia recovery device and method loaded with pulsed electric field Download PDFInfo
- Publication number
- CN116514234B CN116514234B CN202310771338.6A CN202310771338A CN116514234B CN 116514234 B CN116514234 B CN 116514234B CN 202310771338 A CN202310771338 A CN 202310771338A CN 116514234 B CN116514234 B CN 116514234B
- Authority
- CN
- China
- Prior art keywords
- anolyte
- catholyte
- anode
- porous
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 146
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 72
- 238000011084 recovery Methods 0.000 title claims abstract description 63
- 230000005684 electric field Effects 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 28
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000007789 gas Substances 0.000 claims abstract description 23
- 239000003011 anion exchange membrane Substances 0.000 claims abstract description 22
- 239000012528 membrane Substances 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 210000002700 urine Anatomy 0.000 claims description 15
- 239000008399 tap water Substances 0.000 claims description 8
- 235000020679 tap water Nutrition 0.000 claims description 8
- -1 polytetrafluoroethylene Polymers 0.000 claims description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 150000003863 ammonium salts Chemical class 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000009941 weaving Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 4
- 229910002027 silica gel Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 239000002033 PVDF binder Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- CJTCBBYSPFAVFL-UHFFFAOYSA-N iridium ruthenium Chemical compound [Ru].[Ir] CJTCBBYSPFAVFL-UHFFFAOYSA-N 0.000 claims description 3
- ULFQGKXWKFZMLH-UHFFFAOYSA-N iridium tantalum Chemical compound [Ta].[Ir] ULFQGKXWKFZMLH-UHFFFAOYSA-N 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 3
- CMIQNFUKBYANIP-UHFFFAOYSA-N ruthenium tantalum Chemical compound [Ru].[Ta] CMIQNFUKBYANIP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005349 anion exchange Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 1
- 239000006260 foam Substances 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 14
- 239000001257 hydrogen Substances 0.000 abstract description 13
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 8
- 230000018109 developmental process Effects 0.000 abstract description 6
- 238000010926 purge Methods 0.000 abstract description 6
- 239000010865 sewage Substances 0.000 abstract description 6
- 238000003912 environmental pollution Methods 0.000 abstract description 5
- 230000008929 regeneration Effects 0.000 abstract description 3
- 238000011069 regeneration method Methods 0.000 abstract description 3
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000007600 charging Methods 0.000 description 4
- 238000010277 constant-current charging Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 239000006262 metallic foam Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- HJPBEXZMTWFZHY-UHFFFAOYSA-N [Ti].[Ru].[Ir] Chemical compound [Ti].[Ru].[Ir] HJPBEXZMTWFZHY-UHFFFAOYSA-N 0.000 description 1
- CKMXBZGNNVIXHC-UHFFFAOYSA-L ammonium magnesium phosphate hexahydrate Chemical compound [NH4+].O.O.O.O.O.O.[Mg+2].[O-]P([O-])([O-])=O CKMXBZGNNVIXHC-UHFFFAOYSA-L 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052567 struvite Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/27—Ammonia
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/46115—Electrolytic cell with membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4616—Power supply
- C02F2201/46175—Electrical pulses
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本发明涉及资源回收技术领域,具体为一种加载脉冲电场的堆栈式电化学氨回收装置及方法,其中,堆栈式电化学氨回收装置包括阳极液流通室和阴极液流通室,阳极液流通室两侧由阴离子交换膜和疏水性气膜密封,内部放置设置有多孔阳极和导流衬网的阳极导流板,阴极液流通室由疏水性气膜另一侧和阴离子交换膜密封,内部放置设置有多孔阴极和导流衬网的阴极导流板;该装置利用交替式排列的阳极液流通室和阴极液流通室实现污水处理再生与资源化的目的,同时,本发明利用脉冲电场调控溶液的酸碱度,削弱由于多孔阴极析氢反应产生的氢气泡对氨气的吹扫作用,减少氨的流失和二次环境污染,为优化电化学回收氨氮领域的技术发展提供了有利指引。
The invention relates to the technical field of resource recovery, in particular to a stacked electrochemical ammonia recovery device and method loaded with a pulsed electric field, wherein the stacked electrochemical ammonia recovery device includes an anolyte flow chamber and a catholyte flow chamber, an anolyte flow chamber Both sides are sealed by an anion exchange membrane and a hydrophobic gas membrane, and an anode deflector with a porous anode and a flow guide liner is placed inside, and the catholyte flow chamber is sealed by the other side of the hydrophobic gas membrane and an anion exchange membrane, and the inside is placed A cathode deflector with a porous cathode and a diversion liner is provided; the device uses alternately arranged anolyte flow chambers and catholyte flow chambers to achieve the purpose of sewage treatment, regeneration and resource utilization. The acidity and alkalinity can weaken the purging effect of the hydrogen bubbles generated by the hydrogen evolution reaction of the porous cathode on the ammonia gas, reduce the loss of ammonia and secondary environmental pollution, and provide a favorable guide for the technical development of the field of optimizing the electrochemical recovery of ammonia nitrogen.
Description
技术领域technical field
本发明涉及资源回收技术领域,特别涉及一种加载脉冲电场的堆栈式电化学氨回收装置及方法。The invention relates to the technical field of resource recovery, in particular to a stacked electrochemical ammonia recovery device and method loaded with a pulse electric field.
背景技术Background technique
氨(NH3)是一种由一个氮原子与三个氢原子组成的无机化合物,是各种商业和家用产品的重要化学成分,包括化肥、制冷剂、稳定剂和净化剂等。值得注意的是,氨最近被提议作为一种替代燃料,为可再生资源提供一个合适的存储平台。然而,氨生产的主要工业过程(Haber-bosh工艺)是能源密集型的,该工艺会消耗大量化石能源,造成二氧化碳排放,加剧温室效应。近年来,人们对开发利用废氨资源的兴趣越来越大,这也避免了传统的氨生产的能源需求。学界与工业界的研究表明人类尿液中含有高浓度的氮,占城市污水中氨负荷的75-80%,对尿液进行源分离,并从源分离尿液中回收氨是废弃氮元素资源化的一种有效方法,从而以减少全球氨生产所需的能源消耗。因此,寻找合适的绿色替代方案,在温和条件下实现高效、低能耗、低排放、可持续的氨生产,是亟待解决的科学挑战。Ammonia (NH 3 ), an inorganic compound consisting of one nitrogen atom and three hydrogen atoms, is an important chemical component in a variety of commercial and household products, including fertilizers, refrigerants, stabilizers, and purifiers. Notably, ammonia has recently been proposed as an alternative fuel, providing a suitable storage platform for renewable resources. However, the main industrial process of ammonia production (Haber-bosh process) is energy-intensive, which consumes a lot of fossil energy, causes carbon dioxide emissions, and exacerbates the greenhouse effect. In recent years, there has been increasing interest in exploiting waste ammonia resources, which also avoids the energy requirements of conventional ammonia production. Studies in academia and industry have shown that human urine contains high concentrations of nitrogen, accounting for 75-80% of the ammonia load in urban sewage. Source separation of urine and recovery of ammonia from source separation urine are waste nitrogen resources. An efficient way to reduce the energy consumption required for global ammonia production. Therefore, finding suitable green alternatives for efficient, low-energy, low-emission, and sustainable ammonia production under mild conditions is an urgent scientific challenge to be solved.
相比于传统氨氮回收方法如鸟粪石沉淀法、气提法等,电化学技术具有操作简单、可控性强、经济适用、反应条件温和等优势。近年来,电化学分离在氨回收领域越来越受欢迎,它可以通过原位电化学反应将NH4 +直接转化为NH3(g),同时结合界面焦耳加热来提高氨的提取和回收,有望实现氨氮的高效回收。Compared with traditional ammonia nitrogen recovery methods such as struvite precipitation and air stripping, electrochemical technology has the advantages of simple operation, strong controllability, economical applicability, and mild reaction conditions. In recent years, electrochemical separation has become more and more popular in the field of ammonia recovery, which can directly convert NH 4 + to NH 3(g) through in situ electrochemical reaction, while combining interfacial Joule heating to enhance the extraction and recovery of ammonia, It is expected to realize the efficient recovery of ammonia nitrogen.
然而,现有的电化学氨回收技术皆采用恒流充电模式,通过电解水在阴极产生OH-,产生高pH值,将铵离子(NH4 +)转化为NH3(g)。然而,碱化后的尿液可能会不断被阴极析氢反应产生的氢气泡吹脱,导致电化学系统中氨损失超过30%。However, the existing electrochemical ammonia recovery technology adopts the constant current charging mode to generate OH - at the cathode through electrolysis of water, resulting in a high pH value and converting ammonium ions (NH 4 + ) into NH 3(g) . However, the alkalized urine may be continuously stripped by the hydrogen bubbles generated by the cathodic hydrogen evolution reaction, resulting in more than 30% ammonia loss in the electrochemical system.
因此,开发一种更加有效的氨氮回收方法具有重要意义和应用前景,现有技术还有待于改进和发展。Therefore, it is of great significance and application prospect to develop a more effective ammonia nitrogen recovery method, and the existing technology still needs to be improved and developed.
发明内容Contents of the invention
鉴于上述现有技术的不足,本发明的目的在于提供一种加载脉冲电场的堆栈式电化学氨回收装置及方法,旨在解决传统电化学反应器回收氨氮所面临的回收率较低的问题。In view of the above-mentioned deficiencies in the prior art, the object of the present invention is to provide a stacked electrochemical ammonia recovery device and method loaded with a pulsed electric field, aiming at solving the problem of low recovery rate faced by traditional electrochemical reactors in recovering ammonia nitrogen.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种加载脉冲电场的堆栈式电化学氨回收装置,其中,包括n+1个阳极液流通室和n个阴极液流通室,所述阳极液流通室和阴极液流通室依次堆叠,n为大于等于2的整数;A stacked electrochemical ammonia recovery device loaded with a pulsed electric field, which includes n+1 anolyte flow chambers and n catholyte flow chambers, the anolyte flow chambers and catholyte flow chambers are stacked in sequence, and n is greater than an integer equal to 2;
位于最左侧的阳极液流通室的两侧由左侧端板和阴离子交换膜密封,内部设置有阳极导流板以及设置在阳极导流板上的多孔阳极;位于中间的阳极液流通室的两侧由疏水性气膜和阴离子交换膜密封,内部设置有阳极导流板以及设置在阳极导流板上的多孔阳极;位于最右侧的阳极液流通室的两侧由疏水性气膜和右侧端板密封,内部设置有阳极导流板;The two sides of the leftmost anolyte flow chamber are sealed by the left end plate and the anion exchange membrane, and the anode deflector and the porous anode arranged on the anode deflector are arranged inside; the anolyte flow chamber in the middle The two sides are sealed by a hydrophobic gas membrane and an anion exchange membrane, and the inside is provided with an anode deflector and a porous anode on the anode deflector; The right end plate is sealed, and an anode deflector is arranged inside;
所述阴极液流通室的两侧由阴离子交换膜和疏水性气膜密封,内部设置有阴极导流板以及设置在阴极导流板上的多孔阴极;Both sides of the catholyte flow chamber are sealed by an anion exchange membrane and a hydrophobic gas membrane, and a cathode deflector and a porous cathode arranged on the cathode deflector are arranged inside;
所述左侧端板的上端和下端分别设置有阳极液进液口和阴极液进液口,所述右侧端板的下端和上端分别设置有阳极液出液口和阴极液出液口,阳极液从所述阳极液进液口进入阳极液流通室循环流通,最后从阳极液出液口流出,阴极液从所述阴极液进液口进入阴极液流通室单侧流动,最后从阴极液出液口流出;The upper end and the lower end of the left end plate are respectively provided with an anolyte liquid inlet and a catholyte liquid inlet, and the lower end and the upper end of the right end plate are respectively provided with an anolyte liquid outlet and a catholyte liquid outlet, The anolyte enters the anolyte circulation chamber from the anolyte inlet for circulation, and finally flows out from the anolyte outlet; outflow from the outlet;
所述多孔阳极通过第一外接金属导线与加载脉冲电场的外部直流电源正极连接,所述多孔阴极通过第二外接金属导线与加载脉冲电场的外部直流电源负极连接。The porous anode is connected to the positive pole of the external DC power supply with pulse electric field through the first external metal wire, and the porous cathode is connected to the negative pole of the external DC power supply with pulse electric field through the second external metal wire.
所述加载脉冲电场的堆栈式电化学氨回收装置,其中,所述阳极导流板、阴离子交换膜、阴极导流板以及疏水性气膜之间均设置有硅胶垫片。In the stacked electrochemical ammonia recovery device loaded with a pulsed electric field, a silica gel gasket is arranged between the anode deflector, the anion exchange membrane, the cathode deflector and the hydrophobic gas membrane.
所述加载脉冲电场的堆栈式电化学氨回收装置,其中,所述多孔阳极为钌铱多孔金属网、钌钽多孔金属网、铱钽多孔金属网中的任意一种,多孔阳极的编织密度为30-300目;所述多孔阴极为碳布、多孔金属网和多孔泡沫金属中的任意一种,多孔阴极的编织密度为30-300目。The stacked electrochemical ammonia recovery device loaded with a pulsed electric field, wherein the porous anode is any one of ruthenium-iridium porous metal mesh, ruthenium-tantalum porous metal mesh, and iridium-tantalum porous metal mesh, and the weaving density of the porous anode is 30-300 mesh; the porous cathode is any one of carbon cloth, porous metal mesh and porous metal foam, and the weaving density of the porous cathode is 30-300 mesh.
所述加载脉冲电场的堆栈式电化学氨回收装置,其中,所述疏水性气膜的材料为聚四氟乙烯、聚偏氟乙烯和聚丙烯中的任意一种。In the stacked electrochemical ammonia recovery device loaded with a pulsed electric field, the material of the hydrophobic gas film is any one of polytetrafluoroethylene, polyvinylidene fluoride and polypropylene.
一种基于加载脉冲电场的堆栈式电化学氨回收装置的氨回收方法,其中,包括步骤:A method for recovering ammonia based on a stacked electrochemical ammonia recovery device loaded with a pulsed electric field, comprising the steps of:
将待处理的阴极液从阴极液进液口输入,将阳极液从阳极液进液口输入,所述阴极液和阳极液在各自的流道内独立流动,互不混合;The catholyte to be treated is input from the catholyte inlet, and the anolyte is input from the anolyte inlet, and the catholyte and the anolyte flow independently in their respective flow channels without mixing with each other;
控制外部直流电源输出脉冲电流,使得阴极液通过阴极液流通室的过程中,NH4 +在多孔阴极通电时生成OH-的碱性环境下转化为NH3(g),然后NH3(g)通过疏水性气膜扩散到阳极液流通室,通过多孔阳极通电时产生的H+吸收扩散到阳极液流通室的NH3(g),最后使得氨氮以铵盐的形式被回收。Control the output pulse current of the external DC power supply so that during the process of catholyte passing through the catholyte flow chamber, NH 4 + is converted into NH 3(g) in an alkaline environment where OH - is generated when the porous cathode is energized, and then NH 3(g) Diffusion to the anolyte flow chamber through the hydrophobic gas film, and NH 3(g) absorbed and diffused to the anolyte flow chamber by the H + generated when the porous anode is energized, and finally the ammonia nitrogen is recovered in the form of ammonium salt.
所述的氨回收方法,其中,所述阴极液为人类尿液,所述尿液的氨氮浓度为20−7000 mg/L。The ammonia recovery method, wherein the catholyte is human urine, and the ammonia nitrogen concentration in the urine is 20−7000 mg/L.
所述的氨回收方法,其中,所述阳极液为自来水或为自来水中添加0-1 M的硫酸、盐酸、硝酸、碳酸和磷酸中的任意一种。The ammonia recovery method, wherein, the anolyte is tap water or any one of 0-1 M sulfuric acid, hydrochloric acid, nitric acid, carbonic acid and phosphoric acid is added to the tap water.
所述的氨回收方法,其中,所述外部直流电源提供的电流密度为10-100 A m-2,所述外部直流电源输出的脉冲电流占空比为0.33-1.00,脉冲电流的脉冲宽度为10min-60min。The ammonia recovery method, wherein, the current density provided by the external DC power supply is 10-100 A m -2 , the duty ratio of the pulse current output by the external DC power supply is 0.33-1.00, and the pulse width of the pulse current is 10min-60min.
所述的氨回收方法,其中,所述阳极液在阳极液流通室内的停留时间为10-60min。The ammonia recovery method, wherein, the residence time of the anolyte in the anolyte circulation chamber is 10-60min.
所述的氨回收方法,其中,所述阴极液在阴极液流通室内的停留时间为20-120min。The ammonia recovery method, wherein, the residence time of the catholyte in the catholyte flow chamber is 20-120min.
有益效果:本发明提供的堆栈式电化学氨回收装置,通过将设置有多孔阳极的阳极导流板、阴离子交换膜、设置有多孔阴极的阴极导流板、疏水性气膜的重复堆叠和组装,构建n+1个阳极液流通室和n个阴极液流通室,实现污水中资源的定向转化与分馏提纯,同步达到污水处理再生与资源化的目的。本发明基于堆栈式电化学氨回收装置的氨回收方法,脉冲电场被用于调节和改变电解反应过程中电极的行为,特别是对电流涡旋的发展和pH的演变产生影响,通过合理设置脉冲电流的脉冲占空比和时间,削弱由于阴极析氢反应产生的大量氢气对氨气的吹扫作用,避免造成氨的流失和二次环境污染;同时可保证氨氮的去除率>99%,回收率>98%,极大的提高电化学回收氨的高效性和经济性,促进电化学资源回收领域的发展。Beneficial effects: the stacked electrochemical ammonia recovery device provided by the present invention, through the repeated stacking and assembly of the anode deflector provided with the porous anode, the anion exchange membrane, the cathode deflector provided with the porous cathode, and the hydrophobic gas membrane , construct n+1 anolyte flow chambers and n catholyte flow chambers to realize directional conversion and fractionation purification of resources in sewage, and simultaneously achieve the purpose of sewage treatment regeneration and resource utilization. The invention is based on the ammonia recovery method of the stacked electrochemical ammonia recovery device. The pulsed electric field is used to adjust and change the behavior of the electrodes during the electrolysis reaction, especially to affect the development of the current vortex and the evolution of pH. By setting the pulse reasonably The pulse duty cycle and time of the current weaken the purging effect of a large amount of hydrogen generated by the cathode hydrogen evolution reaction on the ammonia, avoiding the loss of ammonia and secondary environmental pollution; at the same time, it can ensure the removal rate of ammonia nitrogen > 99%, and the recovery rate >98%, which greatly improves the efficiency and economy of electrochemical recovery of ammonia, and promotes the development of the field of electrochemical resource recovery.
附图说明Description of drawings
图1为本发明实施例用于堆栈式电化学氨回收装置结构示意图。Fig. 1 is a schematic structural diagram of a stacked electrochemical ammonia recovery device according to an embodiment of the present invention.
图2为本发明实施例用于堆栈式电化学氨回收装置内部的电极液流方向示意图。Fig. 2 is a schematic diagram of the electrode liquid flow direction used in the stacked electrochemical ammonia recovery device according to the embodiment of the present invention.
图3为本发明实施例用于堆栈式电化学氨回收装置的实物图。Fig. 3 is a physical diagram of an embodiment of the present invention used in a stacked electrochemical ammonia recovery device.
图4为实施例1中脉冲电场模式下的运行参数(包括电压、电流和pH)。Fig. 4 is the operating parameters (including voltage, current and pH) in the pulsed electric field mode in Example 1.
图5为对比例1中恒流充电模式下的运行参数(包括电压、电流和pH)。FIG. 5 shows the operating parameters (including voltage, current and pH) in the constant current charging mode in Comparative Example 1.
图6为实施例1脉冲电场模式下和对比例1中恒流充电模式下的氨氮回收率结果对比图。6 is a comparison chart of the ammonia nitrogen recovery results under the pulsed electric field mode in Example 1 and the constant current charging mode in Comparative Example 1.
附图标记:1、左侧端板,1’、右侧端板,2、阳极导流板,2’、阴极导流板,3、多孔阳极,4、导流衬网,5、多孔阴极,6、阴离子交换膜,7、疏水性气膜,8、阳极液进液口,9、阴极液进液口,10、阳极液出液口,11、阴极液出液口,12、第一外接金属导线,13、第二外接金属导线。Reference signs: 1, left end plate, 1', right end plate, 2, anode deflector, 2', cathode deflector, 3, porous anode, 4, diversion liner, 5, porous cathode , 6. Anion exchange membrane, 7. Hydrophobic gas membrane, 8. Anolyte liquid inlet, 9. Catholyte liquid inlet, 10. Anolyte liquid outlet, 11. Catholyte liquid outlet, 12. First Externally connected metal wires, 13. The second externally connected metal wires.
具体实施方式Detailed ways
本发明提供一种加载脉冲电场的堆栈式电化学氨回收装置及方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。The present invention provides a stacked electrochemical ammonia recovery device and method loaded with a pulsed electric field. In order to make the purpose, technical solution and effect of the present invention clearer and clearer, the present invention will be further described in detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
请参阅图1-图3,本发明提供了一种加载脉冲电场的堆栈式电化学氨回收装置,如图所示,其包括n+1个阳极液流通室和n个阴极液流通室,所述阳极液流通室和阴极液流通室依次堆叠,n为大于等于2的整数;位于最左侧的阳极液流通室的两侧由左侧端板1和阴离子交换膜6密封,内部设置有阳极导流板2以及设置在阳极导流板2上的导流衬网4和多孔阳极3;位于中间的阳极液流通室的两侧由疏水性气膜7和阴离子交换膜6密封,内部设置有阳极导流板2以及设置在阳极导流板2上的导流衬网4和多孔阳极3;位于最右侧的阳极液流通室的两侧由疏水性气膜7和右侧端板1’密封,内部设置有阳极导流板2以及设置在阳极导流板2上的导流衬网4;Please refer to Fig. 1-Fig. 3, the present invention provides a stacked electrochemical ammonia recovery device loaded with a pulsed electric field, as shown in the figure, it includes n+1 anolyte flow chambers and n catholyte flow chambers, so The above-mentioned anolyte flow chamber and catholyte flow chamber are stacked in sequence, n is an integer greater than or equal to 2; the two sides of the anolyte flow chamber located on the far left are sealed by the left end plate 1 and the anion exchange membrane 6, and an anode is arranged inside Deflector 2 and the guide lining 4 and porous anode 3 arranged on the anode deflector 2; the two sides of the anolyte flow chamber located in the middle are sealed by hydrophobic gas membrane 7 and anion exchange membrane 6, and the inside is provided with The anode deflector 2 and the guide liner 4 and the porous anode 3 arranged on the anode deflector 2; the two sides of the anolyte flow chamber located on the far right are composed of a hydrophobic gas film 7 and a right end plate 1' sealed, with an anode deflector 2 and a deflector liner 4 arranged on the anode deflector 2 inside;
所述阴极液流通室的两侧由阴离子交换膜6和疏水性气膜7密封,内部设置有阴极导流板2’以及设置在阴极导流板2’上的导流衬网4和多孔阴极5;Both sides of the catholyte flow chamber are sealed by an anion exchange membrane 6 and a hydrophobic gas membrane 7, and the inside is provided with a cathode deflector 2' and a deflector liner 4 and a porous cathode arranged on the cathode deflector 2'. 5;
所述左侧端板1的上端和下端分别设置有阳极液进液口8和阴极液进液口9,所述右侧端板的下端和上端分别设置有阳极液出液口10和阴极液出液口11,阳极液从所述阳极液进液口8进入阳极液流通室循环流通,最后从阳极液出液口10流出,阴极液从所述阴极液进液口9进入阴极液流通室单侧流动,最后从阴极液出液口11流出;The upper end and the lower end of the left end plate 1 are respectively provided with an anolyte liquid inlet 8 and a catholyte liquid inlet 9, and the lower end and the upper end of the right end plate are respectively provided with an anolyte liquid outlet 10 and a catholyte liquid outlet. A liquid outlet 11, the anolyte enters the anolyte circulation chamber from the anolyte liquid inlet 8 to circulate, and finally flows out from the anolyte liquid outlet 10, and the catholyte enters the catholyte flow chamber from the catholyte liquid inlet 9 Flow on one side, and finally flow out from the catholyte outlet 11;
所述多孔阳极3通过第一外接金属导线12与加载脉冲电场的外部直流电源正极连接,所述多孔阴极5通过第二外接金属导线13与加载脉冲电场的外部直流电源负极连接。The porous anode 3 is connected to the positive pole of an external DC power supply with a pulsed electric field through a first external metal wire 12 , and the porous cathode 5 is connected to the negative pole of an external DC power supply with a pulsed electric field through a second external metal wire 13 .
在本发明中,所述左侧端板和右侧端板的材质为在pH=1−13范围内化学性质稳定的绝缘材料,作为举例,所述左侧端板和右侧端板的材质可以为亚克力板。在本发明中,设置有导流衬网和多孔阳极的阳极导流板、阴离子交换膜、设置有导流衬网和多孔阴极的阴极导流板,以及疏水性气膜依次重复排列构成n+1个阳极液流通室和n个阴极液流通室,相邻的阳极液流通室和阴极液流通室之间共用同一块阴离子交换膜或阴极导流板;为防止阳极液流通室和阴极液流通室之间发生短流,所述阳极导流板、阴离子交换膜、阴极导流板以及疏水性气膜之间均设置有硅胶垫片,且堆栈式电化学氨回收装置的最外部通过亚克力端板和螺栓进行密封,如图3所示。In the present invention, the material of the left end plate and the right end plate is an insulating material with stable chemical properties in the range of pH=1−13. As an example, the material of the left end plate and the right end plate Can be acrylic sheet. In the present invention, the anode guide plate provided with guide liner and porous anode, the anion exchange membrane, the cathode guide plate provided with guide liner and porous cathode, and the hydrophobic gas film are arranged repeatedly in sequence to form n+ 1 anolyte flow chamber and n catholyte flow chambers, adjacent anolyte flow chambers and catholyte flow chambers share the same anion exchange membrane or cathode deflector; in order to prevent anolyte flow chamber and catholyte flow A short flow occurs between the chambers, and there are silica gel gaskets between the anode deflector, anion exchange membrane, cathode deflector and hydrophobic gas membrane, and the outermost part of the stacked electrochemical ammonia recovery device passes through the acrylic end Plates and bolts are sealed, as shown in Figure 3.
在本发明中,所述多孔阳极为钌铱多孔金属网、钌钽多孔金属网、铱钽多孔金属网中的任意一种,多孔阳极的编织密度为30-300目;所述多孔阴极为碳布、多孔金属网和多孔泡沫金属中的任意一种,多孔阴极的编织密度为30-300目。In the present invention, the porous anode is any one of ruthenium-iridium porous metal mesh, ruthenium-tantalum porous metal mesh, and iridium-tantalum porous metal mesh, and the weaving density of the porous anode is 30-300 mesh; the porous cathode is carbon Any one of cloth, expanded metal mesh and porous metal foam, the weaving density of the porous cathode is 30-300 mesh.
在本发明中,所述疏水性气膜的材料为聚四氟乙烯、聚偏氟乙烯和聚丙烯中的任意一种,但不限于此。In the present invention, the material of the hydrophobic air film is any one of polytetrafluoroethylene, polyvinylidene fluoride and polypropylene, but not limited thereto.
本发明对外部直流电源没有特殊限制,可以控制电流密度的任何直流电源或电化学工作站均可;采用钌铱钛丝作为第一外接金属导线和第二外接金属导线,防止阳极高电位氧化金属导线。The present invention has no special restrictions on the external DC power supply, and any DC power supply or electrochemical workstation that can control the current density can be used; the ruthenium iridium titanium wire is used as the first external metal wire and the second external metal wire to prevent the metal wire from being oxidized by the anode at high potential .
本发明对阴离子交换膜、硅胶垫片和导流衬网均没有特殊限制,市售或自制研发的具备相应功能的均可。本发明阳极导流板和阴极导流板之间使用阴离子交换膜分隔,使用阳离子交换膜或不使用离子膜会导致氨回收率显著下降。The present invention has no special restrictions on anion exchange membranes, silica gel gaskets and diversion liners, and those that are commercially available or self-developed with corresponding functions can be used. In the present invention, an anion exchange membrane is used to separate the anode guide plate and the cathode guide plate, and the use of a cation exchange membrane or no ion membrane will lead to a significant drop in the ammonia recovery rate.
本发明提供的堆栈式电化学氨回收装置,通过将设置有导流衬网和多孔阳极的阳极导流板、阴离子交换膜、设置有导流衬网和多孔阴极的阴极导流板、疏水性气膜的重复堆叠和组装,构建n+1个阳极液流通室和n个阴极液流通室,实现污水中资源的定向转化与分馏提纯,同步达到污水处理再生与资源化的目的。本发明基于堆栈式电化学氨回收装置的氨回收方法,脉冲电场被用于调节和改变电解反应过程中电极的行为,特别是对电流涡旋的发展和pH的演变产生影响,通过合理设置脉冲电流的脉冲占空比和时间,削弱由于阴极析氢反应产生的大量氢气对氨气的吹扫作用,避免造成氨的流失和二次环境污染;同时可保证氨氮的去除率>99%,回收率>98%,极大的提高电化学回收氨的高效性和经济性,促进电化学资源回收领域的发展。In the stacked electrochemical ammonia recovery device provided by the present invention, the anode flow deflector provided with the flow guide liner and the porous anode, the anion exchange membrane, the cathode flow guide provided with the flow guide liner and the porous cathode, the hydrophobic The repeated stacking and assembly of gas membranes constructs n+1 anolyte flow chambers and n catholyte flow chambers to realize the directional transformation and fractionation purification of resources in sewage, and simultaneously achieve the purpose of sewage treatment regeneration and resource utilization. The invention is based on the ammonia recovery method of the stacked electrochemical ammonia recovery device. The pulsed electric field is used to adjust and change the behavior of the electrodes during the electrolysis reaction, especially to affect the development of the current vortex and the evolution of pH. By setting the pulse reasonably The pulse duty cycle and time of the current weaken the purging effect of a large amount of hydrogen generated by the cathode hydrogen evolution reaction on the ammonia, avoiding the loss of ammonia and secondary environmental pollution; at the same time, it can ensure the removal rate of ammonia nitrogen > 99%, and the recovery rate >98%, which greatly improves the efficiency and economy of electrochemical recovery of ammonia, and promotes the development of the field of electrochemical resource recovery.
本发明还提供一种基于加载脉冲电场的堆栈式电化学氨回收装置的氨回收方法,其包括步骤:The present invention also provides an ammonia recovery method based on a stacked electrochemical ammonia recovery device loaded with a pulsed electric field, which includes the steps of:
S10、将待处理的阴极液从阴极液进液口输入,将阳极液从阳极液进液口输入,所述阴极液和阳极液在各自的流道内独立流动,互不混合;S10, input the catholyte to be treated from the catholyte inlet, and input the anolyte from the anolyte inlet, the catholyte and the anolyte flow independently in their respective channels without mixing with each other;
在本实施例中,所述阴极液为人类尿液,所述尿液的氨氮浓度为20−7000 mg/L,例如可以是20mg/L、50mg/L、100mg/L、200mg/L、500mg/L、1000mg/L、2000mg/L、3000mg/L、4000mg/L、5000mg/L、6000mg/L、7000mg/L,更优选为300 − 4000 mg/L,本发明尿液的氨氮浓度以N元素计;所述阳极液为自来水或为自来水中添加0-1 M的硫酸、盐酸、硝酸、碳酸和磷酸中的任意一种。在本实施例中,所述阴极液从阴极液进液口输入,流经阴极液流通室后从阴极出液口流出,所述阳极液从阳极液进液口输入,流经阳极液流通室后从阳极出液口流出。In this embodiment, the catholyte is human urine, and the ammonia nitrogen concentration of the urine is 20−7000 mg/L, such as 20 mg/L, 50 mg/L, 100 mg/L, 200 mg/L, 500 mg /L, 1000mg/L, 2000mg/L, 3000mg/L, 4000mg/L, 5000mg/L, 6000mg/L, 7000mg/L, more preferably 300-4000 mg/L, the ammonia nitrogen concentration of the urine of the present invention is represented by N In terms of elements; the anolyte is tap water or any one of 0-1 M sulfuric acid, hydrochloric acid, nitric acid, carbonic acid and phosphoric acid added to the tap water. In this embodiment, the catholyte is input from the catholyte inlet, flows through the catholyte flow chamber and flows out from the cathode liquid outlet, and the anolyte is input from the anolyte liquid inlet, flows through the anolyte flow chamber Then it flows out from the anode liquid outlet.
S20、控制外部直流电源输出脉冲电流,使得阴极液通过阴极液流通室的过程中,NH4 +在多孔阴极通电时生成OH-的碱性环境下转化为NH3(g),然后NH3(g)通过疏水性气膜扩散到阳极液流通室,通过多孔阳极通电时产生的H+吸收扩散到阳极液流通室的NH3(g),最后使得氨氮以铵盐的形式被回收。S20. Controlling the output pulse current of the external DC power supply, so that during the catholyte passing through the catholyte flow chamber, NH 4 + is converted into NH 3(g) in an alkaline environment where OH- is generated when the porous cathode is energized, and then NH 3( g) Diffusion to the anolyte flow chamber through the hydrophobic gas film, and NH 3(g) absorbed and diffused to the anolyte flow chamber by the H + generated when the porous anode is energized, and finally the ammonia nitrogen is recovered in the form of ammonium salt.
在本实施例中,外部直流电源输出脉冲电流,在阴极液通过阴离子交换膜和疏水性气膜组成的阴极液流通室过程中,NH4 +在多孔阴极生成OH-的碱性环境下转化为NH3(g),然后NH3(g)扩散到疏水性气膜的另一侧,这一侧是由疏水性气膜与下一层阴离子交换膜6组成的阳极液流通室;所述阳极液流通室内通过多孔阳极的电化学反应产生大量的H+,H+吸收从阴极液流通室扩散到阳极液流通室的NH3(g),最后氨氮以铵盐的形式被回收。In this embodiment, the external DC power supply outputs a pulsed current. During the process of the catholyte passing through the catholyte flow chamber composed of an anion exchange membrane and a hydrophobic gas membrane, NH 4 + is converted into NH 3(g) , and then NH 3(g) diffuses to the other side of the hydrophobic gas membrane, which is the anolyte flow chamber composed of the hydrophobic gas membrane and the next layer of anion exchange membrane 6; the anode The electrochemical reaction of the porous anode in the liquid flow chamber produces a large amount of H + , and the H + absorbs the NH 3 (g) diffused from the catholyte flow chamber to the anolyte flow chamber, and finally the ammonia nitrogen is recovered in the form of ammonium salt.
在本实施例中,当外部直流电源通电时,由于电化学反应使得阳极区pH下降,阴极区pH上升;当外部直流电源放电时,由于H+和OH-不断被消耗,得不到及时补充,使得阳极区pH上升,阴极区pH下降,因此本实施例可通过合理设置充放电时间,避免阴极区pH过高造成氨的逸散,或pH过低造成氨回收效率下降。In this embodiment, when the external DC power supply is energized, the pH of the anode zone decreases due to electrochemical reactions, and the pH of the cathode zone rises; when the external DC power supply is discharged, because H + and OH - are constantly consumed, they cannot be replenished in time , so that the pH of the anode area rises, and the pH of the cathode area decreases. Therefore, in this embodiment, the charging and discharging time can be reasonably set to avoid the dissipation of ammonia caused by the high pH of the cathode area, or the decrease of the ammonia recovery efficiency caused by the low pH.
也就是说,本实施例可通过加载脉冲电场调控阴极区的pH值,削弱由于阴极析氢反应产生的大量氢气泡对氨气的吹扫作用,减少氨的流失和二次环境污染,实现了电化学回收氨氮的经济性和高效性。That is to say, in this embodiment, the pH value of the cathode region can be regulated by applying a pulsed electric field, weakening the purging effect of a large number of hydrogen bubbles on the ammonia gas due to the hydrogen evolution reaction at the cathode, reducing the loss of ammonia and secondary environmental pollution, and realizing the electric Economical and efficient chemical recovery of ammonia nitrogen.
在一些实施方式中,所述外部直流电源提供的电流密度为10-100 A m-2,例如可以是10、20、40、60、80、100 A m-2,更优选为30−90 A m-2;所述外部直流电源输出的脉冲电流占空比为0.33-1.00,例如可以是0.33,0.50,0.67,0.83,1.00,更优选为0.50−0.67;脉冲电流的脉冲宽度为10min-60min,例如可以是10min、20 min、30 min、40 min、50 min、60 min,更优选为20−40 min。In some embodiments, the current density provided by the external DC power supply is 10-100 A m -2 , such as 10, 20, 40, 60, 80, 100 A m -2 , more preferably 30−90 A m -2 ; the duty ratio of the pulse current output by the external DC power supply is 0.33-1.00, such as 0.33, 0.50, 0.67, 0.83, 1.00, more preferably 0.50−0.67; the pulse width of the pulse current is 10min-60min , such as 10 min, 20 min, 30 min, 40 min, 50 min, 60 min, more preferably 20−40 min.
在一些实施方式中,所述阳极液在阳极液流通室内的停留时间为10-60min,例如可以是10min、20min、40min、60min,更优选为10−30 min,阳极液采用循环流动,将氨在阳极进行富集。所述阴极液在阴极液流通室内的停留时间为20-120min。例如可以是20min、40min、60min、120min,更优选为50−100 min,阴极液采用连续流动。In some embodiments, the residence time of the anolyte in the anolyte circulation chamber is 10-60min, such as 10min, 20min, 40min, 60min, more preferably 10-30min, the anolyte adopts circulation flow, and the ammonia enrichment at the anode. The residence time of the catholyte in the catholyte circulation chamber is 20-120min. For example, it can be 20 min, 40 min, 60 min, 120 min, more preferably 50−100 min, and the catholyte adopts continuous flow.
下面通过具体实施例对本发明作进一步的解释说明:The present invention will be further explained below by specific embodiment:
实施例1Example 1
一种基于加载脉冲电场的堆栈式电化学氨回收装置的氨回收方法,其包括步骤:A method for recovering ammonia based on a stacked electrochemical ammonia recovery device loaded with a pulsed electric field, comprising the steps of:
1、将待处理的阴极液从阴极液进液口输入,将阳极液从阳极液进液口输入,所述阴极液和阳极液在各自的流道内独立流动,互不混合;所述阴极液为人类尿液,所述尿液的氨氮浓度为4000 mg/L;所述阳极液为自来水。1. Input the catholyte to be treated from the catholyte inlet, and input the anolyte from the anolyte inlet, the catholyte and the anolyte flow independently in their respective channels without mixing with each other; the catholyte It is human urine, and the ammonia nitrogen concentration of the urine is 4000 mg/L; the anolyte is tap water.
2、如图4所示,控制外部直流电源输出脉冲电流,设定外部直流电源提供的电流密度为80 A m-2,脉冲电流占空比为0.67,脉冲电流的脉冲宽度40 min;使得阴极液通过阴极液流通室的过程中,NH4 +在多孔阴极通电时生成OH-的碱性环境下转化为NH3(g),然后NH3(g)通过疏水性气膜扩散到阳极液流通室,通过多孔阳极通电时产生的H+吸收扩散到阳极液流通室的NH3(g),最后使得氨氮以铵盐的形式被回收。本实施例通过加载脉冲电场,调节电极的行为,实现对氨氮的有效回收,同时削弱阴极析氢反应产生的氢气对氨的吹扫作用,减少氨氮的流失。2. As shown in Figure 4, control the output pulse current of the external DC power supply, set the current density provided by the external DC power supply to 80 A m -2 , the duty cycle of the pulse current is 0.67, and the pulse width of the pulse current is 40 min; so that the cathode During the process of liquid passing through the catholyte flow chamber, NH 4 + is converted into NH 3(g) in the alkaline environment where OH - is generated when the porous cathode is energized, and then NH 3(g) diffuses into the anolyte flow through the hydrophobic gas film The H + generated when the porous anode is energized absorbs the NH 3(g) that diffuses into the anolyte flow chamber, and finally the ammonia nitrogen is recovered in the form of ammonium salt. In this embodiment, the behavior of the electrodes is adjusted by loading a pulsed electric field to achieve effective recovery of ammonia nitrogen, and at the same time weaken the purging effect of hydrogen gas generated by the cathode hydrogen evolution reaction on ammonia to reduce the loss of ammonia nitrogen.
对比例1Comparative example 1
一种基于恒流充电模式下的堆栈式电化学氨回收装置的氨回收方法,其包括步骤:A method for recovering ammonia based on a stacked electrochemical ammonia recovery device in constant current charging mode, comprising the steps of:
1、将待处理的阴极液从阴极液进液口输入,将阳极液从阳极液进液口输入,所述阴极液和阳极液在各自的流道内独立流动,互不混合,所述阴极液为人类尿液,所述尿液的氨氮浓度为4000 mg/L;所述阳极液为自来水;1. The catholyte to be treated is input from the catholyte inlet, and the anolyte is input from the anolyte inlet. The catholyte and the anolyte flow independently in their respective channels without mixing with each other. The catholyte It is human urine, and the ammonia nitrogen concentration of the urine is 4000 mg/L; the anolyte is tap water;
2、如图5所示,控制外部直流电源输出恒定电流,设定外部直流电源提供的电流密度为53.33 A m-2,使得阴极液通过阴极液流通室的过程中,NH4 +在多孔阴极通电时生成OH-的碱性环境下转化为NH3(g),然后NH3(g)通过疏水性气膜扩散到阳极液流通室,通过多孔阳极通电时产生的H+吸收扩散到阳极液流通室的NH3(g),最后使得氨氮以铵盐的形式被回收。对比实施例1和对比例1的操作数据可以发现,恒定电流强度是脉冲电流强度的2/3倍,充电时间是脉冲电场的1.5倍,同样的实验时间,消耗的能量相同。2. As shown in Figure 5, control the external DC power supply to output a constant current, set the current density provided by the external DC power supply to 53.33 A m -2 , so that during the process of catholyte passing through the catholyte flow chamber, NH 4 + is in the porous cathode When energized, OH - is converted to NH 3(g) in an alkaline environment, and then NH 3(g) diffuses into the anolyte flow chamber through the hydrophobic gas film, and absorbs and diffuses into the anolyte through the H + generated when the porous anode is energized. The NH 3(g) in the flow-through chamber finally causes ammonia nitrogen to be recovered in the form of ammonium salt. Comparing the operating data of Example 1 and Comparative Example 1, it can be found that the constant current intensity is 2/3 times of the pulse current intensity, the charging time is 1.5 times of the pulse electric field, and the same experimental time consumes the same energy.
通过实施例1和对比例1的方法计算氨氮回收率,其结果如图6所示,从图6可以看出不同电流强度的脉冲电场和恒定电场,消耗同等能耗,脉冲电场的氨氮回收率提高20%。原因在于脉冲电场间歇性充放电对电流涡旋的发展和pH的演变产生重要影响,避免长时间充电持续产氢,削弱氢气泡对氨的吹扫作用,减少氨氮的流失,避免二次环境污染。Calculate the ammonia nitrogen recovery rate by the method of embodiment 1 and comparative example 1, its result is as shown in Figure 6, can find out from Figure 6 that the pulsed electric field of different current intensity and constant electric field, consume equal energy consumption, the ammonia nitrogen recovery rate of pulsed electric field 20% increase. The reason is that the intermittent charging and discharging of the pulsed electric field has an important impact on the development of the current vortex and the evolution of the pH, avoiding continuous hydrogen production after long-term charging, weakening the purging effect of hydrogen bubbles on ammonia, reducing the loss of ammonia nitrogen, and avoiding secondary environmental pollution .
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”或“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。单词第一、第二、以及第三等的使用不表示任何顺序,可将这些单词解释为名称。It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" or "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The use of the words first, second, third, etc. does not indicate any order and these words may be interpreted as names.
本说明书中公开的所有特征,除了互相排斥的特征,均可以以任何方式组合。All features disclosed in this specification, except mutually exclusive features, may be combined in any way.
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。Any feature disclosed in this specification (including any appended claims, abstract and drawings), unless expressly stated otherwise, may be replaced by alternative features which are equivalent or serve a similar purpose. That is, unless expressly stated otherwise, each feature is one example only of a series of equivalent or similar features.
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。The present invention is not limited to the foregoing specific embodiments. The present invention extends to any new feature or any new combination disclosed in this specification, and any new method or process step or any new combination disclosed.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310771338.6A CN116514234B (en) | 2023-06-28 | 2023-06-28 | Stack type electrochemical ammonia recovery device and method loaded with pulsed electric field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310771338.6A CN116514234B (en) | 2023-06-28 | 2023-06-28 | Stack type electrochemical ammonia recovery device and method loaded with pulsed electric field |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116514234A CN116514234A (en) | 2023-08-01 |
CN116514234B true CN116514234B (en) | 2023-09-01 |
Family
ID=87397981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310771338.6A Active CN116514234B (en) | 2023-06-28 | 2023-06-28 | Stack type electrochemical ammonia recovery device and method loaded with pulsed electric field |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116514234B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08299962A (en) * | 1995-05-12 | 1996-11-19 | Hitachi Ltd | Treatment of waste water containing oxidizable matter and device therefor |
CN102328972A (en) * | 2011-10-27 | 2012-01-25 | 大连理工大学 | Device and method for treating waste water and preparing hydrogen simultaneously |
CN107098441A (en) * | 2017-05-12 | 2017-08-29 | 浙江工业大学 | The method that electrochemistry removes Determination of Total Nitrogen in Waste Water |
CN109775817A (en) * | 2019-03-08 | 2019-05-21 | 箭牌环保水务江苏有限公司 | A kind of electrochemistry ammonia nitrogen digestion instrument and digestion procedure |
CN110790360A (en) * | 2019-10-21 | 2020-02-14 | 天津大学 | Resource, ammonia recovery and synchronous carbon dioxide absorption system for high ammonia nitrogen organic wastewater and regulation and control method thereof |
CN111655629A (en) * | 2017-12-04 | 2020-09-11 | 新南创新有限公司 | Ammonia nitrogen recovery equipment and method |
CN112110524A (en) * | 2020-09-15 | 2020-12-22 | 北京中科沃特膜科技有限公司 | A two-membrane three-phase integrated device and method for ammonia nitrogen wastewater treatment |
CN113387427A (en) * | 2021-06-15 | 2021-09-14 | 北京航空航天大学 | Diaphragm cathode and microbial electrolysis cell |
CN114807977A (en) * | 2022-05-19 | 2022-07-29 | 中国科学院重庆绿色智能技术研究院 | A kind of device and method for reclaiming urea and producing struvite at the same time |
CN114950088A (en) * | 2022-05-10 | 2022-08-30 | 上海交通大学 | A device, using method and application for recycling nitrogen oxide waste gas with electrochemical reduction technology coupled with gas-liquid separation membrane technology |
CN115849515A (en) * | 2022-12-02 | 2023-03-28 | 广东工业大学 | Roll type device for electrochemically recovering ammonia and method for recovering ammonia |
CN115896862A (en) * | 2022-11-14 | 2023-04-04 | 大连理工大学 | A metal single-site catalytic material for electrosynthesis of H2O2 and its preparation method and application |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012037677A1 (en) * | 2010-09-21 | 2012-03-29 | Institut National De La Recherche Scientifique | Method and system for electrochemical removal of nitrate and ammonia |
US20160271562A1 (en) * | 2013-11-07 | 2016-09-22 | Saltworks Technologies Inc. | Removal of ammonia from ammonia-containing water using an electrodialysis process |
ES2916460T3 (en) * | 2017-11-27 | 2022-07-01 | Univ Gent | Method for recovering N from a liquid waste stream |
DK3746407T3 (en) * | 2018-02-01 | 2022-03-21 | Univ Delft Tech | Gas recovery from wastewater |
-
2023
- 2023-06-28 CN CN202310771338.6A patent/CN116514234B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08299962A (en) * | 1995-05-12 | 1996-11-19 | Hitachi Ltd | Treatment of waste water containing oxidizable matter and device therefor |
CN102328972A (en) * | 2011-10-27 | 2012-01-25 | 大连理工大学 | Device and method for treating waste water and preparing hydrogen simultaneously |
CN107098441A (en) * | 2017-05-12 | 2017-08-29 | 浙江工业大学 | The method that electrochemistry removes Determination of Total Nitrogen in Waste Water |
CN111655629A (en) * | 2017-12-04 | 2020-09-11 | 新南创新有限公司 | Ammonia nitrogen recovery equipment and method |
CN109775817A (en) * | 2019-03-08 | 2019-05-21 | 箭牌环保水务江苏有限公司 | A kind of electrochemistry ammonia nitrogen digestion instrument and digestion procedure |
CN110790360A (en) * | 2019-10-21 | 2020-02-14 | 天津大学 | Resource, ammonia recovery and synchronous carbon dioxide absorption system for high ammonia nitrogen organic wastewater and regulation and control method thereof |
CN112110524A (en) * | 2020-09-15 | 2020-12-22 | 北京中科沃特膜科技有限公司 | A two-membrane three-phase integrated device and method for ammonia nitrogen wastewater treatment |
CN113387427A (en) * | 2021-06-15 | 2021-09-14 | 北京航空航天大学 | Diaphragm cathode and microbial electrolysis cell |
CN114950088A (en) * | 2022-05-10 | 2022-08-30 | 上海交通大学 | A device, using method and application for recycling nitrogen oxide waste gas with electrochemical reduction technology coupled with gas-liquid separation membrane technology |
CN114807977A (en) * | 2022-05-19 | 2022-07-29 | 中国科学院重庆绿色智能技术研究院 | A kind of device and method for reclaiming urea and producing struvite at the same time |
CN115896862A (en) * | 2022-11-14 | 2023-04-04 | 大连理工大学 | A metal single-site catalytic material for electrosynthesis of H2O2 and its preparation method and application |
CN115849515A (en) * | 2022-12-02 | 2023-03-28 | 广东工业大学 | Roll type device for electrochemically recovering ammonia and method for recovering ammonia |
Non-Patent Citations (1)
Title |
---|
阳极液对钠碱膜电解再生的影响;刘丽梅;张书廷;吕学斌;刘勇;孙路长;支苏丽;谢建治;;天津大学学报(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN116514234A (en) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104386818B (en) | The two rooms MFC Waste Water Treatment combined with A/O technique and method thereof | |
CN102976559B (en) | Anaerobic ammonia oxidation microbe reverse electroosmosis sewage treatment and power generation method and device | |
Qin et al. | Passive separation of recovered ammonia from catholyte for reduced energy consumption in microbial electrolysis cells | |
CN103864249A (en) | Method for extracting lithium hydroxide by salt lake brine | |
CN108862548B (en) | Reactor device of microbial electrolysis desalting tank | |
CN102610844A (en) | Method and device for power generation by utilizing low-temperature waste heat | |
CN105355950B (en) | A kind of macro-organism cathode microbial fuel cell stack device | |
CN107098441A (en) | The method that electrochemistry removes Determination of Total Nitrogen in Waste Water | |
CN105967455A (en) | Refuse leachate self-powered denitration apparatus and method | |
CN104868146A (en) | A microbial fuel cell coupled with A2/O process to treat domestic sewage and generate electricity | |
CN115849515B (en) | Rolling type device for electrochemically recycling ammonia and ammonia recycling method | |
CN108707921B (en) | Device and method for simultaneously producing persulfate and activator ferrous ions thereof through electrolysis | |
CN112320895A (en) | A device and method for three-dimensional electrode treatment of printing and dyeing wastewater coupled with methane production | |
CN105948222B (en) | Anaerobic digestion denitrification anaerobic ammoxidation bioelectrochemical system and method | |
CN116514234B (en) | Stack type electrochemical ammonia recovery device and method loaded with pulsed electric field | |
CN111232921B (en) | Method and device for preparing hydrogen and sulfur by decomposing hydrogen sulfide with assistance of flow battery | |
CN204281413U (en) | A kind of two rooms MFC Waste Water Treatment combined with A/O technique | |
CN205687634U (en) | A kind of anaerobic digestion denitrification anaerobic ammoxidation bioelectrochemical system | |
CN218320972U (en) | A sulfate type anaerobic ammonium oxidation power generation device | |
CN216514163U (en) | Salt-containing wastewater electrolytic hydrogen production system | |
CN110642340A (en) | Circulating flow type electric-assisted ozone water treatment equipment and method for treating water by using same | |
CN114000163A (en) | A kind of salty wastewater electrolysis hydrogen production system and its working method | |
CN110818065A (en) | Method for electrochemically treating livestock and poultry breeding wastewater based on biological cathode microorganisms | |
CN115259504A (en) | A sewage treatment method and device | |
CN203613055U (en) | Treatment device for wastewater with high salinity and chlorine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |