CN116500461A - 电池滞回模型下的soc估计方法及系统 - Google Patents

电池滞回模型下的soc估计方法及系统 Download PDF

Info

Publication number
CN116500461A
CN116500461A CN202310783314.2A CN202310783314A CN116500461A CN 116500461 A CN116500461 A CN 116500461A CN 202310783314 A CN202310783314 A CN 202310783314A CN 116500461 A CN116500461 A CN 116500461A
Authority
CN
China
Prior art keywords
battery
soc
equation
calculation
hysteresis model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310783314.2A
Other languages
English (en)
Other versions
CN116500461B (zh
Inventor
曾国建
吉祥
徐磊磊
孟媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Rntec Technology Co ltd
Original Assignee
Anhui Rntec Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Rntec Technology Co ltd filed Critical Anhui Rntec Technology Co ltd
Priority to CN202310783314.2A priority Critical patent/CN116500461B/zh
Publication of CN116500461A publication Critical patent/CN116500461A/zh
Application granted granted Critical
Publication of CN116500461B publication Critical patent/CN116500461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Abstract

本发明实施例提供了一种电池滞回模型下的SOC估计方法及系统,属于电池检测技术领域。所述估计方法包括:依据待估计的电池构建电池滞回模型;建立所述电池滞回模型的端电压方程;确定电池的SOC估计方程;将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程;采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程;根据所述过程噪声和所述SOC估计方程确定所述电池滞回模型的SOC值;根据所述SOC值确定所述电池滞回模型的观测噪声;根据所述观测噪声和所述观测方程确定所述电池滞回模型的端电压。本发明动态修正了扩展卡尔曼滤波算法中的协方差矩阵,提高了SOC的估计精度。

Description

电池滞回模型下的SOC估计方法及系统
技术领域
本发明涉及电池检测技术领域,具体地涉及一种电池滞回模型下的SOC估计方法及系统。
背景技术
电池具有滞回特性,即充放电开路电压曲线不一致,但却形成了一组首尾相接,其间有空隙的带状滞回型构造,也就是电池开路电压迟滞。通过滞回现象,存在相同SOC点将获得与其对应的不同开路电压值,导致基于电池模型的SOC估计存在误差。
发明内容
本发明实施例的目的是提供一种电池滞回模型下的SOC估计方法及系统,解决了目前SOC估计方法所存在的估计精度较差的问题。
为了实现上述目的,本发明实施例一方面提供一种SOC估计方法,包括:
依据待估计的电池构建电池滞回模型;
建立所述电池滞回模型的端电压方程;
确定电池的SOC估计方程;
将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程;
采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程;
根据所述过程噪声和所述SOC估计方程确定所述电池滞回模型的SOC值;
根据所述SOC值确定所述电池滞回模型的观测噪声;
根据所述观测噪声和所述观测方程确定所述电池滞回模型的端电压。
可选地,构建的所述电池滞回模型包括:
第一电阻,所述第一电阻的一端连接至所述电源的正极;
第二电阻,所述第二电阻的一端连接至所述第一电阻的另一端;
第三电阻,所述第三电阻的一端连接至所述第二电阻的另一端,所述第三电阻的另一端作为所述电池滞回模型的一个输出端;
第一电容,所述第一电容的一端与所述第三电阻的一端连接,所述第一电容的另一端与所述第三电阻的另一端连接;
电源,所述电源的负极作为所述电池滞回模型的另一个输出端。
可选地,建立所述电池滞回模型的端电压方程,包括:
根据公式(1)确定所述端电压方程,
,(1)
其中,为第/>次计算时的端电压,/>为第/>次计算时的放电开路电压,/>为第/>次计算时所述第一电阻两端的电压,/>为第/>次计算时所述第一电容和所述第三电阻并联支路两端的电压,/>为所述第二电阻的阻值。
可选地,确定电池的SOC估计方程,包括:
根据公式(2)和公式(3)确定所述SOC估计方程,
,(2)
其中,为电池SOC值,/>为初始SOC值,/>为电池的额定容量,/>为SOC电路中的电流,/>为采样时间;
,(3)
其中,为第/>次计算时的电池SOC值,/>为第/>次计算时的电池SOC值,/>为电池的额定容量,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流,/>为采样周期。
可选地,将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程,包括:
根据公式(4)确定所述状态方程,
,(4)
其中,、/>为系数矩阵,/>为第/>次计算时均值为0的过程噪声,/>为第次计算时实际测量的SOC电路中的电流,/>为第/>次计算时实际测量的SOC电路中的电流,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流;
根据公式(5)确定所述观测方程,
,(5)
其中,、/>为系数矩阵,/>为第/>次计算时均值为0的测量噪声,/>为第/>次计算时实际测量的端电压,/>为第/>次计算时实际测量的SOC电路中的电流,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流。
可选地,所述估计方法还包括:
根据公式(6)至公式(9)修正所述状态方程和观测方程,
,(6)
其中,为系数矩阵,/>为采样周期,/>为所述第三电阻的阻值,/>为所述第一电容的电容值;
,(7)
其中,为系数矩阵,/>为采样周期,/>为所述第三电阻的阻值,/>为所述第一电容的电容值,/>为电池的额定容量;
,(8)
其中,为系数矩阵,/>为所述第一电阻两端的电压,/>为放电开路电压,/>为电池SOC值;
,(9)
其中,为系数矩阵,/>为电池内阻。
可选地,采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程,包括:
根据公式(10)和(11)确定所述过程噪声,
,(10)
其中,为第/>次计算,/>为第/>次计算,/>为第/>次计算时系统过程噪声的协方差矩阵,/>为随机变数/>的期望值,/>为第/>次计算时均值为0的过程噪声,/>为第/>次计算时均值为0的过程噪声;
,(11)
其中,为预设的常数,/>为第/>次计算时系统过程噪声的协方差矩阵,/>为第次计算时系统过程噪声的协方差矩阵,/>为采用扩展卡尔曼滤波算法估计的电池端电压值/>与实际测量的端电压/>之间的相对残值。
可选地,根据所述SOC值确定所述电池滞回模型的观测噪声,包括:
在判断所述SOC值是否大于或等于预设的第一SOC阈值;
在判断所述SOC值大于或等于预设的第一SOC阈值的情况下,根据公式(12)和(13)修正所述观测噪声,
,(12)
其中,为第/>次计算,/>为第/>次计算,/>为第/>次计算时系统过程噪声的协方差矩阵,/>为随机变数/>的期望值,/>为第/>次计算时均值为0的观测噪声,/>为第/>次计算时均值为0的观测噪声;
,(13)
其中,为第/>次计算时系统观测噪声的协方差矩阵,/>是预设的常数,/>为电池内阻,/>为第一SOC阈值,/>为电池SOC值;
在判断所述SOC值小于预设的第二SOC阈值的情况下,根据公式(12)和(14)修正所述观测噪声,其中,所述第二SOC阈值小于所述第一SOC阈值,
,(14)
其中,为第/>次计算时系统观测噪声的协方差矩阵,/>是预设的常数,/>为电池内阻,/>为第二SOC阈值,/>为电池SOC值。
另一方面,本发明还提供一种电池滞回模型下的SOC估计系统,所述估计系统包括处理器,所述处理器被配置成执行如上述任一所述的估计方法。
通过上述技术方案,本发明提供一种电池滞回模型下的SOC估计方法及系统,通过建立电池的滞回模型,先建立电池滞回模型的端电压方程和电池的SOC估计方程,再构建电池滞回模型的状态方程和观测方程,采用扩展卡尔曼滤波算法修正状态方程的过程噪声的协方差矩阵,利用SOC区间动态修正观测方程的观测噪声的协方差矩阵。与现有技术相比,一方面,本发明可以体现电池的滞回特性,提高了电池模型的准确程度,另一方面,本发明可以动态修正扩展卡尔曼滤波算法中的协方差矩阵,避免了滤波器发散的问题,同时提高了SOC的估计精度,解决目前SOC估计方法所存在的估计精度较差的问题。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1是根据本发明的一个实施方式的SOC估计方法的流程图;
图2是根据本发明的一个实施方式的电池滞回模型的电路图;
图3是根据本发明的一个实施方式的修正观测噪声的流程图。
附图标记说明
具体实施方式
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
另外,若本发明实施方式中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施方式之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
如图1所示是根据本发明的一个实施方式的SOC估计方法的流程图,在该图1中,该估计方法可以包括:
在步骤S10中,依据待估计的电池构建电池滞回模型;
在步骤S11中,建立电池滞回模型的端电压方程;
在步骤S12中,确定电池的SOC估计方程;
在步骤S13中,将电池滞回模型的电流作为输入量,将电池滞回模型的端电压作为输出量,构建电池滞回模型的状态方程和观测方程;
在步骤S14中,采用扩展卡尔曼滤波算法确定状态方程的过程噪声和观测方程;
在步骤S15中,根据过程噪声和SOC估计方程确定电池滞回模型的SOC值;
在步骤S16中,根据SOC值确定电池滞回模型的观测噪声;
在步骤S17中,根据观测噪声和观测方程确定电池滞回模型的端电压。
在如图1所示的SOC估计方法中,依据待估计的电池构建电池滞回模型,根据电池滞回模型,依据基尔霍夫电流电压定律建立电池滞回模型的端电压方程,并确定电池的SOC估计方程。在电池的SOC估计方程中,将电池的SOC值安时积分,并将其离散化,将电池滞回模型的电流作为输入量,将电池滞回模型的端电压作为输出量,构建电池滞回模型的状态方程和观测方程。但是,对于一些复杂的非线性系统来说,其噪声方差是难以准确获得的,当噪声先验估计不准时,特别是在过程噪声协方差矩阵估算误差过大的情况下,会引起SOC估算误差增大。因此在本发明的该实施方式中,采用扩展卡尔曼滤波算法修正状态方程的过程噪声的协方差矩阵,利用SOC区间动态修正观测方程的观测噪声的协方差矩阵,相较于现有技术而言,提高了SOC的估计精度。
在本发明的一个实施方式中,对于该电池滞回模型具体结构,可以是本领域人员所知的多种,在本发明的一个示例中,可以如图2所示。图2是根据本发明的一个实施方式的电池滞回模型的电路图,在该图中,该电池滞回模型包括第一电阻R1、第二电阻R2、第三电阻R3、第一电容C1和电源Ue。第一电阻R1的一端连接至电源Ue的正极;第二电阻R2的一端连接至第一电阻R1的另一端第三电阻R3的一端连接至第二电阻R2的另一端,第三电阻R3的另一端作为电池滞回模型的一个输出端;第一电容C1的一端与第三电阻R3的一端连接,第一电容C1的另一端与第三电阻R3的另一端连接;电源Ue的负极作为电池滞回模型的另一个输出端。电池滞回模型的电流依次经过第三电阻R3和第一电容C1并联的支路、第二电阻R2和第一电阻R1,再由电源Ue的负极输出。该电池滞回模型可以体现电池的滞回特性,提高了电池模型的准确程度。
在步骤S11中,建立电池滞回模型的端电压方程。对于如何建立电池滞回模型的端电压方程,可以是本领域人员所知的多种方式,在本发明的一个示例中,可以是例如根据公式(1)确定端电压方程,
,(1)
其中,为第/>次计算时的端电压,/>为第/>次计算时的放电开路电压,/>为第/>次计算时第一电阻R1两端的电压,/>为第/>次计算时第一电容C1和第三电阻R3并联支路两端的电压,/>为第二电阻R2的阻值。
在步骤S12中,确定电池的SOC估计方程。对于如何确定电池的SOC估计方程,可以是本领域人员所知的多种方式,在本发明的一个示例中,可以是例如根据公式(2)和公式(3)来确定SOC估计方程,
,(2)
其中,为电池SOC值,/>为初始SOC值,/>为电池的额定容量,/>为SOC电路中的电流,/>为采样时间;
,(3)
其中,为第/>次计算时的电池SOC值,/>为第/>次计算时的电池SOC值,/>为电池的额定容量,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流,/>为采样周期。
在步骤S13中,构建电池滞回模型的状态方程和观测方程。对于如何构建电池滞回模型的状态方程和观测方程,可以是本领域人员所知的多种方式,在本发明的一个示例中,将电池滞回模型的电流作为输入量,将电池滞回模型的端电压作为输出量,根据公式(4)确定状态方程,根据公式(5)确定观测方程,
,(4)
其中,、/>为系数矩阵,/>为第/>次计算时均值为0的过程噪声,/>为第次计算时实际测量的SOC电路中的电流,/>为第/>次计算时实际测量的SOC电路中的电流,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流;
根据公式(5)确定观测方程,
,(5)
其中,、/>为系数矩阵,/>为第/>次计算时均值为0的测量噪声,/>为第/>次计算时实际测量的端电压,/>为第/>次计算时实际测量的SOC电路中的电流,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流。
在本发明的一个实施方式中,对于状态方程和观测方程中系数矩阵的具体形式,可以是本领域人员所知的多种,在本发明的一个示例中,可以是例如(6)至公式(9),
,(6)
其中,为系数矩阵,/>为采样周期,/>为第三电阻R3的阻值,/>为第一电容C1的电容值;
,(7)
其中,为系数矩阵,/>为采样周期,/>为第三电阻R3的阻值,/>为第一电容C1的电容值,/>为电池的额定容量;
,(8)
其中,为系数矩阵,/>为第一电阻R1两端的电压,/>为放电开路电压,/>为电池SOC值;
,(9)
其中,为系数矩阵,/>为电池内阻。
在步骤S14中,确定状态方程的过程噪声。对于确定状态方程的过程噪声的方式,可以是本领域人员所知的多种,在本发明的一个示例中,可以是例如采用扩展卡尔曼滤波算法根据公式(10)和(11)来确定,
,(10)
其中,为第/>次计算,/>为第/>次计算,/>为第/>次计算时系统过程噪声的协方差矩阵,/>为随机变数/>的期望值,/>为第/>次计算时均值为0的过程噪声,/>为第/>次计算时均值为0的过程噪声。
在本发明的一个实施方式中,对于修正观测噪声的方式,可以是本领域人员所知的多种,可以是例如公式(11),
,(11)
其中,为预设的常数,/>为第/>次计算时系统过程噪声的协方差矩阵,/>为第次计算时系统过程噪声的协方差矩阵,/>为采用扩展卡尔曼滤波算法估计的电池端电压值/>与实际测量的端电压/>之间的相对残值。
在步骤S16中,根据SOC值确定电池滞回模型的观测噪声。对于确定电池滞回模型的观测噪声方式,可以是本领域人员所知的多种,在本发明的一个示例中,可以是例如根据公式(12)来确定,
,(12)
其中,为第/>次计算,/>为第/>次计算,/>为第/>次计算时系统过程噪声的协方差矩阵,/>为随机变数/>的期望值,/>为第/>次计算时均值为0的观测噪声,/>为第/>次计算时均值为0的观测噪声。
在本发明的一个实施方式中,对于修正观测噪声的方式,可以是本领域人员所知的多种,在本发明的一个示例中,具体地,如图3所示,可以包括:
在步骤S20中,判断SOC值是否大于或等于预设的第一SOC阈值,在判断SOC值大于或等于预设的第一SOC阈值的情况下,执行步骤S21,在判断SOC值小于预设的第一SOC阈值的情况下,执行步骤S22;
在步骤S21中,根据公式(13)修正观测噪声,
,(13)
其中,为第/>次计算时系统观测噪声的协方差矩阵,/>是预设的常数,/>为电池内阻,/>为第一SOC阈值,/>为电池SOC值;
在步骤S22中,判断SOC值是否小于预设的第二SOC阈值,其中,第二SOC阈值小于第一SOC阈值,在判断SOC值小于预设的第二SOC阈值的情况下,执行步骤S23,否则,执行步骤S24;
在步骤S23中,根据公式(14)修正观测噪声,
,(14)
其中,为第/>次计算时系统观测噪声的协方差矩阵,/>是预设的常数,/>为电池内阻,/>为第二SOC阈值,/>为电池SOC值;
在步骤S24中,观测噪声的值不变。
另一方面,本发明还提供一种电池滞回模型下的SOC估计系统,该估计系统包括处理器,该处理器被配置成执行如上述任一的估计方法。
通过上述技术方案,本发明提供一种电池滞回模型下的SOC估计方法及系统,通过建立电池的滞回模型,先建立电池滞回模型的端电压方程和电池的SOC估计方程,再构建电池滞回模型的状态方程和观测方程,采用扩展卡尔曼滤波算法修正状态方程的过程噪声的协方差矩阵,利用SOC区间动态修正观测方程的观测噪声的协方差矩阵。与现有技术相比,一方面,本发明可以体现电池的滞回特性,提高了电池模型的准确程度,另一方面,本发明可以动态修正扩展卡尔曼滤波算法中的协方差矩阵,避免了滤波器发散的问题,同时提高了SOC的估计精度,解决目前SOC估计方法所存在的估计精度较差的问题。
以上结合附图详细描述了本发明例的可选实施方式,但是,本发明实施方式并不限于上述实施方式中的具体细节,在本发明实施方式的技术构思范围内,可以对本发明实施方式的技术方案进行多种简单变型,这些简单变型均属于本发明实施方式的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施方式对各种可能的组合方式不再另行说明。
本领域技术人员可以理解实现上述实施方式方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,本发明实施方式的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施方式的思想,其同样应当视为本发明实施方式所公开的内容。

Claims (9)

1.一种电池滞回模型下的SOC估计方法,其特征在于,所述估计方法包括:
依据待估计的电池构建电池滞回模型;
建立所述电池滞回模型的端电压方程;
确定电池的SOC估计方程;
将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程;
采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程;
根据所述过程噪声和所述SOC估计方程确定所述电池滞回模型的SOC值;
根据所述SOC值确定所述电池滞回模型的观测噪声;
根据所述观测噪声和所述观测方程确定所述电池滞回模型的端电压。
2.根据权利要求1所述的估计方法,其特征在于,构建的所述电池滞回模型包括:
第一电阻,所述第一电阻的一端连接至电源的正极;
第二电阻,所述第二电阻的一端连接至所述第一电阻的另一端;
第三电阻,所述第三电阻的一端连接至所述第二电阻的另一端,所述第三电阻的另一端作为所述电池滞回模型的一个输出端;
第一电容,所述第一电容的一端与所述第三电阻的一端连接,所述第一电容的另一端与所述第三电阻的另一端连接;
电源,所述电源的负极作为所述电池滞回模型的另一个输出端。
3.根据权利要求2所述的估计方法,其特征在于,建立所述电池滞回模型的端电压方程,包括:
根据公式(1)确定所述端电压方程,
,(1)
其中,为第/>次计算时的端电压,/>为第/>次计算时的放电开路电压,/>为第/>次计算时所述第一电阻两端的电压,/>为第/>次计算时所述第一电容和所述第三电阻并联支路两端的电压,/>为所述第二电阻的阻值,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流。
4.根据权利要求1所述的估计方法,其特征在于,确定电池的SOC估计方程,包括:
根据公式(2)和公式(3)确定所述SOC估计方程,
,(2)
其中,为电池SOC值,/>为初始SOC值,/>为电池的额定容量,/>为SOC电路中的电流,/>为采样时间;
,(3)
其中,为第/>次计算时的电池SOC值,/>为第/>次计算时的电池SOC值,为电池的额定容量,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流,/>为采样周期。
5.根据权利要求2所述的估计方法,其特征在于,将所述电池滞回模型的电流作为输入量,将所述电池滞回模型的端电压作为输出量,构建所述电池滞回模型的状态方程和观测方程,包括:
根据公式(4)确定所述状态方程,
,(4)
其中,、/>为系数矩阵,/>为第/>次计算时均值为0的过程噪声,/>为第/>次计算时实际测量的SOC电路中的电流,/>为第/>次计算时实际测量的SOC电路中的电流,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流;
根据公式(5)确定所述观测方程,
,(5)
其中,、/>为系数矩阵,/>为第/>次计算时均值为0的测量噪声,/>为第/>次计算时实际测量的端电压,/>为第/>次计算时实际测量的SOC电路中的电流,/>为第/>次计算时采用扩展卡尔曼滤波算法估计的SOC电路中的电流。
6.根据权利要求5所述的估计方法,其特征在于,所述估计方法还包括:
根据公式(6)至公式(9)修正所述状态方程和观测方程,
,(6)
其中,为系数矩阵,/>为采样周期,/>为所述第三电阻的阻值,/>为所述第一电容的电容值;
,(7)
其中,为系数矩阵,/>为采样周期,/>为所述第三电阻的阻值,/>为所述第一电容的电容值,/>为电池的额定容量;
,(8)
其中,为系数矩阵,/>为所述第一电阻两端的电压,/>为放电开路电压,/>为电池SOC值;
,(9)
其中,为系数矩阵,/>为电池内阻。
7.根据权利要求5所述的估计方法,其特征在于,采用扩展卡尔曼滤波算法确定所述状态方程的过程噪声和观测方程,包括:
根据公式(10)和(11)确定所述过程噪声,
,(10)
其中,为第/>次计算,/>为第/>次计算,/>为第/>次计算时系统过程噪声的协方差矩阵,为随机变数/>的期望值,/>为第/>次计算时均值为0的过程噪声,/>为第/>次计算时均值为0的过程噪声;
,(11)
其中,为预设的常数,/>为第/>次计算时系统过程噪声的协方差矩阵,/>为第次计算时系统过程噪声的协方差矩阵,/>为采用扩展卡尔曼滤波算法估计的电池端电压值/>与实际测量的端电压/>之间的相对残值。
8.根据权利要求5所述的估计方法,其特征在于,根据所述SOC值确定所述电池滞回模型的观测噪声,包括:
判断所述SOC值是否大于或等于预设的第一SOC阈值;
在判断所述SOC值大于或等于预设的第一SOC阈值的情况下,根据公式(12)和(13)修正所述观测噪声,
,(12)
其中,为第/>次计算,/>为第/>次计算,/>为第/>次计算时系统过程噪声的协方差矩阵,为随机变数/>的期望值,/>为第/>次计算时均值为0的观测噪声,/>为第/>次计算时均值为0的观测噪声;
,(13)
其中,为第/>次计算时系统观测噪声的协方差矩阵,/>是预设的常数,/>为电池内阻,为第一SOC阈值,/>为电池SOC值;
在判断所述SOC值小于预设的第二SOC阈值的情况下,根据公式(12)和(14)修正所述观测噪声,其中,所述第二SOC阈值小于所述第一SOC阈值,
,(14)
其中,为第/>次计算时系统观测噪声的协方差矩阵,/>是预设的常数,/>为电池内阻,为第二SOC阈值,/>为电池SOC值。
9.一种电池滞回模型下的SOC估计系统,其特征在于,所述估计系统包括处理器,所述处理器被配置成执行如权利要求1至8任一所述的估计方法。
CN202310783314.2A 2023-06-29 2023-06-29 电池滞回模型下的soc估计方法及系统 Active CN116500461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310783314.2A CN116500461B (zh) 2023-06-29 2023-06-29 电池滞回模型下的soc估计方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310783314.2A CN116500461B (zh) 2023-06-29 2023-06-29 电池滞回模型下的soc估计方法及系统

Publications (2)

Publication Number Publication Date
CN116500461A true CN116500461A (zh) 2023-07-28
CN116500461B CN116500461B (zh) 2023-10-27

Family

ID=87328863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310783314.2A Active CN116500461B (zh) 2023-06-29 2023-06-29 电池滞回模型下的soc估计方法及系统

Country Status (1)

Country Link
CN (1) CN116500461B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425154A (zh) * 2015-11-02 2016-03-23 北京理工大学 一种估计电动汽车的动力电池组的荷电状态的方法
CN107368619A (zh) * 2017-06-02 2017-11-21 华南理工大学 基于电池滞回电压特性和回弹电压特性的扩展卡尔曼滤波soc估算方法
CN107894570A (zh) * 2017-10-23 2018-04-10 北京新能源汽车股份有限公司 基于Thevenin模型的电池组SOC的估算方法和装置
CN108490356A (zh) * 2018-03-06 2018-09-04 福建工程学院 一种改进ekf算法的锂电池soc估算方法
CN111751750A (zh) * 2020-06-19 2020-10-09 杭州电子科技大学 基于模糊ekf的多阶段闭环锂电池soc估算方法
CN111896875A (zh) * 2020-07-28 2020-11-06 江苏理工学院 考虑滞回效应的动力电池soc估计方法
CN112269133A (zh) * 2020-10-22 2021-01-26 合肥工业大学 一种基于预充电路模型参数识别的soc估计方法
CN114928133A (zh) * 2022-04-29 2022-08-19 陕西科技大学 一种用于锂离子电池的充电控制方法、系统、设备和介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425154A (zh) * 2015-11-02 2016-03-23 北京理工大学 一种估计电动汽车的动力电池组的荷电状态的方法
CN107368619A (zh) * 2017-06-02 2017-11-21 华南理工大学 基于电池滞回电压特性和回弹电压特性的扩展卡尔曼滤波soc估算方法
CN107894570A (zh) * 2017-10-23 2018-04-10 北京新能源汽车股份有限公司 基于Thevenin模型的电池组SOC的估算方法和装置
CN108490356A (zh) * 2018-03-06 2018-09-04 福建工程学院 一种改进ekf算法的锂电池soc估算方法
CN111751750A (zh) * 2020-06-19 2020-10-09 杭州电子科技大学 基于模糊ekf的多阶段闭环锂电池soc估算方法
CN111896875A (zh) * 2020-07-28 2020-11-06 江苏理工学院 考虑滞回效应的动力电池soc估计方法
CN112269133A (zh) * 2020-10-22 2021-01-26 合肥工业大学 一种基于预充电路模型参数识别的soc估计方法
CN114928133A (zh) * 2022-04-29 2022-08-19 陕西科技大学 一种用于锂离子电池的充电控制方法、系统、设备和介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张卫平 等: "一种简化的锂离子电池SOC估计方法", 电源技术, vol. 40, no. 7, pages 1359 - 1361 *
陈旭: "温度影响下动力锂电池建模与均衡管理研究", 《中国硕士论文全文数据库-工程科技Ⅱ辑》, pages 20 - 24 *

Also Published As

Publication number Publication date
CN116500461B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
CN108717164B (zh) 电池的荷电状态soc标定方法及系统
EP2089731B1 (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
JP4638195B2 (ja) バッテリの劣化度推定装置
US20100066377A1 (en) Method for determining the battery capacity with the aid of capacity-dependent parameters
WO2017119393A1 (ja) 状態推定装置、状態推定方法
CN107991623A (zh) 一种考虑温度和老化程度的电池安时积分soc估计方法
KR20160144437A (ko) 배터리의 건강 상태를 추정하는 방법
CN112557928B (zh) 一种计算电池荷电状态的方法、装置和动力电池
CN112327183B (zh) 一种锂离子电池soc估算方法和装置
CN112213659B (zh) 电池容量修正方法及测试系统
JP5259190B2 (ja) ジョイントバッテリー状態とパラメーター推定システム及び方法
CN110716146A (zh) 一种动力电池开路电压的估计方法
CN112485680B (zh) 一种电池soc估算方法
CN116500461B (zh) 电池滞回模型下的soc估计方法及系统
JP2010203935A (ja) 二次電池の入出力可能電力推定装置
CN112189143B (zh) 用于估计电池的充电状态的设备
JP6827527B2 (ja) 電池制御装置
CN110333456A (zh) 动力电池soc的估算方法和装置、车辆
WO2022183459A1 (zh) 一种估算电池包soc的方法、装置及电池管理系统
CN115902653A (zh) 确定电池老化程度的方法、装置、存储介质与电子设备
CN112130077B (zh) 一种不同工况下动力电池组的soc估算方法
CN112379295B (zh) 预测动力电池健康状态的方法、系统及存储介质
KR20150034593A (ko) 전지 충전 상태 추정 방법 및 장치
CN114200317A (zh) 一种动态修正安时积分法的soc估算方法
CN114636936A (zh) 一种铅酸电池充电阶段soc预测曲线的修正方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant