CN116492371A - 一种联合放疗的纳米材料应用新策略 - Google Patents

一种联合放疗的纳米材料应用新策略 Download PDF

Info

Publication number
CN116492371A
CN116492371A CN202310010024.4A CN202310010024A CN116492371A CN 116492371 A CN116492371 A CN 116492371A CN 202310010024 A CN202310010024 A CN 202310010024A CN 116492371 A CN116492371 A CN 116492371A
Authority
CN
China
Prior art keywords
radiotherapy
nano
gold
aunps
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310010024.4A
Other languages
English (en)
Inventor
丁慧妍
贺晨
唐秋莎
王云娟
李涵
黄嘉燕
丁一楠
陈静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202310010024.4A priority Critical patent/CN116492371A/zh
Publication of CN116492371A publication Critical patent/CN116492371A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/242Gold; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Epidemiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开一种联合放疗的纳米材料应用新策略,属于纳米生物医学技术领域,本发明公开了一种纳米材料纳米金AuNPs新型治疗策略,属于纳米生物医学技术应用领域。由于放疗只能在人体正常组织耐受的剂量范围内治疗且在长期治疗的过程中肿瘤细胞会出现辐射抵抗性,使得放疗对肿瘤的治愈率降低。本发明利用纳米金AuNPs联合放疗经体外实验验证纳米金AuNPs在提高放疗增敏的同时也能够提高放疗诱导肿瘤细胞发生免疫原性细胞死亡(Immunogenic celldeath,ICD)的效应,提高肿瘤细胞的免疫原性,以达到更好的治疗效果。为肿瘤的治疗提供了新的策略。

Description

一种联合放疗的纳米材料应用新策略
技术领域
本发明属于纳米生物医学技术领域,具体涉及一种联合放疗的纳米材料应用新策略。
背景技术
放疗作为临床癌症治疗的一种主要方式,放疗过程所使用的离子辐射之所以能被用来作为肿瘤的治疗手段,是因为它可以使肿瘤细胞产生DNA损伤并诱导细胞凋亡。然而放疗有明显的缺点,如需在组织耐受的范围内进行放疗以及在长期的放疗过程中,肿瘤细胞会产生一定的辐射抵抗性。已有文章证明放疗具有一定诱导肿瘤细胞发生免疫原性细胞死亡(Immunogeniccelldeath,ICD)的能力,然而十分微弱。ICD是一种调节性细胞死亡(Regulatedcelldeath,RCD),ICD不仅可以杀死由ICD诱导剂诱导的细胞,还可以杀死作为肿瘤疫苗的垂死癌细胞,从而引起针对活癌细胞和残留肿瘤组织的肿瘤特异性免疫反应。因此需要一种既可以提高放疗敏感性又可以提高肿瘤细胞发生ICD的纳米材料达到协同治疗的效果。
纳米金AuNPs作为一种在生物医学领域广泛应用的高原子序数(Z=79)纳米材料,已有大量研究阐明其联合放疗有增强放疗对肿瘤细胞敏感性的作用。然而纳米金AuNPs是否有提高放疗诱导的ICD效应的能力,无文献报道。因此本实验提出一种纳米金AuNPs联合放疗的新应用策略。
发明内容
针对现有技术的不足,本发明的目的在于提供一种联合放疗的纳米材料应用新策略。
本发明的目的可以通过以下技术方案实现:
纳米金AuNPs制备方法,所述的AuNPs可联合放疗提高肿瘤细胞对放疗的敏感性,同时提高放疗诱导肿瘤细胞发生ICD的效应。其具体步骤如下:
取1mL1%氯金酸水溶液溶于100mL超纯水中,将其转入250mL圆底烧瓶中,并在瓶中加入磁力转子,将油浴锅放置于磁力搅拌器上。烧瓶上方架置冷凝管于油浴锅上在磁力搅拌的同时加热至100℃,在此同时加入4mL1%柠檬酸钠水溶液,并继续加热35分钟直至溶液变为粉红色,即刻停止加热,冷却至室温,其水溶液即为AuNPs。
用上述制备的AuNPs制备铜网样品,于透射电镜下观察纳米金AuNPs的形态,用紫外-可见分光分光光度仪检测纳米金AuNPs在520nm处有最大吸收峰,纳米粒度及电位分析仪检测纳米金AuNPs粒径为19.72±1.963nm,Zeta电位为-35.1±0.656mV。
用CCK8法检测纳米金联合放疗对于小鼠脑胶质母细胞瘤细胞(G422)的杀伤能力,并检测其联合放疗的IC50
使用流式细胞术检测纳米金AuNPs联合放疗对ICD相应指标肌钙蛋白(Calreticulin,CRT)表达情况。
使用Elisa试剂盒检测纳米金AuNPs联合放疗对ICD相应指标高迁移率组框1(Highmobilitygroupbox1,HMGB1)释放情况。
使用ATP试剂盒检测纳米金AuNPs联合放疗对ICD相应指标三磷酸腺苷(Adenosinetriphosphate,ATP)释放情况。
使用流式细胞术检测纳米金AuNPs联合放疗对ICD相应指标DC细胞成熟度的影响;
使用验证ICD的金标准肿瘤疫苗来检测纳米金联合放疗对于肿瘤细胞的抗肿瘤效应。
本发明的有益效果:
本发明通过柠檬酸钠还原法制备得到的纳米金AuNPs,制得的纳米金AuNPs一方面提高了肿瘤细胞对放疗的敏感性,另一方面证明了纳米金AuNPs提高了放疗诱导肿瘤细胞发生ICD的效应。保证在正常组织允许的辐照剂量范围内,提高了放疗对于肿瘤细胞的杀伤作用,同时提高了放疗对肿瘤细胞诱导ICD的效应,从而提高了肿瘤细胞被免疫细胞杀伤的效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明柠檬酸还原法制备的纳米金AuNPs在透射电镜(TEM)下的形态;
图2是本发明紫外-可见分光分光光度仪检测纳米金AuNPs;
图3是本发明纳米粒度及电位分析仪检测纳米金AuNPs水合粒径;
图4是本发明纳米粒度及电位分析仪检测纳米金AuNPsZeta电位;
图5是本发明使用CCK8法检测纳米金AuNPs联合放疗对小鼠胶质母细胞瘤的杀伤作用;
图6是本发明使用流式细胞实验检测纳米金AuNPs联合放疗后小鼠胶质母细胞瘤诱导ICD相关指标CRT的表达情况;
图7是本发明使用Elisa试剂盒检测纳米金AuNPs联合放疗后小鼠胶质母细胞瘤诱导ICD相关指标HMGB1的释放情况;
图8是本发明使用ATP试剂盒检测纳米金AuNPs联合放疗后小鼠胶质母细胞瘤诱导ICD相关指标ATP的释放情况;
图9是本发明使用流式细胞实验检测纳米金AuNPs联合放疗后小鼠胶质母细胞瘤G422对树突状细胞DC细胞成熟的诱导作用;
图10是本发明观测小鼠肿瘤疫苗对于颅内原位活细胞的抗肿瘤效应;
图11是本发明纳米金AuNPs制备装置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
一种联合放疗的纳米材料应用新策略,
1、纳米金的制备
首先使用柠檬酸还原法制备纳米金AuNPs:用图11的设备制备纳米金AuNPs,取1mL1%氯金酸水溶液溶于100mL超纯水中,将其转入250mL圆底烧瓶中,并在瓶中加入磁力转子,将油浴锅放置于磁力搅拌器上。烧瓶上方架置冷凝管于油浴锅上在磁力搅拌的同时加热至100℃,在此同时加入4mL1%柠檬酸钠水溶液,并继续加热35分钟直至溶液变为粉红色,即刻停止加热,冷却至室温,其水溶液即为纳米金AuNPs。
2、纳米金对放疗的增敏作用
为了考察纳米金对放疗的增敏的能力,将4nM、8nM、16nM和32nM纳米金与肿瘤细胞共孵育24h,弃上清更换新鲜培养基,将放疗组与纳米金联合放疗组给予6Gy放射剂量辐照,再在培养箱中培养24h,用CCK8法检测其对肿瘤细胞的杀伤作用;
3、纳米金联合放疗对肿瘤细胞诱导ICD的效果研究
为了考察纳米金联合放疗对肿瘤细胞诱导ICD的效果,将8nM纳米金与肿瘤细胞共孵育24h,弃上清更换新鲜培养基,将放疗组与纳米金联合放疗组给予6Gy放射剂量辐照,再在培养箱中培养24h,检测其上清中HMGB1以及ATP的释放,并用流式细胞实验鉴定肿瘤细胞CRT的外翻情况。
将8nM纳米金与肿瘤细胞共孵育24h,弃上清更换新鲜培养基,将放疗组与纳米金联合放疗组给予6Gy放射剂量辐照,再在培养箱中培养24h后与未成熟的DC细胞共孵育,检测其对DC细胞成熟度的影响。
4、纳米金联合放疗制备的肿瘤疫苗的抗肿瘤效应
为了考察纳米金联合放疗制备的肿瘤疫苗对活细胞的抗肿瘤效应,将8nM纳米金与肿瘤细胞共孵育24h,弃上清更换新鲜培养基,将放疗组与纳米金联合放疗组给予6Gy放射剂量辐照,再在培养箱中培养24h后,将肿瘤细胞按浓度1*10^6个/mL接种至小鼠皮下作为肿瘤疫苗,一周后在其对侧接种活细胞,检测其肿瘤疫苗的抗肿瘤效应。
图1为柠檬酸还原法制备的纳米金AuNPs在透射电镜(TEM)下的形态为黑色圆形,其粒径为12.76±1.57nm;
图2为紫外-可见分光分光光度仪检测纳米金AuNPs的最大吸收峰为520nm;
图3为纳米粒度及电位分析仪检测纳米金AuNPs水合粒径19.72±1.963nm;
图4为纳米粒度及电位分析仪检测纳米金AuNPsZeta电位为35.1mV;
图5为使用CCK8法检测纳米金AuNPs联合放疗对小鼠胶质母细胞瘤的杀伤作用,从结果显示随着纳米金浓度的升高,对肿瘤细胞的杀伤作用增强,并观察到纳米金在浓度为8nM时更接近于IC50
图6为使用流式细胞实验检测纳米金AuNPs联合放疗后小鼠胶质母细胞瘤诱导ICD相关指标CRT的表达情况,结果显示纳米金联合放疗相对于单纯放疗组CRT升高了9.6%;
图7为使用Elisa试剂盒检测纳米金AuNPs联合放疗后小鼠胶质母细胞瘤诱导ICD相关指标HMGB1的释放情况,经过纳米金联合放疗处理的肿瘤细胞上清中的HMGB1的平均浓度为479.41pg/mL,是单纯放疗组的2.22倍;
图8为使用ATP试剂盒检测纳米金AuNPs联合放疗后小鼠胶质母细胞瘤诱导ICD相关指标ATP的释放情况,经过纳米金联合放疗处理的肿瘤细胞上清中ATP的释放量是单纯放疗的1.17倍;
图9为使用流式细胞实验检测纳米金AuNPs联合放疗后小鼠胶质母细胞瘤G422对树突状细胞DC细胞成熟的诱导作用,经纳米金联合放疗处理的肿瘤细胞与DC细胞共孵育后,DC细胞的成熟度为32.4%,而单纯放疗为24.7%;
图10为肿瘤疫苗实验,验证纳米金联合放疗制成的肿瘤疫苗对肿瘤活细胞的抑制作用,每组6只老鼠,单纯放疗组的肿瘤活细胞成瘤率为33.3%,纳米金联合放疗组均未成瘤,成瘤率降低了33.3%。
以上结果可以证明我们成功验证了纳米金联合放疗在提高肿瘤对放疗敏感性的同时,提高了放疗诱导肿瘤细胞发生ICD的效应。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (7)

1.一种用于纳米金联合放疗的药物,其特征在于,包括纳米金,所述纳米金用于诱导肿瘤细胞发生ICD的效应。
2.根据权利要求1所述的一种用于联合放疗的药物,其特征在于,所述药物中纳米金的浓度为8nM。
3.一种肿瘤疫苗,其特征在于,所述疫苗为纳米金联合放疗制成的肿瘤疫苗。
4.权利要求1所述的一种用于纳米金联合放疗的药物在制备肿瘤疫苗上的应用。
5.权利要求3所述的一种肿瘤疫苗在检测纳米金联合放疗的药物诱导ICD的能力上的应用。
6.权利要求1所述的纳米金在制备诱导肿瘤细胞发生ICD药物的应用。
7.一种纳米金的制备方法,其特征在于,包括以下步骤:
取氯金酸水溶液溶于超纯水中,将其转入容器中搅拌,再加入柠檬酸钠水溶液,继续加热至溶液变为粉红色后,冷得到纳米金AuNPs。
CN202310010024.4A 2023-01-04 2023-01-04 一种联合放疗的纳米材料应用新策略 Pending CN116492371A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310010024.4A CN116492371A (zh) 2023-01-04 2023-01-04 一种联合放疗的纳米材料应用新策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310010024.4A CN116492371A (zh) 2023-01-04 2023-01-04 一种联合放疗的纳米材料应用新策略

Publications (1)

Publication Number Publication Date
CN116492371A true CN116492371A (zh) 2023-07-28

Family

ID=87317256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310010024.4A Pending CN116492371A (zh) 2023-01-04 2023-01-04 一种联合放疗的纳米材料应用新策略

Country Status (1)

Country Link
CN (1) CN116492371A (zh)

Similar Documents

Publication Publication Date Title
Alphandéry et al. Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia
Li et al. An 800 nm driven NaErF 4@ NaLuF 4 upconversion platform for multimodality imaging and photodynamic therapy
Sun et al. In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy
Alphandery et al. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy
Wu et al. Magnetite nanocluster@ poly (dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo
Ding et al. Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy
CN105120897B (zh) 无机纳米粒子组合物与电离辐射组合用于治疗癌症
Li et al. Fabrication of PEGylated Fe@ Bi 2 S 3 nanocomposites for dual-mode imaging and synergistic thermoradiotherapy
KR20100014809A (ko) 열치료 서셉터 및 이를 사용하는 방법
Jeun et al. Engineered superparamagnetic Mn0. 5Zn0. 5Fe2O4 nanoparticles as a heat shock protein induction agent for ocular neuroprotection in glaucoma
Wu et al. Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer
KR102175449B1 (ko) 산화철/중원자-할로겐 화합물의 코어/쉘 구조 자성 나노입자
Naseroleslami et al. The effects of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in the presence of a magnetic field on attenuation of injury after heart failure
Wang et al. Targeted and imaging-guided chemo-photothermal ablation achieved by combining upconversion nanoparticles and protein-capped gold nanodots
Zhao et al. Multifunctional magnetic nanoparticles for simultaneous cancer near-infrared imaging and targeting photodynamic therapy
Xu et al. Bioresponsive upconversion nanostructure for combinatorial bioimaging and chemo-photothermal synergistic therapy
Chen et al. Facile synthesis of β-lactoglobulin capped Ag 2 S quantum dots for in vivo imaging in the second near-infrared biological window
Binns Medical applications of magnetic nanoparticles
Wang et al. Dual-targeted and MRI-guided photothermal therapy via iron-based nanoparticles-incorporated neutrophils
CN112603999A (zh) 一种基于仿生工程的肿瘤微环境响应型纳米粒及其制备方法和应用
Bao et al. Polypyrrole-coated magnetite vortex nanoring for hyperthermia-boosted photothermal/magnetothermal tumor ablation under photoacoustic/magnetic resonance guidance
Guan et al. High-efficiency and safe sulfur-doped iron oxides for magnetic resonance imaging-guided photothermal/magnetic hyperthermia therapy
Kim et al. Pseudo-single domain colloidal superparamagnetic nanoparticles designed at a physiologically tolerable AC magnetic field for clinically safe hyperthermia
Alavijeh et al. Cobalt ferrite decoration of molybdenum disulfide nanosheets; development of a nanocomposite-mediated hyperthermia method
Lv et al. Antimony-doped tin oxide nanocrystals for enhanced photothermal theragnosis therapy of cancers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination