CN116457008A - Modified coronavirus structural proteins - Google Patents
Modified coronavirus structural proteins Download PDFInfo
- Publication number
- CN116457008A CN116457008A CN202180072506.1A CN202180072506A CN116457008A CN 116457008 A CN116457008 A CN 116457008A CN 202180072506 A CN202180072506 A CN 202180072506A CN 116457008 A CN116457008 A CN 116457008A
- Authority
- CN
- China
- Prior art keywords
- protein
- seq
- modified
- amino acids
- coronavirus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000711573 Coronaviridae Species 0.000 title claims abstract description 281
- 101710172711 Structural protein Proteins 0.000 title description 11
- 101710139375 Corneodesmosin Proteins 0.000 claims abstract description 650
- 102100031673 Corneodesmosin Human genes 0.000 claims abstract description 650
- 210000005220 cytoplasmic tail Anatomy 0.000 claims abstract description 559
- 101710154606 Hemagglutinin Proteins 0.000 claims abstract description 297
- 101710093908 Outer capsid protein VP4 Proteins 0.000 claims abstract description 297
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 claims abstract description 297
- 101710176177 Protein A56 Proteins 0.000 claims abstract description 297
- 239000000185 hemagglutinin Substances 0.000 claims abstract description 257
- 206010022000 influenza Diseases 0.000 claims abstract description 183
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 161
- 210000004027 cell Anatomy 0.000 claims abstract description 153
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 144
- 238000000034 method Methods 0.000 claims abstract description 75
- 239000002245 particle Substances 0.000 claims abstract description 68
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 57
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 48
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 48
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 230000001939 inductive effect Effects 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 230000036039 immunity Effects 0.000 claims abstract description 4
- 208000001528 Coronaviridae Infections Diseases 0.000 claims abstract description 3
- 150000001413 amino acids Chemical class 0.000 claims description 571
- 238000006467 substitution reaction Methods 0.000 claims description 260
- 241001678559 COVID-19 virus Species 0.000 claims description 87
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 68
- 230000014509 gene expression Effects 0.000 claims description 54
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 51
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 50
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 40
- 241000315672 SARS coronavirus Species 0.000 claims description 40
- 241000127282 Middle East respiratory syndrome-related coronavirus Species 0.000 claims description 35
- 239000013638 trimer Substances 0.000 claims description 34
- 229960005486 vaccine Drugs 0.000 claims description 34
- 239000002773 nucleotide Substances 0.000 claims description 32
- 125000003729 nucleotide group Chemical group 0.000 claims description 32
- 210000004899 c-terminal region Anatomy 0.000 claims description 30
- 239000004471 Glycine Substances 0.000 claims description 28
- 238000003776 cleavage reaction Methods 0.000 claims description 24
- 230000007017 scission Effects 0.000 claims description 24
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 23
- 230000004927 fusion Effects 0.000 claims description 23
- 150000002632 lipids Chemical class 0.000 claims description 22
- 230000001965 increasing effect Effects 0.000 claims description 19
- 239000002243 precursor Substances 0.000 claims description 16
- 150000002333 glycines Chemical class 0.000 claims description 13
- 241000238631 Hexapoda Species 0.000 claims description 12
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 12
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 12
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 claims description 11
- 108020003519 protein disulfide isomerase Proteins 0.000 claims description 11
- 238000012258 culturing Methods 0.000 claims description 10
- 230000028993 immune response Effects 0.000 claims description 10
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 10
- 239000002671 adjuvant Substances 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 7
- 241001465754 Metazoa Species 0.000 claims description 6
- 102100029814 Monoglyceride lipase Human genes 0.000 claims description 6
- 101710116393 Monoglyceride lipase Proteins 0.000 claims description 6
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 5
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- 239000003981 vehicle Substances 0.000 claims description 5
- 241000233866 Fungi Species 0.000 claims description 4
- 210000004102 animal cell Anatomy 0.000 claims description 3
- 230000002538 fungal effect Effects 0.000 claims description 3
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 claims description 3
- 229940031348 multivalent vaccine Drugs 0.000 claims description 3
- 150000003148 prolines Chemical class 0.000 claims description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 2
- 150000003355 serines Chemical class 0.000 claims 6
- 238000003306 harvesting Methods 0.000 claims 1
- 108010061994 Coronavirus Spike Glycoprotein Proteins 0.000 abstract description 9
- 235000001014 amino acid Nutrition 0.000 description 496
- 229940024606 amino acid Drugs 0.000 description 464
- 241000196324 Embryophyta Species 0.000 description 169
- 125000003275 alpha amino acid group Chemical group 0.000 description 136
- 235000018102 proteins Nutrition 0.000 description 123
- 108010087302 Viral Structural Proteins Proteins 0.000 description 91
- 108090000765 processed proteins & peptides Proteins 0.000 description 63
- 101000629318 Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein Proteins 0.000 description 46
- 235000013930 proline Nutrition 0.000 description 43
- 238000009825 accumulation Methods 0.000 description 36
- 125000000539 amino acid group Chemical group 0.000 description 35
- 230000001105 regulatory effect Effects 0.000 description 35
- 241000700605 Viruses Species 0.000 description 32
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 31
- 238000000635 electron micrograph Methods 0.000 description 30
- 102000004196 processed proteins & peptides Human genes 0.000 description 19
- 108091028043 Nucleic acid sequence Proteins 0.000 description 18
- 229920001184 polypeptide Polymers 0.000 description 18
- 150000003147 proline derivatives Chemical class 0.000 description 17
- 241000004176 Alphacoronavirus Species 0.000 description 15
- 241000008904 Betacoronavirus Species 0.000 description 15
- 108020004705 Codon Proteins 0.000 description 15
- 150000003354 serine derivatives Chemical class 0.000 description 15
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 14
- 238000003119 immunoblot Methods 0.000 description 13
- 101710204837 Envelope small membrane protein Proteins 0.000 description 12
- 101710145006 Lysis protein Proteins 0.000 description 12
- 239000003623 enhancer Substances 0.000 description 12
- 210000004962 mammalian cell Anatomy 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 12
- 230000003612 virological effect Effects 0.000 description 12
- 238000001514 detection method Methods 0.000 description 11
- 239000006166 lysate Substances 0.000 description 11
- 230000035772 mutation Effects 0.000 description 11
- 239000000419 plant extract Substances 0.000 description 11
- 102000005962 receptors Human genes 0.000 description 11
- 108020003175 receptors Proteins 0.000 description 11
- 108020005345 3' Untranslated Regions Proteins 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 108700010070 Codon Usage Proteins 0.000 description 9
- 108700002673 Coronavirus M Proteins Proteins 0.000 description 9
- 210000000170 cell membrane Anatomy 0.000 description 9
- 208000025370 Middle East respiratory syndrome Diseases 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 241000589158 Agrobacterium Species 0.000 description 7
- 108090000288 Glycoproteins Proteins 0.000 description 7
- 102000003886 Glycoproteins Human genes 0.000 description 7
- 108010052285 Membrane Proteins Proteins 0.000 description 7
- 102000018697 Membrane Proteins Human genes 0.000 description 7
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 108091026890 Coding region Proteins 0.000 description 6
- 101710085938 Matrix protein Proteins 0.000 description 6
- 101710127721 Membrane protein Proteins 0.000 description 6
- 101710198474 Spike protein Proteins 0.000 description 6
- 230000001086 cytosolic effect Effects 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 230000001976 improved effect Effects 0.000 description 6
- 239000000411 inducer Substances 0.000 description 6
- 230000004807 localization Effects 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 108091035707 Consensus sequence Proteins 0.000 description 5
- 108700003471 Coronavirus 3C Proteases Proteins 0.000 description 5
- 102000004961 Furin Human genes 0.000 description 5
- 108090001126 Furin Proteins 0.000 description 5
- 102100034013 Gamma-glutamyl phosphate reductase Human genes 0.000 description 5
- 101001133924 Homo sapiens Gamma-glutamyl phosphate reductase Proteins 0.000 description 5
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 5
- 102000035195 Peptidases Human genes 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 108091005774 SARS-CoV-2 proteins Proteins 0.000 description 5
- 108091036066 Three prime untranslated region Proteins 0.000 description 5
- 108010067390 Viral Proteins Proteins 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000008488 polyadenylation Effects 0.000 description 5
- 238000002864 sequence alignment Methods 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 108020003589 5' Untranslated Regions Proteins 0.000 description 4
- 241000283707 Capra Species 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 241000711467 Human coronavirus 229E Species 0.000 description 4
- 241000482741 Human coronavirus NL63 Species 0.000 description 4
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 229940096437 Protein S Drugs 0.000 description 4
- 241000831652 Salinivibrio sharmensis Species 0.000 description 4
- 240000006394 Sorghum bicolor Species 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108010029566 avian influenza A virus hemagglutinin Proteins 0.000 description 4
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 235000019419 proteases Nutrition 0.000 description 4
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 3
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 241000723655 Cowpea mosaic virus Species 0.000 description 3
- 241001461743 Deltacoronavirus Species 0.000 description 3
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 3
- 101710091045 Envelope protein Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241000008920 Gammacoronavirus Species 0.000 description 3
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 3
- 241001109669 Human coronavirus HKU1 Species 0.000 description 3
- 241001428935 Human coronavirus OC43 Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 241000208125 Nicotiana Species 0.000 description 3
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 101710188315 Protein X Proteins 0.000 description 3
- 101000629313 Severe acute respiratory syndrome coronavirus Spike glycoprotein Proteins 0.000 description 3
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 108020004566 Transfer RNA Proteins 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 210000002288 golgi apparatus Anatomy 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000034217 membrane fusion Effects 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 230000007030 peptide scission Effects 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 239000013639 protein trimer Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 3
- 229950005143 sitosterol Drugs 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 108700001624 vesicular stomatitis virus G Proteins 0.000 description 3
- 241001429251 Beet necrotic yellow vein virus Species 0.000 description 2
- 244000020518 Carthamus tinctorius Species 0.000 description 2
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- BTEISVKTSQLKST-UHFFFAOYSA-N Haliclonasterol Natural products CC(C=CC(C)C(C)(C)C)C1CCC2C3=CC=C4CC(O)CCC4(C)C3CCC12C BTEISVKTSQLKST-UHFFFAOYSA-N 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- 241000219823 Medicago Species 0.000 description 2
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 2
- 102000007474 Multiprotein Complexes Human genes 0.000 description 2
- 108010085220 Multiprotein Complexes Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 108700001094 Plant Genes Proteins 0.000 description 2
- 108090000051 Plastocyanin Proteins 0.000 description 2
- 108010001267 Protein Subunits Proteins 0.000 description 2
- 102000002067 Protein Subunits Human genes 0.000 description 2
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 2
- 102000044437 S1 domains Human genes 0.000 description 2
- 108700036684 S1 domains Proteins 0.000 description 2
- 244000082988 Secale cereale Species 0.000 description 2
- 235000007238 Secale cereale Nutrition 0.000 description 2
- 241000710117 Southern bean mosaic virus Species 0.000 description 2
- 229930182558 Sterol Natural products 0.000 description 2
- 241000008923 Torovirinae Species 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 102000044159 Ubiquitin Human genes 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229940076810 beta sitosterol Drugs 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 230000034303 cell budding Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000004186 co-expression Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 108700010904 coronavirus proteins Proteins 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- -1 diglycerides Chemical class 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 108010028403 hemagglutinin esterase Proteins 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 230000031852 maintenance of location in cell Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 210000004779 membrane envelope Anatomy 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 2
- 229940068065 phytosterols Drugs 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 230000005180 public health Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 150000003432 sterols Chemical class 0.000 description 2
- 235000003702 sterols Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229940031626 subunit vaccine Drugs 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 230000010474 transient expression Effects 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 230000007501 viral attachment Effects 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- KZJWDPNRJALLNS-VPUBHVLGSA-N (-)-beta-Sitosterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@@H](C(C)C)CC)C)CC4)CC3)CC=2)CC1 KZJWDPNRJALLNS-VPUBHVLGSA-N 0.000 description 1
- CSVWWLUMXNHWSU-UHFFFAOYSA-N (22E)-(24xi)-24-ethyl-5alpha-cholest-22-en-3beta-ol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(CC)C(C)C)C1(C)CC2 CSVWWLUMXNHWSU-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- SGNBVLSWZMBQTH-QGOUJLTDSA-N (3s,8s,9s,10r,13r,14s,17r)-17-[(2r)-5,6-dimethylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-ol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCC(C)C(C)C)[C@@]1(C)CC2 SGNBVLSWZMBQTH-QGOUJLTDSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 101150084750 1 gene Proteins 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- NOIRDLRUNWIUMX-UHFFFAOYSA-N 2-amino-3,7-dihydropurin-6-one;6-amino-1h-pyrimidin-2-one Chemical compound NC=1C=CNC(=O)N=1.O=C1NC(N)=NC2=C1NC=N2 NOIRDLRUNWIUMX-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid Chemical compound CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- CPQUIAPJXYFMHN-UHFFFAOYSA-N 24-methylcholesterol Natural products C1CC2=CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(C)C(C)C)C1(C)CC2 CPQUIAPJXYFMHN-UHFFFAOYSA-N 0.000 description 1
- KLEXDBGYSOIREE-UHFFFAOYSA-N 24xi-n-propylcholesterol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CCC)C(C)C)C1(C)CC2 KLEXDBGYSOIREE-UHFFFAOYSA-N 0.000 description 1
- 101710197633 Actin-1 Proteins 0.000 description 1
- 108090000104 Actin-related protein 3 Proteins 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 101100274514 Arabidopsis thaliana CKL11 gene Proteins 0.000 description 1
- 241001292006 Arteriviridae Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 241000209763 Avena sativa Species 0.000 description 1
- 235000007558 Avena sp Nutrition 0.000 description 1
- 241000701412 Baculoviridae Species 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 235000011331 Brassica Nutrition 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000000385 Brassica napus var. napus Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- OILXMJHPFNGGTO-NRHJOKMGSA-N Brassicasterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@](C)([C@H]([C@@H](/C=C/[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 OILXMJHPFNGGTO-NRHJOKMGSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 101150064755 CKI1 gene Proteins 0.000 description 1
- 208000025721 COVID-19 Diseases 0.000 description 1
- SGNBVLSWZMBQTH-FGAXOLDCSA-N Campesterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 SGNBVLSWZMBQTH-FGAXOLDCSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241001515826 Cassava vein mosaic virus Species 0.000 description 1
- 239000005496 Chlorsulfuron Substances 0.000 description 1
- LPZCCMIISIBREI-MTFRKTCUSA-N Citrostadienol Natural products CC=C(CC[C@@H](C)[C@H]1CC[C@H]2C3=CC[C@H]4[C@H](C)[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)C(C)C LPZCCMIISIBREI-MTFRKTCUSA-N 0.000 description 1
- 241000004175 Coronavirinae Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 244000241257 Cucumis melo Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- ARVGMISWLZPBCH-UHFFFAOYSA-N Dehydro-beta-sitosterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)CCC(CC)C(C)C)CCC33)C)C3=CC=C21 ARVGMISWLZPBCH-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 239000005561 Glufosinate Substances 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 101000663001 Mus musculus TNFAIP3-interacting protein 1 Proteins 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 101150005851 NOS gene Proteins 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000207746 Nicotiana benthamiana Species 0.000 description 1
- 241000208134 Nicotiana rustica Species 0.000 description 1
- 241001292005 Nidovirales Species 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 240000004371 Panax ginseng Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 102000005877 Peptide Initiation Factors Human genes 0.000 description 1
- 108010044843 Peptide Initiation Factors Proteins 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 241001112090 Pseudovirus Species 0.000 description 1
- 241001534527 Roniviridae Species 0.000 description 1
- 208000037847 SARS-CoV-2-infection Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100397775 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) YCK2 gene Proteins 0.000 description 1
- 101710147732 Small envelope protein Proteins 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 235000007230 Sorghum bicolor Nutrition 0.000 description 1
- 101800000904 Spike protein S1 Proteins 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical class O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 241000711484 Transmissible gastroenteritis virus Species 0.000 description 1
- 102100033598 Triosephosphate isomerase Human genes 0.000 description 1
- 101710194411 Triosephosphate isomerase 1 Proteins 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- OILXMJHPFNGGTO-ZRUUVFCLSA-N UNPD197407 Natural products C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)C=C[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZRUUVFCLSA-N 0.000 description 1
- HZYXFRGVBOPPNZ-UHFFFAOYSA-N UNPD88870 Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)=CCC(CC)C(C)C)C1(C)CC2 HZYXFRGVBOPPNZ-UHFFFAOYSA-N 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- JUGOREOARAHOCO-UHFFFAOYSA-M acetylcholine chloride Chemical compound [Cl-].CC(=O)OCC[N+](C)(C)C JUGOREOARAHOCO-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000000240 adjuvant effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- MJVXAPPOFPTTCA-UHFFFAOYSA-N beta-Sistosterol Natural products CCC(CCC(C)C1CCC2C3CC=C4C(C)C(O)CCC4(C)C3CCC12C)C(C)C MJVXAPPOFPTTCA-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 235000004420 brassicasterol Nutrition 0.000 description 1
- OILXMJHPFNGGTO-ZAUYPBDWSA-N brassicasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZAUYPBDWSA-N 0.000 description 1
- 235000000431 campesterol Nutrition 0.000 description 1
- SGNBVLSWZMBQTH-PODYLUTMSA-N campesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](C)C(C)C)[C@@]1(C)CC2 SGNBVLSWZMBQTH-PODYLUTMSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- VJYIFXVZLXQVHO-UHFFFAOYSA-N chlorsulfuron Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)Cl)=N1 VJYIFXVZLXQVHO-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- OQMZNAMGEHIHNN-CIFIHVIMSA-N delta7-stigmasterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@H](C)/C=C/[C@@H](CC)C(C)C)CC[C@H]33)C)C3=CC=C21 OQMZNAMGEHIHNN-CIFIHVIMSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009025 developmental regulation Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002339 glycosphingolipids Chemical class 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 208000037798 influenza B Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 210000003093 intracellular space Anatomy 0.000 description 1
- NBQNWMBBSKPBAY-UHFFFAOYSA-N iodixanol Chemical compound IC=1C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C(I)C=1N(C(=O)C)CC(O)CN(C(C)=O)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NBQNWMBBSKPBAY-UHFFFAOYSA-N 0.000 description 1
- 229960004359 iodixanol Drugs 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 206010034674 peritonitis Diseases 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000009894 physiological stress Effects 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 235000002378 plant sterols Nutrition 0.000 description 1
- 210000002706 plastid Anatomy 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000012882 rooting medium Substances 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000015500 sitosterol Nutrition 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- HCXVJBMSMIARIN-PHZDYDNGSA-N stigmasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@@H](CC)C(C)C)[C@@]1(C)CC2 HCXVJBMSMIARIN-PHZDYDNGSA-N 0.000 description 1
- 229940032091 stigmasterol Drugs 0.000 description 1
- 235000016831 stigmasterol Nutrition 0.000 description 1
- BFDNMXAIBMJLBB-UHFFFAOYSA-N stigmasterol Natural products CCC(C=CC(C)C1CCCC2C3CC=C4CC(O)CCC4(C)C3CCC12C)C(C)C BFDNMXAIBMJLBB-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229940125575 vaccine candidate Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000007502 viral entry Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Peptides Or Proteins (AREA)
Abstract
Modified coronavirus spike (S) proteins, virus-like particles (VLPs) comprising the modified S proteins, and nucleic acids encoding the modified S proteins are provided. Methods for the production of the modified S proteins and VLPs in a host or host cell are also described. The modified S protein may comprise a transmembrane domain (TM) or a portion of TM and a Cytoplasmic Tail (CT) or a portion of CT, wherein the CT or portion of CT is derived from influenza Hemagglutinin (HA) protein, and wherein the TM or portion of TM is heterologous to the CT or portion of CT. Furthermore, methods of inducing immunity to a coronavirus infection in a subject are described, comprising administering to the subject a composition comprising a modified coronavirus (S) protein or VLP.
Description
Technical Field
The present disclosure relates to modified viral structural proteins. The invention also relates to virus-like particles (VLPs) comprising modified viral structural proteins and methods of producing VLPs in a host or host cell.
Background
Coronaviruses (CoV) are the largest group of viruses belonging to the order nimoravirales (Nidovirales), which includes the coronaviridae (Coronavirinae), arterividae (Arteriviridae), nyaviridae (mesoviridae) and baculoviridae (Roniviridae). The coronaviridae subfamily includes one of the two subfamilies of the coronaviridae family, and the other is the Torovirinae subfamilies (Torovirinae). The subfamily coronaviridae is further subdivided into four genera, namely, alpha-coronavirus, beta-coronavirus, gamma-coronavirus and delta-coronavirus. Members of the alpha-and beta-coronaviruses are found only in mammals. The genus alpha-coronavirus includes two human viruses, HCoV-229E and HCoV-NL63. Important animal alpha-coronaviruses are porcine transmissible gastroenteritis virus and feline transmissible peritonitis virus.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also known as 2019-nCoV and HCoV-19) is a new spectrum of Beta-coronavirus type B (Beta-CoV) and causes coronavirus disease (COVID-19) in 2019, a respiratory disease with high mortality and morbidity, which has a significant impact on public health worldwide. Because of the latency and transmissibility of the virus, an outbreak of SARS-CoV-2 (such as the pandemic beginning in 2020) is a significant challenge for healthcare systems. Thus, there is an urgent need for treatment for covd-19, but long-term management of SARS-CoV-2 outbreaks would require an effective vaccine.
As shown by recent cryoelectron tomography and cryoelectron microscopy studies, the viral particles of coronaviruses are spherical with a diameter of about 118-140nm.
The most prominent structural feature of coronaviruses is the barlike spike projections emanating from the surface of the viral particle. Coronavirus particles consist of a helical nucleocapsid structure, formed by the association between nucleocapsid (N) phosphoproteins and viral genomic RNAs, surrounded by a lipid bilayer in which three or four types of structural proteins are inserted: spike protein (S), membrane protein (M) and envelope protein (E), and hemagglutinin-esterase (HE) proteins (Masters PS.the molecular biology of corenaviruses.adv viruses Res.2006; 66:193-292) for only certain coronaviruses.
Membrane protein (M) is the most abundant structural protein in viral particles. It is a small (-25-30 kDa) protein with three transmembrane domains and is thought to confer virion shape. The envelope protein (E) is a short, intact membrane protein consisting of 76-109 amino acids, ranging in size from 8.4kDa to 12 kDa. Primary and secondary structures show that E has a short hydrophilic amino terminus consisting of 7-12 amino acids followed by a large hydrophobic transmembrane domain (TMD) consisting of 25 amino acids, and a terminus with a long hydrophilic carboxyl terminus, which comprises a majority of proteins. The E protein is involved in some aspects of the viral life cycle such as assembly, budding, envelope formation and pathogenesis.
Spike (S) protein is a glycoprotein which recognizes the host receptors of various coronaviruses and is necessary for fusion of the virus and host cell membrane for entry of the virus into the cell (Belouzard et al, viruses 2012Jun;4 (6): 1011-33). As the major glycoprotein on the surface of the viral envelope, the S protein of the coronaviridae is the primary target of neutralizing antibodies raised by natural infection (including SARS-CoV-2 infection) and is a key antigen for targeting experimental vaccine candidates.
The SARS-CoV-2S protein (as well as the S protein of other coronaviruses) was initially synthesized as a precursor protein. The individual precursor S proteins form homotrimers and undergo glycosylation and signal peptide removal processing within the Golgi apparatus compartment. The S protein requires two-step protease mediated activation to aid in membrane fusion. SARS-CoV-2S protein is characterized by an RRAR Furin (Furin) cleavage site at the S1/S2 junction, which is presumed to be processed in the golgi compartment to produce two different polypeptides: s1 and S2 polypeptides (or subunits) that remain non-covalently bound as S1/S2 protomers within homotrimers in the pre-fusion conformation (Walls et al, cell 2020 181 (2) pages 281-292; li et al eLife 2019; 8:e51230). Cleavage by furin at the S1/S2 junction and cleavage at the S2' site upstream of the fusion peptide occurs during entry of the virus into the cell surface or endosome and may be mediated by some proteases.
The trimer remains in a pre-fusion conformation prior to binding to a target receptor on a host cell via a Receptor Binding Domain (RBD) epitope. Receptor binding destabilizes the pre-fusion trimer, resulting in shedding of the S1 subunit, and the S2 subunit is converted to a stable post-fusion protein conformation by fusion of the virus to the cell membrane (Wrapp et al Science 13mar 2020, volume 367, 6483, pages 1260-1263). Antibodies neutralizing individuals infected with SARS-CoV-2 have been shown to target RBD of the S1 subunit of the S protein (Premkumar, L.,2020Science Immunology 2020, 6, 11, 5, 48).
Stabilization of the S protein extracellular domain in the pre-fusion conformation tends to increase recombinant expression yields, possibly by preventing induction or misfolding due to the trend towards more stable post-fusion structures (Hsieh et al Science 2020,369 1501-1505).
Mutations in the extracellular domain of the S protein have been shown to assist in stabilization of the pre-fusion conformation. WO 2018/081318 and the matched publication by Pallesen, J et al (PNAS, 2017, 8, 29, 114 (35)) disclose a biproline substitution at or near the junction between heptad repeat region 1 (HR 1) and the central helix, which allows stabilization of the S ectodomain trimer of MERS-CoV spike protein in the pre-fusion conformation and substitution to prevent cleavage of the protease at the S1/S2 cleavage site and cleavage at the S2' cleavage site of the S ectodomain. Replacement of stable SARS-CoV-2S protein with biproline at homologous amino acid residues has been used to determine high resolution structure by cryoEM (Wrapp et al Science 2020 367,1260-1263; walls et al Cell 2020,181,281-292). Furthermore, disruption of the furin recognition site is thought to allow the S protein to remain in the pre-fusion conformation (Wrapp et al Science 2020 367, 1260-1263). However, even with these substitutions, the extracellular domain of the SARS-CoV-2S protein remains unstable and difficult to reliably produce in mammalian cells, thereby hampering the development of effective and high-yield subunit vaccines (Hsieh et al Science 2020,369 1501-1505).
Hsieh et al (Science 2020,369 p.1501-1505) designed and expressed more than 100 structurally directed variants of SARS-CoV-2 spike protein in mammalian cells based on previously defined frozen EM structures. These variants are characterized biochemically, biophysically, and structurally to identify substitutions that result in increased yields and stability. Hsieh et al report various proline, disulfide, salt bridge and cavity filling substitutions that increase the expression and/or stability of spike proteins relative to biproline substitutions. The best identified variant HexaPro has 6 beneficial proline substitutions resulting in 10-fold higher expression than its parent construct and is able to withstand heat stress, room temperature storage and multiple freeze-thawing.
The S2 subunit can be divided into three domains: large extracellular domain, transmembrane domain (TM) and Cytoplasmic Tail (CT). The cytoplasmic tail of the S protein has previously been shown to be required for assembly. Two different retention information can be found in CT of the coronaviridae: i) Endoplasmic Reticulum Recovery Signal (ERRS) and/or ii) tyrosine-dependent localization information (YxxI or YxxF motifs). ERRS includes a binary KxHxx motif that binds to the exosome complex I (COPI). When co-expressed with SARS membrane (M) protein, this motif is necessary for the localization of SARS S protein to the ERGIC/Golgi region, and localization can be disrupted by mutation of the KxHxx motif (McBride et al J.Virol.Feb 2007,81 (5) 2418-2428). The S protein containing ERRS is recruited into COPI vesicles and retrograde from the Golgi apparatus back into the Endoplasmic Reticulum (ER). Repeated cycling of the S protein between the ER and golgi leads to intracellular retention of the S protein. The S proteins of both alpha-and beta-coronaviruses include ERRS (Ujike et al Journal of General Virology (2016), 97, 1853-1864).
The S proteins of the beta-coronaviruses, such as MERS-CoV, SARS-CoV and SARS-CoV2, have ERRS only and cannot be retained intracellularly, resulting in release of the S protein into the plasma membrane. Mutant SARS-CoV S proteins lacking ERRS are transported to the plasma membrane, whereas native S proteins, when co-expressed with M protein, interact with M protein in the vicinity of the budding site, resulting in intracellular retention of S protein, suggesting that ERRS of SARS-CoV promotes specific accumulation of S protein in the posterolateral Golgi compartment by interacting with M protein, resulting in the introduction of S protein into VLP (Ujike et al Journal of General Virology (2016), 97, 1853-1864). It has recently been found that removal of ERRS will facilitate the incorporation of SARS-CoV-2S protein into lentivirus pseudoviruses (Ou et al 2020Nature Communications volume 11,Article number:1620).
Yu et al (2020 Science) constructed a set of prototype DNA vaccines that expressed six variants of the various deleted SARS-CoV-2S proteins with cytoplasmic tails and transmembrane domains and evaluated their immunogenicity and protective efficacy against SARS-CoV-2 virus challenge in rhesus macaques. Although soluble fragments of the extracellular domain of the SARS-CoV-2S protein caused a decrease in sgmRNA levels (indicative of viral replication), optimal protection was achieved by the full-length S protein immunogen.
The role of the transmembrane and cytoplasmic domains of the S protein in the infectivity and membrane fusion activity of SARS-CoV was studied using the SARS-CoV S pseudotyped retrovirus (SARSpp) by Broer et al (2006J.Virol. 1302-1310). SARSpp, wherein the cytoplasmic domain of S is replaced by a cytoplasmic domain from vesicular stomatitis virus G protein (VSV-G), is infectious and is up to 40% of wild type. In contrast, the infectivity of SARSpp containing both TMD and VSV-G cytoplasmic domains was severely impaired (< 5%). This shows that the TMD of S may be involved in the entry process of SARS-CoV.
Vaccination provides protection against disease by inducing an immune response in a subject against a possible pathogen prior to infection. Typically, this is accomplished by using as the immunogen an infectious agent in a live attenuated or fully inactivated form. In order to avoid the risk of using whole viruses (e.g. inactivated or attenuated viruses) as vaccines, viral proteins or subunits or recombinant forms thereof have been used as vaccines. The main obstacle to the use of natural or recombinant viral proteins as vaccine agents is to ensure that the conformation of the protein mimics its antigen in the natural environment. Suitable adjuvants, as well as in the case of peptides, carrier proteins may be used to enhance the immune response. In addition, viral proteins or subunits as vaccines may elicit a major humoral response and thus fail to elicit long lasting immunity. Subunit vaccines may be ineffective against diseases in which it may be demonstrated that complete inactivated virus may provide superior protection.
Virus-like particles (VLPs) can be used in immunogenic compositions to express viral proteins with a preferred conformation for improved antigen presentation to the immune system. VLPs are very similar to mature virions, but they do not contain viral genomic material, and they are non-replicating, which makes them safe for administration as a vaccine. In addition, VLPs can be engineered to express viral glycoproteins on the VLP surface, which are their natural physiological conformation. VLPs may be more effective than soluble envelope protein antigens in inducing neutralizing antibodies to glycoproteins, as VLPs resemble whole virus particles and are multivalent particle structures.
A variety of expression systems have been used to produce VLPs, including mammalian cell lines, bacteria, insect cell lines, yeast, and plant cells. VLPs of more than 30 different viruses have been produced in insect and mammalian systems for vaccine purposes (Noad, r.and Roy, p.,2003,Trends Microbiol11:438-44). VLPs have also been produced in plants (see WO2009/076778; WO2009/009876; WO2009/076778; WO 2010/003225; WO 2010/003235; WO2010/006452; WO2011/03522; WO 2010/148511; WO2014153674 and WO 2012/083445).
VLPs have been produced using native surface proteins from severe acute respiratory syndrome coronavirus (SARS-CoV or SARS-CoV-1), S protein, M protein, E protein contained in insect cells and mammalian cells (Liu et al, 2008, j Virol, pages 11318-11330). SARS-CoV-2 virus-like particles (VLPs) have also been assembled by co-expression of viral surface proteins S, M and E in mammalian cells (Xu et al front. Bioeng. Biotechnol, 2020, 7, 30). Studies have further shown that M protein is essential for virus-like particle (VLP) formation (Siu et al Journal of Virology (2008) 82:11318-11330, huang et al Journal of Virology (2004) 78:12557-12565). In mammalian cells, the expression of membrane protein (M) and small envelope protein (E) is essential for efficient formation and release of SARS-CoV-2VLP (Xu et al front. Bioeng. Biotechnol.,2020, 7/30). Nevertheless, the minimum requirements for assembling SARS-CoV VLPs remain controversial. Huang et al (Journal of Virology (2004) 78:12557-12565) describe that VLP formation in infected human cells requires only co-expression of M and N viral proteins, whereas Siu et al (Journal of Virology (2008) 82:11318-11330) show that both E and N proteins must be co-expressed with M proteins to efficiently produce and release SARS-CoV VLPs in infected mammalian cells.
WO2012/083445 discloses the production of SARS CoV S protein in plants, wherein the transmembrane domain and cytoplasmic tail domain (TM/CT) of the S protein are replaced by TM/CT of influenza HA protein.
Several groups proposed immunization with SARS-CoV VLPs as an effective vaccine strategy. VLPs produced in insect cells or chimeric MHV/SARS-CoV VLPs produced in mammalian cells (Lokugamage et al Vaccine 2008, 2/6; 26 (6): 797-808, lu et al 2007Immunology 122496-5024) were used in these studies.
However, efficient amplification and production of SARS-CoV-2VLP in an amount that can meet the wide vaccination needs of the global population requires efficient viral structural protein and VLP production.
Disclosure of Invention
The present invention relates to modified viral structural proteins. The invention also relates to virus-like particles (VLPs) comprising modified viral structural proteins and methods of producing VLPs in a host or host cell. More specifically, the invention relates to modified coronavirus S proteins. The invention also relates to virus-like particles (VLPs) comprising modified S proteins and methods of producing VLPs in a host or host cell.
In one aspect, a modified coronavirus S protein is provided, comprising in order:
An extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein.
Modified S proteins as described herein may form trimers. Thus, trimers comprising modified coronavirus S proteins as described herein are also provided.
In another aspect, there is provided a virus-like particle (VLP) comprising a modified S protein or a trimer comprising a modified S protein as described above. Thus, the VLP comprises a modified coronavirus S protein or a trimer comprising the modified S protein, the modified S protein comprising:
an extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein.
The VLP may further comprise a plant lipid.
The TM may be fused directly to the CT. The TM may be derived from coronavirus S protein TM and the CT may be derived from influenza HA protein CT. Furthermore, the TM may be a chimeric TM comprising an N-terminal sequence derived from the coronavirus S protein TM and a C-terminal sequence derived from the influenza HA protein TM. The chimeric TM may include an N-terminal sequence derived from the coronavirus S protein TM, the N-terminal sequence including a sequence corresponding to SEQ ID NO:18 or SEQ ID NO:169 is at least 20 amino acids of amino acids 1-20, or corresponds to SEQ ID NO:118 or 164, or at least 21 amino acids corresponding to amino acids 1-21 of SEQ ID NO:123, at least 22 amino acids 1-22, and one or more amino acids derived from the C-terminus of the influenza HA protein TM. The one or more amino acids derived from the C-terminal end of the influenza HA protein TM may be selected from AGL or conservative substitutions of AGL, MAGL or conservative substitutions of MAGL. The chimeric TM may include a sequence corresponding to SEQ ID NO:18 from amino acids 1 to 20.
The CT may be a chimeric CT comprising an N-terminal sequence derived from the coronavirus S protein CT and a C-terminal sequence derived from the influenza HA protein CT. The chimeric CT may comprise a C-terminal sequence derived from the influenza HA protein CT, the C-terminal sequence comprising a sequence corresponding to SEQ ID NO: 18. 126, 127, 128, 129, 130 or 131, and one or more amino acids derived from the N-terminus of the coronavirus S protein CT. The one or more amino acids from the N-terminus of the coronavirus S protein CT may be selected from a conservative substitution of C or C, a conservative substitution of CC or CC, or a conservative substitution of CCM or CCM. The chimeric CT may comprise a sequence corresponding to SEQ ID NO: 18. 126, 128, 129, 130 or 131 amino acids 27-37; or SEQ ID NO:127, amino acids 27-36. In one aspect, the chimeric TMCT may comprise a chimeric TM comprising a sequence corresponding to SEQ ID NO:18 or SEQ ID NO:169, or amino acids 1-20 corresponding to SEQ ID NO:118 or SEQ ID NO:164, or amino acids corresponding to amino acids 1-21 of SEQ ID NO:123, said chimeric CT comprises amino acids corresponding to amino acids 1-22 of SEQ ID NO: 18. 126, 127, 128, 129, 130 or 131 amino acids 27-37; or a combination thereof.
The CT or a portion of the CT may comprise a sequence that hybridizes to SEQ ID NO:15, or with SEQ ID NO: 6. 8, 7, 9, 10, 12, 13 or 14, or amino acids 35-50, or amino acids identical to SEQ ID NO:11, or amino acids 34-49 of SEQ ID NO:3, or amino acids 553-568, or amino acids corresponding to SEQ ID NO:18, or amino acids 22-37 of SEQ ID NO:19, or amino acids 21-40 of SEQ ID NO:37, or amino acids 21-39 of SEQ ID NO:38, or amino acids 25-36 with SEQ ID NO:39, or amino acids 24-34 with SEQ ID NO: 126. 128, 129, 130 or 131, or amino acids 22-37, or a sequence identical to SEQ ID NO:127 from 80% to 100% identity of the sequence of amino acids 22-36. The TM or a portion of the TM may comprise a sequence that is identical to SEQ ID NO:132 or 133, to 100% identity of the sequences of 132 or 133.
The TMCT may include a sequence having about 80% to about 100% identity to the sequence of seq id no: SEQ ID NO: 18. 19, 37, 38, 39, 64, 126, 127, 128, 129, 130, 131, 118, 119, 120, 123, 124, 125, 134, 135, 164, 165, 166, 169, 170, 171, 172 or 173.
The modified S protein may comprise an S1 subunit and an S2 subunit, wherein the S2 subunit comprises the chimeric TMCT.
The modified S protein may be produced as a precursor protein comprising the modified S protein and a signal peptide. The precursor proteins comprising the modified S protein and signal peptide may comprise a sequence identical to SEQ ID NO:1, or amino acids 1-1234 with SEQ ID NO:5, or amino acids 1-1234 with SEQ ID NO:21 or amino acids 1-1219 of SEQ ID NO:30, and wherein the amino acid sequence of CT comprises 80% to 100% identity to amino acids 1-1243 of SEQ ID NO:15, or with SEQ ID NO: 6. 8, 7, 9, 10, 12, 13 or 14, or amino acids 35-50, or amino acids identical to SEQ ID NO:11, or amino acids 34-49 of SEQ ID NO:3 to 100% identity of the sequence of amino acids 553-568.
The signal peptide may be native or non-native to the S protein. The non-native signal peptide may be derived from a signal peptide of a Protein Disulfide Isomerase (PDI). The modified S protein may also include plant-specific N-glycans.
The CT or a portion of the CT in the modified S protein may be derived from influenza Hemagglutinin (HA) protein derived from influenza b or influenza subtype H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15 or H16. Influenza Hemagglutinin (HA) proteins may be derived from influenza b or influenza of the H1, H3, H5, H6, H7 or H9 subtype.
The extracellular domain of the modified S protein may be derived from SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43-CoV or 229E-CoV, said TM or a portion of said TM may be derived from SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43-CoV or 229E-CoV, or both said extracellular domain and said TM or a portion of said TM may be derived from SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43-CoV or 229E-CoV.
In another aspect, the modified S protein may comprise one or more amino acid substitutions when compared to the wild-type coronavirus amino acid sequence. The one or more substitutions may maintain the S protein in a pre-fusion state.
The one or more amino acid substitutions may include: i) Limiting substitution of processing at the cleavage site between the S1 and S2 subunits; ii) one or more amino acid substitutions to one or more prolines, or iii) substitutions that limit processing at the cleavage site between the S1 and S2 subunits and one or more amino acid substitutions to one or more prolines.
When expressed in a host or host cell, the one or more substitutions maintain the S protein in a pre-fusion state or produce a higher yield of modified S protein when compared to the yield of the corresponding S protein expressed in the host or host cell without the one or more substitutions.
When compared with SEQ ID NO:2, the one or more amino acid substitutions may correspond to the amino acid at positions 667, 668, 670, 802, 923, 927, 971, 972, or a combination thereof.
In one aspect, the polypeptide of SEQ ID NO:2, said one or more amino acid substitutions corresponding to the amino acids at positions 971 and 972 when compared to the reference amino acid sequence. In another aspect, the polypeptide of SEQ ID NO:2, said one or more amino acid substitutions corresponding to amino acids at positions 802, 927, 971 and 972. Furthermore, the sequence corresponding to SEQ ID NO:2 may comprise one or more amino acid substitutions corresponding to amino acids at positions 667, 668, 670, or a combination thereof. Thus, the sequence corresponding to SEQ ID NO:2 may comprise substitutions corresponding to the amino acids at positions 667, 668 and 670 when compared to the reference amino acid sequence.
In one aspect, the polypeptide of SEQ ID NO:2, the one or more substitutions may correspond to the amino acids at positions 667, 668, 670, 971 and 972 when compared to the reference amino acid sequence. Corresponding to the sequence set forth in SEQ ID NO: the amino acid substitution at position 667 of 2 may be glycine or a conservative substitution of glycine, corresponding to SEQ ID NO:2 may be serine or a conservative substitution of serine, corresponding to amino acid sequence of SEQ ID NO:2 may be serine or a conservative substitution of serine, corresponding to SEQ ID NO:2 may be proline or a conservative substitution of proline, and corresponds to the amino acid at position 971 of SEQ ID NO: the amino acid substitution at position 972 of 2 may be proline or a conservative substitution of proline. And SEQ ID NO:2 may also include an amino acid substitution corresponding to the amino acid at position 923 when compared to the reference amino acid sequence of S protein as described above.
In another aspect, when compared to SEQ ID NO:2, the one or more amino acid substitutions may correspond to the amino acids at positions 667, 668, 670, 802, 927, 971 and 972. Corresponding to the sequence set forth in SEQ ID NO: the amino acid substitution at position 667 of 2 may be glycine or a conservative substitution of glycine, corresponding to SEQ ID NO:2 may be serine or a conservative substitution of serine, corresponding to amino acid sequence of SEQ ID NO:2 may be serine or a conservative substitution of serine, corresponding to amino acid position 670 of SEQ ID NO:2 may be proline or a conservative substitution of proline corresponding to the amino acid at position 802 of SEQ ID NO: the amino acid substitution at position 927 of 2 may be proline or a conservative substitution of proline, corresponding to SEQ ID NO:2 may be proline or a conservative substitution of proline, and corresponds to the amino acid at position 971 of SEQ ID NO: the amino acid substitution at position 972 of 2 may be proline or a conservative substitution of proline.
In another aspect, the polypeptide of SEQ ID NO:2 may also include an amino acid substitution corresponding to the amino acid at position 923 when compared to the reference amino acid sequence of S protein as described above. For amino acid substitutions in the modified S protein, corresponding to SEQ ID NO: the amino acid substitution at position 667 of 2 may be glycine or a conservative substitution of glycine, corresponding to SEQ ID NO:2 may be serine or a conservative substitution of serine, corresponding to amino acid sequence of SEQ ID NO:2 may be serine or a conservative substitution of serine, corresponding to amino acid position 670 of SEQ ID NO:2, amino acid substitutions of amino acids at positions 802, 927, 971 and 972 may be proline or a conservative substitution of proline, and corresponds to SEQ ID NO: the amino acid substitution at position 923 of 2 may be phenylalanine or a conservative substitution of phenylalanine.
The modified S protein may have 80% to 100% identity to: SEQ ID NO: 5. 21, 30, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 95, 96, 97, 108, 109, 110, 144, 145, 146, 155, 156, or 157, or a sequence identical to SEQ ID NO:47, amino acids 24-1259, seq ID NO:48, amino acids 25-1259, seq ID NO:49, amino acids 25-1259, seq ID NO:50, amino acids 25-1259, seq ID NO:51, amino acids 25-1259, seq ID NO:52, amino acids 25-1259, seq ID NO:53, amino acids 25-1259, seq ID NO:54, amino acids 25-1259, seq ID NO:55, amino acids 25-1259, seq ID NO:56, amino acids 25-1259, seq ID NO:57, amino acids 25-1259, seq ID NO:58, amino acids 25-1259, seq ID NO:59, amino acids 25-1262, seq ID NO:60, amino acids 25-1261, seq ID NO:61, amino acids 25-1258, or SEQ ID NO:62, amino acids 25-1256, seq ID NO:95, amino acids 25-1243, seq ID NO:96, amino acids 25-1240, seq ID NO:97, amino acids 25-1243, seq ID NO:108, amino acids 25-1341, seq ID NO:109, amino acids 25-1338, seq ID NO:110, or amino acids 25-1341 of SEQ ID NO:144, amino acids 25-1351, seq ID NO:145, amino acids 25-1348, seq ID NO:146, amino acids 25-1351, seq ID NO:155, amino acids 25-1159 of seq ID NO:156, or amino acids 25-1156 of SEQ ID NO:157 from 80% to 100% identity of amino acids 25-1159.
In another aspect, a nucleic acid is provided that includes a nucleotide sequence encoding a modified S protein as described above.
In another aspect, there is provided a composition comprising an effective dose of a modified S protein, a trimer comprising the modified S protein or a VLP comprising a modified S protein as described above, and a pharmaceutically acceptable carrier, adjuvant, vehicle or excipient. In another aspect, a vaccine for inducing an immune response is provided. The vaccine comprises an effective dose of a modified S protein, a trimer comprising the modified S protein or a VLP comprising a modified S protein as described above.
The composition further comprises a pharmaceutically acceptable carrier, adjuvant, vehicle or excipient. In another aspect, a vaccine for inducing an immune response is provided. The vaccine comprises an effective dose of VLPs comprising a modified coronavirus as described above. The vaccine may be a multivalent vaccine comprising a mixture of VLPs.
In another aspect, there is provided a (non-human) host or host cell comprising a modified S protein, trimer or VLP as described above. In another aspect, there is provided a host or host cell comprising a VLP as described above. In another aspect, there is provided a composition comprising an effective dose of a VLP comprising a modified S protein as described above.
In another aspect, an S protein trimer is provided. The trimer comprises a modified coronavirus S protein comprising:
an extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein. As described above, the modified S protein in the trimer may comprise one or more amino acid substitutions when compared to the wild-type coronavirus amino acid sequence. In another aspect, there is provided a composition comprising an effective dose of a trimer as described above, and a pharmaceutically acceptable carrier, adjuvant, vehicle or excipient. In another aspect, there is also provided a virus-like particle (VLP) comprising a trimer as described above. The VLP may further comprise a plant lipid. In another aspect, there is provided a composition comprising an effective dose of a VLP comprising a trimer as described above, and a pharmaceutically acceptable carrier, adjuvant, vehicle or excipient. In another aspect, a vaccine for inducing an immune response is provided. The vaccine comprises an effective dose of a trimer as described above. In another aspect, a vaccine for inducing an immune response is provided. The vaccine comprises an effective dose of VLPs comprising trimers as described above. The vaccine may be a multivalent vaccine comprising a mixture of VLPs. In another aspect, a non-human host or host cell is provided that includes a trimer or VLP comprising a trimer as described above.
In another aspect, there is provided a method for inducing immunity to a coronavirus infection in a subject, the method comprising administering a composition or vaccine as described above. The composition or vaccine may be administered to the subject at one time, or the composition or vaccine may be administered to the subject multiple times. The composition or vaccine may be administered as an initial dose, and one or more subsequent doses may be administered between 1 day and 6 months from the initial dose. The subsequent dose may be administered 21 days after the initial dose is administered.
In another aspect, there is provided an antibody or antibody fragment prepared using a composition or vaccine as described above.
In another aspect, there is provided: a) A method of producing a virus-like particle (VLP) in a (non-human) host or host cell, comprising:
a) Introducing a nucleic acid comprising a nucleotide sequence encoding a modified S protein as described above into a non-human host or host cell; or a non-human host or host cell comprising a nucleic acid comprising a nucleotide sequence encoding a modified S protein as described above, and
b) Culturing the non-human host or host cell under conditions that allow expression of the nucleic acid, thereby producing the VLP.
In a further step c), the non-human host or host cell may be harvested.
In another aspect, there is provided: b) A method of increasing the production yield of coronavirus S protein in a (non-human) host or host cell comprising:
a) Introducing a nucleic acid comprising a nucleotide sequence encoding a modified S protein as described above into a non-human host or host cell; or providing a non-human host or host cell comprising a nucleic acid comprising a nucleotide sequence encoding a modified S protein as described above; and
b) Culturing the non-human host or host cell under conditions that allow expression of the modified S protein encoded by the nucleic acid, thereby producing the modified S protein in higher yields as compared to a host or host cell that expresses an unmodified S protein under similar or identical conditions.
In a further step c), the non-human host or host cell may be harvested.
In another aspect, there is provided C) a method of increasing the yield of production of virus-like particles (VLPs) in a (non-human) host or host cell, comprising:
a) Introducing a nucleic acid encoding a modified coronavirus S protein into a non-human host or host cell, the modified coronavirus S protein comprising:
An extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein;
providing a non-human host or host cell comprising a nucleic acid encoding a modified S protein comprising:
an extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein; and
b) Culturing the non-human host or host cell under conditions that allow expression of the modified S protein encoded by the nucleic acid, thereby producing VLPs comprising the modified S protein in higher yields than VLPs in a host of a host cell that expresses unmodified S protein under similar or identical conditions.
In another aspect, there is provided D) a method of producing a virus-like particle (VLP) in a (non-human) host or host cell, comprising:
a) Introducing a nucleic acid encoding a modified coronavirus S protein into a non-human host or host cell, the modified coronavirus S protein comprising:
an extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein; or (b)
Providing a non-human host or host cell comprising a nucleic acid encoding a modified S protein comprising:
an extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein; and
b) Culturing the non-human host or host cell under conditions that allow expression of the nucleic acid, thereby producing the VLP.
In another aspect, the VLP of method a), B), C) or D) may also be extracted and purified from the host or host cell. The host or host cell may include a plant, plant cell, fungus, fungal cell, insect cell, animal or animal cell. The host or host cell of method A), B), C) or D) may be a plant, plant part or plant cell.
In another aspect, there is provided a VLP produced by the method of a), B), C) or D).
Furthermore, in another aspect, there is provided a composition comprising an adjuvant and a virus-like particle (VLP), said VLP comprising a modified coronavirus S protein, said modified S protein comprising:
an extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
a Cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from an influenza Hemagglutinin (HA) protein, and wherein the amino acid sequence of SEQ ID NO:2, the modified S protein further comprises substitutions at positions 667, 668, 670, 971 and 972 when compared to the reference amino acid sequence shown.
In another aspect, there is provided a composition comprising a virus-like particle (VLP), said VLP comprising a modified coronavirus S protein, said modified S protein comprising:
an extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein; and wherein the modified S protein comprises a glycine substitution at position 667, a serine substitution at position 668, a serine substitution at position 670, a proline substitution at position 971, and a proline substitution at position 972, said positions corresponding to SEQ ID NO:2, and a reference amino acid sequence. The influenza Hemagglutinin (HA) protein may be derived from influenza b or influenza of subtype H1, H3, H5, H6, H7 or H9. The composition may further comprise an adjuvant.
In another aspect, there is provided a composition comprising a virus-like particle (VLP) comprising a modified coronavirus S protein comprising the amino acid sequence of SEQ ID NO: 21. The composition may further comprise an adjuvant.
This summary does not necessarily describe all features of the invention.
Drawings
These and other features of the present invention will become more apparent from the following description, in which reference is made to the accompanying drawings, in which:
FIG. 1 shows a schematic representation of the coronavirus S protein and the positions of the S1/S2 (aa 685/686) and S2' cleavage sites. SP: signal peptide (aa 1-15); NTD: an N-terminal domain (aa 16-306); RBD: receptor binding domain (aa 335-527); FP: fusion peptide (aa 816-833); HR1: heptad repeat 1 (aa 908-991); HR2: heptad repeat 2 (aa 1166-1207); TM: transmembrane domain (aa 1214-1234); CT: cytoplasmic tail (aa 1235-1273). The residue number (aa) of each region corresponds to their position in the S protein of SARS-CoV-2 (2019-nCoV).
Figure 2 shows an alignment of amino acid sequences from an exemplary influenza strain. The C-terminal region of the extracellular domain, the transmembrane domain (TM) and the cytoplasmic tail domain (CT) of Hemagglutinin (HA) are shown below: h1 A/California/07/2009 (SEQ ID NO: 6), H2A/Singapore/1/1957HA (SEQ ID NO: 7), H3A/Minnesota/41/2019 HA (SEQ ID NO: 8), H5A/Indonesia/5/05 HA (SEQ ID NO: 9), H6A/Teal/Hong Kong/W312/97HA (SEQ ID NO: 10), H7A/Guangdong/17 SF003/2016HA (SEQ ID NO: 11), H9A/Hong Kong/1073/99HA (SEQ ID NO: 12), and B/Washington/02/2019HA (SEQ ID NO: 13). The consensus sequence of these sequences is also shown (SEQ ID NO: 14).
Figure 3A shows expression in plants under the control of the following 5' utrs: quantitative fold change differences in accumulation of SARS-CoV-2S protein having a native (wild-type) transmembrane domain and cytoplasmic tail (wtTMCT) of SARS-CoV-2S protein: nbMT78 (construct 8586), nbCSY65 (construct 8589), and nbHEL40 (construct 8591); a modified SARS-CoV-2 protein in which the native (wild-type) transmembrane domain and cytoplasmic tail (wtTMCT) have been replaced by TMCT of influenza Hemagglutinin (HA) of influenza H5A/Indonesia/5/05 (H5 ittmct) under the control of nbMT78 (construct 8592), nbCSY65 (construct 8595) and nbHEL40 (construct 8597); and modified SARS-CoV-2 protein, wherein the natural (wild-type) cytoplasmic tail (wtCT) HAs been replaced by the CT of influenza Hemagglutinin (HA) of influenza H5A/Indonesia/5/05 (H5 iTMCT) under the control of nbMT78 (construct 8610), nbcSY65 (construct 8611) and nbHEL40 (construct 8671). The SARS-CoV-2S protein sequence (called nCOV S (GSAS-2P)) has the following substitutions: relative to SEQ ID NO:2, R667G, R668S, R670S, K971P and V972P. The results have been normalized to SARS-CoV-2S protein accumulation from construct 8591 (which is set to 1). FIG. 3B shows protein separation of clarified crude extract on non-reducing SDS-PAGE gels. The following modified S proteins are expressed in plants: lane 1: under the control of nbMT78, an S protein with a wild-type transmembrane and cytoplasmic tail domain (wt TMCT); lane 2: under control of nbCSY65, an S protein with wild-type transmembrane and cytoplasmic tail domain (wt TMCT); lane 3: under the control of nbHEL40, an S protein with a wild-type transmembrane and cytoplasmic tail domain (wt TMCT); lane 4: a modified S protein having a SARS-CoV-2 extracellular domain and a transmembrane and cytoplasmic tail domain from Hemagglutinin (HA) of H5A/Indonesia/5/05 (H5 i TMCT) under the control of nbMT 78; lane 5: a modified S protein having a SARS-CoV-2 extracellular domain and a transmembrane and cytoplasmic tail domain from Hemagglutinin (HA) of H5A/Indonesia/5/05 (H5 i TMCT) under control of nbCSY 65; lane 6: a modified S protein having a SARS-CoV-2 extracellular domain and a transmembrane and cytoplasmic tail domain of Hemagglutinin (HA) from H5A/Indonesia/5/05 (H5 i TMCT) under the control of nbHEL 40; lane 7: a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and a cytoplasmic tail domain (CT) of Hemagglutinin (HA) from H5A/Indonesia/5/05 (H5 i CT) under the control of nbMT 78; lane 8: a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and a cytoplasmic tail domain (CT) of Hemagglutinin (HA) from influenza H5A/Indonesia/5/05 (H5 i CT) under control of nbCSY 65; lane 9: a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and a cytoplasmic tail domain (CT) of Hemagglutinin (HA) from influenza H5A/Indonesia/5/05 (H5 iCT) under the control of nbHEL 40. The modified S protein has a molecular weight of about 150kDa and is indicated by the arrow. FIG. 3C shows immunoblot analysis of the same series of lysates shown in FIG. 3B, with lanes corresponding to those depicted in FIG. 3B. The upper panel shows the detection using an anti-SARS-CoV-2S 1 antibody (40150-R007). The lower panel shows the detection using an anti-SARS-CoV-2S 2 antibody (NB 100-56578). Monomers of the SARS-CoV-2 protein (including the S1 and S2 subunits) have a molecular weight (non-reducing) of about 150 kDa.
FIG. 4A shows the quantitative fold change differences in SARS-CoV-2S protein accumulation in plants expressing: a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane, and a cytoplasmic tail domain of Hemagglutinin (HA) from H5A/Indonesia/5/05 (H5 Indo); a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane, and a cytoplasmic tail domain of Hemagglutinin (HA) from H1A/California/7/2009 (H1 California); a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane, and a cytoplasmic tail domain of Hemagglutinin (HA) from H3A/Minnesota/41/2019 (H3 Minnesota); modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane, and a cytoplasmic tail domain of Hemagglutinin (HA) from H6A/Teal/Hong Kong/W312/97 (H6 Hong Kong); a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane, and a cytoplasmic tail domain of Hemagglutinin (HA) from H7A/Guangdong/17 SF003/2016 (H7 Guangdong); a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane, and a cytoplasmic tail domain of Hemagglutinin (HA) from H9A/Hong Kong/1073/99 (H9 Hong Kong); and modified S proteins having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane, and a cytoplasmic tail domain of Hemagglutinin (HA) from B/Washington/02/2019 (B Washington). Results have been normalized to the accumulation of SARS-CoV-2S protein from construct 8671 encoding the modified SARS-CoV-2 protein (which was set to 1), where the natural (wild-type) cytoplasmic tail (wtCT) HAs been replaced by CT of influenza Hemagglutinin (HA) of influenza H5A/Indonesia/5/05 (H5 iCT) under the control of nbHEL40 (H5 Indo). Figure 4B shows immunoblot analysis of crude lysates from plants expressing modified S protein from the following constructs: lane 2, modified S protein with SARS-CoV-2 extracellular domain, SARS-CoV-2 transmembrane and cytoplasmic tail domain of Hemagglutinin (HA) from H5A/Indonesia/5/05 (H5 Indo); lane 3, modified S protein with SARS-CoV-2 extracellular domain, SARS-CoV-2 transmembrane, cytoplasmic tail domain of Hemagglutinin (HA) from H1A/California/07/2009 (H1 Calif); lane 4, modified S protein with SARS-CoV-2 extracellular domain, SARS-CoV-2 transmembrane, cytoplasmic tail domain of Hemagglutinin (HA) from H3A/Minnesota/41/2019 (H3 Minn); lane 5, modified S protein with the extracellular domain of SARS-CoV-2, SARS-CoV-2 transmembrane, cytoplasmic tail domain of Hemagglutinin (HA) from H6A/Teal/Hong Kong/W312/97 (H6 HK); lane 6, modified S protein with SARS-CoV-2 extracellular domain, SARS-CoV-2 transmembrane, cytoplasmic tail domain of Hemagglutinin (HA) from H7A/Guangdong/17 SF003/2016 (H7 Guan); lane 7, modified S protein with the extracellular domain of SARS-CoV-2, SARS-CoV-2 transmembrane, cytoplasmic tail domain of Hemagglutinin (HA) from H9A/Hong Kong/1073/99 (H9 HK); lane 8, modified S protein with SARS-CoV-2 extracellular domain, SARS-CoV-2 transmembrane, cytoplasmic tail domain of Hemagglutinin (HA) from B/Washington/02/2019 (B Wash). Lane 1 is crude lysate from plants infiltrated with agrobacterium empty. The Sino 400150-R007 antibody was used to detect the S1 subunit of SARS-COV-2S protein. Monomers of the SARS-CoV-2 protein (including the S1 and S2 subunits) have a molecular weight (non-reducing) of about 150 kDa. FIG. 4C shows immunoblot analysis of the same series of lysates shown in FIG. 4B, except that the NB100-56578 antibody was used to detect the S2 subunit of SARS-COV-2S protein.
Fig. 5A shows the following amino acid sequences: the C-terminal region of the native SARS-CoV-2S protein (wtTM/wtCT), the C-terminal region of influenza H5 Hemagglutinin (HA) (H5 iTM/H5 iCT), the C-terminal region of the modified SARS-CoV-2S protein having a wild-type transmembrane domain (TM) and an influenza H5 HA Cytoplasmic Tail (CT) domain (wtTM/H5 iCT), and the C-terminal region of the modified S protein (wtTM/H5 iCT V1-V4) having a variable edge between the SARS-CoV-2 Transmembrane (TM) domain and the H5A/Indenosia/5/05 HA Cytoplasmic Tail (CT) domain. TM domains from coronavirus S protein are underlined and CT domains derived from influenza HA are shown in bold. FIG. 5B shows the quantitative fold change differences in SARS-CoV-2S protein accumulation in plants expressing each of the four variant modified S proteins with chimeric transmembrane domain (TM) and cytoplasmic tail domain (TMCT) relative to modified SARS-CoV-2S protein accumulation in plants expressing modified SARS-CoV-2S proteins with chimeric TMCT with wild-type transmembrane domain (TM) and influenza H5 HA Cytoplasmic Tail (CT), set to 1, as shown in FIG. 5A (wtTM/H5 iCT, V1-V4).
FIG. 6A shows an electron micrograph of a virus-like particle (VLP) comprising SARS-CoV-2S protein having a wild-type transmembrane and cytoplasmic tail domain (wtTMCT; construct 8591). Fig. 6B shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein having a SARS-CoV-2 extracellular domain and an influenza H5 hemagglutinin transmembrane domain and a cytoplasmic tail domain (H5 i TMCT; construct 8597). FIG. 6C shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and an influenza H5 hemagglutinin cytoplasmic tail domain (H5 iCT; construct 8671). FIG. 6D shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein with an alternative form of SARS-CoV-2 extracellular domain and chimeric transmembrane and cytoplasmic tail domain (TMCT) (H5 i CT V1; construct 8980). FIG. 6E shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein (H5 i CT V2; construct 8981) with an alternative form of SARS-CoV-2 extracellular domain and chimeric transmembrane and cytoplasmic tail domain (TMCT). FIG. 6F shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein (H5 iCT V3; construct 8982) having an alternative form of SARS-CoV-2 extracellular domain with a SARS-CoV-2 extracellular domain and a chimeric transmembrane and cytoplasmic tail domain (TMCT). FIG. 6G shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein (H5 i CT V4; construct 8983) with an alternative form of SARS-CoV-2 extracellular domain and chimeric transmembrane and cytoplasmic tail domain (TMCT). FIG. 6H shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and an influenza H1 hemagglutinin cytoplasmic tail domain (H1 CT; construct 7390). FIG. 6I shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and an influenza H3 hemagglutinin cytoplasmic tail domain (H3 CT; construct 7391). FIG. 6J shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and an influenza H6 hemagglutinin cytoplasmic tail domain (H6 CT; construct 7392). FIG. 6K shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and an influenza H7 hemagglutinin cytoplasmic tail domain (H7 CT; construct 7393). FIG. 6L shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and an influenza H9 hemagglutinin cytoplasmic tail domain (H9 CT; construct 7394). FIG. 6M shows an electron micrograph of a virus-like particle (VLP) comprising a modified S protein having a SARS-CoV-2 extracellular domain, a SARS-CoV-2 transmembrane domain, and an influenza HA B hemagglutinin cytoplasmic tail domain (HA B CT; construct 7395).
Fig. 7A shows a schematic diagram of a receptor carrier 8501. Fig. 7B shows a schematic diagram of a recipient carrier 8500. Fig. 7C shows a schematic diagram of a receptor carrier 8716.
Fig. 8A shows a schematic view of a carrier 8586. Fig. 8B shows a schematic view of a carrier 8589. Fig. 8C shows a schematic view of the carrier 8591.
Fig. 9A shows a schematic view of the carrier 8592. Fig. 9B shows a schematic view of the carrier 8595. Fig. 9C shows a schematic view of the carrier 8597.
Fig. 10A shows a schematic view of a carrier 8610. Fig. 10B shows a schematic view of the carrier 8611. Fig. 10C shows a schematic view of the carrier 8671.
FIG. 11A shows the quantitative fold change accumulated in plants expressing modified SARS-CoV-2S protein (wtTM/H5 iCT) with other substitutions. The modified SARS-CoV-2S protein has the following substitutions: "GSAS-2P": R667G, R668S, R670S, K971P and V972P; "GSAS-4P": R667G, R668S, R670S, K971P, V972P, F802P and a927P; "GSAS-6P": R667G, R668S, R670S, K971P, V972P, F802P, A877P, A884P and A927P (relative to the reference sequence of SEQ ID NO: 2). The results have been normalized to the accumulation of modified SARS-CoV-2 (wtTM/H5 iCT) and GSAS+2P substitutions (which were set to 1). FIG. 11B shows the quantitative fold change accumulated in plants expressing modified SARS-CoV-2S proteins (wtTM/H5 iCT) having GSAS-2P, GSAS-4P and GSAS-6P substitutions, respectively, as described in FIG. 11A, as compared to the cumulative quantitative fold change in which each modified SARS-CoV-2S protein further introduced the L923F substitution. The results have been normalized to the accumulation of modified SARS-CoV-2 (wtTM/H5 iCT) and GSAS+2P substitutions (which were set to 1).
Fig. 12A shows a schematic view of carrier 8980. Fig. 12B shows a schematic view of carrier 8981. Fig. 12C shows a schematic view of carrier 8982. Fig. 12D shows a schematic view of carrier 8983.
Fig. 13A shows a schematic diagram of carrier 7390. Fig. 13B shows a schematic view of carrier 7391. Fig. 13C shows a schematic view of carrier 7392. Fig. 13D shows a schematic view of carrier 7393. Fig. 13E shows a schematic diagram of carrier 7394. Fig. 13F shows a schematic diagram of carrier 7395.
Fig. 14A shows a schematic view of carrier 8953. Fig. 14B shows a schematic view of carrier 8940.
Fig. 15A shows a schematic view of carrier 8933. Fig. 15B shows a schematic view of carrier 8960. Fig. 15C shows a schematic view of carrier 8947.
Figure 16A shows immunoblot analysis of crude lysates from plants expressing modified S protein from the following constructs: lane 1, modified S protein with SARS-CoV-1 extracellular domain, transmembrane and cytoplasmic tail domain ("wtTMCT", construct 9231); lane 2, modified S protein with the extracellular domain from SARS-CoV-1, transmembrane and cytoplasmic tail domain (TMCT) from Hemagglutinin (HA) of H5A/Indonesia/5/05 ("H5 ittct", construct 9232); lane 3, modified S protein with extracellular and transmembrane domains from SARS-CoV-1 and cytoplasmic tail domain of Hemagglutinin (HA) from H5A/Indonesia/5/05 (H5 Indo) ("H5 iCT", construct 9233); lane 4, modified S protein with extracellular and transmembrane domains from SARS-CoV-1 and cytoplasmic tail domain of Hemagglutinin (HA) from H5A/Indonesia/5/05 (H5 Indo) (with variable edge between SARS-CoV-1 Transmembrane (TM) domain and H5A/Indonesia/5/05 HA Cytoplasmic Tail (CT) domain) ("H5 iCT (V4)", construct 9234); lane 5, modified S protein with extracellular and transmembrane domains from SARS-CoV-1 and cytoplasmic tail domain of Hemagglutinin (HA) from H1A/California/7/2009 ("H1 cCT", construct 9235). The first antibody used for detection was the SARS-CoV spike S1 subunit antibody from Sino Biologicals (40150-MM 08, 1/5000). The secondary antibody used for detection was goat anti-mouse antibody from JIR (115-035-146,1/10000). The modified S protein has a molecular weight of about 150 kDa.
Fig. 16B, 16C and 16D show immunoblot analysis of fractions F5 (30%), F6 (30%), F7 (25%), F8 (25%), F9 (25%), F10 (15%) and F11 (15%) from discontinuous iodixanol density gradients. Accumulation of proteins in these fractions indicates the formation of higher molecular weight structures, i.e., VLP formation. For immunoblotting of fractions from crude lysates, the first antibody used for detection was SARS-CoV spike S1 subunit antibody from Sino Biologicals, 40150-MM08 (1/5000), and the second antibody used for detection was goat anti-mouse antibody, JIR,115-035-146 (1/10000). Fig. 16B: crude lysates from plants expressing the SARS-CoV-1S protein (with 2P+R667A substitutions) with the native TMCT domain (wtTMCT, construct 9231) were analyzed. Fig. 16C: crude lysate from plants expressing modified SARS-CoV-1S protein (with 2P+R667A substitutions) with TMCT from H5A/Indonesia/5/05HA (H5 iTMCT, construct 9232). Fig. 16D: crude lysate from plants expressing modified SARS-CoV-1S protein (with 2P+R667A substitutions) with cytoplasmic tail from H5A/Indonesia/5/05HA (H5 iCT, construct 9233).
Figure 17A shows an electron micrograph of a virus-like particle (VLP) comprising SARS-COV-1S protein (with 2p+r667a substitutions) with a native TMCT domain (wtTMCT, construct 9231). Figure 17B shows an electron micrograph of a virus-like particle (VLP) comprising a modified SARS-CoV-1S protein (with 2p+r667a substitutions) with TMCT (H5 ittmct, construct 9232) from H5A/Indonesia/5/05 HA. Figure 17C shows an electron micrograph of a virus-like particle (VLP) comprising a modified SARS-CoV-1S protein (with 2p+r667a substitutions) with cytoplasmic tail from H5A/Indonesia/5/05HA (H5 iCT, construct 9233).
Fig. 18A shows a schematic view of carrier 9231. Fig. 18B shows a schematic view of carrier 9232. Fig. 18C shows a schematic view of carrier 9233. Fig. 18D shows a schematic view of carrier 9234. Fig. 18E shows a schematic view of carrier 9235.
Figure 19A shows immunoblot analysis of crude lysates from plants expressing modified S protein from the following constructs: lane 1, modified S protein with MERS-CoV extracellular domain, transmembrane and cytoplasmic tail domain ("wtTMCT", construct 9246); lane 2, modified S protein with extracellular domain from MERS-CoV ("H5 ittmct", construct 9247) from transmembrane and cytoplasmic tail domain (TMCT) of Hemagglutinin (HA) from H5A/Indonesia/5/05; lane 3, modified S protein with extracellular and transmembrane domains from MERS-CoV and cytoplasmic tail domain of Hemagglutinin (HA) from H5A/Indonesia/5/05 (H5 Indo) ("H5 iCT", construct 9249); lane 4, modified S protein with extracellular and transmembrane domains from MERS-CoV and cytoplasmic tail domain of Hemagglutinin (HA) from H5A/Indonesia/5/05 (H5 Indo) (with variable edges between MERS-CoV Transmembrane (TM) domain and H5A/Indonesia/5/05HA Cytoplasmic Tail (CT) domain) ("H5 iCT (V4)", construct 9250); lane 5, modified S protein with extracellular and transmembrane domains from MERS-CoV and cytoplasmic tail domain of Hemagglutinin (HA) from H1A/California/7/2009 ("H1 cCT", construct 9251). The primary antibody used for detection was the MERS-CoV spike protein S1 antibody from Sino Biological (N-terminal) (100208-RP 02, 1/5000). The second antibody used for detection was a goat anti-mouse antibody from JIR (115-035-144,1/10000). The modified S protein has a molecular weight of about 175 kDa. Fig. 19B shows an electron micrograph of a virus-like particle (VLP) comprising MERS-COV S protein with native TMCT domain (with asvg+2p substitution) (wtTMCT, construct 9246). Fig. 19C shows an electron micrograph of a virus-like particle (VLP) comprising a modified MERS-CoV S protein (with asvg+2p substitution) with TMCT from H5A/Indonesia/5/05HA (H5 ittmct, construct 9247). Fig. 19D shows an electron micrograph of a virus-like particle (VLP) comprising a modified MERS-CoV S protein with cytoplasmic tails from H5A/Indonesia/5/05HA (with asvg+2p substitutions) (H5 iCT, construct 9249). Fig. 19E shows an electron micrograph of a virus-like particle (VLP) comprising a modified MERS-CoV S protein (with asvg+2p substitutions) (H5 iCT (V4), construct 9250) with cytoplasmic tail from H5A/Indonesia/5/05HA (variable edge between MERS-CoV Transmembrane (TM) domain and H5A/Indonesia/5/05HA Cytoplasmic Tail (CT) domain). Fig. 19F shows an electron micrograph of a virus-like particle (VLP) comprising a modified MERS-CoV S protein (with asvg+2p substitutions) with cytoplasmic tails from H1A/California/7/2009 HA (H1 cCT, construct 9251).
Fig. 20A shows a schematic view of the carrier 9246. Fig. 20B shows a schematic view of the carrier 9247. Fig. 20C shows a schematic view of the carrier 9249. Fig. 20D shows a schematic view of the carrier 9250. Fig. 20E shows a schematic view of the carrier 9251.
Fig. 21 shows a schematic diagram of the receptor carrier 7147.
FIG. 22 shows an alignment of the native SARS-CoV-2, SARS-CoV-1 and MERS-CoV S protein sequences (SEQ ID NOS: 2, 114 and 115) with the native signal peptide removed. Residues corresponding to each of RRAR furin cleavage site (667-670) and F802P, A877P, A884P, A927P, K971P, V972P in the native SARS-CoV-2S protein without signal peptide (SEQ ID NO: 2) are boxed with homologous residues from the native SARS-CoV-1S protein without signal peptide (SEQ ID NO: 114) and the native MERS S protein (SEQ ID NO: 115).
Figure 23A shows immunoblot analysis of crude lysates from plants expressing modified S protein from the following constructs: lane 3, modified S protein with OC43-CoV extracellular domain, transmembrane and cytoplasmic tail domain ("wtTMCT", construct 9269); lane 4, modified S protein with extracellular domain from OC43-CoV ("H5 ittct", construct 9270) from transmembrane and cytoplasmic tail domain (TMCT) of Hemagglutinin (HA) from H5A/Indonesia/5/05; lane 5, modified S protein with extracellular and transmembrane domains from OC43-CoV ("H5 iCT", construct 9272) from cytoplasmic tail domain of Hemagglutinin (HA) of H5A/Indonesia/5/05 (H5 Indo); lane 6, modified S protein with extracellular and transmembrane domains from OC43-CoV and cytoplasmic tail domain of Hemagglutinin (HA) from H5A/Indonesia/5/05 (H5 Indo) (with variable edge between OC43-CoV Transmembrane (TM) domain and H5A/Indonesia/5/05 HA Cytoplasmic Tail (CT) domain) ("H5 iCT (V4)", construct 9273); lane 7, modified S protein with extracellular and transmembrane domains from OC43-CoV and cytoplasmic tail domain of Hemagglutinin (HA) from H1A/California/7/2009 ("H1 cCT", construct 9274). The primary antibody used for detection was anti-coronavirus OC43 spike protein from Antibodies-online (ABIN 2754654, 1/1000). The second antibody used for detection was a goat anti-rabbit antibody from JIR (111-035-144,1/10000). The modified S protein has a molecular weight of about 150 kDa. FIG. 23B shows an electron micrograph of a virus-like particle (VLP) comprising a modified OC43-CoV S protein with TMCT from H5A/Indonesia/5/05 HA (with GGSGS+2P substitution) (H5 iTMCT, construct 9270). Fig. 23C shows an electron micrograph of a virus-like particle (VLP) comprising a modified OC43-CoV S protein (with ggsgs+2p substitution) with cytoplasmic tail from H5A/Indonesia/5/05 HA (H5 iCT, construct 9272). FIG. 23D shows an electron micrograph of a virus-like particle (VLP) comprising a modified OC43-CoV S protein (with GGSGS+2P substitution) (H5 iCT (V4), construct 9273) with cytoplasmic tail from H5A/Indonesia/5/05 HA (variable edge between OC43-CoV Transmembrane (TM) domain and H5A/Indonesia/5/05 HA Cytoplasmic Tail (CT) domain). Fig. 23E shows an electron micrograph of a virus-like particle (VLP) comprising a modified OC43-CoV S protein (with ggsgs+2p substitution) with cytoplasmic tail from H1A/California/7/2009 HA (H1 cCT, construct 9274).
Fig. 24A shows a schematic view of the carrier 9269. Fig. 24B shows a schematic view of the carrier 9270. Fig. 24C shows a schematic view of the carrier 9272. Fig. 24D shows a schematic view of the carrier 9273. Fig. 24E shows a schematic view of the carrier 9274.
FIG. 25A shows an electron micrograph of a virus-like particle (VLP) comprising 229E-CoV S protein with native TMCT domain (with R567A+2P substitution) (wtTMCT, construct 9310). FIG. 25B shows an electron micrograph of a virus-like particle (VLP) comprising a modified 229E-CoV S protein (with R567A+2P substitution) with TMCT from H5A/Indonesia/5/05 HA (H5 iTMCT, construct 9311). FIG. 25C shows an electron micrograph of a virus-like particle (VLP) comprising a modified 229E-CoV S protein (with R567A+2P substitution) with cytoplasmic tail from H5A/Indonesia/5/05 HA (H5 iCT, construct 9312). FIG. 25D shows an electron micrograph of a virus-like particle (VLP) comprising a modified 229E-CoV S protein (with R567A+2P substitutions) with cytoplasmic tail from H5A/Indonesia/5/05 HA, with a variable edge between the 229E-CoV Transmembrane (TM) domain and the H5A/Indonesia/5/05 HA Cytoplasmic Tail (CT) domain (H5 iCT (V4), construct 9313). Figure 25E shows an electron micrograph of a virus-like particle (VLP) with a modified 229E-CoV S protein (with R567a+2p substitution) from the cytoplasmic tail of H1A/California/7/2009 HA (H1 cCT, construct 9314).
Fig. 26A shows a schematic diagram of the carrier 9310. Fig. 26B shows a schematic view of the carrier 9311. Fig. 26C shows a schematic diagram of the carrier 9312. Fig. 26D shows a schematic view of the carrier 9313. Fig. 26E shows a schematic diagram of the carrier 9314.
Detailed Description
The following description is of the preferred embodiments.
As used herein, the terms "comprises," "comprising," "has," "including," "contains," "containing" and grammatical variations thereof are inclusive or open-ended and do not exclude other, unrecited elements and/or method steps. When used in connection with a method or process herein, the term "consisting essentially of … …" means that other elements and/or process steps may be present, but that such additions do not materially affect the recited method or manner of operation. The term "consisting of … …" when used in conjunction with a use or method herein excludes the presence of other elements and/or method steps. In certain embodiments, the use or method described herein as comprising certain elements and/or steps may also consist essentially of, and in other embodiments consist of, those elements and/or steps, whether or not such embodiments are specifically mentioned. In addition, the use of the singular includes the plural and unless otherwise indicated, "or" means "and/or". The term "plurality" as used herein means more than one, e.g., two or more, three or more, four or more, etc. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. As used herein, the term "about" refers to a deviation of about +/-10% from a given value. It is to be understood that such a variation is always included in any given value provided herein, whether or not it is specifically mentioned. When used herein in connection with the term "comprising," the use of the word "a" or "an" may mean "one" but it is also consistent with the meaning of "one or more," at least one, "and" one or more than one.
The present invention relates to modified viral structural proteins and their production in a host or host cell. The modified viral structural proteins include, in order, an extracellular domain, a transmembrane domain (TM) or a portion of TM, and a Cytoplasmic Tail (CT) domain or a portion of CT, wherein the extracellular domain and the portion of TM or TM are derived from the family coronaviridae and the portion of CT or CT is derived from influenza Hemagglutinin (HA) protein.
The modified viral structural protein may be a modified coronavirus structural protein in which the cytoplasmic tail domain or a portion of the cytoplasmic tail domain HAs been replaced with the cytoplasmic tail domain or a portion of the cytoplasmic tail domain of an influenza Hemagglutinin (HA) protein. For example, the modified viral structural protein may be a modified coronavirus spike or surface (S) protein, wherein the cytoplasmic tail domain or a portion of the cytoplasmic tail domain of the S protein HAs been replaced with the cytoplasmic tail domain or a portion of the cytoplasmic tail domain of an influenza Hemagglutinin (HA) protein.
The present disclosure provides modified viral structural proteins, wherein the extracellular domain and transmembrane domain of the modified viral structural protein may be derived from the extracellular domain and transmembrane domain of a coronavirus S protein, and wherein the cytoplasmic tail domain is derived from the cytoplasmic tail domain of an influenza Hemagglutinin (HA) protein.
The modified S protein may be a chimeric modified S protein or a chimeric S protein. "chimeric S protein" refers to a protein or polypeptide that includes amino acid sequences and/or protein domains or portions of protein domains from two or more sources fused as a single polypeptide. For example, but not limited to, the extracellular domain and transmembrane domain (TM) or a portion of TM of the chimeric S protein may be derived from a first viral structural protein, e.g., coronavirus S protein, and the Cytoplasmic Tail (CT) or a portion of CT may be derived from a second viral structural protein, e.g., CT may be derived from influenza HA. Furthermore, the extracellular domain may be derived from a first viral structural protein, e.g., a first coronavirus S protein, the TM or a portion of the TM may be derived from a second viral structural protein, e.g., a second coronavirus S protein, and CT or a portion of the CT may be derived from a third viral structural protein, e.g., the CT may be derived from influenza HA. Thus, the modified S protein or chimeric S protein may include chimeric transmembrane and cytoplasmic tail domains (TMCT).
The modified coronavirus S protein may in turn comprise
An extracellular domain derived from the coronavirus S protein;
Transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT may be a chimeric TMCT, which may comprise:
a transmembrane domain (TM), wherein said TM or a portion of said TM may be derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein.
The TM or a portion of TM may be directly fused or joined to the CT or portion of CT, or the TM or portion of TM may be fused or joined to the CT or portion of CT via an intervening peptide sequence.
Furthermore, the TM may be a chimeric TM that may comprise an N-terminal sequence derived from the coronavirus S protein TM and a C-terminal sequence derived from the influenza HA protein TM. The CT may be a chimeric CT that may comprise an N-terminal sequence derived from the coronavirus S protein CT and a C-terminal sequence derived from the influenza HA protein CT.
Thus, chimeric TMCT may include native coronavirus S protein TM, chimeric coronavirus S protein/influenza HA TM, native influenza HA CT, chimeric influenza HA/coronavirus S protein CT, or a combination thereof. Chimeric coronavirus S protein/influenza HA TM comprises the sequence of a TM derived from coronavirus S protein and the sequence of a TM derived from influenza HA. Similarly, chimeric influenza HA/coronavirus S protein CT comprises the sequence of CT derived from influenza HA and the sequence of CT derived from coronavirus S protein.
"chimeric transmembrane and cytoplasmic tail domain" or "chimeric TMCT" refers to TMCT that is not native to the coronavirus S protein TMCT. Chimeric TMCT includes sequences that are not found in nature. Thus, TMCT may include sequences heterologous to the extracellular domain of the coronavirus S protein. The term "heterologous" refers to a sequence or domain derived from a different biological or synthetic source. For example, chimeric TMCT may comprise a TM or a portion of a TM derived from the same coronavirus S protein as the extracellular domain, i.e., the TM may be homologous to the extracellular domain of the S protein, or a portion of a TM or a TM may be derived from a different viral TM, e.g., a TM derived from a coronavirus S protein that is different from the extracellular domain, i.e., the TM may be heterologous to the extracellular domain of the S protein. The CT or a portion of the CT may be derived from CT heterologous to the extracellular domain, TM or both the extracellular domain and TM of the modified S protein.
The coronavirus S protein, modified S protein, or extracellular domain and transmembrane domain or portion of a transmembrane domain of modified coronavirus S protein may be derived from any member of the coronaviridae family of viruses. For example, the coronavirus S protein, modified S protein, or extracellular domain and transmembrane domain of modified coronavirus S protein (for example) may be derived from a coronavirus, such as an alpha-coronavirus (alpha-CoV), beta-coronavirus (beta-CoV), gamma-coronavirus (gamma-CoV), or delta-coronavirus (delta-CoV). For example, the coronavirus may be an alpha-coronavirus (alpha-CoV) or a beta-coronavirus (beta-CoV). The alpha-coronavirus may be a Duvinacorus subgenera virus, such as, for example, HCoV-229E (229E-CoV), or may be a Setracovirus subgenera virus, such as, for example, HCoV-NL63. In a preferred embodiment, the coronavirus is a β -coronavirus (β -CoV). The beta coronavirus may be a lineage Abeta coronavirus, such as, for example, HCoV-OC43 (OC 43-CoV) or HCoV-HKU1 (HKU 1-CoV), a lineage Abeta coronavirus, such as, for example, SARS-CoV (also known as SARS-CoV-1) or SARS-CoV-2, and variants thereof, or a lineage Cbeta coronavirus, such as, for example, MERS-CoV.
The coronavirus S protein, modified S protein or extracellular domain, and the transmembrane domain or portion of the transmembrane domain of the modified coronavirus S protein may also be derived from variants of the SARS-CoV-2 lineage, including, but not limited to, strain B.1.1.7 ("alpha" variants) (20I/501Y.V1, MW531680.1), strain B.1.351 ("beta" variants) (20H/501Y.V2), strain P.1 ("gamma" variants) (20J/501Y.V3), strain B1.617.2 ("delta" variants), strain B.1.525, strain B.1.429 ("ETA" variants), or other variants including naturally occurring mutant strains in the coronavirus S protein, or naturally occurring recombinant strains thereof.
In one embodiment, the extracellular domain and the transmembrane domain or a portion of the transmembrane domain of the modified viral structural protein are derived from spike proteins of coronaviruses of the SARS-CoV-2 lineage (also known as SARS-CoV-2 variants). In other embodiments, the extracellular domain and the transmembrane domain or a portion of the transmembrane domain of the modified viral structural protein are derived from the spike protein (S) of SARS-CoV-1, MERS-CoV, OC43-CoV or 229E-CoV or variants thereof.
For the modified viral structural protein, the term "modified" as used herein may refer to the replacement of a cytoplasmic tail domain (CT) or a portion of CT in a structural protein from the family coronaviridae with a CT or a portion of CT of a heterologous virus. For example, the modified viral structural protein may be a coronavirus S protein, wherein CT or a portion of CT of the S protein HAs been replaced with CT or a portion of CT of influenza Hemagglutinin (HA).
Thus, the modified viral structural protein may be a modified coronavirus spike (S) protein comprising a transmembrane domain (TM) or a portion of TM and a Cytoplasmic Tail (CT) or a portion of CT, wherein the CT or portion of CT may be derived from influenza Hemagglutinin (HA) protein, and wherein the TM or portion of TM is heterologous to the CT or portion of CT. Furthermore, the modified S protein comprises a transmembrane domain (TM) or a portion of TM and a Cytoplasmic Tail (CT) or a portion of CT, wherein the CT or portion of CT may be derived from influenza Hemagglutinin (HA) protein, and wherein the CT or portion of CT is heterologous to the TM or portion of TM.
Thus, in one aspect, a modified coronavirus spike (S) protein is provided comprising a transmembrane domain (TM) or a portion of TM and a Cytoplasmic Tail (CT) or a portion of CT, wherein the CT or portion of CT may be derived from influenza Hemagglutinin (HA) protein, and wherein the TM or portion of TM is heterologous to the CT or portion of CT. The modified coronavirus spike (S) protein is also referred to as modified S protein.
The cytoplasmic tail domain may also be referred to as "cytoplasmic tail", "cytosolic tail domain", "CT", "CTD", "cytoplasmic domain", "CP", "CPD" or "C-terminal domain" and the like. The cytoplasmic tail domain may also encompass a portion of the cytoplasmic tail domain.
It has been found that the modified viral structural proteins, such as the modified S proteins disclosed herein, have improved characteristics compared to wild-type or unmodified viral structural proteins (e.g., S proteins). Examples of improved characteristics of the modified viral structural proteins (e.g., modified S proteins) include, but are not limited to, increased yields of modified viral structural proteins when expressed in a host or host cell as compared to wild-type or unmodified viral structural proteins; the integrity, stability, or both the integrity and stability of the viral structural protein are improved when expressed in a host or host cell as compared to the wild-type or unmodified viral structural protein; the integrity, stability, or both of the integrity and stability of a virus-like particle (VLP) comprised of a modified viral structural protein is improved compared to the integrity, stability, or both of a VLP comprising a VLP that does not comprise a modified viral structural protein as described herein; the yield of VLPs comprising modified viral structural proteins is increased when expressed in a host cell as compared to the yield of VLPs not comprising modified viral structural proteins expressed in the same or substantially similar host cell.
In addition, methods of producing virus-like particles (VLPs) comprising modified viral structural proteins (e.g., modified S proteins) in a host or host cell are described. It was observed that when VLPs comprising modified viral structural proteins, such as modified S proteins, wherein native or wild-type CT HAs been replaced with CT of influenza HA as described herein, production yield of VLPs in the host is increased compared to the yield of VLPs comprising viral structural proteins i) comprising native CT or ii) comprising modified viral structural proteins wherein transmembrane domains (TM) and CT have been replaced with TM and CT of influenza HA.
The transmembrane domain may also be referred to as "TM" or "TMD". The transmembrane and cytoplasmic tail domains may be referred to as TMCT or TM/CT.
Fig. 3A shows that when modified S protein (e.g., modified SARS-CoV-2S protein) is expressed in a plant, the yield or protein accumulation (expressed as fold change) of modified S protein provides about 2-fold compared to the yield or protein accumulation of S protein with native TMCT (constructs 8586, 8589 and 8591) when native transmembrane and cytoplasmic tail (TMCT) are replaced with TMCT (constructs 8592, 8595 and 8597) from influenza HA. Furthermore, when the modified S protein (e.g., modified SARS-CoV-2S protein) is expressed in plants, where only the Cytoplasmic Tail (CT) is replaced with CT of influenza HA (constructs 8610, 8611, and 8671), protein accumulation (expressed as fold change) of the modified S protein with CT of influenza HA is further increased by between about 1.74 to 2.14 fold compared to accumulation of the modified S protein where TMCT HAs been replaced with TMCT of influenza HA. Accordingly, protein accumulation of the modified S protein of CT with influenza HA is increased between about 3.57 to 4.40 fold compared to accumulation of S protein with native transmembrane and cytoplasmic tail (wtTMCT).
FIG. 3B shows that a higher protein accumulation was observed for the modified S protein (modified SARS-CoV-2S protein) with cytoplasmic tail (H5 i CT) from influenza HA compared to protein accumulation for the S protein with wild-type TMCT (wt TMCT) or for the modified S protein with TMCT (H5 i TMCT) from influenza HA from crude plant extracts. Modified S protein with cytoplasmic tail (H5 i CT) from influenza HA was only visible by coomassie brilliant blue staining. The band of the modified S protein with cytoplasmic tail (H5 iCT) from influenza HA is more pronounced and thicker than the band of the S protein with wild-type TMCT (wt TMCT) or the modified S protein with TMCT (H5 iTMCT) of influenza HA-see band of about 150kDa labeled S protein. The thickness of the bands corresponds to the amount of protein present, indicating that the H5i CT S protein accumulates more protein. This higher protein accumulation was observed regardless of the expression enhancer used.
Similar results were obtained, as discussed further below in more detail, wherein the modified S protein included SARS-CoV-1S protein with cytoplasmic tail from influenza HA (see fig. 16A) or MERS CoV S protein with cytoplasmic tail from influenza HA (see fig. 19A).
FIG. 3C shows accumulation of S protein (SARS-CoV-2S protein) by immunoblotting analysis of crude plant extracts. Higher accumulation of modified S protein was observed when the modified S protein with cytoplasmic tail from influenza HA (H5 i CT) was expressed in plants, compared to S protein with wild-type TMCT (wt TMCT) and modified S protein in which both the transmembrane domain and cytoplasmic tail (TMCT) domain have been replaced with TMCT (H5 i TMCT) from influenza HA. The immunoblot analysis in FIG. 3C further shows that the SARS CoV-2S protein comprises both an S1 domain/subunit (upper panel, detected with anti-SARS-CoV-2S 1 antibody) and an S2 domain/subunit (lower panel, detected with anti-SARS-CoV-2S 2 antibody) and has a molecular weight of about 150 kDa.
The present specification provides modified viral structural proteins, wherein the modified viral structural proteins may be modified coronavirus spikes or surface proteins (S proteins). The modified S protein comprises, in order, an extracellular domain, a transmembrane domain (TM) or a portion of TM, and a Cytoplasmic Tail (CT) domain or a portion of CT, wherein the extracellular domain and transmembrane domain are derived from coronavirus and the CT or a portion of CT is derived from CT of influenza Hemagglutinin (HA) protein. The extracellular domain and the transmembrane domain or a portion of the TM may be derived from the same coronavirus. Thus, the extracellular domain and the transmembrane domain or a portion of the TM of the modified structural protein are homologous (i.e., non-heterologous) to each other, while CT or a portion of CT is heterologous to the extracellular domain and the transmembrane domain.
Furthermore, the transmembrane domain (TM) or a portion of TM of the modified S protein may be derived from a coronavirus that is different from the extracellular domain. Thus, the TM or a portion of the TM in the modified S protein may be heterologous (non-homologous) to both the extracellular domain of the modified S protein and the CT domain or a portion of the CT. Similarly, the extracellular domain may be heterologous (non-homologous) to the TM or a portion of TM and the CT domain or portion of CT of the modified S protein. For example, the extracellular domain of the modified S protein may be derived from a first coronavirus, TM or a portion of TM may be derived from a second coronavirus, and CT or a portion of CT may be derived from influenza HA. The first coronavirus and the second coronavirus may belong to different coronavirus families, subgroups, types, subtypes, lineages or strains. Thus, the first coronavirus and the second coronavirus may be heterologous to each other and may also be heterologous to the virus family derived from CT or a part of CT, respectively.
For example, the first coronavirus from which the S protein extracellular domain is derived may be from any coronavirus, such as, for example, an alpha coronavirus (alpha-CoV) or a beta coronavirus (beta-CoV). Non-limiting examples of first coronaviruses from which the extracellular domain of the S protein may be derived are Duvinacoviruses, such as, for example, HCoV-229E, setracoviruses, such as, for example, HCoV-NL63. A lineage Abeta coronavirus, such as, for example, HCoV-OC43 or HCoV-HKU1, a lineage Abeta coronavirus, such as, for example, SARS-CoV or SARS-CoV 2, or a lineage Abeta coronavirus, such as, for example, MERS-CoV. The second coronavirus from which the TM is derived may belong to a family, subgroup, type, subtype, lineage or strain of coronavirus that is different from the first coronavirus from which the extracellular domain is derived. For example, the second coronavirus from which the S protein TM is derived may be from any coronavirus, such as, for example, an alpha coronavirus (alpha-CoV) or a beta coronavirus (beta-CoV), so long as the second coronavirus is heterologous to the first coronavirus. Non-limiting examples of secondary coronaviruses from which the TM of S protein may be derived are Duvinacovirus, such as, for example, HCoV-229E (also known as 229E-CoV), setracovirus, such as, for example, HCoV-NL63 (NL 63-CoV), lineage Abeta coronavirus, such as, for example, HCoV-OC43 (also known as OC 43-CoV) or HCoV-HKU1 (HKU 1-CoV), lineage Abeta coronavirus, such as, for example, SARS-CoV (also known as SARS-CoV 1) or SARS-CoV 2, or lineage Abeta coronavirus, such as, for example, MERS-CoV (also known as "MERS").
The domains in the coronavirus S protein, such as the SARS-CoV-1S protein, the SARS-CoV-2S protein, the MERS CoV S protein, the OC43-CoV S protein or the 229E-CoV S protein, can be readily identified by methods known in the art. For example, domains such as transmembrane domains can be identified by determining the degree of hydrophobicity of the amino acid sequence of the protein, e.g., using a transmembrane prediction program (e.g., expert Protein Analysis System; swiss Institute of Bioinformatics running expasy. Org; or the Dense Alignment Surface Method, cserzo m., et al 1997, prot. Eng.10, vol. 6, pages 673-676; lovkema j.s.1998, FEMS Microbiol rev.22,4, stages 305-322), by determining the hydrophilicity profile of the amino acid sequence of the protein (e.g., kyte-Doolittle hydrophilicity profile), by determining the three-dimensional protein structure and identifying structures that are thermodynamically stable in the membrane (e.g., single alpha helices, stable complexes of some transmembrane alpha helices, transmembrane beta barrel, beta helices, or any other structure that is thermodynamically stable in the membrane).
Furthermore, the domains within the coronavirus S protein may be determined by comparison with known protein sequences, for example by sequence alignment. Sequence alignment methods for comparison are well known in the art and will be described further below.
The domains and domain organization of coronavirus S proteins are well known and described. All coronavirus spike proteins (S proteins) share the same organization in two subunits or domains: the N-terminal subunit (or domain) named S1, which is responsible for receptor binding, and the C-terminal S2 subunit (or domain), which is responsible for viral attachment, membrane fusion, and viral entry.
FIG. 1A shows a schematic representation of the position of the S protein and its subunits and domains and S1/S2 and S2' cleavage sites of coronaviruses. The S1 subunit is located distally to the viral membrane and comprises a Receptor Binding Domain (RBD) that mediates viral attachment to its host receptor. The S2 subunit comprises a fusion protein mechanism, e.g., a fusion peptide, two heptad repeats (HR 1 and HR 2), the central helical and transmembrane domains typical of fusion glycoproteins, and the cytoplasmic tail domain (see, e.g., kirchdoerfer et al, nature, 3/v. In 2016; 531 (7592): 118-2, supra).
The transmembrane domain (TM) and cytoplasmic tail domain (CT) are located at the C-terminal end of the S2 subunit. Although these domains are maintained in all coronaviruses (see FIG. 1A and Corver et al, virol J.2009;6:230, incorporated herein by reference), different references, teams and authors mention different amino acid numbering for these domains.
For example, amino acid (aa): 1214-1234 may be assigned to TM and aa 1235-1273 may be assigned to CT in the S protein of SARS-CoV-2 (see, e.g., uniProtKB-P0DTC2 (spike_SARS 2)). When the SARS-CoV-2 sequence (SEQ ID NO: 1) is aligned with the SARS-CoV-1 sequence of Kirchdoerfer et al (Nature 2016, 3 months; 531 (7592): 118-2), SARS-CoV-2TM corresponds to amino acids 1214-1236, and SARS-CoV-2CT corresponds to amino acids: 1237-1273.
For the purposes of the present disclosure, the TM and CT of the native (unmodified) S protein correspond to the following amino acids when aligned with the coronavirus S protein reference sequence (SEQ ID NO: 1): TM: amino acids 1214-1234 and CT: amino acid: 1235-1273.
When 15 amino acids including the Signal Peptide (SP) are removed from the S protein, TM corresponds to the reference sequence SEQ ID NO:2, and CT corresponds to amino acids 1199-1219 of SEQ ID NO:2 (see also table 1 for reference sequences and numbers).
The TM of the coronavirus S protein has a highly conserved N-terminal aromatic-rich extension followed by a hydrophobic sequence (see fig. 22 and core et al, virology Journal 6, 230 (2009)). The consensus sequence of the coronavirus S protein TM domain is: WYYXWLGFIAGLXAXXX { X } VXXL (SEQ ID NO: 132), (wherein { X } may not be present).
For example, the coronavirus S protein TM domain consensus sequence may be: WY [ I/V ] WLGFIAGL [ V/I ] A [ L/I ] [ A/V ] [ L/M ] { X } V [ F/T ] [ F/I ] XL (SEQ ID NO: 133), (wherein { X } may be C or absent).
Table 1. Non-limiting examples of the positions of TM and CT domains in the modified S protein and the corresponding amino acid positions in the reference sequence.
1 Numbering excludes signal peptide, CT is derived from influenza HA
2 Numbering includes signal peptide, CT is natural
3 Numbering excludes signal peptides, CT is native
Despite the differences in the residue numbers assigned to the TM and CT domains, one skilled in the art will be able to determine the edges or boundaries of these domains in the coronavirus S protein using, for example, known methods as described below.
In modified coronavirus S proteins, a heterologous CT or portion of CT that may be derived from influenza HA may be fused directly to the C-terminus of the TM or portion of the TM of coronavirus S protein, or a heterologous CT or portion of CT may be fused to the C-terminus of the TM or portion of the TM of coronavirus S protein having an intermediate peptide sequence (also referred to as a linker or linker sequence). Thus, the modified S protein may comprise an intermediate peptide, wherein the intermediate peptide sequence fuses CT or a portion of CT to the C-terminus of TM or a portion of TM.
A heterologous CT, a portion of a CT, or an intermediate peptide sequence with a heterologous CT may be fused to an amino acid in the C-terminal portion of the TM domain (e.g., within 4 amino acids of the C-terminal end of the TM domain defined in table 1, reference SEQ ID NO:1, 2, 21, 114, 115, 160, or 161) or the N-terminal portion of the CT domain (e.g., within 4 amino acids of the N-terminal end of the CT domain defined in table 1, reference SEQ ID NO:1, 2, 21, 114, 115, 160, or 161).
For example, the coronavirus TM may be encoded in a sequence corresponding to SEQ ID NO:1, any one of amino acid residues 1230-1238. Thus, the C-terminus of coronavirus TM may be a sequence corresponding to SEQ ID NO:1 from amino acids 1230 to 1238. In one example, coronavirus TM may be found in a nucleic acid sequence corresponding to SEQ ID NO:1, and ends at the amino acid residue of amino acid 1230 in 1. In another example, coronavirus TM may be found in a nucleic acid sequence corresponding to SEQ ID NO:1, and ends at the amino acid residue of amino acid 1231. In another example, TM may be found at a position corresponding to SEQ ID NO:1, and ends at the amino acid residue of amino acid 1232 in 1. In another example, TM may be found at a position corresponding to SEQ ID NO:1, and ends at amino acid residue of amino acid 1233. In another example, TM may be found at a position corresponding to SEQ ID NO:1, and ends at the amino acid residue of amino acid 1234 in 1. In another example, TM may be found at a position corresponding to SEQ ID NO:1, and ends at the amino acid residue of amino acid 1235 in 1. In another example, TM may be found at a position corresponding to SEQ ID NO:1, and ends at the amino acid residue of amino acid 1236 in 1. In another example, TM may be found at a position corresponding to SEQ ID NO:1, and ends at the amino acid residue of amino acid 1237 in 1. In another example, TM may be found at a position corresponding to SEQ ID NO:1, and amino acid residue 1238 in seq id no. In a preferred embodiment, the TM may be represented in a sequence corresponding to SEQ ID NO:1, and ends at the amino acid residue of amino acid 1234 in 1.
In another example, coronavirus TM or a portion of TM may be found in a nucleic acid sequence corresponding to SEQ ID NO:2 or 21, and amino acid residues of any of amino acids 1215-1219. Thus, the C-terminus of coronavirus TM or a portion of TM may be a sequence corresponding to SEQ ID NO:2 or 21, amino acids 1215-1224 of any one of amino acids 2 or 21. In one example, coronavirus TM or a portion of TM may be found in a nucleic acid sequence corresponding to SEQ ID NO:2 or 21 at amino acid residue 1215 in amino acid 2 or 21. In another example, TM or a portion of TM may be found in the sequence corresponding to SEQ ID NO:2 or 21, and ending at amino acid residue 1216 in amino acid 2 or 21. In another example, TM or a portion of TM may be found in the sequence corresponding to SEQ ID NO:2 or 21 at amino acid residue 1217 in amino acid 2 or 21. In another example, TM or a portion of TM may be found in the sequence corresponding to SEQ ID NO:2 or 21, and at amino acid residue 1218 in amino acid 2 or 21. In another example, TM or a portion of TM may be found in the sequence corresponding to SEQ ID NO:2 or 21 at amino acid residue 1219 in amino acid 2 or 21.
The intermediate peptide sequence that can fuse heterologous CT to the C-terminus of TM or a portion of TM from the coronavirus S protein can have a length of 0-10 amino acids. Thus, the intermediate peptide sequence may have a length of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids. The intermediate peptide sequence may be derived from a coronavirus protein, e.g., the intermediate peptide sequence may be derived from the C-terminus of the TM of the coronavirus S protein or the N-terminus of the CT of the coronavirus S protein, or both. The intermediate peptide sequence may also be derived from an influenza HA protein, e.g., the intermediate peptide sequence may be derived from the C-terminus of TM of the influenza HA protein or from the N-terminus of CT of the influenza HA protein, or both. Furthermore, the intermediate peptide sequence may be heterologous to the HA portion of the coronavirus and/or modified S protein, or the intermediate peptide sequence may be an artificial sequence.
Non-limiting examples of sequences of the TM/CT domain (also referred to as chimeric TMCT) of the modified S protein are shown below. The sequence of the TM domain from the coronavirus S protein is underlined and the CT domain derived from influenza HA is shown in bold. The italic and bold sequences are derived from the sequence of TM of influenza HA. The italic and underlined sequences are derived from the CT sequences of the coronavirus S protein.
SARS-CoV-2
-WYIWLGFIAGLIAIVMVTIMLSLWMCSNGSLQCRICI(SEQ ID NO:18)(wtTM/H5iCT)
-WYIWLGFIAGLIAIVMVTIM (SEQ ID NO:19)(wtTM/H5iCT V1)
-WYIWLGFIAGLIAIVMVTIM (SEQ ID NO:37)(wtTM/H5iCT V2)
-WYIWLGFIAGLIAIVMVTIMLCCMCSNGSLQCRICI(SEQ ID NO:38)(wtTM/H5iCT V3)
-WYIWLGFIAGLIAIVMVTIMLCCSNGSLQCRICI(SEQ ID NO:39)(wtTM/H5iCT V4)
-WYIWLGFIAGLIAIVMVTIMLSFWMCSNGSLQCRICI(SEQ ID NO:126)(wtTM/H1iCT)
-WYIWLGFIAGLIAIVMVTIMLMWACQKGNIRCNICI(SEQ ID NO:127)(wtTM/H3iCT)
-WYIWLGFIAGLIAIVMVTIMLGLWMCSNGSMQCRICI(SEQ ID NO:128)(wtTM/H6iCT)
-WYIWLGFIAGLIAIVMVTIMLVFICVKNGNMRCTICI(SEQ ID NO:129)(wtTM/H7iCT)
-WYIWLGFIAGLIAIVMVTIMLLFWAMSNGSCRCNICI(SEQ ID NO:130)(wtTM/H9iCT)
-WYIWLGFIAGLIAIVMVTIMLVVYMVSRDNVSCSICL(SEQ ID NO:131)(wtTM/BiCT)
SARS-CoV-1
-WYVWLGFIAGLIAIVMVTILLSLWM CSNGSLQCRICI(SEQ ID NO:118)(wtTM/H5iCT)
-WYVWLGFIAGLIAIVMVTILLCCSNGSLQCRICI(SEQ ID NO:119)(wtTM/H5iCT V4)
-WYVWLGFIAGLIAIVMVTILLSFWM CSNGSLQCRICI(SEQ ID NO:120)(wtTM/H1cCT)
MERS-CoV
-WYIWLGFIAGLVALALCVFFILSLWMCSNGSLQCRICI(SEQ ID NO:123)(wtTM/H5iCT)
-WYIWLGFIAGLVALALCVFFILCCSNGSLQCRICI(SEQ ID NO:124)(wtTM/H5iCT V4)
-WYIWLGFIAGLVALALCVFFILSFWMCSNGSLQCRICI(SEQ ID NO:125)(wtTM/H1cCT)
OC43-CoV
-WYVWLLICLAGVAMLVLLFFISLWMCSNGSLQCRICI(SEQ ID NO:164)(wtTM/H5iCT)
-WYVWLLICLAGVAMLVLLFFICCSNGSLQCRICI(SEQ ID NO:165)(wtTM/H5iCT V4)
-WYVWLLICLAGVAMLVLLFFISFWMCSNGSLQCRICI(SEQ ID NO:166)(wtTM/H1cCT)
229E-CoV
-WWVWLCISVVLIFVVSMLLLSLWMCSNGSLQCRICI(SEQ ID NO:169)(wtTM/H5iCT)
-WWVWLCISVVLIFVVSMLLLCCSNGSLQCRICI(SEQ ID NO:170)(wtTM/H5iCT V4)
-WWVWLCISVVLIFVVSMLLLSFWMCSNGSLQCRICI(SEQ ID NO:171)(wtTM/H1cCT)
The modified coronavirus S protein may comprise chimeric TMCT. For example, chimeric TMCT may include an N-terminal sequence derived from the coronavirus S protein and a C-terminal sequence derived from the influenza HA protein, as shown in table 1B. TM may include sequences as shown in the column labeled "S protein TM sequence" and CT may include sequences as shown in the column labeled "HA protein CT sequence". CT and TM may be linked by the sequences shown in the columns labeled "S protein CT sequence" and/or "HA protein TM sequence" (also referred to as an intermediate sequence or linker, as described further below).
Table 1B: non-limiting examples of TM and CT sequences in modified S proteins. Amino acid positions within the reference sequence are indicated.
For example, the N-terminal sequence derived from coronavirus S protein TM may include at least the following:
Corresponding to SEQ ID NO: 18. 19, 37, 38, 39, 118, 119, 123, 124, 164, 165, 169, or 170, at least 19 amino acids 1-19;
corresponding to SEQ ID NO: 18. 19, 37, 38, 39, 118, 119, 123, 124, 164, 165, 169, or 170, at least 20 amino acids 1-20;
corresponding to SEQ ID NO: 18. 19, 37, 38, 39, 118, 119, 123, 124, 164, 165, 169, or 170, at least 21 amino acids 1-21;
corresponding to SEQ ID NO: 18. 19, 37, 38, 39, 118, 119, 123, 124, 164, 165, 169, or 170, at least 22 amino acids 1-22;
corresponding to SEQ ID NO: 18. 19, 37, 38, 39, 118, 119, 123, 124, 164, 165, 169, or 170, at least 23 amino acids 1-23;
corresponding to SEQ ID NO: 18. 19, 37, 38, 39, 118, 119, 123, 124, 164, 165, 169, or 170, and at least 24 amino acids 1-24.
The N-terminal sequence derived from coronavirus S protein TM may comprise a sequence corresponding to SEQ ID NO:18 or 169, or at least 20 amino acids corresponding to amino acids 1-20 of SEQ ID NO:118 or 164, or at least 21 amino acids corresponding to amino acids 1-21 of SEQ ID NO:123 at least 22 amino acids 1-22; and one or more amino acids from the C-terminus of influenza HA protein TM. The N-terminal sequence derived from coronavirus S protein TM may comprise a sequence corresponding to SEQ ID NO:18 or 169, or at least 20 amino acids corresponding to amino acids 1-20 of SEQ ID NO:118 or 164, or at least 21 amino acids corresponding to amino acids 1-21 of SEQ ID NO:123 at least 22 amino acids 1-22; and one or more amino acids from the C-terminus of influenza HA protein TM. The one or more amino acids from the C-terminus of influenza HA protein TM may comprise 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids. For example, the one or more amino acids may be 2, 3 or 4 amino acids. One or more amino acids from the C-terminal end of influenza HA protein TM may be a conservative substitution of A, C, G, L, S, M, W or A, C, G, L, S, M, W, or a combination thereof. In one example, the one or more amino acids from the C-terminus of influenza HA protein TM may be selected from a conservative substitution of AG or AG, an conservative substitution of AGL or AGL, a conservative substitution of MAGL or MAGL.
The modified coronavirus S protein may further comprise a chimeric CT comprising an N-terminal sequence derived from the coronavirus S protein CT and a C-terminal sequence derived from the influenza HA protein CT.
The N-terminal sequence derived from coronavirus S protein CT may comprise one or more amino acids. The one or more amino acids from the N-terminus of coronavirus S protein CT may comprise 0, 1, 2, 3, 4 or 5 amino acids. For example, one or more than one amino acid may be 1, 2, or 3 amino acids. One or more amino acids from the N-terminus of the coronavirus S protein CT may be a conservative substitution of C or M or C or M. In one example, the one or more amino acids from the N-terminus of the coronavirus S protein may be selected from a conservative substitution of C or C, a conservative substitution of CC or CC, or a conservative substitution of CCM or CCM.
The C-terminal sequence derived from influenza HA protein CT may comprise a sequence corresponding to SEQ ID NO:18 from amino acids 27 to 37 of 18. The N-terminal sequence derived from influenza HA protein CT may also include a sequence corresponding to SEQ ID NO:18, at least 12 amino acids 26-37 corresponding to SEQ ID NO:18, at least 13 amino acids 25-37 corresponding to SEQ ID NO:18, at least 14 amino acids of amino acids 24-37, corresponding to SEQ ID NO:18, or at least 15 amino acids corresponding to amino acids 23-37 of SEQ ID NO:18 of amino acids 22-37.
In another example, the C-terminal sequence derived from influenza HA protein CT may include at least the following:
corresponding to SEQ ID NO: 126. 127, 128, 129, 130 or 131, amino acids 27-37;
corresponding to SEQ ID NO: 126. 127, 128, 129, 130 or 131, amino acids 26-37;
corresponding to SEQ ID NO: 126. 127, 128, 129, 130 or 131, amino acids 25-37;
corresponding to SEQ ID NO: 126. 127, 128, 129, 130 or 131 amino acids 24-37;
corresponding to SEQ ID NO: 126. 127, 128, 129, 130 or 131 amino acids 23-37; or alternatively
Corresponding to SEQ ID NO: 126. 127, 128, 129, 130 or 131, or at least 16 amino acids 22-37.
For example, CT may include sequences as shown in table 1B (HA protein CT sequences). For example, CT may comprise SEQ ID NO: 18. 126, 128, 129, 130, 131, 118, 120, 164 or 166, amino acids 22-37; or SEQ ID NO:19 amino acids 25-40; or SEQ ID NO:37 amino acids 24-39; or SEQ ID NO:38 from amino acids 25 to 36; or SEQ ID NO:39 or 119, amino acids 24-34; or SEQ ID NO:127 from amino acids 22 to 36; or SEQ ID NO:118 or 164 amino acids 22-37; or SEQ ID NO: amino acids 23-38 of 123 or 125; or SEQ ID NO:124 amino acids 25-35; or SEQ ID NO:165 amino acids 24-34; or SEQ ID NO:169 amino acids 21-36; or SEQ ID NO:170 amino acids 23-33; or SEQ ID NO: 21-36.
Influenza CT or a portion of CT may be fused or conjugated to TM or a portion of TM of S protein with an intermediate peptide sequence. For example, the intermediate peptide sequence may be derived from influenza CT, S protein TM, or a combination thereof, or the intermediate peptide sequence may be an artificial sequence. The intermediate peptide sequences may be of different lengths. For example, the intermediate peptide sequence may be 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acids long, preferably the intermediate peptide sequence is between 2 and 8 amino acids long. In one example, the intermediate peptide sequence is 2 amino acids long and may, for example, include the sequence LC. In another example, the intermediate peptide sequence is 4 amino acids long and may, for example, include the sequence LCCM. In another example, the intermediate peptide sequence may be 5 amino acids long and may, for example, include the sequence LSLWM. In another example, the intermediate peptide sequence may be 7 amino acids long and may, for example, include the sequence agllwm. In another example, the intermediate peptide sequence may be 8 amino acids long and may, for example, include the sequence maglswm.
For example, TMCT of the modified S protein may include or have 90-100% or any amount of sequence identity or sequence similarity to:
-WYIWLGFIAGLIAIVMVTIM-(X)n-CSNGSXXCXICI(SEQ ID NO:64)、
-WYVWLGFIAGLIAIVMVTIL- (X) n-CSNGSXXCXICI (SEQ ID NO: 134) or
-WYIWLGFIAGLVALALCVFFIL-(X)n-CSNGSXXCXICI(SEQ ID NO:135)、
-WYVWLLICLAGVAMLVLLFFI-(X)n-CSNGSXXCXICI(SEQ ID NO:172)、
-WWVWLCISVVLIFVVSMLLL-(X)n-CSNGSXXCXICI(SEQ ID NO:173),
Wherein (X) n Is an intermediate peptide sequence, wherein the intermediate peptide sequence may have a length of 0 to n amino acid residues, wherein n may be any length of 0-10, such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids, and wherein X may comprise any amino acid, e.g., X may be a conservative substitution of A, C, G, F, L, S, M, W or A, C, G, F, L, S, M, W, or a combination thereof.
Non-limiting intermediate peptide sequences (X) n The following may be included:
-(X) 0 the intermediate peptide sequence is absent;
-(X) 1 including, for example, the sequences L or C, or conservative substitutions of L or C;
-(X) 2 including, for example, the sequence LC, or conservative substitutions of LC;
-(X) 3 including, for example, the sequence LCC, or conservative substitutions of LCC;
-(X) 4 including, for example, conservative substitutions of the sequence LCCM or LCCM, conservative substitutions of SLWM or SLWM, or conservative substitutions of SFWM or SFWM;
-(X) 5 including, for example, the sequence LSLWM or conservative substitutions of LSLWM, or conservative substitutions of LSFWM or LSFWM;
-(X) 6 including, for example, the sequence GLSLWM, or conservative substitutions of GLSLWM;
-(X) 7 including, for example, the sequence AGLSLWM, or conservative substitutions of AGLSLWM, or
-(X) 8 Including, for example, the sequence MAGLSLWM, or conservative substitutions of MAGLSLWM.
FIG. 5B shows the fold change in protein accumulation of a modified S protein with a variable edge (intermediate peptide sequence) between the SARS-COV-2 Transmembrane (TM) domain and the H5A/Indonesia/5/05 HA Cytoplasmic Tail (CT) domain, wtTM/H5iCT V1 (SEQ ID NO:19, product of construct 8980), wtTM/H5iCT V2 (SEQ ID NO:37, product of construct 8981), wtTM/H5iCT V3 (SEQ ID NO:38, product of construct 8982) and wtTM/H5iCT 4 (product of construct 8983) when expressed in a plant, compared to protein accumulation of a modified S protein in which the cytoplasmic tail of the coronavirus S protein HAs been replaced with the H5A/Indonesia/5/05 HA wtTM/H5iCT (SEQ ID NO:18, product of construct 8671). All the modified S proteins tested showed protein accumulation with no statistically significant differences between the alternative form and wtTM/H5iCT reference control.
Similarly, modified S proteins comprising SARS-CoV-1S protein in wtTM/H5iCT V4 form with TMCT (FIG. 16A) or MERS S protein in wtTM/H5iCT V4 form with TMCT (FIG. 19A) showed increased protein accumulation when expressed in plants compared to protein accumulation of wild-type S protein (wtTMCT) or S protein in which TMCT HAs been replaced with TMCT of H5A/Indonesia/5/05 HA (H5 iTMCT). Furthermore, OC43 CoV S protein in wtTM/H5iCT V4 form with TMCT showed increased protein accumulation when expressed in plants compared to protein accumulation of OC43 CoV S protein with wild-type TMCT (wtTMCT) (fig. 23A).
Thus, the modified S protein may comprise TM and CT domains (TM/CT), wherein a portion of CT or CT is fused to the C-terminus of a portion of TM or TM via an intermediate peptide sequence, wherein the intermediate peptide sequence comprises the sequence X n 。
Furthermore, the modified S protein may comprise TM and CT domains (TM/CT) comprising a sequence identical to SEQ ID NO: 18. 19, 37, 38, 39, 64, 126, 127, 128, 129, 130, 131, 118, 119, 120, 123, 124, 125, 134, 135, 164, 165, 166, 169, 170, 171, 172, or 173, has a sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween.
The modified S protein may comprise CT or a portion of CT comprising a sequence identical to SEQ ID NO:18, amino acids 22-37 of SEQ ID NO:19, amino acids 21-40 of SEQ ID NO:37, amino acids 21-39 of SEQ ID NO:38 or amino acids 25-36 of SEQ ID NO:39, amino acids 24-34, SEQ ID NO:126, amino acids 22-37, SEQ ID NO:127, amino acids 22-36, SEQ ID NO:128, amino acids 22-37 of SEQ ID NO:129, amino acids 22-37, SEQ ID NO:130 or amino acids 22-37 of SEQ ID NO:131 has a sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween.
The modified S protein may comprise a TM or a portion of a TM, which comprises a sequence identical to SEQ ID NO:18, amino acids 1-20, SEQ ID NO:19, amino acids 1-20, SEQ ID NO:37, amino acids 1-20 of SEQ ID NO:38, amino acids 1-24, SEQ ID NO:39, amino acids 1-23, SEQ ID NO:118, amino acids 1-21, SEQ ID NO:119, amino acids 1-23, SEQ ID NO:123, amino acids 1-22, SEQ ID NO:124, amino acids 1-24, SEQ ID NO:164, amino acids 1-21, SEQ ID NO:165, amino acids 1-23, SEQ ID NO:169 or amino acids 1-20 of SEQ ID NO:170 has a sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween. Furthermore, a modified S protein as described herein may comprise TM or a portion of TM comprising a sequence that is identical to SEQ ID NO:132 or 133 has from 80% to 100% identity.
Furthermore, the modified S protein may comprise a sequence identical to SEQ ID NO: 5. 59, 60, 61, 62, 95, 96, 97, 108, 109 or 110, has 70% to 100% sequence identity or sequence similarity, e.g., the modified S protein may comprise a sequence identical to SEQ ID NO: 5. 59, 60, 61, 62, 95, 96, 97, 108, 109, or 110 has a sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween.
Viral structural proteins, such as, for example, the cytoplasmic tail domain (CT) or a portion of CT of the coronavirus S protein, may be replaced with CT or a portion of CT from influenza Hemagglutinin (HA), as described below, and the resulting protein is referred to as a modified viral structural protein. Thus, a coronavirus S protein in which the native CT or a portion of the native CT HAs been replaced with CT or a portion of CT from HA may be referred to as a modified coronavirus S protein or modified S protein. As described above, HA CT or a portion of HA CT may be fused directly to the N-terminus of the coronavirus TM domain, or may be fused via an intervening peptide sequence to the N-terminus of coronavirus TM or a portion of the TM. Thus, HA CT or a portion of HA CT may be fused to the C-terminus of S protein TM or a portion of S protein TM via an intermediate peptide sequence.
Influenza "hemagglutinin" or "HA" is a homotrimeric membrane type I glycoprotein, typically comprising a signal peptide, an HA1 domain, and an HA2 domain, which includes a transmembrane anchor site at the C-terminus and a small cytoplasmic tail (see, e.g., fig. 1C and 2). The amino acid sequences of HA from various influenza strains are well known in the art. Furthermore, the amino acid sequences and nucleotide sequences encoding HA are well known and available, for example, see BioDefence Public Health base (influenza; see URL: biohealthbase. Org) or national center for biotechnology information (see URL: ncbi. Nlm. Nih. Gov), both of which are incorporated herein by reference. Exemplary amino acid sequences of the cytoplasmic tail domains of HA from different influenza strains are shown in figure 2.
Although different references and study groups assigned different lengths for the CT of HA, the N-terminal sequence of CT HAs been shown to be conserved among HA from different influenza subtypes and strains, and at least 5 residues have sequence identity for at least 10 of the 13 HA subtypes (Simpson and Lamb 1992,Journal of Virology,790-803). FIG. 2 shows an alignment of amino acid sequences from exemplary influenza strains with conserved sequences in the N-terminal portion of HA proteins. The consensus sequence of the influenza Cytoplasmic Tail (CT) domain is: XXWMCSNGSXXCXICI (SEQ ID NO: 15) (see also FIG. 2, C-terminal end of SEQ ID NO: 14)
The CT sequence corresponding to the HA cytoplasmic tail domain consensus sequence may be fused to the C-terminus of the TM of the coronavirus S protein directly or via an intermediate peptide sequence (linker sequence) as discussed above.
Furthermore, amino acid residues located at the N-or C-terminus of the native influenza HA TM/CT border may also be included in the CT sequence, fused to the TM or part of the TM of the modified coronavirus S protein, either directly or via an intermediate peptide sequence.
Thus, the sequence of CT or a portion of CT may, for example, start with a sequence corresponding to SEQ ID NO:14 from amino acid 30 to 40. Thus, the N-terminus of the CT sequence may be a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, or any one of amino acids 30-40. In one example, the CT sequence may start with a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, amino acid residue of amino acid 30. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, or amino acid residue 31. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, or an amino acid residue of amino acid 32. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, or amino acid 33. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, or amino acid residue 34. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, or amino acid residue of amino acid 35. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: amino acid residues 6-13 or 14, amino acid 36. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, or amino acid residue of amino acid 37. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: amino acid residues 6-13 or 14 of amino acid 38. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, or amino acid 39. In another example, the CT sequence may start with a sequence corresponding to SEQ ID NO: 6. 7, 8, 9, 10, 11, 12, 13 or 14, or amino acid residue 40.
The Cytoplasmic Tail (CT) or a portion of CT of the modified S protein may be derived from CT or a portion of CT of Hemagglutinin (HA) of any influenza type, subtype, or strain. For example, CT may be derived from HA of influenza a or influenza b. For example, CT may be derived from HA of influenza subtypes H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, or H16. CT may be, for example, HA derived from subtypes H1, H2, H3, H5, H6, H7 or H9. In addition, CT or a portion of CT may be derived from HA of influenza b. Influenza B can be derived from the B/Yamagata or B/Victoria lineages.
For example, CT or a portion of CT of the modified S protein may be derived from CT of Hemagglutinin (HA) influenza H1, H3, H5, H6, H7, H9 or B strain. Non-limiting examples of influenza strains from which HA CT can be derived are influenza H1 California/7/2009, H2A/Singapore/1/1957, H3A/Minnesota/41/2019, H5A/Indonesia/5/05, H6A/Teal/Hong Kong/W312/97, H7A/Guangdong/17 SF003/2016, H9A/Hong Kong/1073/99 or B/Washington/02/2019. A non-limiting example of the amino acid sequence of HA CT is shown in FIG. 2.
As shown in FIG. 4A, when the natural Cytoplasmic Tail (CT) of the SARS-CoV-2S protein was replaced by SARS-CoV-2S with CT from influenza HA H1 California/7/2009 (H1 Calif.), H3A/Minnesota/41/2019 (H3 Minn), H6A/Teal/Hong Kong/W312/97 (H6 HK), H7A/Guangdong/17 SF003/2016 (H7 Guan), H9A/Hong Kong/1073/99 (H9 HK) or B/Washington/02/2019 (B Wash), similar fold changes in protein accumulation were observed for these modified SARS-CoV-2S proteins as compared to SARS-CoV-2S with CT from H5A/Indoneia/5/05 (H5 Ind). Immunoblot analysis confirmed these observations (see fig. 4B and 4C).
Similar results were obtained when the natural Cytoplasmic Tail (CT) of SARS-CoV-1S protein, the natural CT of MERS S protein, or the natural CT of OC43 CoV S protein was replaced with CT from influenza HA H1 California/7/2009 (H1 cCT) (see fig. 16A, 19A and 23A).
Thus, the cytoplasmic tail domain (CT) or a portion of CT can hybridize to a polypeptide having the amino acid sequence of SEQ ID NO:15, or a sequence having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 30-50 having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 31-50 having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, amino acids 32-50, or having the amino acid sequence of SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 33-50 having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 34-50 having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 35-50 having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 36-50 having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 37-50 having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 38-50 having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 39-50 having SEQ ID NO: 6. 7, 8, 9, 10, 12, 13, 14, or amino acids 40-50 having SEQ ID NO:11, or amino acids 31-49 having SEQ ID NO:11, or amino acids 32-49 having SEQ ID NO:11, or amino acids 33-49 having SEQ ID NO:11, or amino acids 34-49 having SEQ ID NO:11, or amino acids 35-49 having SEQ ID NO:11, or amino acids 36-49 having SEQ ID NO:11, or amino acids 37-49 having SEQ ID NO:11, or amino acids 38-49 having SEQ ID NO:11, or amino acids 39-49 having SEQ ID NO:3, or amino acids 548-568 having SEQ ID NO:3, or amino acids 549-568 having SEQ ID NO:3, or amino acids 550-568 having SEQ ID NO:3 or amino acids 551-568 of SEQ ID NO:3, or amino acids 552-568 having SEQ ID NO:3, or amino acids 553-568 having SEQ ID NO:3, or amino acids 554-568 having SEQ ID NO:3, or amino acids 555-568 having SEQ ID NO:3 or amino acids 556-568 having SEQ ID NO:3, or amino acids 557-568 having SEQ ID NO:3, amino acids 558-568 have about 70, 75, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount sequence identity or sequence similarity therebetween.
Furthermore, the modified S protein may comprise a sequence having the amino acid sequence of SEQ ID NO: 5. 53, 54, 55, 56, 57 or 58 has 70% to 100% sequence identity or sequence similarity, e.g., the modified S protein may comprise a sequence identical to a sequence having SEQ ID NO: 5. 53, 54, 55, 56, 57 or 58 or a sequence having the sequence of SEQ ID NO:53, amino acids 25-1259, SEQ ID NO:54, amino acids 25-1259, SEQ ID NO:55, amino acids 25-1259, SEQ ID NO:56, amino acids 25-1259, SEQ ID NO:57 or amino acids 25-1259 of SEQ ID NO:58, amino acids 25-1259 have a sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween.
In other embodiments, the modified S protein extracellular domain and/or transmembrane domain may be obtained from a coronavirus S protein other than a SARS-CoV-2S protein, e.g., from a SARS-CoV-1S protein, a MERS-CoV S protein, an OC43-CoV S protein, a 229E-CoV S protein, or the like.
As shown in fig. 16A, when compared to protein accumulation of S protein with wild-type TMCT (wt TMCT) or modified S protein with TMCT (H5 i TMCT) of influenza H5 HA from crude plant extract, higher protein accumulation was observed for the modified SARS-CoV-1S protein with the following: CT from influenza H5 HA (H5 iCT), CT from influenza H1 HA (H1 cCT) or CT from influenza H5 HA, which HAs a variable edge between SARS-CoV-1TM and H5 HA CT ("H5 iCT (V4)"). The modified S proteins assembled into high molecular weight structures (see fig. 16B-16D), which proved to be VLPs (see fig. 17A-17C). Although the protein accumulation amount of the SARS-CoV-1 protein having native TMCT is lower than the detection limit of the immunoblotting analysis, when the SARS-CoV-1S protein having modified TMCT and/or CT is present on the same gel (see FIG. 16A), the signal can be detected by the immunoblotting analysis when only the SARS-CoV-1 protein having native TMCT is present on the gel (see FIG. 16B) and VLP is observed by electron microscopy (see FIG. 17B).
Similar results were obtained for the modified MERS-CoV S protein (see fig. 19A). Higher protein accumulation (see protein band at about 175 kDa) was observed for modified MERS-CoV S proteins with CT (H5 iCT) from influenza H5HA, CT (H1 cCT) from influenza H1 HA, or CT (with variable edge between MERS-CoV TM and H5HA CT) from influenza H5HA when compared to protein accumulation of modified S proteins with wild-type TMCT (wt TMCT) or TMCT (H5 i TMCT) with influenza H5 HA. The highest accumulation was observed for the modified MERS-CoV with influenza H1 HA CT (H1 cCT). The smaller band observed at about 100kDa is likely to be a proteolytically cleaved fragment of the S protein. Without wishing to be bound by theory, it is believed that influenza HA CT substitution of native CT stabilizes MERS S protein and reduces cleavage of S protein.
As further shown in fig. 23A, low protein yields were observed in plants expressing OC43 CoV S protein with the native OC43 CoV S protein TMCT. However, when the native OC43 CoV S protein TMCT is replaced with TMCT from influenza H5HA (H5 iTMCT), CT from influenza H5HA (H5 iCT), CT from influenza H1 HA (H1 cCT) or CT from influenza H5HA (with a variable edge between OC43-CoV TM and H5HA CT) (H5 iCT (V4)), a higher protein accumulation is observed compared to the OC43 CoV S protein with native TMCT (see band at about 150 kDa. The larger band shown in the gel is considered to be a protein trimer). Similar results were observed for the modified 229E-CoV S protein (data not shown).
Furthermore, the MERS-CoV S protein, OC43-CoV S protein and 229E-CoV S protein with TMCT (H5 iTMCT) from influenza H5 HA, CT (H5 iCT) from influenza H5 HA or CT from influenza H1 HA were observed to form VLPs as shown in FIGS. 19B-19F, FIGS. 23B-23E and FIGS. 25A-25E.
Accordingly, the present disclosure provides a "modified viral structural protein", "viral structural fusion protein" or "chimeric viral structural protein", wherein the extracellular domain and transmembrane domain (TM) or a portion of TM of the viral structural protein is derived from coronavirus and the Cytoplasmic Tail (CT) or a portion of CT is derived from influenza protein. For example, the extracellular and transmembrane domains may be derived from coronavirus spike (S) proteins, while the Cytoplasmic Tail (CT) or a portion of CT may be derived from influenza HA proteins. The modified S protein may in turn comprise i) an extracellular domain derived from a coronavirus S protein (including FP, HR1 and HR2 domains of the S1 and S2 subunits), ii) a coronavirus transmembrane domain (TM) or a portion of a coronavirus TM, and iii) an influenza HA cytoplasmic tail domain (CT) or a portion of HA CT. Thus, in modified S proteins CT or a portion of CT is heterologous to the TM of the extracellular domain. Similarly, the TM (and extracellular domain) of the modified S protein is heterologous to CT. The ectodomain and transmembrane domain (TM) may be derived from the same coronavirus (i.e., the ectodomain and TM may be homologous to each other) or the ectodomain may be derived from a first coronavirus and the TM may be derived from a second coronavirus (i.e., the ectodomain and TM are heterologous to each other).
"chimeric protein" or "chimeric polypeptide" also referred to as a "fusion protein" refers to a protein or polypeptide comprising amino acid sequences from two or more sources, such as, but not limited to, extracellular and transmembrane domains derived from a first viral structural protein (e.g., derived from the coronavirus S protein) and Cytoplasmic Tails (CTs) derived from a second viral structural protein, e.g., CTs from influenza HA, fused to a single polypeptide.
The modified coronavirus S protein may include a transmembrane and cytoplasmic tail domain (TMCT), wherein TMCT is chimeric TMCT. Chimeric TMCT may include a transmembrane domain (TM), wherein TM or a portion of TM is derived from coronavirus S protein and Cytoplasmic Tail (CT), wherein CT or a portion of CT is derived from influenza Hemagglutinin (HA) protein. Furthermore, the chimeric TMCT may include native coronavirus S protein TM, chimeric coronavirus S protein/influenza HA TM, native influenza HA CT, chimeric influenza HA/coronavirus S protein CT, or a combination thereof. For example, the modified coronavirus S protein may include chimeric TMCT having native influenza HA CT and chimeric TM, wherein the chimeric TM comprises an N-terminal sequence of TM derived from the coronavirus S protein and a C-terminal sequence of TM derived from the influenza HA protein. In another example, the modified coronavirus S protein may comprise a chimeric TMCT having a native coronavirus S protein TM and a chimeric CT, wherein the chimeric CT comprises an N-terminal sequence derived from the coronavirus S protein and a C-terminal sequence derived from the influenza HA protein. In other examples, the modified coronavirus S protein may include chimeric TMCT with chimeric TM, wherein the chimeric TM includes an N-terminal sequence of TM derived from coronavirus S protein and a C-terminal sequence of TM derived from influenza HA protein, and chimeric CT, wherein the chimeric CT includes an N-terminal sequence derived from coronavirus S protein and a C-terminal sequence derived from influenza HA protein.
When reference is made in the present disclosure to a modified S protein or modified coronavirus spike (S) -protein, it refers to a modified coronavirus spike (S) -protein comprising a transmembrane domain (TM) or a portion of the S protein TM and a Cytoplasmic Tail (CT) or a portion of CT, wherein CT is derived from influenza Hemagglutinin (HA) protein, and wherein TM and CT are heterologous.
The modified S protein may comprise a sequence identical to SEQ ID NO: 5. 21, 30, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 95, 96, 97, 108, 109, 110, 144, 145, 146, 155, 156, or 157, for example, the modified S protein may comprise a sequence identity or sequence similarity of about 70% to 100% to the sequence of SEQ ID NO: 5. 21, 30, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 95, 96, 97, 108, 109, 110, 144, 145, 146, 155, 156 or 157 or a sequence identical to SEQ ID NO:47, amino acids 25-1259, SEQ ID NO:48, amino acids 25-1259, SEQ ID NO:49, amino acids 25-1259, SEQ ID NO:50, amino acids 25-1259, SEQ ID NO:51, amino acids 25-1259, SEQ ID NO:52, amino acids 25-1259, SEQ ID NO:53, amino acids 25-1259, SEQ ID NO:54, amino acids 25-1259, SEQ ID NO:55, amino acids 25-1259, SEQ ID NO:56, amino acids 25-1259, SEQ ID NO:57, amino acids 25-1259, SEQ ID NO:58, amino acids 25-1259, SEQ ID NO:59, amino acids 25-1262, SEQ ID NO:60, amino acids 25-1261, SEQ ID NO:61, amino acids 25-1258, SEQ ID NO:62, amino acids 25-1256, SEQ ID NO:95, amino acids 25-1243, SEQ ID NO:96, amino acids 25-1240, SEQ ID NO:97, amino acids 25-1243, SEQ ID NO:108, amino acids 25-1341, SEQ ID NO:109, amino acids 25-1338, SEQ ID NO:110, amino acids 25-1341, SEQ ID NO:144, amino acids 25-1351, SEQ ID NO:145, amino acids 25-1348, SEQ ID NO:146, amino acids 25-1351, SEQ ID NO:155, amino acids 25-1159, SEQ ID NO:156 or amino acids 25-1156 of SEQ ID NO:157 from amino acids 25 to 1159 have a sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% or any amount of sequence identity or sequence similarity therebetween.
The modified S protein may also be produced or synthesized as a modified S protein precursor (also referred to as a precursor S protein), wherein the S protein precursor comprises a modified S protein and a signal peptide, wherein the signal peptide is native to the coronavirus (i.e., homologous to the extracellular domain) or the signal peptide may be non-native or heterologous to the extracellular domain. In a non-limiting example, the native signal peptide may be replaced with a signal peptide from a protein disulfide isomerase (protein disulfide isomerase; PDI).
The modified S protein precursor may include a signal peptide that is non-native or heterologous to the extracellular domain. The non-native signal peptide may replace the entire native signal peptide or may replace a portion of the native signal peptide of the coronavirus S protein. Furthermore, the non-native or heterologous signal peptide may be fused directly to the N-terminus of the modified S protein, or the non-native or heterologous signal peptide may be fused to the N-terminus of the modified S protein via an intermediate peptide sequence.
The signal peptide (also known as a signal sequence, targeting signal, localization sequence, transit peptide, leader sequence or leader peptide) is a short peptide present at the N-terminus of most newly synthesized proteins, which is directed to the secretory pathway. The signal peptide is responsible for targeting proteins to the endomembrane system, including the endoplasmic reticulum and golgi apparatus, where it is co-translated by signal peptidase enzymes located in the lumen of the Endoplasmic Reticulum (ER) and produces the mature protein. Since the experimental methods for identifying targeting sequences are time consuming and laborious, different computational methods for predicting targeting signals have been developed and are well known in the art. Signal peptides generally have low sequence similarity but share some characteristic features. In order to predict Signal sequences and their cleavage sites, various prediction Methods have been developed that take these characteristic features into account, such as, for example, signalP (Bendtsen et al, J Mol biol.200 Jul 16;340 (4): 783-95; petersen et al, nature Methods8, pp 785-786 (2011)), signal-CF (Chou and Shen, biochem Biophys Res Commun.2007, 8, 6 th day; 357 (3): 633-40) and Signal-BLAST (Frank and Sippl, bioinformation, 2008Oct 1;24 (19): 2172-6), which are incorporated herein by reference.
Using the SignalP prediction program, the sequence corresponding to SEQ ID NO:1, and a signal peptide cleavage site of SARS-CoV-2S protein is predicted between positions 15 and 16 of the sequence. However, the signal peptide cleavage site of the SARS-CoV-2S protein can be predicted or present at a position corresponding to the sequence of SEQ ID NO:1 between other consecutive positions of the sequence of sequences 1. For example, the signal peptide cleavage site of the SARS-CoV-2S protein is also predicted or may occur at a position corresponding to SEQ ID NO:1 between positions 13 and 14 of the sequence of 1.
The N-terminal region of the native SARS-CoV-2S protein (including the native signal peptide sequence) is as follows:
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNS(SEQ ID NO:63)
the predicted signal peptide Sequence (SP) is underlined. The sequence of grey shades corresponds to the sequence shown in table 2. The first amino acid residue of the mature SARS-CoV-2S protein can be valine (V), designated by position 1 (+1), which corresponds to V16 of the precursor S protein (the natural SARS-CoV-2S protein with the natural signal peptide). The first amino acid residue of the mature SARS-CoV-2S protein can be found in SEQ ID NO:1 or SEQ ID NO:63, as shown in table 2. For example, the first amino acid residue of the mature SARS-CoV-2S protein can be glutamine (Q), whose position is designated 14 (-2).
Table 2: SARS-CoV-2S protein sequence portion around the cleavage site of the Signal Peptide (SP). Residue numbering comes from the N-terminus containing the native signal peptide (# with SP), or from the predicted cleavage site at position V1 (# without SP), which corresponds to V16 (precursor S protein) in the sequence containing the signal peptide.
* Mature protein
Signal peptides or peptide sequences for directing the localization of expressed proteins or polypeptides to the apoplast include, but are not limited to, native (in the case of proteins) signal or leader sequences, or heterologous signal sequences such as, but not limited to, rice amylase signal peptide (mccomick 1999,Proc Natl Acad Sci USA 96:703-708) or Protein Disulfide Isomerase (PDI) signal peptides. Thus, as described herein, the modified S protein may be produced as a precursor protein comprising the modified S protein and a heterologous amino acid signal peptide sequence. For example, the modified S protein precursor may include a signal peptide from a protein disulfide isomerase (PDI SP; nucleotides 32-103 of accession number Z11499).
Accordingly, the present disclosure also provides proteins comprising modified S proteins and precursors of modified S proteins of natural or unnatural signal peptides, as well as nucleic acids encoding the proteins.
The modified viral structural protein may be a modified S protein, wherein the modified S protein is a monomeric or single chain modified S protein. The monomeric or single chain modified S protein may comprise an S1 domain (subunit) and an S2 domain (subunit), wherein the S2 domain (subunit) HAs been modified to replace the native CT of the S protein with the CT of the influenza HA protein, and wherein the modified S protein is a single continuous polypeptide chain. Monomeric or single chain modified S proteins can be trimerized to form trimers, referred to as trimer modified S proteins. Trimer is a macromolecular complex formed from three proteins that are usually non-covalently bound.
The S protein is cleaved into 2 polypeptide chains, the S1 subunit and the S2 subunit, at conserved activation cleavage sites, which remain bound as S1/S2 protomers in homotrimers. Without wishing to be bound by theory, cleavage of the S protein Cheng Yaji may be important for viral infectivity, but may not be necessary for protein trimerization.
The modified S protein may also include one or more substitutions, substitutions or mutations. For example, the modified S protein may include one or more substitutions, or mutations in the extracellular domain to increase expression, yield, stability, or to increase the expression, yield, and stability of the modified S protein in a suitable expression system.
For example, the modified S protein may include substitutions or mutations to the S1/S2 and/or S2' protease cleavage sites to prevent protease cleavage at these sites. Thus, when produced in a host or host cell, the modified S protein is not cleaved into separate S1 and S2 subunits or polypeptide chains.
Modified viral structural proteins, such as modified S proteins, may also be assembled into trimers of the modified viral structural proteins. Thus, coronavirus protein trimers comprising a modified S protein as described herein are also provided. The trimer may comprise a single chain modified S protein, wherein the single chain modified S protein comprises an S1 subunit and an S2 subunit, wherein CT of the S2 subunit HAs been replaced with CT of influenza Hemagglutinin (HA).
Trimers may also be stable in the pre-fusion conformation. Modified viral structural proteins, such as modified S proteins, may thus also include one or more substitutions, substitutions or mutations to inhibit conformational changes in the S protein from the pre-fusion conformation to the post-fusion conformation, and thereby stabilize the S protein or S protein trimer in the pre-fusion conformation.
"amino acid substitution" or "substitution" refers to the replacement of an amino acid in the amino acid sequence of a protein with a different amino acid. The terms amino acid, amino acid residue or residues are used interchangeably in the present disclosure. One or more amino acids may be substituted or replaced with one or more amino acids other than the original or wild-type amino acid at that position without changing the overall length of the amino acid sequence of the protein.
For example, modified viral structural proteins, such as modified S proteins, may be stabilized by proline substitutions, substitutions that allow disulfide bond and salt bridge formation, and/or cavity filling substitutions.
Hsieh et al (Science 2020,369 pages 1501-1505, which is incorporated herein by reference) designed and expressed a variety of SARS-CoV-2 spike protein variants in mammalian cells. An S protein variant with six proline substitutions, called HexaPro, expressed 9.8-fold higher than the S protein compared to the variant with only biproline substitutions, increased Tm by about 5 ℃ and maintained the pre-trimeric fusion conformation in mammalian cell lines. Hsieh et al considered the HexaPro variant to be the best variant.
In the present disclosure, for a polypeptide corresponding to SEQ ID NO: the highest yields were observed for the combination of four proline substitutions at positions 802, 927, 971 and 972 ("4P") of 2 and the additional single amino acid substitution at position 923. In addition, higher yields were also observed for the combination of six proline substitutions corresponding to positions 802, 877, 884, 927, 971 and 972 ("6P") and the additional single amino acid substitution at position 923.
As provided herein, a modified S protein may also include one or more substitutions, or mutations to increase stability, yield, or stability and yield of the modified protein in a host or host cell, such as, for example, in a plant or plant cell.
A modified S protein as described herein may include one or more mutations, modifications or substitutions in its amino acid sequence at any one or more amino acids corresponding to amino acids in a reference sequence as described below.
"corresponding amino acid", "corresponding to an amino acid" or "corresponding to a sequence" and the like refer to an amino acid (or nucleotide) that corresponds to an amino acid (or nucleotide) in a sequence alignment with a reference coronavirus sequence, as described below. The corresponding amino acid positions in the coronavirus sequence can be determined by alignment with the known sequence of the coronavirus S protein. Methods for alignment of sequences for comparison are well known in the art and are described further below. Examples of the corresponding amino acids are shown in table 3.
Table 3: the position of the corresponding amino acid/residue position in the coronavirus S protein. (reference sequences are shown).
1 number exclusion Signal Peptide (SP)
2 number includes a Signal Peptide (SP)
For example, the modified S protein may have one or more (e.g., two consecutive) proline substitutions at or near the boundary between the HRl domain and the central helical domain that stabilize the S ectodomain trimer in the pre-fusion conformation, as described, for example, in WO 2018/081318, which is incorporated herein by reference. Furthermore, one or more substitutions may limit and/or may prevent processing or cleavage at the cleavage site between the S1 and S2 subunits.
The modified S protein may include one or more substitutions at positions as shown in table 3. For example, the modified S protein may be found in a polypeptide corresponding to SEQ ID NO:2 (SARS-CoV-2) comprises one or more substitutions at positions 667, 668, 670, 802, 877, 884, 923, 927, 971, 972, or combinations thereof. The corresponding positions in the S proteins of SARS-CoV-1, MERS-CoV, OC43-CoV and 229E-CoV are shown in Table 3. The corresponding amino acid positions in the S proteins from other coronaviruses can be determined by methods known in the art.
GSAS-2P (971 and 972)
For example, the modified S protein may have one or more substitutions at one or more amino acids corresponding to SEQ ID NO:2, amino acid at position 667, 668, 670, 971 or 972 of the amino acid sequence.
In one aspect, the modified S protein may include substitutions, modifications or mutations corresponding to positions 667, 668, 670 or combinations thereof (numbered according to SEQ ID NO: 2). For example, the amino acid corresponding to position 667 can be substituted with glycine (G) or a conservative substitution of glycine (G), the amino acid corresponding to position 668 can be substituted with serine (S) or a conservative substitution of serine (S), and the amino acid corresponding to position 670 can be substituted with serine (S) or a conservative substitution of serine (S).
The modified S protein may also include substitutions, modifications or mutations corresponding to positions 971, 972 or at positions 971 and 972 (numbered according to SEQ ID NO: 2). For example, the amino acid corresponding to position 971 and/or 972 may be a substitution of proline (P) or a conservative substitution of proline (P).
The modified S protein may comprise one or more substitutions, wherein the one or more substitutions comprise a sequence corresponding to SEQ ID NO:2, or consists of one or more amino acid substitutions of amino acids at positions 667, 668, 670, 971, 972. Modified S proteins with one or more substitutions may be stable in the pre-fusion conformation. In addition, the modified S protein may form a trimer that is stable in the pre-fusion conformation.
For example, the modified S protein may include the following substitutions (numbered according to SEQ ID NO: 2): R667G, R668S, R670S (referred to herein as "GSAS"). The modified S protein may also have the following substitutions (numbered according to SEQ ID NO: 2): K971P and V972P (referred to herein as "2P"). Furthermore, the modified S protein may have the following substitutions (numbered according to SEQ ID NO: 2): R667G, R668S, R670S, K971P and V972P (referred to herein as "GSAS-2P").
For example, the modified S protein may have a sequence identical to SEQ ID NO:47 or an amino acid sequence identical to SEQ ID NO:47, wherein the amino acid sequence has an amino acid sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween, wherein the amino acid sequence has a glycine (G) or a conservative substitution of glycine (G) at position 667, a serine (S) or a serine (S) at position 668, a serine (S) or a conservative substitution of serine (S) at position 670, a proline (P) or a conservative substitution of proline (P) at positions 971 and 972, wherein the modified S protein forms VLP upon expression.
In another example, the modified S protein may have one or more substitutions at one or more amino acids corresponding to SEQ ID NO:114 or an amino acid at position 654, 955 or 956 of the amino acid sequence corresponding to SEQ ID NO:115, amino acids at positions 730, 733, 1043 or 1044 of the amino acid sequence.
For example, the modified S protein may include the following substitutions: R654A (numbering according to SEQ ID NO: 114) or R730A and/or R733G (numbering according to SEQ ID NO: 115). The modified S protein may also have the following substitutions: K955P and/or V956P (numbering according to SEQ ID NO: 114) or V1043P and/or L1044P (numbering according to SEQ ID NO: 115). Furthermore, the modified S protein may have the following substitutions: R654A, K955P and V956P (numbered according to SEQ ID NO: 114) or R730A, R733, G, V, 1043, P, L, 1044P (numbered according to SEQ ID NO: 115).
GSAS-4P (802, 927, 971 and 972)
The modified S protein may also have substitutions at amino acids corresponding to amino acids at positions 667, 668 and 670, and further have one or more substitutions at one or more residues corresponding to positions 802, 927, 971 and 972 (numbered according to SEQ ID NO: 2). For example, the amino acids corresponding to positions 802, 927, 971 and 972 may be replaced by proline (P) or a conservative substitution of proline (P).
As shown in fig. 11A, a modified S protein with a "GSAS" modification and the following modifications: F802P, A927P, K971P, V972P (referred to as "GSAS-4P", expressed by construct 8953) showed a 2.47 fold increase in the yield of modified S protein compared to the yield of "GSAS-2P" S protein (expressed from construct 8671).
Thus, the modified S protein may comprise one or more substitutions, wherein the one or more substitutions comprise a sequence corresponding to the sequence set forth in SEQ ID NO:2, and one or more substitutions of or consisting of amino acids at positions 667, 668, 670, 802, 927, 971 and 972.
For example, the modified S protein may have a sequence identical to SEQ ID NO:48 or amino acid sequence corresponding to SEQ ID NO:48, wherein the amino acid sequence has an amino acid sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween, wherein the amino acid sequence has a glycine (G) or a conservative substitution of glycine (G) at position 667, a serine (S) or a serine (S) at position 668, a serine (S) or a conservative substitution of serine (S) at position 670, a proline (P) or a conservative substitution of proline (P) at positions 802, 927, 971 and 972, wherein the modified S protein forms VLPs upon expression.
In another example, the modified S protein may have one or more substitutions at one or more amino acids corresponding to the amino acid sequence set forth in SEQ ID NO:14 or an amino acid corresponding to position 654, 786, 911, 955 or 956 of the amino acid sequence of SEQ ID NO:115, amino acid at position 730, 733, 872, 999, 1043 or 1044 of the amino acid sequence.
For example, the modified S protein may include the following substitutions: R654A (numbering according to SEQ ID NO: 114) or R730A and/or R733G (numbering according to SEQ ID NO: 115). The modified S protein may also have the following substitutions: F786P, S911P, K955P and/or V956P (numbering according to SEQ ID NO: 114) or A872P, N999P, V1043P and/or L1044P (numbering according to SEQ ID NO: 115). Furthermore, the modified S protein may have the following substitutions: R654A, F786P, S911P, K955P and V956P (numbered according to SEQ ID NO: 114) or R730A, R733G, A872, P, N999P, V1043P, L1044P (numbered according to SEQ ID NO: 115). GSAS-6P (802, 877, 884, 927, 971 and 972)
The modified S protein may also have substitutions at amino acids corresponding to amino acids at positions 667, 668 and 670, and further have one or more substitutions at one or more residues corresponding to positions 802, 877, 884, 927, 971 and 972 (numbered according to SEQ ID NO: 2). For example, the amino acids corresponding to positions 802, 877, 884, 927, 971 and 972 may be replaced by proline (P) or a conservative substitution of proline (P) (numbered according to SEQ ID NO: 2).
As shown in fig. 11A, a modified S protein with a "GSAS" modification and the following modifications: F802P, A877P, A884P, A927P, K971P, V972P (referred to as "GSAS-6P", expressed from construct 8940) showed a 2.11 fold increase in S protein yield compared to that of "GSAS-2P" S protein (expressed from construct 8671).
Thus, the modified S protein may comprise one or more substitutions, wherein the one or more substitutions comprise a sequence corresponding to SEQ ID NO:2, and one or more substitutions of or consisting of amino acids at positions 667, 668, 670, 802, 877, 884, 927, 971, and 972.
For example, the modified S protein may have a sequence identical to SEQ ID NO:49 or amino acid sequence identical to SEQ ID NO:48 having an amino acid sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween, wherein the amino acid sequence has glycine (G) or a conservative substitution of glycine (G) at position 667, serine (S) or a conservative substitution of serine (S) at position 668, serine (S) or a conservative substitution of serine (S) at position 670, proline (P) or a conservative substitution of proline (P) at positions 802, 877, 884, 927, 971 and 972, wherein the modified S protein forms VLP upon expression.
In another example, the modified S protein may have one or more substitutions at one or more amino acids corresponding to the amino acid sequence set forth in SEQ ID NO:114 at position 654, 786, 861, 868, 911, 955 or 956 of the amino acid sequence of SEQ ID NO:115, amino acids at positions 730, 733, 872, 949, 956, 999, 1043 or 1044 of the amino acid sequence.
For example, the modified S protein may include the following substitutions: R654A (numbering according to SEQ ID NO: 114) or R730A and/or R733G (numbering according to SEQ ID NO: 115). The modified S protein may also have the following substitutions: F786P, A861, P, A868P, S911P, K955P and/or V956P (numbered according to SEQ ID NO: 114) or A872P, S949P, A956P, N999P, V1043P and/or V1044P (numbered according to SEQ ID NO: 115). Furthermore, the modified S protein may have the following substitutions: R654A, F786P, A861P, A868P, S911P, K P and V956P (numbered according to SEQ ID NO: 114) or R730A, R733G, A872P, S949P, A956P, N999P, V1043P and L1044P (numbered according to SEQ ID NO: 115).
Replacement at location 923
The modified S protein as described herein may also include a substitution, modification or mutation corresponding to position 923 (numbered according to SEQ ID NO: 2). For example, the amino acid corresponding to position 923 can be substituted with phenylalanine (F) or a conservative substitution of phenylalanine (F).
As shown in fig. 11B, the modified S protein with the "GSAS-2P" modification and the L923F substitution (expressed from construct 8933) showed a 1.36 fold increase in the yield of S protein compared to the yield of the "GSAS-2P" S protein without the L923F substitution (expressed from construct 8671). The modified S protein with the "GSAS-4P" modification and the L923F substitution (expressed from construct 8960) showed a 2.88 fold increase in the yield of the modified S protein compared to the yield of the "GSAS-2P" S protein without the L923F substitution (expressed from construct 8671). The modified S protein with the "GSAS-6P" modification and the L923F substitution (expressed from construct 8947) showed a 2.47 fold increase in the yield of the modified S protein compared to the yield of the "GSAS-2P" S protein without the L923F substitution (expressed from construct 8671).
Thus, the modified S protein may comprise one or more substitutions, wherein the one or more substitutions comprise a sequence corresponding to the sequence set forth in SEQ ID NO:2, or a combination thereof, at positions 667, 668, 670, 927, 971, 972, 802, 877, 884, 923. For example, the modified S protein may comprise or consist of one or more substitutions, wherein the one or more substitutions comprise or consist of one or more amino acid substitutions corresponding to the amino acid sequence of SEQ ID NO:2 (GSAS-2P-923), amino acids 667, 668, 670, 971, 972, 923, or combinations thereof, SEQ ID NO:2 (GSAS-4P-923), or amino acids of positions 667, 668, 670, 927, 971, 972, 802, 923 or combinations thereof, or SEQ ID NO:2 (GSAS-6P-923), 667, 668, 670, 927, 971, 972, 802, 877, 884, 923, or combinations thereof.
For example, the modified S protein may comprise or consist of one or more substitutions comprising or consisting of an amino acid corresponding to an amino acid at the following positions:
-SEQ ID NO: 667, 668, 670, 971, 972 and 923 of 2 (GSAS-2P-923)
-SEQ ID NO: 667, 668, 670, 927, 971, 972, 802 and 923 of 2 (GSAS-4P-923), or
-SEQ ID NO: 667, 668, 670, 927, 971, 972, 802, 877, 884 and 923 of 2 (GSAS-6P-923).
For example, the modified S protein may have an amino acid sequence that has about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween to the amino acid sequence of seq id no: SEQ ID NO:50 or SEQ ID NO:50, wherein the amino acid sequence has a glycine (G) or a conservative substitution of glycine (G) at position 667, a serine (S) or a conservative substitution of serine (S) at positions 668 and 670, a proline (P) or a conservative substitution of proline (P) at positions 971 and 972, and a phenylalanine (F) or a phenylalanine (F) at position 923; SEQ ID NO:51 or SEQ ID NO:51, wherein the amino acid sequence has glycine (G) or a conservative substitution of glycine (G) at position 667, serine (S) or a conservative substitution of serine (S) at positions 668 and 670, proline (P) or a conservative substitution of proline (P) at positions 927, 971, 972 and 802, and phenylalanine (F) or a conservative substitution of phenylalanine (F) at position 923; or SEQ ID NO:52 or SEQ ID NO:52, wherein the amino acid sequence has a glycine (G) or a conservative substitution of glycine (G) at position 667, a serine (S) or a conservative substitution of serine (S) at positions 668 and 670, a proline (P) or a conservative substitution of proline (P) at positions 927, 971, 972, 802, 877 and 884, and a phenylalanine (F) or a conservative substitution of phenylalanine (F) at position 923, wherein the modified S protein forms a VLP upon expression.
Thus, a modified coronavirus S protein is provided, which may include:
1. chimeric transmembrane and cytoplasmic tail domains (TMCT);
2. one or more substitutions of amino acids corresponding to positions 667, 668 and/or 670 (numbered according to SEQ ID NO: 2) as compared to the corresponding wild-type coronavirus S protein;
3. one or more substitutions corresponding to amino acids at positions 802, 877, 884, 927, 971 and/or 972 (numbered according to SEQ ID NO: 2) compared to the corresponding wild-type coronavirus S protein;
4. substitutions at position 923 (numbered according to SEQ ID NO: 2) as compared to the corresponding wild-type coronavirus S protein;
or, 5. Combinations of modifications and/or substitutions as described in 1-4.
As used herein, the terms "conservative substitutions" or "conservative substitutions" and grammatical variations thereof refer to amino acids that differ from a reference amino acid (substitutions) but that belong to the same class as the recited substitutions or recited residues (i.e., nonpolar residues replace nonpolar residues, aromatic residues replace aromatic residues, polar uncharged residues, charged residues replace charged residues). Other information about conservative substitutions can be found, for example, in Sahin-Toth et al (Protein ScL,3:240-247,1994), hochuli et al (Bio/Technology, 6:1321-1325,1988), henikoff S, and Henikoff JG (Proc. Natl. Acad. Sci. USA 89:10915-10919,1992), and widely used textbooks of genetics and molecular biology.
The modified viral structural proteins may also be further glycosylated. The coronavirus S protein, coronavirus M protein and coronavirus E protein are glycosylated, with N-linked glycosylation and O-linked glycosylation occurring simultaneously.
The modified viral structural protein may include a type of glycosylation unique to the host or host cell in which the modified viral structural protein is expressed. For example, when expressed in a plant or plant cell, the modified viral structural protein may comprise a plant-specific N-glycan. Thus, modified viral structural proteins having plant-specific N-glycans are also provided.
As described herein, the cytoplasmic tail domain (CT) of the modified viral structural protein can be replaced with CT from influenza Hemagglutinin (HA). The extracellular domain and transmembrane domain (TM) of the viral structural proteins described above are fused to the influenza HA cytoplasmic tail domain (CT) such that the CT is heterologous with respect to the extracellular domain and transmembrane domain of the viral structural proteins (e.g., S protein). The modified S protein can self-assemble into virus-like particles (VLPs).
Thus, the present description further relates to virus-like particles (VLPs). More specifically, the present description relates to VLPs comprising modified viral structural proteins (e.g., modified S proteins) and methods of producing VLPs having modified viral structural proteins (e.g., modified S proteins) in a host or host cell. VLPs include modified viral structural proteins, such as modified S proteins described herein.
As shown in fig. 6C, 17A, 17B and 17C, the modified viral structural proteins are illustrated by modified S proteins (modified SARS-CoV-2 or modified SARS-CoV-1S proteins), wherein natural or wild-type CT HAs been replaced with CT from self-assembly of influenza HA proteins into VLPs when expressed in plants. VLPs are similar to VLPs produced in the same plant expression system with either an S protein with native TM/CT sequence (see fig. 6A and 17A) or a modified S protein with H5 influenza TM/CT sequence (see fig. 6B and 17B).
In addition, as shown in fig. 6D, 6E, 6F and 6G, modified S proteins with variable edges or boundaries (intermediate peptide sequences) between TM and influenza CT domains also self-assemble into VLPs when expressed in plants.
Furthermore, as shown in fig. 6H, 6I, 6J, 6K, 6L and 6M, the modified S protein also self-assembles into VLPs when expressed in plants, where natural or wild-type CT HAs been replaced with CT of influenza HA proteins from H1, H3, H6, H7, H9 and B influenza, respectively.
In addition, as shown in FIGS. 19B-19F, 23B-23E, and 25A-25E, modified S proteins derived from MERS-CoV, OC43-CoV, and 229E-CoV also form VLPs, where the modified S proteins have TMCT from influenza H5 HA (H5 iTMCT), CT from influenza H5 HA (H5 iCT), or CT from influenza H1 HA.
The term "virus-like particle" (VLP) or "plurality of virus-like particles" or "VLPs" refers to virus-like structures that are generally similar in morphology and antigenicity to the virus particles produced in an infection, but lack sufficient genetic information to replicate and are therefore non-infectious. VLPs are self-assembled structures and include one or more structural proteins, such as, for example, modified viral structural proteins, such as, but not limited to, modified S proteins. Thus, VLPs may comprise modified S proteins. VLPs may also include viral structural proteins, wherein the viral structural proteins consist of modified S proteins. Thus, in some embodiments, VLPs may lack or be free of coronavirus M protein and/or coronavirus E protein. In some embodiments, VLPs produced from modified viral structural proteins as described herein therefore do not include coronavirus M protein, coronavirus E protein, or coronavirus M protein and coronavirus E protein. Furthermore, in some embodiments, the VLP does not include structural or nonstructural proteins from viruses heterologous to the coronaviridae or influenza viruses, e.g., the VLP does not include structural and nonstructural proteins from viruses other than from the coronaviridae.
In another embodiment, VLPs may include coronavirus E proteins, coronavirus M proteins, and modified coronavirus S proteins. In another embodiment, the VLP may include coronavirus E proteins and modified coronavirus S proteins. In another embodiment, VLPs may include coronavirus M proteins and modified coronavirus S proteins. Furthermore, VLPs may include coronavirus E proteins, modified coronavirus M proteins, and modified coronavirus S proteins. VLPs may also include modified coronavirus E proteins, modified coronavirus M proteins, and modified coronavirus S proteins. In another embodiment, the VLP may include a modified coronavirus E protein and a modified coronavirus S protein. In another embodiment, the VLP may include a modified coronavirus M protein and a modified coronavirus S protein.
VLPs may be produced in a suitable host or host cell (including plants and plant cells). After extraction from the host or host cell and isolation and further purification under appropriate conditions, VLPs may be recovered as intact structures.
VLPs may be purified or extracted using any suitable method, such as chemical or biochemical extraction. VLPs are relatively sensitive to drying, heat, pH, surfactants and detergents. Thus, methods are used to maximize yield, minimize contamination of VLP fractions by cellular proteins, maintain the integrity of the protein or VLP, and, if desired, the associated lipid envelope or membrane Methods of loosening the cell wall to release the protein or VLP may be useful. Minimizing or eliminating the use of detergents or surfactants, such as, for example, SDS or Triton TM X-100 may be advantageous for improving VLP extraction yield. The structure and size of VLPs can then be assessed, for example, by electron microscopy (see fig. 4B) or by size exclusion chromatography.
For enveloped viruses, such as coronaviruses, it may be advantageous for the lipid layer or membrane to be preserved by the virus. The composition of the lipids can vary systematically (e.g., plant-produced enveloped viruses will contain plant lipids or plant sterols in the envelope) and can help improve the immune response.
Thus, VLPs produced in a host or host cell may comprise lipids from the plasma membrane of the host or host cell. For example, VLPs produced in plants may include plant-derived lipids ("plant lipids"), VLPs produced in insect cells may include lipids from the plasma membrane of insect cells (commonly referred to as "insect lipids"), and VLPs produced in mammalian cells may include lipids from the plasma membrane of mammalian cells (commonly referred to as "mammalian lipids").
The plant lipids or plant-derived lipids may be in the form of lipid bilayers and may also include an envelope surrounding the VLP. The plant-derived lipids may include lipid components of the plasma membrane of the plant that produces the VLP, including phospholipids, triglycerides, diglycerides, and monoglycerides, as well as fat-soluble sterols or metabolites comprising sterols. Examples include Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol, phosphatidylserine, glycosphingolipids, phytosterols, or combinations thereof. Examples of phytosterols include campesterol, stigmasterol, ergosterol, brassicasterol, delta-7-stigmasterol, delta-7-aveterol, daunosterol, sitosterol, 24-methylcholesterol, cholesterol, or beta-sitosterol. As will be appreciated by those skilled in the art, the lipid composition of the cytoplasmic membrane may vary depending on the culture or growth conditions of the cell or organism or species from which the cell is obtained. In general, β -sitosterol is the most abundant phytosterol.
Without wishing to be bound by theory, plant-produced VLPs comprising plant-derived lipids may elicit a stronger immune response than VLPs produced in other production systems, and these plant-produced VLPs may elicit a stronger immune response than those elicited by live or attenuated whole virus vaccines.
Furthermore, in addition to the potential adjuvant effect of plant lipids, the ability of plant N-glycans to promote capture of glycoprotein antigens by antigen presenting cells may be beneficial for VLP production in plants.
VLPs produced within plants may include modified viral structural proteins, including plant-specific N-glycans. Accordingly, the present disclosure also provides VLPs comprising modified viral structural proteins with plant-specific N-glycans. Furthermore, VLPs comprising plant lipids and modified viral structural proteins with plant-specific N-glycans are provided.
Methods of producing virus-like particles (VLPs) comprising modified structural proteins in a host or host cell are also provided. In addition, methods of increasing the production yield of virus-like particles (VLPs) comprising modified structural proteins in a host or host cell are provided. These methods comprise introducing a nucleic acid comprising a sequence encoding a modified structural protein into a host or host cell and culturing the host or host cell under conditions that allow expression of the nucleic acid, thereby producing the VLP. The modified viral structural proteins may be produced in higher yields than a host or host cell expressing the unmodified viral structural proteins.
For example, as shown in fig. 3A, the yield of VLPs expressed in a plant may be increased when the Cytoplasmic Tail (CT) of the viral structural protein is replaced with CT of influenza HA to produce a modified viral structural protein, such as, for example, a modified S protein. As further shown in fig. 11A and 11B, when the modified S protein further comprises one or more substitutions, wherein the one or more substitutions comprise a sequence corresponding to SEQ ID NO:2, or one or more substitutions or consists of amino acids at positions 667, 668, 670, 802, 923, 927, 971 and/or 972, the yield of VLPs comprising modified S protein may be further increased when expressed in a plant.
The yield of a modified viral structural protein (such as a modified S protein) or VLP comprising a modified viral structural protein produced in a host or host cell, such as, for example, a plant or plant cell, may be increased by a factor of 1.1-10, or any amount in between, when compared to the yield of the corresponding unmodified viral structural protein or VLP comprising the corresponding unmodified viral structural protein. For example, when compared to the yield of the corresponding unmodified viral structural protein or the yield of VLPs wherein the VLP comprises the corresponding unmodified viral structural protein when produced in the host or host cell under the same conditions, the yield of a modified viral structural protein (e.g., modified S protein) or VLP (including modified viral structural protein) in a host or host cell may be increased by 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 4.7, 4.8, 4.9, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10 times or any amount therebetween.
The modified viral structural proteins described herein include modified S proteins having an amino acid sequence that hybridizes to SEQ ID NO: 1. 2, 5, 21, 30, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 95, 96, 97, 108, 109, 110, 112, 113, 114, 115, 144, 145, 146, 155, 156, 157, 158, 159, 160 or 161, or an amino acid sequence identical to SEQ ID NO:47, amino acids 25-1259, SEQ ID NO:48, amino acids 25-1259, SEQ ID NO:49, amino acids 25-1259, SEQ ID NO:50, amino acids 25-1259, SEQ ID NO:51, amino acids 25-1259, SEQ ID NO:52, amino acids 25-1259, SEQ ID NO:53, amino acids 25-1259, SEQ ID NO:54, amino acids 25-1259, SEQ ID NO:55, amino acids 25-1259, SEQ ID NO:56, amino acids 25-1259, SEQ ID NO:57, amino acids 25-1259, SEQ ID NO:58, amino acids 25-1259, SEQ ID NO:59, amino acids 25-1262, SEQ ID NO:60, amino acids 25-1261, SEQ ID NO:61, amino acids 25-1258, SEQ ID NO:62, amino acids 25-1256, SEQ ID NO:95, amino acids 25-1243, SEQ ID NO:96, amino acids 25-1240, SEQ ID NO:97, amino acids 25-1243, SEQ ID NO:108, amino acids 25-1341, SEQ ID NO:109, amino acids 25-1338, SEQ ID NO:110, amino acids 25-1341, SEQ ID NO:144, amino acids 25-1351, SEQ ID NO:145, amino acids 25-1348, SEQ ID NO:146, amino acids 25-1351, SEQ ID NO:155, amino acids 25-1159, SEQ ID NO:156 or amino acids 25-1156 of SEQ ID NO:157 has about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween, and wherein the modified S protein forms a VLP when expressed in a host or host cell. The amino acid sequences of the extracellular domain and the transmembrane domain of the modified S protein correspond to the amino acid sequences of SEQ ID NO:1, amino acids 1-1234, amino acid sequence corresponding to SEQ ID NO:2, amino acids 1-1219, and SEQ ID NO:5, amino acids 1-1234, amino acid sequence identical to SEQ ID NO:21, amino acids 1-1219, and SEQ ID NO:30, amino acids 1-1243, amino acids corresponding to SEQ ID NO:47, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:48, amino acids 25-1243, amino acids corresponding to SEQ ID NO:49, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:50, amino acids 25-1243, amino acids corresponding to SEQ ID NO:51, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:52, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:53, amino acids 25-1243, and SEQ ID NO:54, amino acids 25-1243, amino acids corresponding to SEQ ID NO:55, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:56, amino acids 125-1243, SEQ ID NO:57, amino acids 25-1243, SEQ ID NO:58, amino acids 25-1243, amino acids corresponding to SEQ ID NO:59, amino acids 25-1242, and SEQ ID NO:60, amino acids 25-1242, amino acid sequence corresponding to SEQ ID NO:61, amino acids 25-1246, or amino acid sequence corresponding to SEQ ID NO:62, amino acids 25-1245, SEQ ID NO:95, amino acids 25-1227, SEQ ID NO:96, amino acids 25-1227, SEQ ID NO:97, amino acids 25-1227, SEQ ID NO:108, amino acids 25-1325, SEQ ID NO:109, amino acids 25-1325, SEQ ID NO:110, amino acids 25-1325, SEQ ID NO:144, amino acids 25-1335, SEQ ID NO:145, amino acids 25-1335, SEQ ID NO:146, amino acids 25-1335 of SEQ ID NO:155, amino acids 25-1143, SEQ ID NO:156 or amino acids 25-1143 of SEQ ID NO:157 from amino acids 25 to 1143 of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween, and the amino acid sequence of the cytoplasmic tail domain (CT) of the modified S protein is identical to SEQ ID NO:15 or a sequence identical to SEQ ID NO: 6. 8, 7, 9, 10, 12, 13, 14 or amino acids 35-50 or amino acids identical to SEQ ID NO:11, or amino acids 34-49 of SEQ ID NO:3, and wherein the modified S protein forms VLPs when expressed in a host or host cell, has 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween.
Furthermore, the modified viral structural protein may be encoded by a nucleotide sequence that hybridizes to a sequence according to SEQ ID NO: 22. 26, 29, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 90, 91, 92, 95, 96, 97, 103, 104, 105, 139, 140, 141, 150, 151 or 152, and wherein the nucleotide sequence encodes a modified S protein that forms a VLP when expressed in a host or host cell has about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount sequence identity or sequence similarity therebetween.
Also provided are nucleotide sequences encoding modified S proteins having a nucleotide sequence that matches SEQ ID NO: 1. 2, 5, 21, 30, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 95, 96, 97, 108, 109, 110, 144, 145, 146, 155, 156, or 157 has an amino acid sequence of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween, and wherein the modified S protein forms a VLP when expressed in a host or host cell. The nucleotide sequence may encode the amino acid sequences of the extracellular domain and transmembrane domain of the modified S protein, which hybridizes with the amino acid sequence of SEQ ID NO:1, amino acids 1-1234, amino acid sequence corresponding to SEQ ID NO:2, amino acids 1-1219, and SEQ ID NO:5, amino acids 1-1234, amino acid sequence identical to SEQ ID NO:21 or amino acids 1-1219 or amino acid sequence corresponding to SEQ ID NO:30, amino acids 1-1243, amino acids corresponding to SEQ ID NO:47, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:48, amino acids 25-1243, amino acids corresponding to SEQ ID NO:49, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:50, amino acids 25-1243, amino acids corresponding to SEQ ID NO:51, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:52, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:53, amino acids 25-1243, and SEQ ID NO:54, amino acids 25-1243, amino acids corresponding to SEQ ID NO:55, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:56, amino acids 25-1243, amino acid sequence corresponding to SEQ ID NO:57, amino acids 25-1243, amino acids corresponding to SEQ ID NO:58, amino acids 25-1243, amino acids corresponding to SEQ ID NO:59, amino acids 25-1242, and SEQ ID NO:60, amino acids 25-1242, amino acid sequence corresponding to SEQ ID NO:61, amino acids 25-1246, amino acid sequence corresponding to SEQ ID NO:62, amino acids 25-1245, amino acid sequence corresponding to SEQ ID NO:95, amino acids 25-1227, amino acid sequence corresponding to SEQ ID NO:96, amino acids 25-1227, amino acids corresponding to SEQ ID NO:97, amino acids 25-1227, amino acid sequence corresponding to SEQ ID NO:108, amino acids 25-1325, and SEQ ID NO:109, amino acids 25-1325, amino acid sequence of SEQ ID NO:110, amino acids 25-1325, and SEQ ID NO:144, amino acids 25-1335, and SEQ ID NO:145, amino acids 25-1335, amino acids corresponding to SEQ ID NO:146, amino acids 25-1335, and SEQ ID NO:155, amino acids 25-1143, amino acid sequence corresponding to SEQ ID NO:156, amino acids 25-1143, amino acid sequence corresponding to SEQ ID NO:157 from amino acids 25 to 1143 of about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween, and the amino acid sequence of the cytoplasmic tail domain of the modified S protein is identical to SEQ ID NO:15, or a sequence identical to SEQ ID NO: 6. 8, 7, 9, 10, 12, 13, 14, or amino acids 35-50, or amino acids identical to SEQ ID NO:11, or amino acids 34-49 of SEQ ID NO:3, and wherein the modified S protein forms a VLP when expressed in a host or host cell, has about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween.
Also provided are nucleotide sequences encoding modified S proteins having a nucleotide sequence that matches SEQ ID NO: 5. 21, 30 or 47-62, or an amino acid sequence that hybridizes with SEQ ID NO:47, amino acids 24-1259, seq ID NO:48, amino acids 25-1259, seq ID NO:49, amino acids 25-1259, seq ID NO:50, amino acids 25-1259, seq ID NO:51, amino acids 25-1259, seq ID NO:52, amino acids 25-1259, seq ID NO:53, amino acids 25-1259, seq ID NO:54, amino acids 25-1259, seq ID NO:55, amino acids 25-1259, seq ID NO:56, amino acids 25-1259, seq ID NO:57, amino acids 25-1259, seq ID NO:58, amino acids 25-1259, seq ID NO:59, amino acids 25-1262, seq ID NO:60, amino acids 25-1261, seq ID NO:61, amino acids 25-1258, seq ID NO:62, amino acids 25-1256, seq ID NO:95, amino acids 25-1243, seq ID NO:96, amino acids 25-1240, seq ID NO:97, amino acids 25-1243, seq ID NO:108, amino acids 25-1341, seq ID NO:109, amino acids 25-1338, seq ID NO:110, amino acids 25-1341, seq ID NO:144, amino acids 25-1351, seq ID NO:145, amino acids 25-1348, seq ID NO:146, amino acids 25-1351, seq ID NO:155, amino acids 25-1159 of seq ID NO:156, amino acids 25-1156, seq ID NO:157 has about 70, 75, 80, 85, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or any amount of sequence identity or sequence similarity therebetween, and wherein the modified S protein forms a VLP when expressed in a host or host cell.
When referring to a particular sequence, the terms "percent similarity", "sequence similarity", "percent identity" or "sequence identity" are used, for example, as described in the university of wisconsin GCG software program, or by manual alignment and visual inspection (see, e.g., current Protocols in Molecular Biology, supplement to Ausubel et al, main edition 1995). Sequence alignment methods for comparison are well known in the art. The optimal sequence alignment for comparison may be implemented using, for example, the following algorithm: the Smith & Waterman algorithm (1981, adv. Appl. Math. 2:482), the Needleman & Wunsch alignment algorithm (1970, J. Mol. Biol. 48:443), the Pearson & Lipman search similarity method (1988,Proc.Natl.Acad.Sci.USA 85:2444), computerized implementation of these algorithms (e.g., GAP, BESTFIT, FASTA and TFASTA, genetics Computer Group (GCG) in Wisconsin Genetics packages, 575Science Dr., madison, wis.).
Examples of algorithms suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al (1977,Nuc.Acids Res.25:3389-3402) and Altschul et al (1990, J. Mol. Biol. 215:403-410), respectively. The percent sequence identity of the nucleic acids and proteins disclosed herein are determined using BLAST and BLAST 2.0 and with the parameters described herein. For example, the BLASTN program (for nucleotide sequences) can use a 11 word length (W), a 10 expected value (E), m=5, n= -4, and default values for two strand comparisons. For amino acid sequences, the BLASTP program can use the word length=3, the expected value (E) =10, and the deletion values of the BLOSUM62 scoring matrix (see Henikoff & Henikoff,1989,Proc.Natl.Acad.Sci.USA 89:10915), the alignment (B) =50, the expected value (E) =10, m=5, n= -4, and the deletion values of the two strand comparisons. The software for performing BLAST analysis is publicly available through the national center for Biotechnology information (National Center for Biotechnology Information) (see URL: ncbi.nlm.nih.gov /).
A nucleic acid sequence or nucleotide sequence referred to in the present disclosure may be "substantially homologous", "substantially similar" or "substantially identical" to a sequence or complement of a sequence, if the sequence hybridizes to one or more than one nucleotide sequence or complement of a sequence as defined herein under stringent hybridization conditions. Sequences are "substantially homologous," "substantially similar," or "substantially identical" when at least about 70%, or between 70% and 100%, or any amount therebetween, e.g., 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100%, or any amount therebetween, of nucleotides match over a defined length of nucleotide sequence, so long as the homologous sequences exhibit one or more characteristics of the sequences or encoded products as described herein.
A variety of organisms exhibit a preference for using specific codons to encode the insertion of specific amino acids in a growing peptide chain. Codon preference or codon bias (differences in codon usage between organisms) is provided by the degeneracy of the genetic code and is well documented in a variety of organisms. Codon bias is generally related to the efficiency of translation of messenger RNA (mRNA), which in turn is believed to depend on the nature of the codon being translated, availability of particular transfer RNA (tRNA) molecules, and the like. The dominance of the selected tRNA in the cell generally reflects codons most commonly used in peptide synthesis. Thus, based on codon optimisation, genes can be regulated for optimal gene expression in a given organism. The optimization of nucleotide sequences encoding heterologous expressed proteins may be an important step in improving expression yields. The optimization requirements may include a step of improving the ability of the host to produce the exogenous protein.
Different codon optimization techniques are known in the art for improving the translational kinetics of protein coding regions where translation is inefficient. These techniques rely primarily on the use of codons to identify certain host organisms. If a gene or sequence should be expressed in the organism, the coding sequences for these genes and sequences will be modified so that one will replace the codons of the sequence of interest with codons more commonly used in the host organism.
"codon optimization" is defined as modifying a nucleic acid sequence to enhance expression in a host or host cell of interest by replacing at least one, more than one, or a large number of codons of the native sequence, which codons may be more or most commonly used in genes of another organism or species. Various species show a specific bias for a particular codon for a particular amino acid.
The present disclosure includes synthetic polynucleotide sequences that have been codon optimized, e.g., sequences that have been optimized for human codon usage or plant codon usage. The codon optimized polynucleotide sequence can then be expressed in a host, such as a plant. More specifically, sequences optimized for human codon usage or plant codon usage may be expressed in plants. Without wishing to be bound by theory, it is believed that the sequence optimized for human codons increases the guanine-cytosine content (GC content) of the sequence and improves expression yield when the plant is used as a host.
As used herein, the term "construct," "vector," or "expression vector" refers to a recombinant nucleic acid for transferring an exogenous nucleotide sequence (e.g., a nucleotide sequence encoding a modified viral structural protein as described herein) to a host cell (e.g., a plant cell) and directing expression of the exogenous nucleic acid sequence in the host cell. An "expression cassette" refers to a nucleic acid comprising a nucleotide sequence of interest under the control of and operably linked to a suitable promoter or other regulatory element for transcription of the nucleic acid of interest in a host cell. As will be appreciated by those of skill in the art, an expression cassette may comprise a terminator sequence, which is any sequence active in a host cell (e.g., a plant host). For example, in plants, the termination sequence may be derived from an RNA-2 genomic segment of a binary RNA virus, e.g., cowpea mosaic virus, the termination sequence may be a NOS terminator, or the termination sequence may be derived from the 3' utr of the alfalfa plastocyanin gene.
As described herein, a nucleic acid comprising a nucleotide sequence encoding a modified viral structural protein may also comprise a sequence that enhances expression of the viral structural protein in a host, a portion of a host, or a host cell. The expression enhancing sequence may comprise a 5' utr enhancer element, or a plant-derived expression enhancer, which is operably linked to a nucleic acid encoding the modified viral structural protein. The sequences encoding the modified viral structural proteins can also be optimized to increase expression, for example, by optimizing human codon usage, increasing GC content, or a combination thereof.
"regulatory region", "regulatory element" or "promoter" means the portion of nucleic acid that is usually, but not always, upstream of the protein coding region of a gene, and which may consist of DNA or RNA, or of both DNA and RNA. When the regulatory region is active and operably associated or operably linked to a nucleotide sequence of interest, this may result in expression of the nucleotide sequence of interest. Regulatory elements may be capable of mediating organ specificity, or controlling development or temporal gene activation. "regulatory region" includes promoter elements, core promoter elements exhibiting basal promoter activity, inducible elements responsive to external stimuli, elements mediating promoter activity, such as negative regulatory elements or transcriptional enhancers. As used herein, a "regulatory region" also includes elements that are active post-transcriptionally, e.g., regulatory elements that regulate gene expression, such as translation and transcription enhancers, translation and transcription repressors, upstream activating sequences, and mRNA instability determinants. Several of these latter elements may be located near the coding region.
In the context of the present disclosure, the term "regulatory element" or "regulatory region" generally refers to a DNA sequence that is generally, but not always, upstream (5') of the coding sequence of a structural gene that controls expression of the coding region by providing for the recognition of RNA polymerase and/or other factors required to initiate transcription at a particular site. However, it will be appreciated that other nucleotide sequences located within an intron or at the 3' end of the sequence may also be useful in regulating expression of the coding region of interest. An example of a regulatory element that provides for the recognition of RNA polymerase or other transcription factors to ensure initiation at a particular site is a promoter element. Most, but not all, eukaryotic promoter elements contain a TATA box, which is a conserved nucleic acid sequence consisting of adenosine and thymidine nucleotide base pairs, typically located about 25 base pairs upstream of the transcription initiation site. The promoter element may comprise a basic promoter element responsible for transcription initiation and other regulatory elements that alter gene expression.
There are several types of regulatory regions, including developmental regulatory, inducible or constitutive regulatory regions. At a particular time during development of certain organs or tissues, regulatory regions of developmental regulation or control of differential expression of genes under their control are activated within the organ or tissue. However, some of the developmentally regulated regulatory regions may be preferentially active in certain organs or tissues at a particular developmental stage, they may also be active in a developmentally regulated manner, or may also be at basal levels in other organs or tissues within the plant. Examples of tissue-specific regulatory regions (e.g., seed-specific regulatory regions) include the napin promoter and the cresselin promoter (Rask et al 1998,J.Plant Physiol.152:595-599; bilodeau et al 1994,Plant Cell 14:125-130). Examples of leaf-specific promoters include the plastocyanin promoter (see US 7,125,978, incorporated herein by reference).
Inducible regulatory regions are regulatory regions capable of directly or indirectly activating one or more DNA sequences or genes in response to an inducer. In the absence of an inducer, the DNA sequence or gene will not be transcribed. In general, a protein factor that specifically binds to an inducible regulatory region to activate transcription may exist in an inactive form and then be converted directly or indirectly to an active form by an inducer. However, protein factors may also be absent. The inducer may be a chemical agent such as a protein, metabolite, growth regulator, herbicide or phenolic compound, or a physiological stress applied directly by heat, cold, salt or toxic elements or indirectly by the action of a pathogen or disease agent, such as a virus. Plant cells comprising the inducible regulatory region may be exposed to the inducer by externally applying the inducer to the cell or plant, for example by spraying, watering, heating or the like. The inducible regulatory element may be derived from a plant or non-plant gene (e.g., gatz, C.and Lenk, I.R.P.,1998,Trends Plant Sci.3,352-358). Examples of potential inducible promoters include, but are not limited to, tetracycline-inducible promoters (Gatz, C.,1997,Ann.Rev.Plant Physiol.Plant Mol.Biol.48,89-108), steroid-inducible promoters (Aoyama, T.and Chua, N.H.,1997,Plant J.2,397-404) and ethanol-inducible promoters (Salter, M.G., et al, 1998,Plant Journal16,127-132; cadrick, M.X., et al, 1998,Nature Biotech.16,177-180), cytokinin-inducible IB6 and CKI1 genes (Brandstatter, I.and Kieber, J.J.,1998,Plant Cell 10,1009-1019; kakimoto, T.,1996,Science 274,982-985), and an auxin-inducible element DR5 (Ulmasov, T., et al, 1997,Plant Cell 9,1963-1971).
The constitutive regulatory regions direct gene expression at different parts of a plant and continue to be expressed during plant development. Examples of known constitutive regulatory elements include promoters associated with CaMV 35S transcripts. (p 35S; odell et al, 1985, nature,313:810-812; this document is incorporated herein by reference), rice actin 1 (Zhang et al, 1991,Plant Cell,3:1155-1165), actin 2 (An et al, 1996, plant J., 10:107-121) or tms 2 (U.S. 5,428, 147) and triose phosphate isomerase 1 (Xu et al, 1994,Plant Physiol.106:459-467) genes, maize ubiquitin 1 gene (Cornejo et al, 1993,Plant Mol.Biol.29:637-646), arabidopsis ubiquitin 1 and 6 genes (Holtorf et al, 1995,Plant Mol.Biol.29:637-646), tobacco translation initiation factor 4A gene (Mandel et al, 1995Plant Mol.Biol.29:995-1004), cassava vein mosaic virus promoter AS (Verdaguer et al, 1996); the ribulose bisphosphate carboxylase small subunit promoter pRbcS: (Outchkourov et al, 2003), pUbi (for monocots and dicots).
The term "constitutive" as used herein does not necessarily mean that the nucleotide sequence is expressed at the same level in all cell types under the control of constitutive regulatory regions, but that the sequence is expressed in a wide range of cell types even if changes in abundance are often observed.
The one or more genetic constructs disclosed herein may also include other enhancers, i.e., translational or transcriptional enhancers, as desired. Enhancers may be located 5 'or 3' to the transcribed sequence. Enhancer regions are well known to those skilled in the art and may include the ATG start codon, adjacent sequences, and the like. The initiation codon, if present, may be in-phase with the reading frame of the coding sequence ("in-frame") to provide for proper translation of the transcribed sequence.
The term "5'UTR" or "5' untranslated region", "5 'leader sequence" or "5' UTR enhancer element" refers to an untranslated mRNA region. The 5' UTR typically starts at the transcription initiation site and ends before the translation initiation site or start codon of the coding region. The 5' utr may regulate stability and/or translation of mRNA transcripts.
As used herein, the term "plant-derived expression enhancer" refers to a nucleotide sequence derived from a plant, a nucleotide sequence encoding a 5' utr. Examples of plant-derived expression enhancers are described in U.S. provisional patent application No.62/643,053 (filed on day 14 of 3.2018) and International application No. PCT/CA2019/050319 (filed on day 14 of 3.2019), which are incorporated herein by reference, or in Diamond A.G et al (2016,Front Plt Sci.7:1-15; which is incorporated herein by reference). Plant-derived expression enhancers may be selected from the group consisting of nbEPI42, nbSNS46, nbCSY65, nbHEL40, nbSEP44, nbMT78, nbATL75, nbDJ46, nbCSHP 79, nbEN42, atHSP69, atGRP62, atPK65, atRP46, nb30S72, nbGT61, nbPV55, nbPPI43, nbPM64 and nbH A86 as described in U.S. Pat. No.62/643,053 and PCT/CA 2019/050319. The plant-derived expression enhancers can be used within a plant expression system that includes a regulatory region operably linked to the plant-derived expression enhancer sequence and a nucleotide sequence of interest (e.g., a nucleotide sequence encoding a modified S protein).
The stability and/or translation efficiency of RNA can be further improved by including a 3 'untranslated region (3' UTR). Thus, one or more genetic constructs of the present description may also include a 3' utr.
The 3' untranslated region may contain polyadenylation signals and any other regulatory signals capable of affecting mRNA processing or gene expression. Polyadenylation signals are generally characterized by affecting the addition of polyadenylation chains to the 3' end of the mRNA precursor. Polyadenylation signals are generally recognized by the presence of homology to the canonical form 5'AATAAA-3', although variations are not uncommon. Non-limiting examples of suitable 3 'regions are untranslated regions containing the following 3' transcripts: agrobacterium (Agrobacterium) tumor-inducing (Ti) plasmid genes, such as nopaline synthase (Nos gene) and plant genes, such as polyadenylation signals of soybean storage protein genes, ribulose-1, 5-bisphosphate carboxylase small subunit genes (ssRUBISCO; U.S. Pat. No. 4,962,028; incorporated herein by reference), promoters for use in regulating the expression of plastid bluein, are described in U.S. Pat. No. 5, 7,125,978 (incorporated herein by reference); 3' UTR (SEQ ID NO: 40) from Arracach virus B segregation gene (AvB), 3' UTR (SEQ ID NO: 41) from beet necrotic yellow vein virus (trBNYVV), 3' UTR (SEQ ID NO: 42) from Southern Bean Mosaic Virus (SBMV), 3' UTR (SEQ ID NO: 43) from turnip round spot virus (TuRSV), 3' UTR (SEQ ID NO: 44) from cowpea mosaic virus (CPMV), 3' UTR (SEQ ID NO: 45) from broad bean eukaryotic mosaic virus (BBTMV) or 3' UTR (SEQ ID NO: 46) from European melon virus (trOUMV). The 3'UTR may be used in combination with a 5' UTR derived from a heterologous sequence to regulate expression levels.
Thus, provided are "constructs," "vectors," "expression vectors," or "expression cassettes," which include nucleic acids comprising a nucleotide sequence of interest (e.g., a modified viral structural protein) under the control of and operably linked to a 3' utr. In addition, the nucleic acid can include a 3' UTR operably linked (or operably linked) to a nucleotide sequence of interest (e.g., a modified viral structural protein).
The modified viral structural protein may be targeted to any intracellular or extracellular space, organelle or tissue of the host of a host cell (e.g., plant or plant cell), as desired. In order to localize the expressed protein to a specific location, the nucleic acid encoding the protein may be linked to a nucleic acid sequence encoding a signal peptide or leader sequence. The signal peptide may alternatively be referred to as a transit peptide, signal sequence, leader sequence, targeting signal, localization sequence, transit peptide or leader peptide.
One or more modified genetic constructs of the present description may be expressed in any suitable host or host cell transformed with a nucleic acid, or nucleotide sequence, or construct or vector, as disclosed herein. The host or host cell may be from any source, including plants, fungi, bacteria, insects, and animals, e.g., mammals. Thus, the host or host cell may be selected from plants or plant cells, fungi or fungal cells, bacteria or bacterial cells, insect or insect cells, and animal or animal cells. The mammal or animal may not be a human. In a preferred embodiment, the host or host cell is a plant, a part of a plant or a plant cell.
As used herein, the terms "plant", "part of a plant", "plant part", "plant matter", "plant biomass", "plant material", "plant extract" or "plant leaf" may include whole plants, tissues, cells or any parts thereof, intracellular plant components, extracellular plant components, liquid or solid extracts of plants or combinations thereof, which are capable of providing transcriptional, translational and posttranslational mechanisms for expression of one or more of the nucleic acids described herein, and/or from which expressed proteins or VLPs may be extracted and purified. Plants may include, but are not limited to, herbaceous plants. The herb may be an annual, biennial or perennial plant. Plants may also include, but are not limited to, crops including, for example, canola, brassica spp, corn, nicotiana spp (tobacco), such as Nicotiana benthamiana Nicotiana benthamiana, nicotiana tabacum Nicotiana rustica, nicotiana Nicotiana tabacum, nicotiana tabacum, arabidopsis thaliana Arabidopsis thaliana, alfalfa, potato, sweet potato, ginseng, pea, oat, rice, soybean, wheat, barley, sunflower, cotton, corn, rye (Secale cereale), sorghum (Sorghum bicolor), sorghum (Sorghum vulgare), safflower (Carthamus tinctorius).
As used herein, the term "plant part" refers to any plant part including, but not limited to, leaves, stems, roots, flowers, fruits, plant cells from leaves, stems, roots, flowers, fruits, plant extracts from leaves, stems, roots, flowers, fruits, or combinations thereof. In one embodiment, the plant part refers to an aerial part of a plant, such as (for example) leaves, stems, flowers and fruits. As used herein, the term "plant extract" refers to a plant-derived product obtained after treatment of a plant, plant part, plant cell, or combination thereof, either physically (e.g., by freezing, then extracting in a suitable buffer), mechanically (e.g., by grinding or homogenizing the plant or plant part, then extracting in a suitable buffer), enzymatically (e.g., using a cell wall degrading enzyme), chemically (e.g., using one or more chelating agents or buffers), or by a combination thereof. The plant extract may be further treated to remove undesirable plant components, such as cell wall debris. Plant extracts may be obtained to aid in the recovery of one or more components from a plant, plant part, or plant cell, for example, recovery of proteins (including protein complexes, protein superstructures, and/or VLPs), nucleic acids, lipids, carbohydrates, or combinations thereof from a plant, plant part, or plant cell. If the plant extract comprises a protein, it may be referred to as a protein extract. The protein extract may be a crude plant extract, a partially purified plant or protein extract, or a purified product comprising one or more proteins from plant tissue, protein complexes, such as, for example, protein trimers, protein superstructures, and/or VLPs. If desired, the protein extract or plant extract may be partially purified using techniques known to those skilled in the art, e.g., the extract may be subjected to salt or pH precipitation, centrifugation, gradient density centrifugation, filtration, chromatography, e.g., size exclusion chromatography, ion exchange chromatography, affinity chromatography, or combinations thereof. The protein extract may also be purified using techniques known to those skilled in the art.
The constructs disclosed herein can be introduced into plant cells using Ti plasmids, ri plasmids, plant viral vectors, direct DNA transformation, microinjection, electroporation, and the like. For a review of these techniques see, e.g., weissbach and Weissbach, methods for Plant Molecular Biology, academy Press, new York VIII, pages 421-463 (1988); geierson and Corey, plant Molecular Biology, version 2 (1988); and Miki and Iyer Fundamentals of Gene Transfer in plants in Plant Metabolism, 2 nd edition DT. Dennis, DH Turpin, DD Lefebvre, DB Layzell (Main works), addison Wesley, langmans Ltd. London, pages 561-579 (1997). Other methods include direct DNA introduction, use of liposomes, electroporation, e.g., using protoplasts, microinjection, microparticles or whiskers, and vacuum infiltration. See, for example, bilang et al (Gene 100:247-250 (1991)), scheid et al (mol. Gen. Genet.228:104-112, 1991), guerche et al (Plant Science 52:111-116,1987), neuhuse et al (Theor. Appl Genet.75:30-36,1987), klein et al (Nature 327:70-73 (1987)); howell et al (Science 208:1265, 1980), horsch et al (Science 227:1229-1231,1985), deBlock et al (Plant Physiology 91:694-701,1989), methods for Plant Molecular Biology (Weissbach and Weissbach Main plaited, academic Press Inc., 1988), methods in Plant Molecular Biology (Schuler and Zielinski Main plaited, academic Press Inc., 1989), liu and Lomonossoff (J Virol Meth,105:343-348,2002), U.S. Pat.No.4,945,050;5,036,006; and U.S. patent application Ser. No.08/438,666, filed 5,792, 5/10/1992, and U.S. patent application Ser. No.07/951,715, filed 9/25/1992, all of which are incorporated herein by reference.
As described below, transient expression methods may be used to express the disclosed constructs (see Liu and Lomonossoff,2002,Journal of Virological Methods,105:343-348; incorporated herein by reference). Alternatively, a vacuum-based transient expression method may be used, as described in Kapila et al, 1997, which is incorporated herein by reference. Such methods may include, for example, but are not limited to, methods of Agrobacterium inoculation or Agrobacterium infiltration, syringe infiltration, although other transient methods as described above may also be used. The mixture of Agrobacteria (Agrobacteria) comprising the desired nucleic acid is introduced into the interstitial space of the tissue by agroinoculation, agroinfiltration or syringe infiltration, for example the leaves, aerial parts (including stems, leaves and flowers) of the plant, other parts of the plant (stems, roots, flowers) or the whole plant. After passage through the epidermis, agrobacterium (Agrobacterium) infects and transfers copies of t-DNA into the cells. The t-DNA is transcribed as an episome and its mRNA translated, resulting in the production of the protein of interest in the infected cell, however, t-DNA is transient into the nucleus.
To aid in the identification of transformed plant cells, the constructs disclosed herein may also be manipulated to include plant selectable markers. Useful selectable markers include enzymes that provide resistance to chemicals such as antibiotics, e.g., gentamicin, hygromycin, kanamycin, or herbicides such as glufosinate, glyphosate, chlorsulfuron, and the like. Similarly, enzymes for producing compounds recognizable by a color change, such as GUS (β -uridylase), or by fluorescence, e.g., luciferase or GFP, may be used.
Transgenic plants, plant cells or seeds containing the disclosed genetic constructs are also considered part of the disclosure, which may be used as a platform plant suitable for transient protein expression as described herein. Methods for regenerating whole plants from plant cells are also known in the art (see, e.g., guerineau and Mullineaux (1993,Plant transformation and expression vectors.In:Plant Molecular Biology Labfax (Croy RRD ed) Oxford, BIOS Scientific Publishers, pages 121-148)). Typically, the transformed plant cells are cultured in a suitable medium, which may contain a selection agent, such as an antibiotic, wherein a selectable marker is used to facilitate recognition of the transformed plant cells. Once callus is formed, shoot formation can be promoted by using appropriate plant hormones according to known methods and the shoots transferred to rooting medium for plant regeneration. Plants can then be used to establish repeated generations from seeds or using vegetative propagation techniques. Transgenic plants can be produced without the use of tissue culture. Methods for stably transforming and regenerating these organisms are established in the art and are known to those skilled in the art. Available techniques are reviewed by Vasil et al (Cell Culture and Somatic Cell Genetics of Plants, volumes I, II and III, laboratory Procedures and Their Applications, academic Press, 1984) and Weissbach and Weissbach (Methods for Plant Molecular Biology, academic Press, 1989). The method of obtaining the transformed and regenerated plants is not critical to the present disclosure.
If a plant, plant part or plant cell is to be transformed or co-transformed with two or more nucleic acid constructs, the nucleic acid constructs may be introduced into Agrobacterium (Agrobacterium) in a single transfection event, thereby mixing the nucleic acids and transfecting the bacterial cells. Alternatively, the constructs may be introduced sequentially. In this case, as described, the first construct is introduced into Agrobacterium, and the cells are grown under selective conditions (e.g., in the presence of antibiotics) where only a single transformed bacterium can grow. After this first selection step, a second nucleic acid construct is introduced into Agrobacterium (agrobacteria) as described, and the cells are grown under dual selective conditions in which only dual transformed bacteria can grow. The doubly transformed bacteria may then be used to transform a plant, plant part or plant cell as described herein, or further transformation steps may be performed to house the third nucleic acid construct.
Alternatively, if a plant, plant part or plant cell is to be transformed or co-transformed with two or more nucleic acid constructs, the nucleic acid constructs may be introduced into the plant by co-infiltrating Agrobacterium cells (agrobacteria) with a mixture of plants, plant parts or plant cells, each Agrobacterium (agrobacteria) cell may comprise one or more constructs to be introduced into the plant. To alter the relative expression level of the nucleotide sequence of interest within the construct within the plant, plant part or plant cell, the concentration of the various Agrobacterium (Agrobacterium) populations comprising the desired construct may be altered during the infiltration step.
The modified viral surface proteins or VLPs comprising the modified viral surface proteins as described herein may be used to elicit an immune response in a subject.
An "immune response" generally refers to a response of the adaptive immune system of a subject. The adaptive immune system generally includes humoral immune responses and cell-mediated responses. Humoral immune responses are aspects of immunity mediated by secreted antibodies produced in cells of the B lymphocyte lineage (B cells). Secreted antibodies bind to antigens on the surface of invading microorganisms (e.g., viruses or bacteria), labeling them for destruction. Humoral immunity is generally used to represent antibody production and its accompanying processes, as well as effector functions of antibodies, including Th2 cell activation and cytokine production, memory cell production, opsonin promotion of phagocytosis, pathogen clearance, and the like. The term "modulate" and like terms refer to an increase or decrease in a particular response or parameter, as determined by any of several assays generally known or used, some of which are exemplified herein.
The cell-mediated response is an immune response that does not involve antibodies, but rather involves activation of macrophages, natural killer cells (NK), antigen-specific cytotoxic T-lymphocytes, and release of multiple cytokines in response to the antigen. Cell-mediated immunity is generally used to represent certain Th cell activation, tc cell activation and T cell-mediated responses. Cell-mediated immunity may be particularly important in responding to viral infections.
For example, induction of antigen-specific CD 8-positive T lymphocytes can be measured using an ELISPOT assay; stimulation of CD4 positive T lymphocytes can be measured using proliferation assays. Anti-coronavirus antibody titers can be quantified using ELISA assays; isotypes of antigen-specific or cross-reactive antibodies can also be measured using anti-isotype antibodies (e.g., anti IgG, igA, igE or IgM). Methods and techniques for performing these assays are well known in the art.
The presence or level of an cytokine may also be quantified. For example, a T helper cell response (Th 1/Th 2) will be characterized by measurement of IFN-. Gamma.and IL-4 secreting cells by ELISA (e.g., BD Biosciences OptEIA kit). Peripheral Blood Mononuclear Cells (PBMCs) or spleen cells obtained from a subject may be cultured and the supernatant analyzed. T lymphocytes can also be quantified by Fluorescence Activated Cell Sorting (FACS) using marker specific fluorescent markers and methods known in the art.
A trace neutralization assay can also be performed to identify immune responses in a subject, see, e.g., the method of Rowe et al, 1973. Virus neutralization titers can be quantified in a number of ways, including: lysis plaques were counted after crystal violet fixation/staining of the cells (plaque assay); microscopic observation of cell lysis in vitro culture; and 2) ELISA and spectrophotometric detection of coronaviruses.
As used herein, the term "epitope" or "epitopes" refers to the structural portion of an antigen to which an antibody specifically binds.
Methods of producing antibodies or antibody fragments are provided, the methods comprising administering a modified viral structural protein, trimer or a modified viral structural protein of a trimer or a VLP comprising a modified viral structural protein as described herein to a subject, or host animal, thereby producing antibodies or antibody fragments. Antibodies or antibody fragments produced by the methods are also provided.
Thus, the present disclosure also provides for the use of a viral structural protein or VLP comprising a modified viral structural protein as described herein for inducing immunity to a coronavirus infection in a subject. Also disclosed herein are antibodies or antibody fragments prepared by administering a modified viral structural protein or VLP comprising the modified viral structural protein to a subject or host animal.
Also provided are compositions comprising an effective dose of a modified viral structural protein as described herein or a VLP comprising the modified viral structural protein, and a pharmaceutically useful carrier, adjuvant, vehicle or excipient for inducing an immune response in a subject. Also provided are vaccines for inducing an immune response to a coronavirus in a subject, wherein the vaccine comprises an effective dose of a modified viral structural protein or VLPs comprising the modified viral structural protein.
Also provided are compositions, which may include a mixture of VLPs, provided that at least one VLP within the composition comprises a modified coronavirus S protein as described herein. For example, each coronavirus S protein from each of one or more coronavirus families, subgroups, types, subtypes, lineages or strains comprising one or more than one modified S protein may be expressed and the corresponding VLP purified. Virus-like particles obtained from two or more than two coronavirus families, subgroups, types, subtypes, lineages or strains (e.g., two, three, four, five, six, seven, eight, nine, ten or more coronavirus families, subgroups, types, subtypes, lineages or strains) can be combined as desired to produce a mixture of VLPs, so long as one or more of the mixture of VLPs comprises a modified S protein as described herein. VLPs may be combined or produced in a desired ratio, e.g., in about comparable proportions, or in a manner such that one coronavirus family, subgroup, type, subtype, lineage or strain comprises a majority of VLPs in the composition. Also provided are compositions of VLPs comprising one or more modified S proteins having an extracellular domain and/or a TM or portion of a TM derived from each of one or more than one coronavirus family, subgroup, type, subtype, lineage or strain, whereby a mixture of different modified S proteins as provided in the present disclosure may be present in any individual VLP of the composition.
The composition or vaccine may comprise VLPs comprising modified viral structural proteins, such as modified S proteins from one type of coronavirus family, subgroup, type, subtype, lineage or strain, or the composition or vaccine may comprise multiple VLP types, wherein each VLP type comprises a modified S protein, wherein the modified S proteins in the same VLP are derived from one type of coronavirus family, subgroup, type, subtype, lineage or strain, i.e. the composition or vaccine may comprise a mixture of different coronavirus VLPs, wherein each may comprise modified S proteins from the same coronavirus family, subgroup, type, subtype, lineage or strain. For example, the composition or vaccine may include a first VLP comprising a first modified S protein from a first coronavirus family, subgroup, type, subtype, lineage, or strain, and a second VLP comprising a second modified S protein from a second coronavirus family, subgroup, type, subtype, lineage, or strain. In addition, the composition may further comprise a third VLP comprising a third modified S protein from a third coronavirus family, subgroup, type, subtype, lineage or strain, and/or the composition or vaccine may comprise a fourth VLP comprising a fourth modified S protein from a fourth coronavirus family, subgroup, type, subtype, lineage or strain. Thus, the present description also provides monovalent (monovalent) or multivalent (multivalent) compositions or vaccines. The monovalent composition or vaccine may immunize a subject against a single type of coronavirus strain, while the multivalent composition or vaccine may immunize a subject against more than one coronavirus strain. For example, the composition or vaccine may be a bivalent composition or vaccine that upon administration can immunize a subject against two different types of coronavirus families, subgroups, types, subtypes, lineages, or strains. Furthermore, the composition or vaccine may be a trivalent composition, or the vaccine or composition may be a tetravalent or tetravalent composition or vaccine.
In addition, the multivalent composition may comprise VLPs comprising one or more than one modified S protein with different HA cytoplasmic tails. For example, the multivalent composition can comprise a VLP or a VLP comprising two or more modified S proteins, each comprising an S protein extracellular domain, an S protein transmembrane domain, and a cytoplasmic tail derived from HA of influenza H1, H3, H5, H6, H7, H9, or B strain. Non-limiting examples of influenza strains are, for example, H1California/7/2009, H3A/Minnesota/41/2019, H5A/Indonesia/5/05, H6A/Teal/Hong Kong/W312/97, H7A/Guangdong/17 SF003/2016, H9A/Hong Kong/1073/99 or B/Washington/02/2019.
Multivalent compositions or vaccines having multiple types of VLPs may also include pharmaceutically acceptable carriers, adjuvants, vehicles, or excipients for eliciting an immune response in a subject.
Adjuvant systems for enhancing the immune response of a subject to a vaccine antigen are well known and may be used in combination with a vaccine or pharmaceutical composition as described herein. Various types of adjuvants may be used. Common adjuvants for human use are aluminum hydroxide, aluminum phosphate and calcium phosphate. There are also some adjuvants based on oil emulsions (oil-in-water or water-in-oil emulsions, such as Freund's Incomplete Adjuvant (FIA), montanide TM Adjuvant 65 and Lipovant TM ) Products from bacteria (or synthetic derivatives thereof), endotoxins, fatty acids, paraffin oils or vegetable oils, cholesterol and fatty amines or natural organic compounds such as, for example, squalene. Non-limiting adjuvants that may be used include, for example, an oil-in-water emulsion of squalene oil (e.g., MF-59 or AS 03), an adjuvant consisting of synthetic TLR4 agonist Glucopyranosyl Lipid A (GLA) incorporated into a Stable Emulsion (SE) (GLA-SE), or CpG 1018 (toll-like receptor (TLR 9) agonist adjuvant).
Thus, a vaccine or pharmaceutical composition may include one or more than one adjuvant. For example, the vaccine or pharmaceutical composition may comprise aluminium hydroxide, aluminium phosphate, calcium phosphate, an oil-in-water or water-in-oil emulsion, an emulsion comprising squalene (e.g. MF-59 or AS 03), an emulsion comprising GLA-SE, or a CpG 1018 adjuvant.
The pharmaceutical compositions, vaccines or formulations in the present description may be prepared in a manner known per se, for example by conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tabletting processes.
The pharmaceutical composition, vaccine or formulation may be produced by mixing or premixing any of the constituent components prior to administration, for example, by manually or mechanically assisted mixing of two or more vaccine suspensions, pharmaceutically acceptable carriers, adjuvants, vehicles or excipients, as a step carried out prior to administration of the final formulation, vaccine or pharmaceutical composition.
The pharmaceutical composition, vaccine or formulation may be administered to a subject orally, intradermally, intranasally, intramuscularly, intraperitoneally, intravenously or subcutaneously.
The injection may be prepared in conventional form as a liquid solution or suspension, as a solid form suitable for solution or suspension in a liquid prior to injection, or as an emulsion. Suitable excipients are, for example, water, saline, dextrose, mannitol, lactose, lecithin, albumin, sodium glutamate, cysteine hydrochloride and the like. In addition, the injectable pharmaceutical composition may contain small amounts of non-toxic auxiliary substances, such as wetting agents, pH buffers, etc., if desired. Physiologically compatible buffers include, but are not limited to, hank's solution, ringer's solution, or physiological saline buffer. Absorption enhancing agents (e.g., liposomes) may be used if desired.
The composition or vaccine may be administered to the subject at one time (single dose). Furthermore, the vaccine or composition may be administered to the subject multiple times (multiple doses). Thus, the composition, formulation or vaccine may be administered to the subject in a single dose to elicit an immune response, or the composition, formulation or vaccine may be administered multiple times (multiple doses). For example, a dose of the composition or vaccine may be administered 2, 3, 4, or 5 times. Thus, the composition or vaccine may be administered to the subject in an initial dose, followed by one or more doses. The administration of the doses may be separated in time from each other. For example, after administration of an initial dose, one or more subsequent doses may be administered at 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, or 6 months, or from any time between administration of initial doses. Furthermore, the composition or vaccine may be administered once a year. For example, the composition or vaccine may be administered as a seasonal vaccine.
The present disclosure also provides the following sequences.
Table 4: SEQ ID NO and sequence illustration
The invention will be further illustrated in the following examples.
Examples
Example 1: modified structural proteinsPreparation of the constructs
SARS-CoV-2S protein constructs are produced using techniques well known in the art. For example, SARS-COV-2 spike protein with wtTMCT (construct numbers 8586, 8589, 8591, see FIGS. 8A-8C) was cloned as described below. Constructs of SARS-COV-2 spike protein with H5iTMCT (construct numbers 8592, 8595, 8597, see FIGS. 9A-9C) and constructs of SARS-COV-2 spike protein with H5iCT (construct numbers 8610, 8611, 8671, see FIGS. 10A-10C) were obtained using similar techniques and sequence primers, templates and products are described in Table 5.
SARS-COV-2 spike protein with wtTMCT (construct No. 8586, 8589, 8591)
The sequence encoding the mature SARS-CoV-2 spike (S) protein 2 (SEQ ID NO: 23) (with GSAS+K971P+V972P extracellular domain mutation and natural transmembrane domain and natural cytoplasmic tail (wtTMCT) from SARS-CoV-2, fused to alfalfa PDI secretion signal peptide (PDISP)) was cloned into three different expression systems using the following PCR-based method. Fragments containing the coding sequence of SARS-COV-2 spike protein (wtTMCT) were amplified using primers IF (PDI) -CoV (opt 2). C (SEQ ID NO: 24) and IF (AVB) -CoV (opt 2). R (SEQ ID NO: 25) using PDISP-SARS-COV-2 spike protein having wtTMCT gene sequence (SEQ ID NO: 22) as template. The PCR products were cloned into three different expression systems using an In-Fusion cloning system (Clontech, mountain View, calif.).
For the first expression system, construct number 8501 (fig. 7A) was hydrolyzed with aatlii and StuI restriction enzymes, and linearized plastids were used for the first In-Fusion assembly reaction. Construct number 8501 is a acceptor plastid intended for "In-Fusion" cloning of the gene of interest In a 2X35S (+C)/nbMT 78/PDI/AvB/NOS based expression cassette. The receptor plasmid also incorporates a gene construct for co-expression of the silenced TBSV P19 inhibitor gene under the alfalfa plastocyanin gene promoter and terminator. The backbone is pCAMBIA binary plasmid and in SEQ ID NO:31 provides the left to right sequence t-DNA border. The resulting construct is given a number 8586 (SEQ ID NO: 32). In SEQ ID NO:23 provides the amino acid sequence of the mature spike protein from SARS-COV-2 fused to alfalfa PDI secretion signal peptide (PDISP). Fig. 8A shows an illustration of a plastid 8586.
For the second expression system, construct number 8500 was also hydrolyzed with AatII and StuI restriction enzymes (fig. 7B), and the linearized plasmid was used for the second In-Fusion assembly reaction. Construct number 8500 is a receptor plastid intended for "In-Fusion" cloning of a gene of interest In a 2X35S (+c)/nbCSY 65/PDI/AvB/NOS-based expression cassette. The receptor plasmid also incorporates a gene construct for co-expression of the silenced TBSV P19 inhibitor gene under the alfalfa plastocyanin gene promoter and terminator. The backbone is pCAMBIA binary plasmid and in SEQ ID NO:33 provides the left to right sequence t-DNA border. The resulting construct is given a number 8589 (SEQ ID NO: 34). In SEQ ID NO:23 provides the amino acid sequence of the mature spike protein from SARS-COV-2 fused to alfalfa PDI secretion signal peptide (PDISP). Fig. 8B shows an illustration of a plastid 8589.
Construct number 8716 (fig. 7C) was also hydrolyzed with aatlii and StuI restriction enzymes for the third expression system, and the linearized plasmid was used for the third In-Fusion assembly reaction. Construct number 8716 is a receptor plastid intended for "In Fusion" cloning of a gene of interest In a 2X35S (+C)/nbHEL 40/PDI/AvB/NOS based expression cassette. The receptor plasmid also incorporates a gene construct for co-expression of the silenced TBSV P19 inhibitor gene under the alfalfa plastocyanin gene promoter and terminator. The backbone is pCAMBIA binary plasmid and in SEQ ID NO:33 provides the left to right sequence t-DNA border. The resulting construct was given the number 8591 (SEQ ID NO: 36). In SEQ ID NO:23 provides the amino acid sequence of the mature spike protein from SARS-COV-2 fused to alfalfa PDI secretion signal peptide (PDISP). Fig. 8C shows a graphical representation of a plastid 8591.
SARS-CoV-2 spike protein with H5iTMCT (construct No. 8592, 8595, 8597)
The sequence encoding the mature spike (S) protein from SARS-CoV-2 with GSAS+K971P+V972P extracellular domain mutation and with transmembrane domain and cytoplasmic tail (H5 iTMCT) from H5A/Indonesia/5/05HA (SEQ ID NO: 27) was fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the same three expression systems described above by a similar PCR-based method (primer see Table 5, for sequence used see example 3). Using techniques similar to those described above, construct No. 8592 (fig. 9A) was derived from receptor construct 8501, construct No. 8595 (fig. 9B) was derived from receptor construct 8500, and construct No. 8597 (fig. 9C) was derived from receptor construct 8716, and primers, templates, and products are provided in table 5 below. SARS-COV-2 spike protein with H5iCT (construct No. 8610, 8611, 8671)
The sequence encoding the mature spike (S) protein from SARS-CoV-2 with GSAS+K971P+V972P extracellular domain mutation and cytoplasmic tail (H5 iCT) from H5A/Indonesia/5/05HA (SEQ ID NO: 30) was fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the same three expression systems described above by a similar PCR-based method (see Table 5 for primers, see example 3 for sequences used). Using techniques similar to those described above, construct No. 8610 (fig. 10A) was derived from receptor construct 8501, construct No. 8611 (fig. 10B) was derived from receptor construct 8500, and construct No. 8671 (fig. 10C) was derived from receptor construct 8716, and primers, templates, and products are provided in table 5 below.
SARS-COV-2 spike protein with alternative TM CT fusion sequence (construct No. 8980, 8981, 8982, 8983)
The sequence encoding the mature spike (S) protein from SARS-CoV-2 with GSAS+K971P+V972P extracellular domain mutation and cytoplasmic tail (H5 iCT) from H5A/Indonesia/5/05HA (SEQ ID NO: 19) was fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the same expression system as described for construct 8671, resulting in construct 8980 (FIG. 12A). For the sequences encoding the mature spike (S) protein from SARS-CoV-2 with GSAS+K971P+V972P extracellular domain mutation and cytoplasmic tail (H5 iCT) from H5A/Indonesia/5/05HA, a similar construct was generated as shown in SEQ ID NO:37 (construct 8981, fig. 12B), SEQ ID NO:38 (construct 8982, fig. 12C) and SEQ ID NO:39 (construct 8983, FIG. 12D).
SARS-COV-2 spike protein with CT from other HA strains (construct No. 7390, 7391, 7392, 7393, 7394 and 7395)
Sequences encoding the mature spike (S) protein from SARS-CoV-2 with gsas+k971p+v972p extracellular domain mutation and cytoplasmic tail (H1 CT) from H1A/California/7/2009HA were fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the same expression system as described above for construct 8671 by a similar PCR-based method (see table 5 for primers and for sequences used see example 3). The resulting construct 7390 thus encodes a modified S protein comprising the cytoplasmic tail of H1A/California/7/2009HA (H1 CT) (fig. 13A). Similar constructs were produced for H3A/Minnesota/41/2019 (construct 7391, H3 CT) (FIG. 13B), H6A/Teal/Hong Kong/W312/97 (construct 7392, H6 CT) (FIG. 13C), H7A/Guangdong/17SF003/2016 (construct 7393, H7 CT) (FIG. 13D), H9A/Hong Kong/1073/99 (construct 7394, H9H CT) (FIG. 13E), or B/Washington/02/2019 (construct 7395, HA B CT) (FIG. 13F).
SARS-COV-2 spike protein with substitution (construct No. 8933, 8960, 8947)
Modified SARS-CoV-2S protein constructs comprising mutations in the S protein, such as the combination of R667G, R668S, R670S, F802P, A877P, A884P, A927P, K971P, V972P and L923F, were produced using techniques well known in the art and as essentially described above. The construct had the following substitutions: construct 8933: R667G, R668S, R670S, K971P, V972P and L923F ("GSAS-2P-923"); construct 8960: R667G, R668S, R670S, F802P, A927P, K971P, V972P and L923F ("GSAS-4P-923") and construct 8947: R667G, R668S, R670S, F802P, A877P, A884P, A927P, K971P, V972P and L923F ("GSAS-6P-923").
SARS-COV-1 spike protein with wtTMCT and modified TMCT (construct No. 9231, 9232, 9233, 9234, 9235)
The sequence encoding the mature SARS-CoV-1 spike (S) protein having the R650A+K955P+V956P extracellular domain mutation and having the native transmembrane domain and the native cytoplasmic tail (wtTMCT) from SARS-CoV-1 (SEQ ID NO: 88) was fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the following expression system by a PCR-based method. The fragment containing the coding sequence of PDISP-SARS-COV-1 spike protein (wtTMCT) was amplified using primers IF (nbHEL 40) -PDI.c (SEQ ID NO: 86) and IF (AvB +wtCT). R (SEQ ID NO: 87) using PDISP-SARS-COV-1 spike protein having wtTMCT gene sequence (SEQ ID NO: 88) as template. The PCR product was cloned into the following expression system using an In-Fusion cloning system (Clontech, mountain View, calif.).
Construct No. 7147 (fig. 21) was digested with aatlii and StuI restriction enzymes and the linearized plasmid was used for the first In-Fusion assembly reaction. Construct No. 7147 is a receptor plastid intended for "In-Fusion" cloning of a gene of interest In a 2X35S (+C)/nbHEL 40/AvB/NOS based expression cassette. The receptor plasmid also incorporates a gene construct for co-expression of the silenced TBSV P19 inhibitor gene under the alfalfa plastocyanin gene promoter and terminator. The backbone is pCAMBIA binary plasmid and in SEQ ID NO:111 provides the left to right sequence t-DNA border. The resulting construct is given the number 9231. In SEQ ID NO:93 provides the amino acid sequence of the mature spike protein from SARS-COV-1 fused to alfalfa PDI secretion signal peptide (PDISP). Figure 18A shows a schematic representation of a plastid 9231.
Sequences encoding the mature spike (S) protein from SARS-CoV-1 with the r7a+k955p+v956p extracellular domain mutation and i) the transmembrane domain and cytoplasmic tail from H5A/Indonesia/5/05HA (H5 ittct), ii) cytoplasmic tail from H5A/Indonesia/5/05HA (H5 iCT and variant H5iCT (V4)), or iii) cytoplasmic tail from H1A/California/7/2009 HA (H1 cCT) were fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the same expression system as described above for construct 9231 by a similar PCR-based method (primer see table 5 and sequence used see example 3). The resulting constructs 9232, 9233, 9234, 9235 thus encoded a modified S protein comprising H5A/Indonesia/5/05 TMCT (H5 iTMCT) (FIG. 18B, SEQ ID NO: 94), a modified SARS-COV-1S protein comprising H5A/Indonesia/5/05 CT (H5 iCT) (FIG. 18C, SEQ ID NO: 95), a modified S protein comprising H5A/Indonesia/5/05 CT variant (H5 iCT (V4)) (FIG. 18D, SEQ ID NO: 96) or a modified S protein comprising H1A/California/7/2009 CT (H1 cCT) (FIG. 18E, SEQ ID NO: 97).
MERS-CoV spike protein with wtTMCT and modified TMCT (construct numbers 9246, 9247, 9249, 9250, 9251)
The sequence encoding the mature MERS-CoV spike (S) protein with the r730a+r733g+v1043p+l1044p extracellular domain mutation and with the natural transmembrane domain and natural cytoplasmic tail (wtTMCT) from MERS-CoV (SEQ ID NO: 101) was fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the following expression system by a PCR-based method. Fragments containing the PDISP-MERS-COV spike protein (wtTMCT) coding sequence were amplified using primers IF (nbHEL 40) -PDI.c (SEQ ID NO: 86) and IF (AvB +wtCT-MERS). R (SEQ ID NO: 98) using PDISP-MERS-COV spike protein having wtTMCT gene sequence (SEQ ID NO: 101) as template. The PCR product was cloned into the following expression system using an In-Fusion cloning system (Clontech, mountain View, calif.).
Construct No. 7147 (fig. 21) was digested with aatlii and StuI restriction enzymes and the linearized plasmid was used for the first In-Fusion assembly reaction. Construct No. 7147 is a receptor plastid intended for "In-Fusion" cloning of a gene of interest In a 2X35S (+C)/nbHEL 40/AvB/NOS based expression cassette. The receptor plasmid also incorporates a gene construct for co-expression of the silenced TBSV P19 inhibitor gene under the alfalfa plastocyanin gene promoter and terminator. The backbone is pCAMBIA binary plasmid and in SEQ ID NO:111 provides the left to right sequence t-DNA border. The resulting construct was given the number 9246. In SEQ ID NO:106 provides the amino acid sequence of the mature spike protein from MERS-COV fused to alfalfa PDI secretion signal peptide (PDISP). Fig. 20A shows a schematic representation of a plastid 9246.
The sequences encoding the mature spike (S) proteins from MERS-CoV with the R730a+r733g+v1043p+l1044p extracellular domain mutations and i) the transmembrane domain and cytoplasmic tail from H5A/Indonesia/5/05 HA (H5 ittct), ii) cytoplasmic tail from H5A/Indonesia/5/05 HA (H5 iCT and variant H5iCT (V4)), or iii) cytoplasmic tail from H1A/California/7/2009 HA (H1 cCT) were fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the same expression system as described above for construct 9246 by a PCR-based approach (see table 5 for primers and sequences used see example 3). The resulting constructs 9247, 9249, 9250, 9251 thus encoded a modified MERS-COV protein comprising H5A/Indonesia/5/05 TMCT (H5 ittct) (fig. 20B,SEQ ID NO:107), a modified S protein comprising H5A/Indonesia/5/05 CT (H5 iCT) (fig. 20C,SEQ ID NO:108), a modified S protein comprising a H5A/Indonesia/5/05 CT variant (H5 iCT (V4)) or a modified S protein comprising H1A/California/7/2009 CT (H1 cCT) (fig. 20E,SEQ ID NO:110).
OC43-CoV spike protein with wtTMCT and modified TMCT (construct No. 9269, 9270, 9272, 9273 and 9274)
The sequence (SEQ ID NO: 137) encoding the mature OC43-CoV spike (S) protein with the R761G+R762G+R764G+R765S+A1077P+L1078P extracellular domain mutation and with the native transmembrane domain and the native cytoplasmic tail (wtTMCT) from OC43-CoV was fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the following expression system by a PCR-based method. Fragments containing the coding sequence of PDISP-OC43-COV spike protein (wtTMCT) were amplified using primers IF (nbHEL 40) -PDI.c (SEQ ID NO: 86) and IF (AvB +wtCT-OC 43). R (SEQ ID NO: 136) using PDISP-OC43-COV spike protein having wtTMCT gene sequence (SEQ ID NO: 137) as template. The PCR product was cloned into the following expression system using an In-Fusion cloning system (Clontech, mountain View, calif.).
Construct No. 7147 (fig. 21) was digested with aatlii and StuI restriction enzymes and the linearized plasmid was used for the first In-Fusion assembly reaction. Construct No. 7147 is a receptor plastid intended for "In-Fusion" cloning of a gene of interest In a 2X35S (+C)/nbHEL 40/AvB/NOS based expression cassette. The receptor plasmid also incorporates a gene construct for co-expression of the silenced TBSV P19 inhibitor gene under the alfalfa plastocyanin gene promoter and terminator. The backbone is pCAMBIA binary plasmid and in SEQ ID NO:111 provides the left to right sequence t-DNA border. The resulting construct was assigned number 9269. In SEQ ID NO:142 provides the amino acid sequence of the mature spike protein from OC43-COV fused to alfalfa PDI secretion signal peptide (PDISP). Fig. 24A shows a graphical representation of plastid 9269.
The sequences encoding the mature spike (S) proteins from OC43-CoV with the extracellular domain of r761g+r762 g+r765s+a1077p+l1078p and i) the transmembrane domain and cytoplasmic tail from H5A/Indonesia/5/05 HA (H5 ittct), ii) cytoplasmic tail from H5A/Indonesia/5/05 HA (H5 iCT and variant H5iCT (V4)), or iii) cytoplasmic tail from H1A/California/7/2009 HA (H1 cCT) were fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the same expression system as described above for construct 9269 by a similar PCR-based method (primer see table 5 and for sequences used see example 3). The resulting constructs 9270, 9272, 9273 and 9274 thus encoded a modified OC43-COV protein comprising H5A/Indonesia/5/05 TMCT (H5 ittct) (fig. 24B,SEQ ID NO:143), a modified S protein comprising H5A/Indonesia/5/05 CT (H5 iCT) (fig. 24C,SEQ ID NO:144), a modified S protein comprising a H5A/Indonesia/5/05 CT variant (H5 iCT (V4)) or a modified S protein comprising H1A/California/7/2009 CT (H1 cCT) (fig. 24E,SEQ ID NO:146).
229E-CoV spike protein with wtTMCT and modified TMCT (construct numbers 9310, 9311, 9312, 9313 and 9314)
The sequence encoding the mature 229E-CoV spike (S) protein with the R567A+T871P+I872P extracellular domain mutation and with the native transmembrane domain from 229E-CoV and the native cytoplasmic tail (wtTMCT) (SEQ ID NO: 148) was fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the following expression system by a PCR-based method. Fragments containing the coding sequence of PDISP-229E-COV spike protein (wtTMCT) were amplified using primers IF (nbHEL 40) -PDI.c (SEQ ID NO: 86) and IF (CoV 229 EwtCT). R (SEQ ID NO: 147) using PDISP-OC43-COV spike protein with wtTMCT gene sequence (SEQ ID NO: 148) as template. The PCR product was cloned into the following expression system using an In-Fusion cloning system (Clontech, mountain View, calif.).
Construct No. 7147 (fig. 21) was digested with aatlii and StuI restriction enzymes and the linearized plasmid was used for the first In-Fusion assembly reaction. Construct No. 7147 is a receptor plastid intended for "In-Fusion" cloning of a gene of interest In a 2X35S (+C)/nbHEL 40/AvB/NOS based expression cassette. The receptor plasmid also incorporates a gene construct for co-expression of the silenced TBSV P19 inhibitor gene under the alfalfa plastocyanin gene promoter and terminator. The backbone is pCAMBIA binary plasmid and in SEQ ID NO:111 provides the left to right sequence t-DNA border. The resulting construct is given a number 9310. In SEQ ID NO:153 provides the amino acid sequence of the mature spike protein from 229E-COV fused to alfalfa PDI secretion signal peptide (PDISP). Fig. 26A shows a graphical representation of a plastid 9310.
The sequences encoding mature spike (S) proteins from 229E-CoV with the r567a+t871p+i872p extracellular domain mutation and I) transmembrane domain and cytoplasmic tail from H5A/Indonesia/5/05HA (H5 ittct), ii) cytoplasmic tail from H5A/Indonesia/5/05HA (H5 iCT and variant H5iCT (V4)), or iii) cytoplasmic tail from H1A/California/7/2009 HA (H1 cCT) were fused to alfalfa PDI secretion signal peptide (PDISP) and cloned into the same expression system as described above for construct 9310 by a similar PCR-based method (primer see table 5 and sequence used see example 3). The resulting constructs 9311, 9312, 9313 and 9314 thus encode a modified 229E-COV protein comprising H5A/Indonesia/5/05 TMCT (H5 ittct) (fig. 26B,SEQ ID NO:154), a modified S protein comprising H5A/Indonesia/5/05CT (H5 iCT) (fig. 26C,SEQ ID NO:155), a modified S protein comprising a H5A/Indonesia/5/05CT variant (H5 iCT (V4)) (fig. 26D,SEQ ID NO:156), or a modified S protein comprising H1A/California/7/2009 CT (H1 cCT) (fig. 26E,SEQ ID NO:157).
Example 2: method of
Agrobacterium (Agrobacterium tumefaciens) transfection
Agrobacterium strain (Agrobacterium tumefaciens) AGL1 was transfected with a SARS-CoV-2 modified S protein expression vector by electroporation using the method described by D' Aoust et al, 2008 (Plant Biotech. J. 6:930-40). Transfected Agrobacterium was grown to OD in YEB medium supplemented with 10mM2- (N-morpholinyl) ethanesulfonic acid (MES), 20. Mu.M acetosyringone, 50. Mu.g/ml kanamycin and 25. Mu.g/ml carbenicillin pH 5.6 600 Between 0.6 and 16. Agrobacterium suspension was centrifuged before use and resuspended in infiltration medium (10 mM MgCl) 2 And 10mM MES pH 5.6).
Preparation of plant biomass, inoculation and agroinfiltration
The present Sambucus sambac (N.benthamiana) plants were grown from seeds in plain land filled with commercial peat moss substrates. Plants were grown in a greenhouse under 16/8 photoperiod and 25℃day/20℃night temperature conditions. 3 weeks after sowing, individual plantlets were picked, transplanted into pots and grown in a greenhouse for another three weeks under the same environmental conditions.
Agrobacterium transfected with each expression vector was grown in YEB medium supplemented with 10mM 2- (N-morpholinyl) ethanesulfonic acid (MES), 20. Mu.M acetosyringone, 50. Mu.g/ml kanamycin and 25. Mu.g/ml carbenicillin pH 5.6 until they reached OD 600 Between 0.6 and 16. Agrobacterium suspension was centrifuged before use and resuspended in infiltration medium (10 mM MgCl) 2 And 10mM MES pH 5.6) and stored overnight at 4 ℃. On the day of infiltration, the culture batch was grownDiluted at 2.5 culture volumes and warmed prior to use. Whole plants of nicotiana benthamiana (n.benthamiana) were inverted in bacterial suspension in an airtight stainless steel tank under vacuum of 20-40 torr for 2 minutes. Plants were returned to the greenhouse for a 6 or 9 day incubation period until harvest.
Leaf harvest and total protein and VLP extraction
After cultivation, the aerial parts of the plants were harvested, frozen at-80℃and crushed. Total soluble proteins were extracted by mechanical homogenization (Polytron) of each frozen crushed plant material sample in 2 volumes of cold 50mM Tris buffer (pH 8.0+500mM NaCl,0.4. Mu.g/ml metabisulfite and 1mM phenylmethanesulfonyl fluoride). After homogenization, the slurry was centrifuged at 10,000g for 10 min at 4 ℃ and these clear crude extracts (supernatants) were retained for analysis.
The total protein content of the clarified crude extract was determined by Bradford assay (Bio-Rad, hercules, california) using bovine serum albumin as a reference standard. Under reducing conditions, criterion is used TM TGX Stain-Free TM The pre-gels (Bio-Rad Laboratories, hercules, calif.) were used to isolate proteins by SDS-PAGE. Proteins were visualized by staining the gel with coomassie brilliant blue. Alternatively, use Gel Doc TM EZ imaging System (Bio-Rad Laboratories, hercules, calif.) visualizes proteins and electrotransfers them to polyvinylidene difluoride (PVDF) membranes (Roche Diagnostics Corporation, indianapolis, indianana) for immunodetection. Prior to immunoblotting, the membranes were blocked with 5% nonfat milk powder and 0.1% tween-20 in Tris-buffered saline (TBS-T) at 4 ℃ for 16-18h.
For VLP purification, proteins were extracted from frozen biomass by mechanical extraction using a mixer with two volumes of extraction buffer (50 mM Tris buffer, pH 7.0+500mM NaCl) and the pH was lowered to 6.1 using 0.5M citric acid. The slurry was filtered through a macroporous nylon filter to remove large debris and centrifuged at 5000g for 5 minutes at 4 ℃. The supernatant was collected and centrifuged again at 5000g for 30 minutes (4 ℃) to remove additional debris and passed through a clarification filter. The supernatant was then loaded onto a discontinuous iodixanol density gradient. Analytical density gradient centrifugation was performed as follows: a38 mL tube (3 mL 35%, 3mL 30%, 3mL 25%, 3mL 15% and 5mL 10% iodixanol) containing a discontinuous iodixanol density gradient in Tris buffer was prepared and covered with 22 mL of extract containing virus-like particles. The gradient was centrifuged at 120,000g for 2 hours (4 ℃ C.). After centrifugation, 1mL fractions were collected from bottom to top and analyzed by SDS-PAGE binding protein staining or immunoblotting. Fractions 6 to 9 were pooled and buffer exchanged using an Amicon centrifuge device. Protein content was determined by Bradford assay.
Protein analysis and immunoblotting
Immunoblots were performed by first incubation with a first mAb (anti-S1, sino Biological, catalog No. 40150-R007 or anti-S2, novus Biological, catalog No. NB 100-56578) diluted in 2% nonfat milk in TBS-Tween 20.1%. Peroxidase conjugated goat anti-rabbit (Jackson Immunoresearch, cat# 115-035-144) was used as a secondary antibody for chemiluminescent detection in 2% nonfat milk powder in TBS-Tween 20.1%. Immunoreactive complexes were detected by chemiluminescence using luminol as substrate (Roche Diagnostics Corporation). By using EZ-LinkThe activated peroxidase-conjugated kit (Pierce, rockford, ill.) performs horseradish peroxidase-enzyme conjugation of human IgG antibodies.
In plants, the clear crude extract was evaluated for yield and analyzed using capillary-based electrophoresis (biotechnology) technology and WES analysis system. Briefly, soluble proteins from the crude extract are separated by molecular weight in capillaries and immobilized to a substrate. Standard curves using purified VLPs were used to determine the amount of S protein and tested using anti-S2 antibodies (Novus bio, cat. No. NB 100-56578) according to the manufacturer' S instructions. The yields were then normalized using the control construct set to 1.
The first antibody used for detection of SARS-CoV S protein was SARS-CoV spike S1 subunit antibody from Sino Biologicals, 40150-MM08 (1/5000), and the second antibody used for detection was goat anti-mouse, JIR,115-035-146 (1/10000). The primary antibody used to detect MERS CoV S protein is MERS-CoV spike protein S1 antibody (N-terminal) from the Sino Biological (100208-RP 02, 1/5000). The second antibody used for detection was a goat anti-mouse antibody from JIR (115-035-144,1/10000). The primary antibody used for detection was anti-coronavirus OC43 spike protein from Antibodies-online (ABIN 2754654, 1/1000). The second antibody used for detection was a goat anti-rabbit antibody from JIR (111-035-144,1/10000).
Electron microscope
To determine whether the expressed S protein assembled into VLPs, the purified VLPs were subjected to Transmission Electron Microscopy (TEM) to immunocapture particles. A glow discharge carbon/copper grid (10 s,0.3 mbar) was placed on 20 μl of purified VLP (100 μg/mL) for 5 minutes, then washed 4 times with sterile distilled water. The grid was floated on 20 μl of 2% uranyl acetate for 1 min, then excess solution was removed by contacting wet filter paper and allowed to dry on filter paper for 24 hours, then observed under TEM (Tecnai Microscope).
Example 3: sequence(s)
The following sequences were used in the above-described embodiments.
Natural SARS-CoV-2S protein wtTM/CT AA (P0 DTC 2) (SEQ ID NO: 1) MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT
Natural SARS-CoV-2S protein wtTM/CT AA (P0 DTC 2), NO Signal Peptide (SP) (SEQ ID NO: 2)
VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPIN
LVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAG
AAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVE
KGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRIS
NCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVR
QIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLF
RKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY
QPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLT
ESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNT
SNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIG
AEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAE
NSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLL
LQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNF
SQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQ
KFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQM
AYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDV
VNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRL
QSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHL
MSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVS
NGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELD
SFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNES
LIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLK
GCCSCGSCCKFDEDDSEPVLKGVKLHYT
H5 A/Indonesia/5/05 Hemagglutinin (HA) AA (A5A 5L 7) (SEQ ID NO: 3)
MEKIVLLLAIVSLVKSDQICIGYHANNSTEQVDTIMEKNVTVTHAQDILE
KTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEWSYIVEK
ANPTNDLCYPGSFNDYEELKHLLSRINHFEKIQIIPKSSWSDHEASSGVSS
ACPYLGSPSFFRNVVWLIKKNSTYPTIKKSYNNTNQEDLLVLWGIHHPN
DAAEQTRLYQNPTTYISIGTSTLNQRLVPKIATRSKVNGQSGRMEFFWTI
LKPNDAINFESNGNFIAPEYAYKIVKKGDSAIMKSELEYGNCNTKCQTP
MGAINSSMPFHNIHPLTIGECPKYVKSNRLVLATGLRNSPQRESRRKKR
GLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDG
VTNKVNSIIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYN
AELLVLMENERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYH
KCDNECMESIRNGTYNYPQYSEEARLKREEISGVKLESIGTYQILSIYST
VASSLALAIMMAGLSLWMCSNGSLQCRICI
H5 A/Indonesia/5/05 Hemagglutinin (HA) Virus cDNA (EF 541394.1) (SEQ ID NO: 4)
CTGTAAAAATGGAGAAAATAGTGCTTCTTCTTGCAATAGTCAGTCTT
GTTAAAAGTGATCAGATTTGCATTGGTTACCATGCAAACAATTCAAC
AGAGCAGGTTGACACAATCATGGAAAAGAACGTTACTGTTACACAT
GCCCAAGACATACTGGAAAAGACACACAACGGGAAGCTCTGCGATC
TAGATGGAGTGAAGCCTCTAATTTTAAGAGATTGTAGTGTAGCTGGA
TGGCTCCTCGGGAACCCAATGTGTGACGAATTCATCAATGTACCGGA
ATGGTCTTACATAGTGGAGAAGGCCAATCCAACCAATGACCTCTGTT
ACCCAGGGAGTTTCAACGACTATGAAGAACTGAAACACCTATTGAG
CAGAATAAACCATTTTGAGAAAATTCAAATCATCCCCAAAAGTTCTT
GGTCCGATCATGAAGCCTCATCAGGAGTGAGCTCAGCATGTCCATAC
CTGGGAAGTCCCTCCTTTTTTAGAAATGTGGTATGGCTTATCAAAAA
GAACAGTACATACCCAACAATAAAGAAAAGCTACAATAATACCAAC
CAAGAAGATCTTTTGGTACTGTGGGGAATTCACCATCCTAATGATGC
GGCAGAGCAGACAAGGCTATATCAAAACCCAACCACCTATATTTCC
ATTGGGACATCAACACTAAACCAGAGATTGGTACCAAAAATAGCTA
CTAGATCCAAAGTAAACGGGCAAAGTGGAAGGATGGAGTTCTTCTG
GACAATTTTAAAACCTAATGATGCAATCAACTTCGAGAGTAATGGA
AATTTCATTGCTCCAGAATATGCATACAAAATTGTCAAGAAAGGGG
ACTCAGCAATTATGAAAAGTGAATTGGAATATGGTAACTGCAACAC
CAAGTGTCAAACTCCAATGGGGGCGATAAACTCTAGTATGCCATTCC
ACAACATACACCCTCTCACCATCGGGGAATGCCCCAAATATGTGAAATCAAACAGATTAGTCCTTGCAACAGGGCTCAGAAATAGCCCTCAAAGAGAGAGCAGAAGAAAAAAGAGAGGACTATTTGGAGCTATAGCAGGTTTTATAGAGGGAGGATGGCAGGGAATGGTAGATGGTTGGTATGGGTACCACCATAGCAATGAGCAGGGGAGTGGGTACGCTGCAGACAAAGAATCCACTCAAAAGGCAATAGATGGAGTCACCAATAAGGTCAACTCAATCATTGACAAAATGAACACTCAGTTTGAGGCCGTTGGAAGGGAATTTAATAACTTAGAAAGGAGAATAGAGAATTTAAACAAGAAGATGGAAGACGGGTTTCTAGATGTCTGGACTTATAATGCCGAACTTCTGGTTCTCATGGAAAATGAGAGAACTCTAGACTTTCATGACTCAAATGTTAAGAACCTCTACGACAAGGTCCGACTACAGCTTAGGGATAATGCAAAGGAGCTGGGTAACGGTTGTTTCGAGTTCTATCACAAATGTGATAATGAATGTATGGAAAGTATAAGAAACGGAACGTACAACTATCCGCAGTATTCAGAAGAAGCAAGATTAAAAAGAGAGGAAATAAGTGGGGTAAAATTGGAATCAATAGGAACTTACCAAATACTGTCAATTTATTCAACAGTGGCGAGTTCCCTAGCACTGGCAATCATGATGGCTGGTCTATCTTTATGGATGTGCTCCAATGGATCGTTACAATGCAGAATTTGCATTTAAATTTGTGAGTTCAG
Modified SARS-CoV-2 with H5A/Indonesia/5/05 hemagglutinin CT AA (SEQ ID NO: 5)
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLSLWMCSNGSLQCRICI
H1 A/California/7/2009 hemagglutinin TM/CT AA (SEQ ID NO: 6)
IDGVKLESTRIYQILAIYSTVASSLVLVVSLGAISFWMCSNGSLQCRICIH 2A/Singapore/1/1957 hemagglutinin TM/CT AA (SEQ ID NO: 7)
IKGVKLSSMGVYQILAIYATVAGSLSLAIMMAGISFWMCSNGSLQCRICIH 3A/Minnesota/41/2019 hemagglutinin TM/CT AA (SEQ ID NO: 8)
IKGVELKSGYKDWILWISFAISCFLLCVALLGFIMWACQKGNIRCNICIH 5A/Indonesia/5/05 hemagglutinin TM/CT AA (SEQ ID NO: 9)
ISGVKLESIGTYQILSIYSTVASSLALAIMMAGLSLWMCSNGSLQCRICIH 6A/Teal/Hong Kong/W312/97 hemagglutinin TM/CT AA (SEQ ID NO: 10)
IESVKLENLGVYQILAIYSTVSSSLVLVGLIMAMGLWMCSNGSMQCRICI
H7 A/Guangdong/17SF003/2016 hemagglutinin TM/CT AA (SEQ ID NO: 11)
IDPVKLSSGYKDVILWFSFGASCFILLAIVMGLVFICVKNGNMRCTICI
H9 A/Hong Kong/1073/99 hemagglutinin TM/CT AA (SEQ ID NO: 12)
IEGVGESEGTYKILTIYSTVASLASLVLAMGGFAAFLWAMSNGSCRCNICIB/Washington/02/2019 hemagglutinin TM/CT AA (SEQ ID NO: 13)
AASLNDDGLDNHTILLYYSTAASSLAVTLMIAIFVVYMVSRDNVSCSICL
Consensus sequence of the C-terminal region of influenza hemagglutinin (SEQ ID NO: 14)
Consensus sequence of CT domain of IXGVGKLXSXXXXILXYSTVASLXXXXXXXwmcssXXCXICI influenza hemagglutinin (SEQ ID NO: 15)
XXwmcsngsXXCXICI
The C-terminal region of the natural SARS-CoV-2S protein wtTM/CT (SEQ ID NO: 16)
WYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT
H5 A/Indonesia/5/05 hemagglutinin C-terminal region (SEQ ID NO: 17)
ISGVKLESIGTYQILSIYSTVASSLALAIMMAGLSLWMCSNGSLQCRICI
Modified SARS-CoV-2S protein C-terminal region with H5i hemagglutinin CT (SEQ ID NO: 18)
WYIWLGFIAGLIAIVMVTIMLSLWMCSNGSLQCRICI
Modified SARS-CoV-2S protein C-terminal region with H5i hemagglutinin CT, variation 1 (SEQ ID NO: 19)
WYIWLGFIAGLIAIVMVTIMMAGLSLWMCSNGSLQCRICI
( SP-free) SARS-CoV-2S protein gsas+pp wtTM/CT AA (SEQ ID NO:20 )
VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVR
QIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLF
RKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY
QPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLT
ESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNT
SNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIG
AEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQSIIAYTMSLGAE
NSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLL
LQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNF
SQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQ
KFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQM
AYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDV
VNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRL
QSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHL
MSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVS
NGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELD
SFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNES
LIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLK
GCCSCGSCCKFDEDDSEPVLKGVKLHYT
(no SP) modified SARS-CoV-2S protein GSAS+PP with H5i hemagglutinin
CT AA(SEQ ID NO:21)
VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTW
FHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKT
QSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSS
ANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPIN
LVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAG
AAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVE
KGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRIS
NCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVR
QIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLF
RKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGY
QPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLT
ESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNT
SNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIG
AEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQSIIAYTMSLGAE
NSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLL
LQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNF
SQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQ
KFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQM
AYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDV
VNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRL
QSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHL
MSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVS
NGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELD
SFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNES
LIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLSLWMCSNGSLQ
CRICI
PDI-SARS-CoV-2S protein GSAS+PP wtTM/CT-DNA (SEQ ID NO: 22)
ATGGCGAAAAACGTTGCGATTTTCGGCTTATTGTTTTCTCTTCTTGTG
TTGGTTCCTTCTCAGATCTTCGCGGTGAATCTTACGACGCGAACACA
GTTACCACCCGCATATACAAATAGCTTCACTCGGGGTGTTTATTACC
CCGACAAAGTGTTCAGGTCCTCCGTGCTCCACTCAACACAGGACCTC
TTTCTTCCTTTCTTTTCTAACGTGACATGGTTTCATGCCATTCATGTAT
CCGGCACTAACGGTACTAAGAGGTTCGATAATCCTGTGCTCCCTTTC
AATGACGGCGTTTACTTTGCAAGCACAGAGAAGAGTAACATCATCC
GAGGTTGGATCTTTGGCACTACCCTCGATTCAAAGACGCAGAGCCTC
CTCATTGTGAACAATGCCACTAACGTGGTGATCAAAGTTTGCGAGTT
TCAGTTCTGCAATGACCCTTTCTTGGGGGTGTACTATCATAAGAACA
ACAAGTCTTGGATGGAATCTGAATTCCGCGTCTATAGCAGCGCCAAC
AACTGCACCTTTGAATACGTGTCCCAGCCCTTCCTTATGGACCTGGA
GGGAAAGCAGGGAAACTTTAAGAATCTGAGAGAGTTCGTGTTTAAA
AATATCGACGGCTATTTTAAGATCTATTCTAAGCACACGCCTATTAA
TCTCGTGCGCGATCTTCCACAAGGCTTCAGCGCCCTGGAACCACTCG
TGGACCTCCCAATTGGTATCAACATCACTAGATTTCAGACTCTGCTT
GCCCTCCACCGATCCTATCTGACACCCGGAGACTCCTCTAGCGGCTG
GACTGCCGGCGCTGCCGCTTATTACGTTGGTTATCTTCAGCCACGCA
CGTTCCTGCTGAAGTATAACGAGAATGGTACTATTACCGATGCCGTG
GATTGTGCCCTTGACCCCCTGTCCGAAACTAAGTGCACACTCAAGTC
ATTCACTGTGGAAAAAGGAATCTACCAGACAAGCAATTTTCGGGTCC
AGCCTACTGAGAGCATTGTGCGCTTTCCTAACATCACAAATCTTTGC
CCCTTCGGAGAGGTTTTCAATGCTACACGGTTTGCCTCCGTGTATGC
CTGGAACCGCAAGAGAATTTCCAATTGCGTGGCCGATTACTCCGTGC
TCTACAATAGTGCAAGCTTTAGCACCTTTAAGTGCTATGGCGTATCC
CCTACTAAGCTTAACGACTTGTGTTTCACAAACGTGTATGCCGACTC
CTTTGTGATACGGGGCGACGAAGTTAGACAGATAGCACCAGGACAG
ACGGGAAAGATAGCTGACTACAACTATAAGCTTCCTGATGACTTCAC
TGGCTGCGTTATCGCGTGGAATTCTAACAACCTGGACTCAAAAGTCG
GCGGCAACTATAACTATCTCTATCGGCTGTTCCGCAAGAGTAACCTT
AAGCCCTTTGAGAGAGATATAAGCACTGAAATCTACCAGGCTGGCA
GTACGCCCTGTAATGGCGTGGAAGGCTTTAATTGTTATTTTCCACTG
CAATCCTATGGTTTTCAGCCAACCAATGGCGTGGGCTACCAACCATA
CCGCGTCGTGGTGCTCTCCTTTGAACTGCTCCACGCTCCCGCGACTGT
CTGCGGCCCCAAGAAGTCCACGAACCTTGTGAAGAATAAGTGCGTT
AATTTTAATTTCAACGGCCTCACTGGAACAGGAGTGCTCACTGAGAG
TAACAAGAAGTTCCTGCCATTTCAACAATTTGGCAGAGACATAGCCG
ATACTACTGACGCCGTTAGGGACCCCCAGACCCTCGAGATTCTCGAT
ATAACGCCCTGCTCCTTCGGTGGAGTTTCCGTGATCACGCCAGGCAC
CAATACCAGTAACCAGGTCGCCGTGCTGTATCAGGATGTCAACTGTA
CTGAGGTGCCCGTAGCCATCCATGCGGATCAGCTCACACCAACTTGG
AGGGTGTACAGCACCGGCTCCAATGTATTCCAGACTCGGGCCGGAT
GCCTTATTGGCGCCGAACACGTGAACAATAGTTACGAATGCGATATT
CCAATTGGCGCCGGAATCTGTGCTAGCTACCAGACTCAGACGAACTC
CCCAGGCAGCGCCAGCAGCGTTGCCAGCCAGTCAATCATCGCTTATA
CAATGTCACTTGGAGCCGAAAACTCCGTGGCTTACTCAAACAACAGC
ATCGCCATCCCCACAAACTTCACCATATCCGTGACAACTGAGATTCT
GCCAGTGTCCATGACTAAGACGTCCGTAGATTGCACTATGTACATAT
GCGGCGACAGCACAGAATGTTCTAATCTGCTGCTGCAATATGGAAG
CTTCTGCACTCAACTGAACAGAGCGCTCACAGGCATCGCCGTGGAGC
AGGATAAGAATACCCAGGAGGTGTTCGCCCAAGTTAAGCAGATCTA
CAAGACCCCACCCATAAAGGATTTCGGTGGATTCAATTTTAGTCAGA
TACTCCCAGACCCATCTAAGCCATCCAAGAGGAGCTTTATCGAGGAT
CTTTTGTTTAACAAAGTTACTCTGGCCGACGCCGGTTTCATCAAGCA
GTACGGAGATTGCCTCGGCGACATCGCTGCTCGTGACCTCATCTGTG
CGCAAAAGTTTAACGGTCTGACGGTGCTGCCTCCCCTCCTTACTGAT
GAAATGATCGCCCAGTATACCAGCGCACTCCTCGCTGGCACCATAAC
ATCCGGTTGGACATTCGGCGCTGGTGCAGCACTGCAGATACCATTCG
CCATGCAAATGGCATATCGTTTCAACGGTATCGGTGTCACACAGAAT
GTCCTATATGAGAACCAGAAGCTGATCGCAAATCAGTTCAATAGTGC
CATCGGAAAAATCCAGGATAGCCTTAGCAGCACAGCCTCAGCCCTT
GGCAAACTCCAGGATGTCGTGAACCAGAATGCCCAGGCTCTCAATA
CCCTCGTGAAGCAGCTCTCATCTAATTTCGGCGCAATTTCCAGTGTC
CTCAACGACATCCTCAGCCGCCTCGACCCCCCCGAGGCCGAAGTGCA
GATTGACAGACTGATTACAGGTCGACTCCAGAGCCTCCAGACTTACG
TGACTCAGCAGCTGATAAGAGCCGCCGAGATAAGGGCCAGCGCTAA
CCTGGCTGCCACAAAGATGTCTGAGTGCGTGCTGGGCCAGTCCAAG
AGAGTAGACTTCTGTGGCAAAGGCTACCATCTGATGAGCTTCCCACA
ATCCGCACCTCACGGCGTAGTGTTCCTCCACGTGACATATGTACCGG
CTCAGGAGAAGAATTTCACTACCGCTCCTGCTATATGCCATGATGGA
AAGGCTCACTTCCCCCGGGAGGGGGTGTTCGTGTCCAACGGCACCCA
TTGGTTTGTGACTCAGCGGAATTTCTACGAACCCCAGATCATAACCA
CTGACAACACATTTGTGTCCGGAAATTGTGACGTGGTCATTGGAATA
GTGAACAACACTGTTTATGATCCACTGCAGCCAGAACTTGACAGCTT
TAAGGAGGAGCTCGACAAGTACTTCAAGAATCATACGTCACCAGAT
GTGGACCTCGGAGATATTAGCGGTATCAATGCCAGTGTTGTCAATAT
TCAGAAGGAAATAGACCGCCTTAATGAGGTCGCCAAAAATCTGAAC
GAGAGCCTCATCGATCTTCAGGAGCTGGGCAAATATGAGCAGTACA
TCAAGTGGCCTTGGTATATTTGGCTTGGCTTCATCGCCGGCCTGATC
GCCATAGTAATGGTCACAATTATGCTCTGCTGCATGACCTCTTGCTG
CTCCTGTCTGAAAGGCTGCTGCTCTTGCGGATCCTGCTGCAAATTTG
ATGAGGATGACAGTGAACCAGTCCTGAAGGGCGTGAAGCTGCACTA
TACTTAG
PDI-SARS-CoV-2S protein GSAS+PP wtTM/CT-AA (SEQ ID NO: 23)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT
IF(PDI)-CoV(opt2).c(SEQ ID NO:24)
TCTCAGATCTTCGCGGTGAATCTTACGACGCGAACACAGTTACCACCCGCAT
IF(AVB)-CoV(opt2).r(SEQ ID NO:25)
ACGACACGACTAAGGCCTCTAAGTATAGTGCAGCTTCACGCCCTTCAGGAC
PDI-modified SARS-CoV-2S protein GSAS+PP H5iTM/CT-DNA (SEQ ID NO: 26)
ATGGCGAAAAACGTTGCGATTTTCGGCTTATTGTTTTCTCTTCTTGTGTTGGTTCCTTCTCAGATCTTCGCGGTGAATCTTACGACGCGAACACAGTTACCACCCGCATATACAAATAGCTTCACTCGGGGTGTTTATTACCCCGACAAAGTGTTCAGGTCCTCCGTGCTCCACTCAACACAGGACCTCTTTCTTCCTTTCTTTTCTAACGTGACATGGTTTCATGCCATTCATGTATCCGGCACTAACGGTACTAAGAGGTTCGATAATCCTGTGCTCCCTTTCAATGACGGCGTTTACTTTGCAAGCACAGAGAAGAGTAACATCATCCGAGGTTGGATCTTTGGCACTACCCTCGATTCAAAGACGCAGAGCCTC
CTCATTGTGAACAATGCCACTAACGTGGTGATCAAAGTTTGCGAGTT
TCAGTTCTGCAATGACCCTTTCTTGGGGGTGTACTATCATAAGAACA
ACAAGTCTTGGATGGAATCTGAATTCCGCGTCTATAGCAGCGCCAAC
AACTGCACCTTTGAATACGTGTCCCAGCCCTTCCTTATGGACCTGGA
GGGAAAGCAGGGAAACTTTAAGAATCTGAGAGAGTTCGTGTTTAAA
AATATCGACGGCTATTTTAAGATCTATTCTAAGCACACGCCTATTAA
TCTCGTGCGCGATCTTCCACAAGGCTTCAGCGCCCTGGAACCACTCG
TGGACCTCCCAATTGGTATCAACATCACTAGATTTCAGACTCTGCTT
GCCCTCCACCGATCCTATCTGACACCCGGAGACTCCTCTAGCGGCTG
GACTGCCGGCGCTGCCGCTTATTACGTTGGTTATCTTCAGCCACGCA
CGTTCCTGCTGAAGTATAACGAGAATGGTACTATTACCGATGCCGTG
GATTGTGCCCTTGACCCCCTGTCCGAAACTAAGTGCACACTCAAGTC
ATTCACTGTGGAAAAAGGAATCTACCAGACAAGCAATTTTCGGGTCC
AGCCTACTGAGAGCATTGTGCGCTTTCCTAACATCACAAATCTTTGC
CCCTTCGGAGAGGTTTTCAATGCTACACGGTTTGCCTCCGTGTATGC
CTGGAACCGCAAGAGAATTTCCAATTGCGTGGCCGATTACTCCGTGC
TCTACAATAGTGCAAGCTTTAGCACCTTTAAGTGCTATGGCGTATCC
CCTACTAAGCTTAACGACTTGTGTTTCACAAACGTGTATGCCGACTC
CTTTGTGATACGGGGCGACGAAGTTAGACAGATAGCACCAGGACAG
ACGGGAAAGATAGCTGACTACAACTATAAGCTTCCTGATGACTTCAC
TGGCTGCGTTATCGCGTGGAATTCTAACAACCTGGACTCAAAAGTCG
GCGGCAACTATAACTATCTCTATCGGCTGTTCCGCAAGAGTAACCTT
AAGCCCTTTGAGAGAGATATAAGCACTGAAATCTACCAGGCTGGCA
GTACGCCCTGTAATGGCGTGGAAGGCTTTAATTGTTATTTTCCACTG
CAATCCTATGGTTTTCAGCCAACCAATGGCGTGGGCTACCAACCATA
CCGCGTCGTGGTGCTCTCCTTTGAACTGCTCCACGCTCCCGCGACTGT
CTGCGGCCCCAAGAAGTCCACGAACCTTGTGAAGAATAAGTGCGTT
AATTTTAATTTCAACGGCCTCACTGGAACAGGAGTGCTCACTGAGAG
TAACAAGAAGTTCCTGCCATTTCAACAATTTGGCAGAGACATAGCCG
ATACTACTGACGCCGTTAGGGACCCCCAGACCCTCGAGATTCTCGAT
ATAACGCCCTGCTCCTTCGGTGGAGTTTCCGTGATCACGCCAGGCAC
CAATACCAGTAACCAGGTCGCCGTGCTGTATCAGGATGTCAACTGTA
CTGAGGTGCCCGTAGCCATCCATGCGGATCAGCTCACACCAACTTGG
AGGGTGTACAGCACCGGCTCCAATGTATTCCAGACTCGGGCCGGAT
GCCTTATTGGCGCCGAACACGTGAACAATAGTTACGAATGCGATATT
CCAATTGGCGCCGGAATCTGTGCTAGCTACCAGACTCAGACGAACTC
CCCAGGCAGCGCCAGCAGCGTTGCCAGCCAGTCAATCATCGCTTATA
CAATGTCACTTGGAGCCGAAAACTCCGTGGCTTACTCAAACAACAGC
ATCGCCATCCCCACAAACTTCACCATATCCGTGACAACTGAGATTCT
GCCAGTGTCCATGACTAAGACGTCCGTAGATTGCACTATGTACATAT
GCGGCGACAGCACAGAATGTTCTAATCTGCTGCTGCAATATGGAAG
CTTCTGCACTCAACTGAACAGAGCGCTCACAGGCATCGCCGTGGAGC
AGGATAAGAATACCCAGGAGGTGTTCGCCCAAGTTAAGCAGATCTA
CAAGACCCCACCCATAAAGGATTTCGGTGGATTCAATTTTAGTCAGA
TACTCCCAGACCCATCTAAGCCATCCAAGAGGAGCTTTATCGAGGAT
CTTTTGTTTAACAAAGTTACTCTGGCCGACGCCGGTTTCATCAAGCA
GTACGGAGATTGCCTCGGCGACATCGCTGCTCGTGACCTCATCTGTG
CGCAAAAGTTTAACGGTCTGACGGTGCTGCCTCCCCTCCTTACTGAT
GAAATGATCGCCCAGTATACCAGCGCACTCCTCGCTGGCACCATAAC
ATCCGGTTGGACATTCGGCGCTGGTGCAGCACTGCAGATACCATTCG
CCATGCAAATGGCATATCGTTTCAACGGTATCGGTGTCACACAGAAT
GTCCTATATGAGAACCAGAAGCTGATCGCAAATCAGTTCAATAGTGC
CATCGGAAAAATCCAGGATAGCCTTAGCAGCACAGCCTCAGCCCTT
GGCAAACTCCAGGATGTCGTGAACCAGAATGCCCAGGCTCTCAATA
CCCTCGTGAAGCAGCTCTCATCTAATTTCGGCGCAATTTCCAGTGTC
CTCAACGACATCCTCAGCCGCCTCGACCCCCCCGAGGCCGAAGTGCA
GATTGACAGACTGATTACAGGTCGACTCCAGAGCCTCCAGACTTACG
TGACTCAGCAGCTGATAAGAGCCGCCGAGATAAGGGCCAGCGCTAACCTGGCTGCCACAAAGATGTCTGAGTGCGTGCTGGGCCAGTCCAAGAGAGTAGACTTCTGTGGCAAAGGCTACCATCTGATGAGCTTCCCACAATCCGCACCTCACGGCGTAGTGTTCCTCCACGTGACATATGTACCGGCTCAGGAGAAGAATTTCACTACCGCTCCTGCTATATGCCATGATGGAAAGGCTCACTTCCCCCGGGAGGGGGTGTTCGTGTCCAACGGCACCCATTGGTTTGTGACTCAGCGGAATTTCTACGAACCCCAGATCATAACCACTGACAACACATTTGTGTCCGGAAATTGTGACGTGGTCATTGGAATAGTGAACAACACTGTTTATGATCCACTGCAGCCAGAACTTGACAGCTTTAAGGAGGAGCTCGACAAGTACTTCAAGAATCATACGTCACCAGATGTGGACCTCGGAGATATTAGCGGTATCAATGCCAGTGTTGTCAATATTCAGAAGGAAATAGACCGCCTTAATGAGGTCGCCAAAAATCTGAACGAGAGCCTCATCGATCTTCAGGAGCTGGGCAAATATGAGCAGTACATCAAGTGGCCTTGGTATCAAATACTGTCAATTTATTCAACAGTGGCGAGTTCCCTAGCACTGGCAATCATGATGGCTGGTCTATCTTTATGGATGTGCTCCAATGGATCGTTACAATGCAGAATTTGCATTTAA
PDI-modified SARS-CoV-2S protein GSAS+PP H5iTM/CT-AA (SEQ ID NO: 27)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYQILSIYSTVASSLALAIMMAGLSLWMCSNGSLQCRICI
IF(Avb)-H5I.r(SEQ ID NO:28)
ACGACACGACTAAGGCCTTTAAATGCAAATTCTGCATTGTAACGATCC
PDI-modified SARS-CoV-2S protein GSAS+PP wtTM/H5iCT-DNA (SEQ ID NO: 29)
ATGGCGAAAAACGTTGCGATTTTCGGCTTATTGTTTTCTCTTCTTGTGTTGGTTCCTTCTCAGATCTTCGCGGTGAATCTTACGACGCGAACACAGTTACCACCCGCATATACAAATAGCTTCACTCGGGGTGTTTATTACCCCGACAAAGTGTTCAGGTCCTCCGTGCTCCACTCAACACAGGACCTCTTTCTTCCTTTCTTTTCTAACGTGACATGGTTTCATGCCATTCATGTATCCGGCACTAACGGTACTAAGAGGTTCGATAATCCTGTGCTCCCTTTCAATGACGGCGTTTACTTTGCAAGCACAGAGAAGAGTAACATCATCCGAGGTTGGATCTTTGGCACTACCCTCGATTCAAAGACGCAGAGCCTC
CTCATTGTGAACAATGCCACTAACGTGGTGATCAAAGTTTGCGAGTT
TCAGTTCTGCAATGACCCTTTCTTGGGGGTGTACTATCATAAGAACA
ACAAGTCTTGGATGGAATCTGAATTCCGCGTCTATAGCAGCGCCAAC
AACTGCACCTTTGAATACGTGTCCCAGCCCTTCCTTATGGACCTGGA
GGGAAAGCAGGGAAACTTTAAGAATCTGAGAGAGTTCGTGTTTAAA
AATATCGACGGCTATTTTAAGATCTATTCTAAGCACACGCCTATTAA
TCTCGTGCGCGATCTTCCACAAGGCTTCAGCGCCCTGGAACCACTCG
TGGACCTCCCAATTGGTATCAACATCACTAGATTTCAGACTCTGCTT
GCCCTCCACCGATCCTATCTGACACCCGGAGACTCCTCTAGCGGCTG
GACTGCCGGCGCTGCCGCTTATTACGTTGGTTATCTTCAGCCACGCA
CGTTCCTGCTGAAGTATAACGAGAATGGTACTATTACCGATGCCGTG
GATTGTGCCCTTGACCCCCTGTCCGAAACTAAGTGCACACTCAAGTC
ATTCACTGTGGAAAAAGGAATCTACCAGACAAGCAATTTTCGGGTCC
AGCCTACTGAGAGCATTGTGCGCTTTCCTAACATCACAAATCTTTGC
CCCTTCGGAGAGGTTTTCAATGCTACACGGTTTGCCTCCGTGTATGC
CTGGAACCGCAAGAGAATTTCCAATTGCGTGGCCGATTACTCCGTGC
TCTACAATAGTGCAAGCTTTAGCACCTTTAAGTGCTATGGCGTATCC
CCTACTAAGCTTAACGACTTGTGTTTCACAAACGTGTATGCCGACTC
CTTTGTGATACGGGGCGACGAAGTTAGACAGATAGCACCAGGACAG
ACGGGAAAGATAGCTGACTACAACTATAAGCTTCCTGATGACTTCAC
TGGCTGCGTTATCGCGTGGAATTCTAACAACCTGGACTCAAAAGTCG
GCGGCAACTATAACTATCTCTATCGGCTGTTCCGCAAGAGTAACCTT
AAGCCCTTTGAGAGAGATATAAGCACTGAAATCTACCAGGCTGGCA
GTACGCCCTGTAATGGCGTGGAAGGCTTTAATTGTTATTTTCCACTG
CAATCCTATGGTTTTCAGCCAACCAATGGCGTGGGCTACCAACCATA
CCGCGTCGTGGTGCTCTCCTTTGAACTGCTCCACGCTCCCGCGACTGT
CTGCGGCCCCAAGAAGTCCACGAACCTTGTGAAGAATAAGTGCGTT
AATTTTAATTTCAACGGCCTCACTGGAACAGGAGTGCTCACTGAGAG
TAACAAGAAGTTCCTGCCATTTCAACAATTTGGCAGAGACATAGCCG
ATACTACTGACGCCGTTAGGGACCCCCAGACCCTCGAGATTCTCGAT
ATAACGCCCTGCTCCTTCGGTGGAGTTTCCGTGATCACGCCAGGCAC
CAATACCAGTAACCAGGTCGCCGTGCTGTATCAGGATGTCAACTGTA
CTGAGGTGCCCGTAGCCATCCATGCGGATCAGCTCACACCAACTTGG
AGGGTGTACAGCACCGGCTCCAATGTATTCCAGACTCGGGCCGGAT
GCCTTATTGGCGCCGAACACGTGAACAATAGTTACGAATGCGATATT
CCAATTGGCGCCGGAATCTGTGCTAGCTACCAGACTCAGACGAACTC
CCCAGGCAGCGCCAGCAGCGTTGCCAGCCAGTCAATCATCGCTTATA
CAATGTCACTTGGAGCCGAAAACTCCGTGGCTTACTCAAACAACAGC
ATCGCCATCCCCACAAACTTCACCATATCCGTGACAACTGAGATTCT
GCCAGTGTCCATGACTAAGACGTCCGTAGATTGCACTATGTACATAT
GCGGCGACAGCACAGAATGTTCTAATCTGCTGCTGCAATATGGAAG
CTTCTGCACTCAACTGAACAGAGCGCTCACAGGCATCGCCGTGGAGC
AGGATAAGAATACCCAGGAGGTGTTCGCCCAAGTTAAGCAGATCTA
CAAGACCCCACCCATAAAGGATTTCGGTGGATTCAATTTTAGTCAGA
TACTCCCAGACCCATCTAAGCCATCCAAGAGGAGCTTTATCGAGGAT
CTTTTGTTTAACAAAGTTACTCTGGCCGACGCCGGTTTCATCAAGCA
GTACGGAGATTGCCTCGGCGACATCGCTGCTCGTGACCTCATCTGTG
CGCAAAAGTTTAACGGTCTGACGGTGCTGCCTCCCCTCCTTACTGAT
GAAATGATCGCCCAGTATACCAGCGCACTCCTCGCTGGCACCATAAC
ATCCGGTTGGACATTCGGCGCTGGTGCAGCACTGCAGATACCATTCG
CCATGCAAATGGCATATCGTTTCAACGGTATCGGTGTCACACAGAAT
GTCCTATATGAGAACCAGAAGCTGATCGCAAATCAGTTCAATAGTGC
CATCGGAAAAATCCAGGATAGCCTTAGCAGCACAGCCTCAGCCCTT
GGCAAACTCCAGGATGTCGTGAACCAGAATGCCCAGGCTCTCAATA
CCCTCGTGAAGCAGCTCTCATCTAATTTCGGCGCAATTTCCAGTGTC
CTCAACGACATCCTCAGCCGCCTCGACCCCCCCGAGGCCGAAGTGCA
GATTGACAGACTGATTACAGGTCGACTCCAGAGCCTCCAGACTTACG
TGACTCAGCAGCTGATAAGAGCCGCCGAGATAAGGGCCAGCGCTAACCTGGCTGCCACAAAGATGTCTGAGTGCGTGCTGGGCCAGTCCAAGAGAGTAGACTTCTGTGGCAAAGGCTACCATCTGATGAGCTTCCCACAATCCGCACCTCACGGCGTAGTGTTCCTCCACGTGACATATGTACCGGCTCAGGAGAAGAATTTCACTACCGCTCCTGCTATATGCCATGATGGAAAGGCTCACTTCCCCCGGGAGGGGGTGTTCGTGTCCAACGGCACCCATTGGTTTGTGACTCAGCGGAATTTCTACGAACCCCAGATCATAACCACTGACAACACATTTGTGTCCGGAAATTGTGACGTGGTCATTGGAATAGTGAACAACACTGTTTATGATCCACTGCAGCCAGAACTTGACAGCTTTAAGGAGGAGCTCGACAAGTACTTCAAGAATCATACGTCACCAGATGTGGACCTCGGAGATATTAGCGGTATCAATGCCAGTGTTGTCAATATTCAGAAGGAAATAGACCGCCTTAATGAGGTCGCCAAAAATCTGAACGAGAGCCTCATCGATCTTCAGGAGCTGGGCAAATATGAGCAGTACATCAAGTGGCCTTGGTATATTTGGCTTGGCTTCATCGCCGGCCTGATCGCCATAGTAATGGTCACAATTATGCTCTCTTTATGGATGTGCTCCAATGGATCGTTACAATGCAGAATTTGCATTTAA
PDI-modified SARS-CoV-2S protein GSAS+PP wtTM/H5iCT-AA (SEQ ID NO: 30)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMLSLWMCSNGSLQCRICI
Cloning vector 8501 from left to right T-DNA (SEQ ID NO: 31)
tggcaggatatattgtggtgtaaacaaattgacgcttagacaacttaataacacattgcggacgtttttaatgtactg
aattaacgccgaatcccgggctggtatatttatatgttgtcaaataactcaaaaaccataaaagtttaagttagcaa
gtgtgtacatttttacttgaacaaaaatattcacctactactgttataaatcattattaaacattagagtaaagaaatat
ggatgataagaacaagagtagtgatattttgacaacaattttgttgcaacatttgagaaaattttgttgttctctctttt
cattggtcaaaaacaatagagagagaaaaaggaagagggagaataaaaacataatgtgagtatgagagagaa
agttgtacaaaagttgtaccaaaatagttgtacaaatatcattgaggaatttgacaaaagctacacaaataagggtt
aattgctgtaaataaataaggatgacgcattagagagatgtaccattagagaatttttggcaagtcattaaaaaga
aagaataaattatttttaaaattaaaagttgagtcatttgattaaacatgtgattatttaatgaattgatgaaagagttg
gattaaagttgtattagtaattagaatttggtgtcaaatttaatttgacatttgatcttttcctatatattgccccatagag
tcagttaactcatttttatatttcatagatcaaataagagaaataacggtatattaatccctccaaaaaaaaaaaacg
gtatatttactaaaaaatctaagccacgtaggaggataacaggatccccgtaggaggataacatccaatccaacc
aatcacaacaatcctgatgagataacccactttaagcccacgcatctgtggcacatctacattatctaaatcacac
attcttccacacatctgagccacacaaaaaccaatccacatctttatcacccattctataaaaaatcacactttgtga
gtctacactttgattcccttcaaacacatacaaagagaagagactaattaattaattaatcatcttgagagaaaatg
gaacgagctatacaaggaaacgacgctagggaacaagctaacagtgaacgttgggatggaggatcaggagg
taccacttctcccttcaaacttcctgacgaaagtccgagttggactgagtggcggctacataacgatgagacgaa
ttcgaatcaagataatccccttggtttcaaggaaagctggggtttcgggaaagttgtatttaagagatatctcagat
acgacaggacggaagcttcactgcacagagtccttggatcttggacgggagattcggttaactatgcagcatct
cgatttttcggtttcgaccagatcggatgtacctatagtattcggtttcgaggagttagtatcaccgtttctggaggg
tcgcgaactcttcagcatctctgtgagatggcaattcggtctaagcaagaactgctacagcttgccccaatcgaa
gtggaaagtaatgtatcaagaggatgccctgaaggtactcaaaccttcgaaaaagaaagcgagtaagttaaaat
gcttcttcgtctcctatttataatatggtttgttattgttaattttgttcttgtagaagagcttaattaatcgttgttgttatg
aaatactatttgtatgagatgaactggtgtaatgtaattcatttacataagtggagtcagaatcagaatgtttcctcca
taactaactagacatgaagacctgccgcgtacaattgtcttatatttgaacaactaaaattgaacatcttttgccaca
actttataagtggttaatatagctcaaatatatggtcaagttcaatagattaataatggaaatatcagttatcgaaatt
cattaacaatcaacttaacgttattaactactaattttatatcatcccctttgataaatgatagtacaccaattaggaag
gagcatgctcgcctaggagattgtcgtttcccgccttcagtttgcaagctgctctagccgtgtagccaatacgcaa
accgcctctccccgcgcgttgggaattactagcgcgtgtcgacaagcttgcatgccggtcaacatggtggagca
cgacacacttgtctactccaaaaatatcaaagatacagtctcagaagaccaaagggcaattgagacttttcaaca
aagggtaatatccggaaacctcctcggattccattgcccagctatctgtcactttattgtgaagatagtggaaaag
gaaggtggctcctacaaatgccatcattgcgataaaggaaaggccatcgttgaagatgcctctgccgacagtgg
tcccaaagatggacccccacccacgaggagcatcgtggaaaaagaagacgttccaaccacgtcttcaaagca
agtggattgatgtgataacatggtggagcacgacacacttgtctactccaaaaatatcaaagatacagtctcaga
agaccaaagggcaattgagacttttcaacaaagggtaatatccggaaacctcctcggattccattgcccagctat
ctgtcactttattgtgaagatagtggaaaaggaaggtggctcctacaaatgccatcattgcgataaaggaaaggc
catcgttgaagatgcctctgccgacagtggtcccaaagatggacccccacccacgaggagcatcgtggaaaaa
gaagacgttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatgacgcaca
atcccactatccttcgcaagacccttcctctatataaggaagttcatttcatttggagaggcacacaatttgctttagt
gattaaactttcttttacaacaaattaaaggtctattatctcccaacaacataagaaaacaatggcgaaaaacgttg
cgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgacgtcactcctcagccaaaacgac
acccccatctgtctatccactggcccctggatctgctgcccaaactaactccatggtgaccctgggatgcctggt
caagggctatttccctgagccagtgacagtgacctggaactctggatccctgtccagcggtgtgcacaccttccc
agctgtcctgcagtctgacctctacactctgagcagctcagtgactgtcccctccagcacctggcccagcgaga
ccgtcacctgcaacgttgcccacccggccagcagcaccaaggtggacaagaaaattgtgcccagggattgtg
gttgtaagccttgcatatgtacagtcccagaagtatcatctgtcttcatcttccccccaaagcccaaggatgtgctc
accattactctgactcctaaggtcacgtgtgttgtggtagacatcagcaaggatgatcccgaggtccagttcagct
ggtttgtagatgatgtggaggtgcacacagctcagacgcaaccccgggaggagcagttcaacagcactttccg
ctcagtcagtgaacttcccatcatgcaccaggactggctcaatggcaaggagacgtccagattttggcgatctat
tcaactgtcgccagttcattggtactggtagtctccctgggggcaatcagtttctggatgtgctctaatgggtctcta
cagtgtagaatatgtatttaaaggccttagtcgtgtcgtttttcaaataatataatccttttagggttttagttagtttaaa
ttttctgttgctcctgtttagcaggtcgtgccttcagcaagcacacaaaaacagagtgtttattttaagttgtttgttta
gtgattcaaaaaaaaaatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatg
attatcatataatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtt
tttatgattagagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaatt
atcgcgcgcggtgtcatctatgttactagatctctagagtctcaagcttggcgcgcccacgtgactagtggcact
ggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccc
tttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggc
gaatgctagagcagcttgagcttggatcagattgtcgtttcccgccttcagtttaaactatcagtgtttgacaggat
atattggcgggtaaacctaagagaaaagagcgttta
Construct 8586 from 2X35S prom to NOS terminator (SEQ ID NO: 32)
GTCAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAA
AGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACAA
AGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTG
TCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAAAT
GCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCC
GACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGG
AAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATG
TGATAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCA
AAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACA
AAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCT
GTCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAA
ATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTG
CCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGT
GGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGA
TGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCC
TTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGA
GGCACACAATTTGCTTTAGTGATTAAACTTTCTTTTACAACAAATTA
AAGGTCTATTATCTCCCAACAACATAAGAAAACAATGGCGAAAAAC
GTTGCGATTTTCGGCTTATTGTTTTCTCTTCTTGTGTTGGTTCCTTCTC
AGATCTTCGCGGTGAATCTTACGACGCGAACACAGTTACCACCCGCA
TATACAAATAGCTTCACTCGGGGTGTTTATTACCCCGACAAAGTGTT
CAGGTCCTCCGTGCTCCACTCAACACAGGACCTCTTTCTTCCTTTCTT
TTCTAACGTGACATGGTTTCATGCCATTCATGTATCCGGCACTAACG
GTACTAAGAGGTTCGATAATCCTGTGCTCCCTTTCAATGACGGCGTT
TACTTTGCAAGCACAGAGAAGAGTAACATCATCCGAGGTTGGATCTT
TGGCACTACCCTCGATTCAAAGACGCAGAGCCTCCTCATTGTGAACA
ATGCCACTAACGTGGTGATCAAAGTTTGCGAGTTTCAGTTCTGCAAT
GACCCTTTCTTGGGGGTGTACTATCATAAGAACAACAAGTCTTGGAT
GGAATCTGAATTCCGCGTCTATAGCAGCGCCAACAACTGCACCTTTG
AATACGTGTCCCAGCCCTTCCTTATGGACCTGGAGGGAAAGCAGGG
AAACTTTAAGAATCTGAGAGAGTTCGTGTTTAAAAATATCGACGGCT
ATTTTAAGATCTATTCTAAGCACACGCCTATTAATCTCGTGCGCGAT
CTTCCACAAGGCTTCAGCGCCCTGGAACCACTCGTGGACCTCCCAAT
TGGTATCAACATCACTAGATTTCAGACTCTGCTTGCCCTCCACCGAT
CCTATCTGACACCCGGAGACTCCTCTAGCGGCTGGACTGCCGGCGCT
GCCGCTTATTACGTTGGTTATCTTCAGCCACGCACGTTCCTGCTGAA
GTATAACGAGAATGGTACTATTACCGATGCCGTGGATTGTGCCCTTG
ACCCCCTGTCCGAAACTAAGTGCACACTCAAGTCATTCACTGTGGAA
AAAGGAATCTACCAGACAAGCAATTTTCGGGTCCAGCCTACTGAGA
GCATTGTGCGCTTTCCTAACATCACAAATCTTTGCCCCTTCGGAGAG
GTTTTCAATGCTACACGGTTTGCCTCCGTGTATGCCTGGAACCGCAA
GAGAATTTCCAATTGCGTGGCCGATTACTCCGTGCTCTACAATAGTG
CAAGCTTTAGCACCTTTAAGTGCTATGGCGTATCCCCTACTAAGCTT
AACGACTTGTGTTTCACAAACGTGTATGCCGACTCCTTTGTGATACG
GGGCGACGAAGTTAGACAGATAGCACCAGGACAGACGGGAAAGAT
AGCTGACTACAACTATAAGCTTCCTGATGACTTCACTGGCTGCGTTA
TCGCGTGGAATTCTAACAACCTGGACTCAAAAGTCGGCGGCAACTAT
AACTATCTCTATCGGCTGTTCCGCAAGAGTAACCTTAAGCCCTTTGA
GAGAGATATAAGCACTGAAATCTACCAGGCTGGCAGTACGCCCTGT
AATGGCGTGGAAGGCTTTAATTGTTATTTTCCACTGCAATCCTATGG
TTTTCAGCCAACCAATGGCGTGGGCTACCAACCATACCGCGTCGTGG
TGCTCTCCTTTGAACTGCTCCACGCTCCCGCGACTGTCTGCGGCCCCA
AGAAGTCCACGAACCTTGTGAAGAATAAGTGCGTTAATTTTAATTTC
AACGGCCTCACTGGAACAGGAGTGCTCACTGAGAGTAACAAGAAGT
TCCTGCCATTTCAACAATTTGGCAGAGACATAGCCGATACTACTGAC
GCCGTTAGGGACCCCCAGACCCTCGAGATTCTCGATATAACGCCCTG
CTCCTTCGGTGGAGTTTCCGTGATCACGCCAGGCACCAATACCAGTA
ACCAGGTCGCCGTGCTGTATCAGGATGTCAACTGTACTGAGGTGCCC
GTAGCCATCCATGCGGATCAGCTCACACCAACTTGGAGGGTGTACA
GCACCGGCTCCAATGTATTCCAGACTCGGGCCGGATGCCTTATTGGC
GCCGAACACGTGAACAATAGTTACGAATGCGATATTCCAATTGGCG
CCGGAATCTGTGCTAGCTACCAGACTCAGACGAACTCCCCAGGCAG
CGCCAGCAGCGTTGCCAGCCAGTCAATCATCGCTTATACAATGTCAC
TTGGAGCCGAAAACTCCGTGGCTTACTCAAACAACAGCATCGCCATC
CCCACAAACTTCACCATATCCGTGACAACTGAGATTCTGCCAGTGTC
CATGACTAAGACGTCCGTAGATTGCACTATGTACATATGCGGCGACA
GCACAGAATGTTCTAATCTGCTGCTGCAATATGGAAGCTTCTGCACT
CAACTGAACAGAGCGCTCACAGGCATCGCCGTGGAGCAGGATAAGA
ATACCCAGGAGGTGTTCGCCCAAGTTAAGCAGATCTACAAGACCCC
ACCCATAAAGGATTTCGGTGGATTCAATTTTAGTCAGATACTCCCAG
ACCCATCTAAGCCATCCAAGAGGAGCTTTATCGAGGATCTTTTGTTT
AACAAAGTTACTCTGGCCGACGCCGGTTTCATCAAGCAGTACGGAG
ATTGCCTCGGCGACATCGCTGCTCGTGACCTCATCTGTGCGCAAAAG
TTTAACGGTCTGACGGTGCTGCCTCCCCTCCTTACTGATGAAATGAT
CGCCCAGTATACCAGCGCACTCCTCGCTGGCACCATAACATCCGGTT
GGACATTCGGCGCTGGTGCAGCACTGCAGATACCATTCGCCATGCAA
ATGGCATATCGTTTCAACGGTATCGGTGTCACACAGAATGTCCTATA
TGAGAACCAGAAGCTGATCGCAAATCAGTTCAATAGTGCCATCGGA
AAAATCCAGGATAGCCTTAGCAGCACAGCCTCAGCCCTTGGCAAAC
TCCAGGATGTCGTGAACCAGAATGCCCAGGCTCTCAATACCCTCGTG
AAGCAGCTCTCATCTAATTTCGGCGCAATTTCCAGTGTCCTCAACGA
CATCCTCAGCCGCCTCGACCCCCCCGAGGCCGAAGTGCAGATTGACA
GACTGATTACAGGTCGACTCCAGAGCCTCCAGACTTACGTGACTCAG
CAGCTGATAAGAGCCGCCGAGATAAGGGCCAGCGCTAACCTGGCTG
CCACAAAGATGTCTGAGTGCGTGCTGGGCCAGTCCAAGAGAGTAGA
CTTCTGTGGCAAAGGCTACCATCTGATGAGCTTCCCACAATCCGCAC
CTCACGGCGTAGTGTTCCTCCACGTGACATATGTACCGGCTCAGGAG
AAGAATTTCACTACCGCTCCTGCTATATGCCATGATGGAAAGGCTCA
CTTCCCCCGGGAGGGGGTGTTCGTGTCCAACGGCACCCATTGGTTTG
TGACTCAGCGGAATTTCTACGAACCCCAGATCATAACCACTGACAAC
ACATTTGTGTCCGGAAATTGTGACGTGGTCATTGGAATAGTGAACAA
CACTGTTTATGATCCACTGCAGCCAGAACTTGACAGCTTTAAGGAGG
AGCTCGACAAGTACTTCAAGAATCATACGTCACCAGATGTGGACCTC
GGAGATATTAGCGGTATCAATGCCAGTGTTGTCAATATTCAGAAGGA
AATAGACCGCCTTAATGAGGTCGCCAAAAATCTGAACGAGAGCCTC
ATCGATCTTCAGGAGCTGGGCAAATATGAGCAGTACATCAAGTGGC
CTTGGTATATTTGGCTTGGCTTCATCGCCGGCCTGATCGCCATAGTA
ATGGTCACAATTATGCTCTGCTGCATGACCTCTTGCTGCTCCTGTCTG
AAAGGCTGCTGCTCTTGCGGATCCTGCTGCAAATTTGATGAGGATGA
CAGTGAACCAGTCCTGAAGGGCGTGAAGCTGCACTATACTTAGAGG
CCTTAGTCGTGTCGTTTTTCAAATAATATAATCCTTTTAGGGTTTTAG
TTAGTTTAAATTTTCTGTTGCTCCTGTTTAGCAGGTCGTGCCTTCAGC
AAGCACACAAAAACAGAGTGTTTATTTTAAGTTGTTTGTTTAGTGAT
TCAAAAAAAAAATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGAT
TGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGA
ATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTT
ATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATA
CGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCG
CGCGCGGTGTCATCTATGTTACTAGAT
Cloning vector 8500 from left to right T-DNA (SEQ ID NO: 33)
tggcaggatatattgtggtgtaaacaaattgacgcttagacaacttaataacacattgcggacgtttttaatgtactg
aattaacgccgaatcccgggctggtatatttatatgttgtcaaataactcaaaaaccataaaagtttaagttagcaa
gtgtgtacatttttacttgaacaaaaatattcacctactactgttataaatcattattaaacattagagtaaagaaatat
ggatgataagaacaagagtagtgatattttgacaacaattttgttgcaacatttgagaaaattttgttgttctctctttt
cattggtcaaaaacaatagagagagaaaaaggaagagggagaataaaaacataatgtgagtatgagagagaa
agttgtacaaaagttgtaccaaaatagttgtacaaatatcattgaggaatttgacaaaagctacacaaataagggtt
aattgctgtaaataaataaggatgacgcattagagagatgtaccattagagaatttttggcaagtcattaaaaaga
aagaataaattatttttaaaattaaaagttgagtcatttgattaaacatgtgattatttaatgaattgatgaaagagttg
gattaaagttgtattagtaattagaatttggtgtcaaatttaatttgacatttgatcttttcctatatattgccccatagag
tcagttaactcatttttatatttcatagatcaaataagagaaataacggtatattaatccctccaaaaaaaaaaaacg
gtatatttactaaaaaatctaagccacgtaggaggataacaggatccccgtaggaggataacatccaatccaacc
aatcacaacaatcctgatgagataacccactttaagcccacgcatctgtggcacatctacattatctaaatcacac
attcttccacacatctgagccacacaaaaaccaatccacatctttatcacccattctataaaaaatcacactttgtga
gtctacactttgattcccttcaaacacatacaaagagaagagactaattaattaattaatcatcttgagagaaaatg
gaacgagctatacaaggaaacgacgctagggaacaagctaacagtgaacgttgggatggaggatcaggagg
taccacttctcccttcaaacttcctgacgaaagtccgagttggactgagtggcggctacataacgatgagacgaa
ttcgaatcaagataatccccttggtttcaaggaaagctggggtttcgggaaagttgtatttaagagatatctcagat
acgacaggacggaagcttcactgcacagagtccttggatcttggacgggagattcggttaactatgcagcatct
cgatttttcggtttcgaccagatcggatgtacctatagtattcggtttcgaggagttagtatcaccgtttctggaggg
tcgcgaactcttcagcatctctgtgagatggcaattcggtctaagcaagaactgctacagcttgccccaatcgaa
gtggaaagtaatgtatcaagaggatgccctgaaggtactcaaaccttcgaaaaagaaagcgagtaagttaaaat
gcttcttcgtctcctatttataatatggtttgttattgttaattttgttcttgtagaagagcttaattaatcgttgttgttatg
aaatactatttgtatgagatgaactggtgtaatgtaattcatttacataagtggagtcagaatcagaatgtttcctcca
taactaactagacatgaagacctgccgcgtacaattgtcttatatttgaacaactaaaattgaacatcttttgccaca
actttataagtggttaatatagctcaaatatatggtcaagttcaatagattaataatggaaatatcagttatcgaaatt
cattaacaatcaacttaacgttattaactactaattttatatcatcccctttgataaatgatagtacaccaattaggaag
gagcatgctcgcctaggagattgtcgtttcccgccttcagtttgcaagctgctctagccgtgtagccaatacgcaa
accgcctctccccgcgcgttgggaattactagcgcgtgtcgacaagcttgcatgccggtcaacatggtggagca
cgacacacttgtctactccaaaaatatcaaagatacagtctcagaagaccaaagggcaattgagacttttcaaca
aagggtaatatccggaaacctcctcggattccattgcccagctatctgtcactttattgtgaagatagtggaaaag
gaaggtggctcctacaaatgccatcattgcgataaaggaaaggccatcgttgaagatgcctctgccgacagtgg
tcccaaagatggacccccacccacgaggagcatcgtggaaaaagaagacgttccaaccacgtcttcaaagca
agtggattgatgtgataacatggtggagcacgacacacttgtctactccaaaaatatcaaagatacagtctcaga
agaccaaagggcaattgagacttttcaacaaagggtaatatccggaaacctcctcggattccattgcccagctat
ctgtcactttattgtgaagatagtggaaaaggaaggtggctcctacaaatgccatcattgcgataaaggaaaggc
catcgttgaagatgcctctgccgacagtggtcccaaagatggacccccacccacgaggagcatcgtggaaaaa
gaagacgttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatgacgcaca
atcccactatccttcgcaagacccttcctctatataaggaagttcatttcatttggagaggcacttttctaatcaatca
tcaaacagaacgcagaaaatttcctaaaaacaaaaaaaaggcatacaaatggcgaaaaacgttgcgattttcgg
cttattgttttctcttcttgtgttggttccttctcagatcttcgcgacgtcactcctcagccaaaacgacacccccatct
gtctatccactggcccctggatctgctgcccaaactaactccatggtgaccctgggatgcctggtcaagggctat
ttccctgagccagtgacagtgacctggaactctggatccctgtccagcggtgtgcacaccttcccagctgtcctg
cagtctgacctctacactctgagcagctcagtgactgtcccctccagcacctggcccagcgagaccgtcacctg
caacgttgcccacccggccagcagcaccaaggtggacaagaaaattgtgcccagggattgtggttgtaagcct
tgcatatgtacagtcccagaagtatcatctgtcttcatcttccccccaaagcccaaggatgtgctcaccattactct
gactcctaaggtcacgtgtgttgtggtagacatcagcaaggatgatcccgaggtccagttcagctggtttgtagat
gatgtggaggtgcacacagctcagacgcaaccccgggaggagcagttcaacagcactttccgctcagtcagt
gaacttcccatcatgcaccaggactggctcaatggcaaggagacgtccagattttggcgatctattcaactgtcg
ccagttcattggtactggtagtctccctgggggcaatcagtttctggatgtgctctaatgggtctctacagtgtaga
atatgtatttaaaggccttagtcgtgtcgtttttcaaataatataatccttttagggttttagttagtttaaattttctgttg
ctcctgtttagcaggtcgtgccttcagcaagcacacaaaaacagagtgtttattttaagttgtttgtttagtgattcaa
aaaaaaaatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatat
aatttctgttgaattacgttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgatta
gagtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcg
cggtgtcatctatgttactagatctctagagtctcaagcttggcgcgcccacgtgactagtggcactggccgtcgt
tttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagc
tggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgctaga
gcagcttgagcttggatcagattgtcgtttcccgccttcagtttaaactatcagtgtttgacaggatatattggcggg
taaacctaagagaaaagagcgttta
Construct 8589 from 2X35S prom to NOS terminator (SEQ ID NO: 34)
GTCAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAA
AGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACAA
AGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTG
TCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAAAT
GCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCC
GACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGG
AAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATG
TGATAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCA
AAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACA
AAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCT
GTCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAA
ATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTG
CCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGT
GGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGA
TGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCC
TTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGA
GGCACTTTTCTAATCAATCATCAAACAGAACGCAGAAAATTTCCTAA
AAACAAAAAAAAGGCATACAAATGGCGAAAAACGTTGCGATTTTCG
GCTTATTGTTTTCTCTTCTTGTGTTGGTTCCTTCTCAGATCTTCGCGGT
GAATCTTACGACGCGAACACAGTTACCACCCGCATATACAAATAGCT
TCACTCGGGGTGTTTATTACCCCGACAAAGTGTTCAGGTCCTCCGTG
CTCCACTCAACACAGGACCTCTTTCTTCCTTTCTTTTCTAACGTGACA
TGGTTTCATGCCATTCATGTATCCGGCACTAACGGTACTAAGAGGTT
CGATAATCCTGTGCTCCCTTTCAATGACGGCGTTTACTTTGCAAGCA
CAGAGAAGAGTAACATCATCCGAGGTTGGATCTTTGGCACTACCCTC
GATTCAAAGACGCAGAGCCTCCTCATTGTGAACAATGCCACTAACGT
GGTGATCAAAGTTTGCGAGTTTCAGTTCTGCAATGACCCTTTCTTGG
GGGTGTACTATCATAAGAACAACAAGTCTTGGATGGAATCTGAATTC
CGCGTCTATAGCAGCGCCAACAACTGCACCTTTGAATACGTGTCCCA
GCCCTTCCTTATGGACCTGGAGGGAAAGCAGGGAAACTTTAAGAAT
CTGAGAGAGTTCGTGTTTAAAAATATCGACGGCTATTTTAAGATCTA
TTCTAAGCACACGCCTATTAATCTCGTGCGCGATCTTCCACAAGGCT
TCAGCGCCCTGGAACCACTCGTGGACCTCCCAATTGGTATCAACATC
ACTAGATTTCAGACTCTGCTTGCCCTCCACCGATCCTATCTGACACCC
GGAGACTCCTCTAGCGGCTGGACTGCCGGCGCTGCCGCTTATTACGT
TGGTTATCTTCAGCCACGCACGTTCCTGCTGAAGTATAACGAGAATG
GTACTATTACCGATGCCGTGGATTGTGCCCTTGACCCCCTGTCCGAA
ACTAAGTGCACACTCAAGTCATTCACTGTGGAAAAAGGAATCTACC
AGACAAGCAATTTTCGGGTCCAGCCTACTGAGAGCATTGTGCGCTTT
CCTAACATCACAAATCTTTGCCCCTTCGGAGAGGTTTTCAATGCTAC
ACGGTTTGCCTCCGTGTATGCCTGGAACCGCAAGAGAATTTCCAATT
GCGTGGCCGATTACTCCGTGCTCTACAATAGTGCAAGCTTTAGCACC
TTTAAGTGCTATGGCGTATCCCCTACTAAGCTTAACGACTTGTGTTTC
ACAAACGTGTATGCCGACTCCTTTGTGATACGGGGCGACGAAGTTAG
ACAGATAGCACCAGGACAGACGGGAAAGATAGCTGACTACAACTAT
AAGCTTCCTGATGACTTCACTGGCTGCGTTATCGCGTGGAATTCTAA
CAACCTGGACTCAAAAGTCGGCGGCAACTATAACTATCTCTATCGGC
TGTTCCGCAAGAGTAACCTTAAGCCCTTTGAGAGAGATATAAGCACT
GAAATCTACCAGGCTGGCAGTACGCCCTGTAATGGCGTGGAAGGCT
TTAATTGTTATTTTCCACTGCAATCCTATGGTTTTCAGCCAACCAATG
GCGTGGGCTACCAACCATACCGCGTCGTGGTGCTCTCCTTTGAACTG
CTCCACGCTCCCGCGACTGTCTGCGGCCCCAAGAAGTCCACGAACCT
TGTGAAGAATAAGTGCGTTAATTTTAATTTCAACGGCCTCACTGGAA
CAGGAGTGCTCACTGAGAGTAACAAGAAGTTCCTGCCATTTCAACA
ATTTGGCAGAGACATAGCCGATACTACTGACGCCGTTAGGGACCCCC
AGACCCTCGAGATTCTCGATATAACGCCCTGCTCCTTCGGTGGAGTT
TCCGTGATCACGCCAGGCACCAATACCAGTAACCAGGTCGCCGTGCT
GTATCAGGATGTCAACTGTACTGAGGTGCCCGTAGCCATCCATGCGG
ATCAGCTCACACCAACTTGGAGGGTGTACAGCACCGGCTCCAATGTA
TTCCAGACTCGGGCCGGATGCCTTATTGGCGCCGAACACGTGAACAA
TAGTTACGAATGCGATATTCCAATTGGCGCCGGAATCTGTGCTAGCT
ACCAGACTCAGACGAACTCCCCAGGCAGCGCCAGCAGCGTTGCCAG
CCAGTCAATCATCGCTTATACAATGTCACTTGGAGCCGAAAACTCCG
TGGCTTACTCAAACAACAGCATCGCCATCCCCACAAACTTCACCATA
TCCGTGACAACTGAGATTCTGCCAGTGTCCATGACTAAGACGTCCGT
AGATTGCACTATGTACATATGCGGCGACAGCACAGAATGTTCTAATC
TGCTGCTGCAATATGGAAGCTTCTGCACTCAACTGAACAGAGCGCTC
ACAGGCATCGCCGTGGAGCAGGATAAGAATACCCAGGAGGTGTTCG
CCCAAGTTAAGCAGATCTACAAGACCCCACCCATAAAGGATTTCGGT
GGATTCAATTTTAGTCAGATACTCCCAGACCCATCTAAGCCATCCAA
GAGGAGCTTTATCGAGGATCTTTTGTTTAACAAAGTTACTCTGGCCG
ACGCCGGTTTCATCAAGCAGTACGGAGATTGCCTCGGCGACATCGCT
GCTCGTGACCTCATCTGTGCGCAAAAGTTTAACGGTCTGACGGTGCT
GCCTCCCCTCCTTACTGATGAAATGATCGCCCAGTATACCAGCGCAC
TCCTCGCTGGCACCATAACATCCGGTTGGACATTCGGCGCTGGTGCA
GCACTGCAGATACCATTCGCCATGCAAATGGCATATCGTTTCAACGG
TATCGGTGTCACACAGAATGTCCTATATGAGAACCAGAAGCTGATCG
CAAATCAGTTCAATAGTGCCATCGGAAAAATCCAGGATAGCCTTAG
CAGCACAGCCTCAGCCCTTGGCAAACTCCAGGATGTCGTGAACCAG
AATGCCCAGGCTCTCAATACCCTCGTGAAGCAGCTCTCATCTAATTT
CGGCGCAATTTCCAGTGTCCTCAACGACATCCTCAGCCGCCTCGACC
CCCCCGAGGCCGAAGTGCAGATTGACAGACTGATTACAGGTCGACT
CCAGAGCCTCCAGACTTACGTGACTCAGCAGCTGATAAGAGCCGCC
GAGATAAGGGCCAGCGCTAACCTGGCTGCCACAAAGATGTCTGAGT
GCGTGCTGGGCCAGTCCAAGAGAGTAGACTTCTGTGGCAAAGGCTA
CCATCTGATGAGCTTCCCACAATCCGCACCTCACGGCGTAGTGTTCC
TCCACGTGACATATGTACCGGCTCAGGAGAAGAATTTCACTACCGCT
CCTGCTATATGCCATGATGGAAAGGCTCACTTCCCCCGGGAGGGGGT
GTTCGTGTCCAACGGCACCCATTGGTTTGTGACTCAGCGGAATTTCT
ACGAACCCCAGATCATAACCACTGACAACACATTTGTGTCCGGAAAT
TGTGACGTGGTCATTGGAATAGTGAACAACACTGTTTATGATCCACT
GCAGCCAGAACTTGACAGCTTTAAGGAGGAGCTCGACAAGTACTTC
AAGAATCATACGTCACCAGATGTGGACCTCGGAGATATTAGCGGTA
TCAATGCCAGTGTTGTCAATATTCAGAAGGAAATAGACCGCCTTAAT
GAGGTCGCCAAAAATCTGAACGAGAGCCTCATCGATCTTCAGGAGC
TGGGCAAATATGAGCAGTACATCAAGTGGCCTTGGTATATTTGGCTT
GGCTTCATCGCCGGCCTGATCGCCATAGTAATGGTCACAATTATGCT
CTGCTGCATGACCTCTTGCTGCTCCTGTCTGAAAGGCTGCTGCTCTTG
CGGATCCTGCTGCAAATTTGATGAGGATGACAGTGAACCAGTCCTGA
AGGGCGTGAAGCTGCACTATACTTAGAGGCCTTAGTCGTGTCGTTTT
TCAAATAATATAATCCTTTTAGGGTTTTAGTTAGTTTAAATTTTCTGT
TGCTCCTGTTTAGCAGGTCGTGCCTTCAGCAAGCACACAAAAACAGA
GTGTTTATTTTAAGTTGTTTGTTTAGTGATTCAAAAAAAAAATCGTTC
AAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTC
TTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAA
TAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATG
ATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAAT
ATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGT
TACTAGAT
Cloning vector 8716 from left to right T-DNA (SEQ ID NO: 35)
tggcaggatatattgtggtgtaaacaaattgacgcttagacaacttaataacacattgcggacgtttttaatgtactg
aattaacgccgaatcccgggctggtatatttatatgttgtcaaataactcaaaaaccataaaagtttaagttagcaa
gtgtgtacatttttacttgaacaaaaatattcacctactactgttataaatcattattaaacattagagtaaagaaatat
ggatgataagaacaagagtagtgatattttgacaacaattttgttgcaacatttgagaaaattttgttgttctctctttt
cattggtcaaaaacaatagagagagaaaaaggaagagggagaataaaaacataatgtgagtatgagagagaa
agttgtacaaaagttgtaccaaaatagttgtacaaatatcattgaggaatttgacaaaagctacacaaataagggtt
aattgctgtaaataaataaggatgacgcattagagagatgtaccattagagaatttttggcaagtcattaaaaaga
aagaataaattatttttaaaattaaaagttgagtcatttgattaaacatgtgattatttaatgaattgatgaaagagttg
gattaaagttgtattagtaattagaatttggtgtcaaatttaatttgacatttgatcttttcctatatattgccccatagag
tcagttaactcatttttatatttcatagatcaaataagagaaataacggtatattaatccctccaaaaaaaaaaaacg
gtatatttactaaaaaatctaagccacgtaggaggataacaggatccccgtaggaggataacatccaatccaacc
aatcacaacaatcctgatgagataacccactttaagcccacgcatctgtggcacatctacattatctaaatcacac
attcttccacacatctgagccacacaaaaaccaatccacatctttatcacccattctataaaaaatcacactttgtga
gtctacactttgattcccttcaaacacatacaaagagaagagactaattaattaattaatcatcttgagagaaaatg
gaacgagctatacaaggaaacgacgctagggaacaagctaacagtgaacgttgggatggaggatcaggagg
taccacttctcccttcaaacttcctgacgaaagtccgagttggactgagtggcggctacataacgatgagacgaa
ttcgaatcaagataatccccttggtttcaaggaaagctggggtttcgggaaagttgtatttaagagatatctcagat
acgacaggacggaagcttcactgcacagagtccttggatcttggacgggagattcggttaactatgcagcatct
cgatttttcggtttcgaccagatcggatgtacctatagtattcggtttcgaggagttagtatcaccgtttctggaggg
tcgcgaactcttcagcatctctgtgagatggcaattcggtctaagcaagaactgctacagcttgccccaatcgaa
gtggaaagtaatgtatcaagaggatgccctgaaggtactcaaaccttcgaaaaagaaagcgagtaagttaaaat
gcttcttcgtctcctatttataatatggtttgttattgttaattttgttcttgtagaagagcttaattaatcgttgttgttatg
aaatactatttgtatgagatgaactggtgtaatgtaattcatttacataagtggagtcagaatcagaatgtttcctcca
taactaactagacatgaagacctgccgcgtacaattgtcttatatttgaacaactaaaattgaacatcttttgccaca
actttataagtggttaatatagctcaaatatatggtcaagttcaatagattaataatggaaatatcagttatcgaaatt
cattaacaatcaacttaacgttattaactactaattttatatcatcccctttgataaatgatagtacaccaattaggaag
gagcatgctcgcctaggagattgtcgtttcccgccttcagtttgcaagctgctctagccgtgtagccaatacgcaa
accgcctctccccgcgcgttgggaattactagcgcgtgtcgacaagcttgcatgccggtcaacatggtggagca
cgacacacttgtctactccaaaaatatcaaagatacagtctcagaagaccaaagggcaattgagacttttcaaca
aagggtaatatccggaaacctcctcggattccattgcccagctatctgtcactttattgtgaagatagtggaaaag
gaaggtggctcctacaaatgccatcattgcgataaaggaaaggccatcgttgaagatgcctctgccgacagtgg
tcccaaagatggacccccacccacgaggagcatcgtggaaaaagaagacgttccaaccacgtcttcaaagca
agtggattgatgtgataacatggtggagcacgacacacttgtctactccaaaaatatcaaagatacagtctcaga
agaccaaagggcaattgagacttttcaacaaagggtaatatccggaaacctcctcggattccattgcccagctat
ctgtcactttattgtgaagatagtggaaaaggaaggtggctcctacaaatgccatcattgcgataaaggaaaggc
catcgttgaagatgcctctgccgacagtggtcccaaagatggacccccacccacgaggagcatcgtggaaaaa
gaagacgttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatgacgcaca
atcccactatccttcgcaagacccttcctctatataaggaagttcatttcatttggagaggcactccatttgaatctat
caaaccaaaacacattgagcaaaatggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttcc
ttctcagatcttcgcgacgtcactcctcagccaaaacgacacccccatctgtctatccactggcccctggatctgc
tgcccaaactaactccatggtgaccctgggatgcctggtcaagggctatttccctgagccagtgacagtgacctg
gaactctggatccctgtccagcggtgtgcacaccttcccagctgtcctgcagtctgacctctacactctgagcag
ctcagtgactgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcccacccggccagcag
caccaaggtggacaagaaaattgtgcccagggattgtggttgtaagccttgcatatgtacagtcccagaagtatc
atctgtcttcatcttccccccaaagcccaaggatgtgctcaccattactctgactcctaaggtcacgtgtgttgtggt
agacatcagcaaggatgatcccgaggtccagttcagctggtttgtagatgatgtggaggtgcacacagctcaga
cgcaaccccgggaggagcagttcaacagcactttccgctcagtcagtgaacttcccatcatgcaccaggactg
gctcaatggcaaggagacgtccagattttggcgatctattcaactgtcgccagttcattggtactggtagtctccct
gggggcaatcagtttctggatgtgctctaatgggtctctacagtgtagaatatgtatttaaaggccttagtcgtgtc
gtttttcaaataatataatccttttagggttttagttagtttaaattttctgttgctcctgtttagcaggtcgtgccttcagc
aagcacacaaaaacagagtgtttattttaagttgtttgtttagtgattcaaaaaaaaaatcgttcaaacatttggcaat
aaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaattacgttaagcatgta
ataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcccgcaattatacatttaatacgc
gatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgttactagatctctag
agtctcaagcttggcgcgcccacgtgactagtggcactggccgtcgttttacaacgtcgtgactgggaaaaccc
tggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgca
ccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgctagagcagcttgagcttggatcagattgtc
gtttcccgccttcagtttaaactatcagtgtttgacaggatatattggcgggtaaacctaagagaaaagagcgttta construct 8591 from 2X35S prom to NOS terminator (SEQ ID NO: 36)
GTCAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAA
AGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACAA
AGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTG
TCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAAAT
GCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCC
GACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGG
AAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATG
TGATAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCA
AAGATACAGTCTCAGAAGACCAAAGGGCAATTGAGACTTTTCAACA
AAGGGTAATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCT
GTCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAA
ATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTG
CCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGT
GGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGA
TGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCC
TTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGA
GGCACTCCATTTGAATCTATCAAACCAAAACACATTGAGCAAAATG
GCGAAAAACGTTGCGATTTTCGGCTTATTGTTTTCTCTTCTTGTGTTG
GTTCCTTCTCAGATCTTCGCGGTGAATCTTACGACGCGAACACAGTT
ACCACCCGCATATACAAATAGCTTCACTCGGGGTGTTTATTACCCCG
ACAAAGTGTTCAGGTCCTCCGTGCTCCACTCAACACAGGACCTCTTT
CTTCCTTTCTTTTCTAACGTGACATGGTTTCATGCCATTCATGTATCC
GGCACTAACGGTACTAAGAGGTTCGATAATCCTGTGCTCCCTTTCAA
TGACGGCGTTTACTTTGCAAGCACAGAGAAGAGTAACATCATCCGA
GGTTGGATCTTTGGCACTACCCTCGATTCAAAGACGCAGAGCCTCCT
CATTGTGAACAATGCCACTAACGTGGTGATCAAAGTTTGCGAGTTTC
AGTTCTGCAATGACCCTTTCTTGGGGGTGTACTATCATAAGAACAAC
AAGTCTTGGATGGAATCTGAATTCCGCGTCTATAGCAGCGCCAACAA
CTGCACCTTTGAATACGTGTCCCAGCCCTTCCTTATGGACCTGGAGG
GAAAGCAGGGAAACTTTAAGAATCTGAGAGAGTTCGTGTTTAAAAA
TATCGACGGCTATTTTAAGATCTATTCTAAGCACACGCCTATTAATCT
CGTGCGCGATCTTCCACAAGGCTTCAGCGCCCTGGAACCACTCGTGG
ACCTCCCAATTGGTATCAACATCACTAGATTTCAGACTCTGCTTGCC
CTCCACCGATCCTATCTGACACCCGGAGACTCCTCTAGCGGCTGGAC
TGCCGGCGCTGCCGCTTATTACGTTGGTTATCTTCAGCCACGCACGTT
CCTGCTGAAGTATAACGAGAATGGTACTATTACCGATGCCGTGGATT
GTGCCCTTGACCCCCTGTCCGAAACTAAGTGCACACTCAAGTCATTC
ACTGTGGAAAAAGGAATCTACCAGACAAGCAATTTTCGGGTCCAGC
CTACTGAGAGCATTGTGCGCTTTCCTAACATCACAAATCTTTGCCCCT
TCGGAGAGGTTTTCAATGCTACACGGTTTGCCTCCGTGTATGCCTGG
AACCGCAAGAGAATTTCCAATTGCGTGGCCGATTACTCCGTGCTCTA
CAATAGTGCAAGCTTTAGCACCTTTAAGTGCTATGGCGTATCCCCTA
CTAAGCTTAACGACTTGTGTTTCACAAACGTGTATGCCGACTCCTTT
GTGATACGGGGCGACGAAGTTAGACAGATAGCACCAGGACAGACGG
GAAAGATAGCTGACTACAACTATAAGCTTCCTGATGACTTCACTGGC
TGCGTTATCGCGTGGAATTCTAACAACCTGGACTCAAAAGTCGGCGG
CAACTATAACTATCTCTATCGGCTGTTCCGCAAGAGTAACCTTAAGC
CCTTTGAGAGAGATATAAGCACTGAAATCTACCAGGCTGGCAGTAC
GCCCTGTAATGGCGTGGAAGGCTTTAATTGTTATTTTCCACTGCAAT
CCTATGGTTTTCAGCCAACCAATGGCGTGGGCTACCAACCATACCGC
GTCGTGGTGCTCTCCTTTGAACTGCTCCACGCTCCCGCGACTGTCTGC
GGCCCCAAGAAGTCCACGAACCTTGTGAAGAATAAGTGCGTTAATTT
TAATTTCAACGGCCTCACTGGAACAGGAGTGCTCACTGAGAGTAAC
AAGAAGTTCCTGCCATTTCAACAATTTGGCAGAGACATAGCCGATAC
TACTGACGCCGTTAGGGACCCCCAGACCCTCGAGATTCTCGATATAA
CGCCCTGCTCCTTCGGTGGAGTTTCCGTGATCACGCCAGGCACCAAT
ACCAGTAACCAGGTCGCCGTGCTGTATCAGGATGTCAACTGTACTGA
GGTGCCCGTAGCCATCCATGCGGATCAGCTCACACCAACTTGGAGG
GTGTACAGCACCGGCTCCAATGTATTCCAGACTCGGGCCGGATGCCT
TATTGGCGCCGAACACGTGAACAATAGTTACGAATGCGATATTCCAA
TTGGCGCCGGAATCTGTGCTAGCTACCAGACTCAGACGAACTCCCCA
GGCAGCGCCAGCAGCGTTGCCAGCCAGTCAATCATCGCTTATACAAT
GTCACTTGGAGCCGAAAACTCCGTGGCTTACTCAAACAACAGCATCG
CCATCCCCACAAACTTCACCATATCCGTGACAACTGAGATTCTGCCA
GTGTCCATGACTAAGACGTCCGTAGATTGCACTATGTACATATGCGG
CGACAGCACAGAATGTTCTAATCTGCTGCTGCAATATGGAAGCTTCT
GCACTCAACTGAACAGAGCGCTCACAGGCATCGCCGTGGAGCAGGA
TAAGAATACCCAGGAGGTGTTCGCCCAAGTTAAGCAGATCTACAAG
ACCCCACCCATAAAGGATTTCGGTGGATTCAATTTTAGTCAGATACT
CCCAGACCCATCTAAGCCATCCAAGAGGAGCTTTATCGAGGATCTTT
TGTTTAACAAAGTTACTCTGGCCGACGCCGGTTTCATCAAGCAGTAC
GGAGATTGCCTCGGCGACATCGCTGCTCGTGACCTCATCTGTGCGCA
AAAGTTTAACGGTCTGACGGTGCTGCCTCCCCTCCTTACTGATGAAA
TGATCGCCCAGTATACCAGCGCACTCCTCGCTGGCACCATAACATCC
GGTTGGACATTCGGCGCTGGTGCAGCACTGCAGATACCATTCGCCAT
GCAAATGGCATATCGTTTCAACGGTATCGGTGTCACACAGAATGTCC
TATATGAGAACCAGAAGCTGATCGCAAATCAGTTCAATAGTGCCATC
GGAAAAATCCAGGATAGCCTTAGCAGCACAGCCTCAGCCCTTGGCA
AACTCCAGGATGTCGTGAACCAGAATGCCCAGGCTCTCAATACCCTC
GTGAAGCAGCTCTCATCTAATTTCGGCGCAATTTCCAGTGTCCTCAA
CGACATCCTCAGCCGCCTCGACCCCCCCGAGGCCGAAGTGCAGATTG
ACAGACTGATTACAGGTCGACTCCAGAGCCTCCAGACTTACGTGACT
CAGCAGCTGATAAGAGCCGCCGAGATAAGGGCCAGCGCTAACCTGG
CTGCCACAAAGATGTCTGAGTGCGTGCTGGGCCAGTCCAAGAGAGT
AGACTTCTGTGGCAAAGGCTACCATCTGATGAGCTTCCCACAATCCG
CACCTCACGGCGTAGTGTTCCTCCACGTGACATATGTACCGGCTCAG
GAGAAGAATTTCACTACCGCTCCTGCTATATGCCATGATGGAAAGGC
TCACTTCCCCCGGGAGGGGGTGTTCGTGTCCAACGGCACCCATTGGT
TTGTGACTCAGCGGAATTTCTACGAACCCCAGATCATAACCACTGAC
AACACATTTGTGTCCGGAAATTGTGACGTGGTCATTGGAATAGTGAA
CAACACTGTTTATGATCCACTGCAGCCAGAACTTGACAGCTTTAAGG
AGGAGCTCGACAAGTACTTCAAGAATCATACGTCACCAGATGTGGA
CCTCGGAGATATTAGCGGTATCAATGCCAGTGTTGTCAATATTCAGA
AGGAAATAGACCGCCTTAATGAGGTCGCCAAAAATCTGAACGAGAG
CCTCATCGATCTTCAGGAGCTGGGCAAATATGAGCAGTACATCAAGT
GGCCTTGGTATATTTGGCTTGGCTTCATCGCCGGCCTGATCGCCATA
GTAATGGTCACAATTATGCTCTGCTGCATGACCTCTTGCTGCTCCTGT
CTGAAAGGCTGCTGCTCTTGCGGATCCTGCTGCAAATTTGATGAGGA
TGACAGTGAACCAGTCCTGAAGGGCGTGAAGCTGCACTATACTTAG
AGGCCTTAGTCGTGTCGTTTTTCAAATAATATAATCCTTTTAGGGTTT
TAGTTAGTTTAAATTTTCTGTTGCTCCTGTTTAGCAGGTCGTGCCTTC
AGCAAGCACACAAAAACAGAGTGTTTATTTTAAGTTGTTTGTTTAGT
GATTCAAAAAAAAAATCGTTCAAACATTTGGCAATAAAGTTTCTTAA
GATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGT
TGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTA
TTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAA
TACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTAT
CGCGCGCGGTGTCATCTATGTTACTAGAT
Modified SARS-CoV-2S protein with H5i hemagglutinin CT C-terminal region, variation 2 (SEQ ID NO: 37)
WYIWLGFIAGLIAIVMVTIMAGLSLWMCSNGSLQCRICI
Modified SARS-CoV-2S protein with H5i hemagglutinin CT, variation 3 (SEQ ID NO: 38)
WYIWLGFIAGLIAIVMVTIMLCCMCSNGSLQCRICI
Modified SARS-CoV-2S protein with H5i hemagglutinin CT, variation 4 (SEQ ID NO: 39)
WYIWLGFIAGLIAIVMVTIMLCCSNGSLQCRICI
3' UTR AvB (Arrachacha Virus B) (SEQ ID NO: 40)
TAGTCGTGTCGTTTTTCAAATAATATAATCCTTTTAGGGTTTTAGTTA
GTTTAAATTTTCTGTTGCTCCTGTTTAGCAGGTCGTGCCTTCAGCAAG
CACACAAAAACAGAGTGTTTATTTTAAGTTGTTTGTTTAGTGATTCA
AAAAAAAA
3' UTR trBNYVV (beet necrotic yellow vein Virus) (SEQ ID NO: 41)
CCTATCTTGATGAAGGTTGTTGTGGTTTTCTCATTACTGTTTTATTAT
TGTTTGAGTTGCTTATGTCGGTTCTTGATTATGTGGTGCATAATTATT
GAACTAATTGTTTGTTGGGTTGTAATGTACTGACTGGGTGTGAATTG
TACCAGTCGTTAAAGGGTTTACTATCAGTATATTGATAT
3' UTR SBMV (southern Bean mosaic Virus) (SEQ ID NO: 42)
TGAGGAGTTGTATAATAATACCTGCACCCTTCTCTTTGGCAGGGAGG
GTGTTTCGTTTTCACAATGCCACGCGCTTGAGGGAGAATGCACGTTA
ATCATCCCTCCGCTAGTGATGGAGCGTAATCCAAAAGT
3' UTR TuRSV (turnip round spot virus) (SEQ ID NO: 43)
TGATTTATAATAGCCATAGATTAAGTTTAAATGTATTACGTTTGTATTTTATTCTCTTTTTTAAGTTTCCTATGTTGTTTTAAATTAAATATCTGTATAATTAGTAGATGTAAATCTGCTTTGTGCGTTTGACAGTCTGTGGAAACGCACTGGTTCATGAGATAGGACCACCTAGGAGGTAGGACTCTGGGTTTTAATTATCTCATTTCTTAGTTATACCGTATTATATATATGATTTAGTAGTAATTGTTTTCTCTTGATATGTATTATTACTTTTTTATT3' UTR CPMV (cowpea mosaic Virus) (SEQ ID NO: 44)
ATTTTCTTTAGTTTGAATTTACTGTTATTCGGTGTGCATTTCTATGTTTGGTGAGCGGTTTTCTGTGCTCAGAGTGTGTTTATTTTATGTAATTTAATTTCTTTGTGAGCTCCTGTTTAGCAGGTCGTCCCTTCAGCAAGGACACAAAAAGATTTTAATTTTATT
3' UTR BBTMV (broad bean eukaryotic mosaic Virus) (SEQ ID NO: 45)
TAGTTTTCTTCCGCTTTTCTTTTGTAGTGTGTGGTTTTCTTTGTTTCTTCTTTTCTTTTCTCTTTCCTTTTCTCTTACTCCTGCCTGGCAGGTCGTGCCTTCAGTAAGCACAACAAAAATATGCATTTATTAGAGTATTTCTTTCTTCTTTAGCATAAAGGTATTGAAGACCTATAAACTTCGTCCGGGTTGGGGAAAGTACCAGCTTAGCATATCTTTAGAAAACTATATAGAGCTCTTTACCTTGAGTTGTTTCCTAAAGTTTATGCAAAAAA
3' UTR treuMV (European melon Virus) (SEQ ID NO: 46)
CTCACGTCTGGGGTGAGCCCTAGCCAAATAGGAAAACGATAAGCGCTTTGCATGCAAAATGAGTTGGGCCACAAGTGCCACTCGCAGCGAAGGCGGTCTGAGGTTTCCCCCTGGCGGTTACTTCCATATCTTTGGGAGATAACTGGG
( PDI) modified SARS-CoV-2S protein gsas+pp, with H5i hemagglutinin CT AA (SEQ ID NO:47 )
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLSLWMCSNGSLQCRICI
( PDI) modified SARS-CoV-2S protein gsas+4p, having the H5i hemagglutinin CTAA (SEQ ID NO:48 )
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLSLWMCSNGSLQCRICI
( PDI) modified SARS-CoV-2S protein gsas+6p, having H5i hemagglutinin CT AA (SEQ ID NO:49 )
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGPALQIPFPMQMAYRFNGIGVTQNVLYENQKLIANQF
NSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVL
NDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAAT
KMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKN
FTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVS
GNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGI
NASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFI
AGLIAIVMVTIMLSLWMCSNGSLQCRICI
( PDI) modified SARS-CoV-2S protein gsas+pp+923, having H5i hemagglutinin CT AA (SEQ ID NO:50 )
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSFSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMLSLWMCSNGSLQCRICI
( PDI) modified SARS-CoV-2S protein gsas+4p+923, having H5i hemagglutinin CT AA (SEQ ID NO:51 )
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSFSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSV
LNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAAT
KMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKN
FTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVS
GNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGI
NASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFI
AGLIAIVMVTIMLSLWMCSNGSLQCRICI
( PDI) modified SARS-CoV-2S protein gsas+6p+923, having H5i hemagglutinin CT AA (SEQ ID NO:52 )
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGPALQIPFPMQMAYRFNGIGVTQNVLYENQKLIANQF
NSAIGKIQDSFSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVL
NDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAAT
KMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKN
FTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVS
GNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGI
NASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFI
AGLIAIVMVTIMLSLWMCSNGSLQCRICI
(PDI) modified SARS-CoV-2S protein GSAS+PP, having H1 Cal hemagglutinin
CT AA(SEQ ID NO:53)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMLSFWMCSNGSLQCRICI
( PDI) modified SARS-CoV-2S protein gsas+pp, with H3 Minn hemagglutinin CT AA (SEQ ID NO:54 )
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMLMWACQKGNIRCNICI
(PDI) modified SARS-CoV-2S protein GSAS+PP, having H6 HK hemagglutinin
CT AA(SEQ ID NO:55)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMLGLWMCSNGSMQCRICI
( PDI) modified SARS-CoV-2S protein gsas+pp, with H7 Guangdong hemagglutinin CT AA (SEQ ID NO:56 )
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMLVFICVKNGNMRCTICI
(PDI) modified SARS-CoV-2S protein GSAS+PP, having H9 HK hemagglutinin
CT AA(SEQ ID NO:57)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMLLFWAMSNGSCRCNICI
( PDI) modified SARS-CoV-2S protein gsas+pp, with B/Wash hemagglutinin CT AA (SEQ ID NO:58 )
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMLVVYMVSRDNVSCSICL
(PDI) modified SARS-CoV-2S protein GSAS+PP with H5i hemagglutinin CT
(alternative 1) AA (SEQ ID NO: 59)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMMAGLSLWMCSNGSLQCRICI
(PDI) modified SARS-CoV-2S protein GSAS+PP with H5i hemagglutinin CT
(alternative 2) AA (SEQ ID NO: 60)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMAGLSLWMCSNGSLQCRICI
(PDI) modified SARS-CoV-2S protein GSAS+PP with H5i hemagglutinin CT
(alternative 3) AA (SEQ ID NO: 61)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQ
FNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISS
VLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLA
ATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQE
KNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF
VSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDIS
GINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLG
FIAGLIAIVMVTIMLCCMCSNGSLQCRICI
(PDI) modified SARS-CoV-2S protein GSAS+PP with H5i hemagglutinin CT
(alternative 4) AA (SEQ ID NO: 62)
MAKNVAIFGLLFSLLVLVPSQIFAVNLTTRTQLPPAYTNSFTRGVYYPD
KVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDG
VYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDP
FLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITR
FQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNL
CPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSP
TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV
IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNG
VEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS
TNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRD
PQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ
LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV
SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNT
QEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLA
DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALL
AGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCSNGSLQCRICI
The N-terminal region of the natural SARS-CoV-2S protein (natural signal peptide sequence underlined) (SEQ ID NO: 63)
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNS
Modified TMCT with intermediate peptide sequence (X) n (SEQ ID NO: 64)
WYIWLGFIAGLIAIVMVTIM(X)ncsngsXXCXICI
PDI-S protein GSAS+4P-DNA (SEQ ID NO: 65)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatcttacgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttcaggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgtatccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcacagagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtgaacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcataagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtgtcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaatatcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgccctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcctatctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccacgcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccgaaactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctactgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagccccatcgaggatcttttgtttaaca
aagttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctca
tctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccag
cgcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgcca
tgcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaa
atcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacaccctcagcccttggcaaactccag
gatgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttcca
gtgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacagg
tcgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctctctttatggatgtgctccaatggatcgttacaatgcagaatttgc
atttaa
PDI-S protein GSAS+6P-DNA (SEQ ID NO: 66)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagccccatcgaggatcttttgtttaaca
aagttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctca
tctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccag
cgcactcctcgctggcaccataacatccggttggacattcggcgctggtcccgcactgcagataccattccccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacaccctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctctctttatggatgtgctccaatggatcgttacaatgcagaatttgc
atttaa
PDI-S protein GSAS+2P+L923F-DNA (SEQ ID NO: 67)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagcttcagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctctctttatggatgtgctccaatggatcgttacaatgcagaatttgc
atttaa
PDI-S protein GSAS+4P+L923F-DNA (SEQ ID NO: 68)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagccccatcgaggatcttttgtttaaca
aagttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctca
tctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccag
cgcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgcca
tgcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaa
atcagttcaatagtgccatcggaaaaatccaggatagcttcagcagcacaccctcagcccttggcaaactccag
gatgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttcca
gtgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacagg
tcgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctctctttatggatgtgctccaatggatcgttacaatgcagaatttgc
atttaa
PDI-S protein GSAS+6P+L923F-DNA (SEQ ID NO: 69)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagccccatcgaggatcttttgtttaaca
aagttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctca
tctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccag
cgcactcctcgctggcaccataacatccggttggacattcggcgctggtcccgcactgcagataccattccccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagcttcagcagcacaccctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctctctttatggatgtgctccaatggatcgttacaatgcagaatttgc
atttaa
PDI-modified S protein with H5i hemagglutinin CT (V1) DNA (SEQ ID NO: 70)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgatggccggcctctctttatggatgtgctccaatggatcgttacaatg
cagaatttgcatttaa
PDI-modified S protein with H5i hemagglutinin CT (V2) DNA (SEQ ID NO: 71)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatggccggcctctctttatggatgtgctccaatggatcgttacaatgcag
aatttgcatttaa
PDI-modified S protein with H5i hemagglutinin CT (V3) DNA (SEQ ID NO: 72)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctctgctgcatgtgctccaatggatcgttacaatgcagaatttgcatt
taa
PDI-modified S protein with H5i hemagglutinin CT (V4) DNA (SEQ ID NO: 73)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctctgctgctccaatggatcgttacaatgcagaatttgcatttaa
PDI-S protein+H2 CalDNA (SEQ ID NO: 74)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctcagcttctggatgtgctctaatgggtctctacagtgtagaatatgt
atttaa
PDI-S protein+H23 Minn DNA (SEQ ID NO: 75)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctcatgtgggcctgtcagaagggcaacatcagatgcaacatctgc
atctaa
PDI-S protein+H2HKDNA (SEQ ID NO: 76)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctcggtctttggatgtgttcaaatggttcaatgcagtgcaggatatgt
atataa
PDI-S protein+H27 Guangdong DNA (SEQ ID NO: 77)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctcgtcttcatatgtgtgaagaatggaaacatgcggtgcactatttgt
atataa
PDI-S protein+H2HKDNA (SEQ ID NO: 78)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctcctgttctgggccatgtccaatggatcttgcagatgcaacatttgt
atataa
PDI-S protein+B/Wash DNA (SEQ ID NO: 79)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcggtgaatctt
acgacgcgaacacagttaccacccgcatatacaaatagcttcactcggggtgtttattaccccgacaaagtgttc
aggtcctccgtgctccactcaacacaggacctctttcttcctttcttttctaacgtgacatggtttcatgccattcatgt
atccggcactaacggtactaagaggttcgataatcctgtgctccctttcaatgacggcgtttactttgcaagcaca
gagaagagtaacatcatccgaggttggatctttggcactaccctcgattcaaagacgcagagcctcctcattgtg
aacaatgccactaacgtggtgatcaaagtttgcgagtttcagttctgcaatgaccctttcttgggggtgtactatcat
aagaacaacaagtcttggatggaatctgaattccgcgtctatagcagcgccaacaactgcacctttgaatacgtg
tcccagcccttccttatggacctggagggaaagcagggaaactttaagaatctgagagagttcgtgtttaaaaat
atcgacggctattttaagatctattctaagcacacgcctattaatctcgtgcgcgatcttccacaaggcttcagcgc
cctggaaccactcgtggacctcccaattggtatcaacatcactagatttcagactctgcttgccctccaccgatcct
atctgacacccggagactcctctagcggctggactgccggcgctgccgcttattacgttggttatcttcagccac
gcacgttcctgctgaagtataacgagaatggtactattaccgatgccgtggattgtgcccttgaccccctgtccga
aactaagtgcacactcaagtcattcactgtggaaaaaggaatctaccagacaagcaattttcgggtccagcctac
tgagagcattgtgcgctttcctaacatcacaaatctttgccccttcggagaggttttcaatgctacacggtttgcctc
cgtgtatgcctggaaccgcaagagaatttccaattgcgtggccgattactccgtgctctacaatagtgcaagcttt
agcacctttaagtgctatggcgtatcccctactaagcttaacgacttgtgtttcacaaacgtgtatgccgactccttt
gtgatacggggcgacgaagttagacagatagcaccaggacagacgggaaagatagctgactacaactataag
cttcctgatgacttcactggctgcgttatcgcgtggaattctaacaacctggactcaaaagtcggcggcaactata
actatctctatcggctgttccgcaagagtaaccttaagccctttgagagagatataagcactgaaatctaccaggc
tggcagtacgccctgtaatggcgtggaaggctttaattgttattttccactgcaatcctatggttttcagccaaccaa
tggcgtgggctaccaaccataccgcgtcgtggtgctctcctttgaactgctccacgctcccgcgactgtctgcgg
ccccaagaagtccacgaaccttgtgaagaataagtgcgttaattttaatttcaacggcctcactggaacaggagt
gctcactgagagtaacaagaagttcctgccatttcaacaatttggcagagacatagccgatactactgacgccgt
tagggacccccagaccctcgagattctcgatataacgccctgctccttcggtggagtttccgtgatcacgccagg
caccaataccagtaaccaggtcgccgtgctgtatcaggatgtcaactgtactgaggtgcccgtagccatccatg
cggatcagctcacaccaacttggagggtgtacagcaccggctccaatgtattccagactcgggccggatgcctt
attggcgccgaacacgtgaacaatagttacgaatgcgatattccaattggcgccggaatctgtgctagctaccag
actcagacgaactccccaggcagcgccagcagcgttgccagccagtcaatcatcgcttatacaatgtcacttgg
agccgaaaactccgtggcttactcaaacaacagcatcgccatccccacaaacttcaccatatccgtgacaactg
agattctgccagtgtccatgactaagacgtccgtagattgcactatgtacatatgcggcgacagcacagaatgtt
ctaatctgctgctgcaatatggaagcttctgcactcaactgaacagagcgctcacaggcatcgccgtggagcag
gataagaatacccaggaggtgttcgcccaagttaagcagatctacaagaccccacccataaaggatttcggtgg
attcaattttagtcagatactcccagacccatctaagccatccaagaggagctttatcgaggatcttttgtttaacaa
agttactctggccgacgccggtttcatcaagcagtacggagattgcctcggcgacatcgctgctcgtgacctcat
ctgtgcgcaaaagtttaacggtctgacggtgctgcctcccctccttactgatgaaatgatcgcccagtataccagc
gcactcctcgctggcaccataacatccggttggacattcggcgctggtgcagcactgcagataccattcgccat
gcaaatggcatatcgtttcaacggtatcggtgtcacacagaatgtcctatatgagaaccagaagctgatcgcaaa
tcagttcaatagtgccatcggaaaaatccaggatagccttagcagcacagcctcagcccttggcaaactccagg
atgtcgtgaaccagaatgcccaggctctcaataccctcgtgaagcagctctcatctaatttcggcgcaatttccag
tgtcctcaacgacatcctcagccgcctcgacccccccgaggccgaagtgcagattgacagactgattacaggt
cgactccagagcctccagacttacgtgactcagcagctgataagagccgccgagataagggccagcgctaac
ctggctgccacaaagatgtctgagtgcgtgctgggccagtccaagagagtagacttctgtggcaaaggctacc
atctgatgagcttcccacaatccgcacctcacggcgtagtgttcctccacgtgacatatgtaccggctcaggaga
agaatttcactaccgctcctgctatatgccatgatggaaaggctcacttcccccgggagggggtgttcgtgtcca
acggcacccattggtttgtgactcagcggaatttctacgaaccccagatcataaccactgacaacacatttgtgtc
cggaaattgtgacgtggtcattggaatagtgaacaacactgtttatgatccactgcagccagaacttgacagcttt
aaggaggagctcgacaagtacttcaagaatcatacgtcaccagatgtggacctcggagatattagcggtatcaa
tgccagtgttgtcaatattcagaaggaaatagaccgccttaatgaggtcgccaaaaatctgaacgagagcctcat
cgatcttcaggagctgggcaaatatgagcagtacatcaagtggccttggtatatttggcttggcttcatcgccggc
ctgatcgccatagtaatggtcacaattatgctcgttgtttatatggtctccagagacaatgtttcttgctccatttgtct
ataa
IF-H1HawaiiCT.r(SEQ ID NO:80)
acgacacgactaaggcctttaaatacatattctacactgtagagaccc
IF-H3MinnesotaCT.r(SEQ ID NO:81)
acgacacgactaaggcctttagatgcagatgttgcatctgatgttgcccttctg
IF-HongKongCT.r(SEQ ID NO:82)
acgacacgactaaggcctttatatacatatcctgcactgcattgaaccattt
IF-GuangdongCT.r(SEQ ID NO:83)
acgacacgactaaggcctttatatacaaatagtgcaccgcatgtttcca
IF-H9HKCT.r(SEQ ID NO:84)
acgacacgactaaggcctttatatacaaatgttgcatctgcaagatccat
IF-BWashCT.r(SEQ ID NO:85)
acgacacgactaaggcctttatagacaaatggagcaagaaacattgtctc
IF(nbHEL40)-PDI.c(SEQ ID NO:86)
ccaaaacacattgagcaaaatggcgaaaaacgttgcgattttcggcttat
IF(AvB+wtCT).r(SEQ ID NO:87)
ACGACACGACTAAGGCCTTTAGGTATAATGGAGTTTCACCCCCTTCA
GAA
PDI-SARS-COV-1 wtTMCT-DNA(SEQ ID NO:88)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTCCGA
TCTGGATCGGTGCACTACATTTGACGATGTGCAGGCACCTAATTATA
CTCAGCACACCTCTTCCATGCGGGGCGTGTACTACCCCGACGAGATT
TTTAGAAGTGACACACTGTACCTGACCCAAGACCTTTTTCTCCCATTT
TATAGCAATGTCACGGGATTCCACACTATCAATCACACATTCGGAAA
CCCTGTTATCCCCTTTAAAGACGGTATCTACTTTGCTGCTACTGAGAA
ATCGAATGTTGTTCGCGGTTGGGTGTTCGGCTCAACCATGAACAACA
AGAGTCAGTCAGTAATAATTATAAACAACTCAACCAATGTCGTCATC
AGGGCTTGCAACTTCGAGCTCTGCGATAACCCCTTCTTTGCGGTGTC
CAAACCGATGGGCACTCAGACCCATACCATGATTTTTGACAATGCCT
TTAATTGTACTTTCGAATACATCAGCGATGCCTTCTCGCTGGATGTGT
CCGAGAAGAGCGGTAACTTCAAGCATTTGCGGGAGTTCGTTTTCAAA
AACAAAGACGGGTTTTTGTATGTCTACAAAGGCTATCAGCCCATTGA
TGTGGTCAGGGATCTGCCCAGTGGTTTCAACACACTGAAGCCCATCT
TCAAGTTGCCACTCGGCATCAACATCACTAATTTCCGCGCCATCCTA
ACTGCTTTTTCGCCAGCGCAGGATATTTGGGGGACATCCGCCGCAGC
TTACTTCGTGGGATATCTGAAGCCCACCACTTTTATGCTAAAGTACG
ACGAGAATGGCACCATCACCGATGCCGTGGACTGCTCACAGAATCC
TCTCGCAGAGCTCAAGTGTTCAGTGAAGTCATTTGAGATCGACAAAG
GGATCTACCAAACATCTAACTTTCGCGTCGTGCCTTCCGGTGACGTA
GTCCGTTTCCCAAATATCACTAACTTGTGCCCTTTTGGTGAAGTATTC
AACGCAACCAAATTCCCCAGTGTGTATGCGTGGGAGCGCAAAAAGA
TCAGTAACTGTGTGGCTGACTATAGTGTTCTGTACAATAGCACCTTC
TTCAGCACCTTCAAGTGTTATGGAGTGAGCGCTACAAAACTGAACGA
TCTTTGTTTCTCAAACGTGTACGCCGATTCATTTGTCGTTAAAGGTGA
CGATGTGAGGCAGATCGCTCCAGGCCAGACAGGTGTGATTGCTGAC
TATAATTACAAACTGCCAGACGACTTCATGGGGTGCGTGCTAGCTTG
GAATACAAGAAACATTGACGCCACCTCCACGGGAAATTACAATTAC
AAGTATCGTTACCTTCGCCATGGAAAGTTGAGACCCTTCGAGCGTGA
TATAAGTAACGTGCCCTTTAGTCCAGATGGAAAACCCTGCACACCCC
CTGCTCTCAATTGCTATTGGCCTCTCAATGACTACGGCTTTTACACAA
CTACTGGCATCGGATACCAGCCTTACCGGGTCGTGGTGCTCAGTTTT
GAGTTGCTTAACGCACCCGCCACCGTGTGTGGTCCTAAACTTTCTAC
TGACCTGATTAAAAACCAATGCGTCAACTTCAATTTTAACGGGCTGA
CCGGCACCGGTGTCCTGACCCCTAGCTCTAAGAGATTCCAGCCTTTT
CAGCAGTTCGGGAGGGATGTGAGCGACTTTACCGACTCTGTCAGGG
ATCCAAAGACCAGCGAGATACTGGATATCTCGCCCTGCAGTTTCGGT
GGCGTGTCCGTTATTACACCTGGCACCAACGCCTCCTCAGAGGTGGC
GGTGCTCTATCAAGATGTCAACTGCACTGATGTGTCAACTGCCATCC
ATGCCGATCAGCTGACCCCCGCCTGGCGCATCTACAGTACCGGGAAC
AACGTTTTTCAGACCCAGGCCGGCTGTCTAATCGGCGCAGAGCACGT
TGACACATCCTACGAATGTGACATACCTATCGGGGCAGGCATTTGCG
CTAGCTACCATACCGTGTCACTGTTGGCTTCCACGTCACAAAAGTCA
ATCGTTGCCTACACGATGAGTCTGGGGGCTGACTCATCTATCGCCTA
CAGCAACAATACCATTGCAATTCCCACAAACTTCAGTATCTCCATCA
CAACAGAGGTGATGCCCGTTTCTATGGCTAAAACATCAGTCGATTGC
AATATGTATATATGCGGCGATAGTACTGAGTGCGCCAATCTCTTGTT
ACAGTACGGCTCCTTTTGTACCCAGCTGAACCGAGCACTGTCTGGAA
TCGCCGCAGAACAGGATCGCAATACCCGGGAAGTCTTCGCCCAGGT
GAAGCAGATGTACAAAACGCCCACTCTCAAGTATTTCGGCGGATTCA
ACTTTTCTCAGATTTTGCCTGACCCGCTCAAGCCAACAAAACGATCT
TTTATCGAAGACCTTCTGTTTAACAAGGTCACACTGGCGGATGCTGG
GTTCATGAAACAGTACGGTGAATGCCTGGGGGACATCAATGCCAGA
GATCTGATCTGCGCCCAGAAATTCAATGGCTTAACAGTCCTCCCACC
TCTCTTGACCGACGATATGATCGCTGCGTACACCGCTGCTCTGGTAT
CGGGCACCGCGACTGCTGGCTGGACCTTTGGTGCCGGAGCCGCACTC
CAGATCCCATTCGCCATGCAGATGGCCTACCGCTTCAACGGAATCGG
GGTCACCCAGAACGTGCTGTATGAGAACCAGAAACAGATCGCCAAT
CAGTTCAATAAGGCAATTAGTCAGATTCAGGAGAGTCTTACCACTAC
CAGCACCGCCCTGGGCAAGCTGCAAGATGTTGTGAACCAGAATGCG
CAGGCATTAAACACTCTGGTTAAACAGCTGAGCTCAAATTTTGGTGC
AATCTCTTCAGTTCTGAACGATATCCTGAGTCGGCTGGATCCGCCAG
AGGCTGAAGTGCAAATTGATCGTTTGATCACCGGGAGGCTACAATCT
CTGCAGACGTACGTGACCCAGCAGCTCATCCGGGCAGCCGAAATTC
GCGCATCAGCCAACCTCGCTGCAACTAAGATGTCTGAGTGCGTGCTG
GGCCAGAGTAAGAGGGTGGACTTTTGTGGTAAGGGATACCACCTCA
TGTCCTTTCCGCAAGCGGCTCCCCACGGCGTGGTTTTCTTACACGTTA
CCTATGTGCCATCCCAAGAACGCAATTTCACCACCGCTCCAGCTATC
TGTCATGAGGGCAAAGCATATTTCCCCAGGGAAGGAGTATTTGTGTT
TAATGGCACGTCCTGGTTTATAACCCAACGTAACTTTTTCTCCCCACA
GATTATCACAACCGACAACACATTCGTGTCTGGGAATTGTGACGTCG
TGATCGGGATCATTAACAATACCGTTTACGATCCCTTGCAGCCCGAG
CTTGACTCCTTTAAAGAGGAACTAGACAAATACTTTAAGAATCACAC
CTCACCGGACGTAGATTTGGGAGACATCTCTGGAATTAATGCCTCTG
TGGTGAATATCCAGAAGGAGATCGACCGCCTGAATGAAGTCGCCAA
GAACCTCAACGAGTCCCTGATAGATCTGCAAGAACTGGGCAAATAT
GAACAGTACATCAAATGGCCGTGGTACGTGTGGTTGGGCTTTATCGC
TGGACTTATTGCAATCGTGATGGTGACGATTCTGCTCTGCTGTATGA
CTTCCTGCTGCTCTTGTCTGAAGGGCGCCTGTAGCTGTGGTTCCTGCT
GCAAGTTCGACGAAGACGACTCCGAACCAGTTCTGAAGGGGGTGAA
ACTCCATTATACCTAA
PDI-SARS-COV-1 H5iTMCT-DNA(SEQ ID NO:89)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTCCGA
TCTGGATCGGTGCACTACATTTGACGATGTGCAGGCACCTAATTATA
CTCAGCACACCTCTTCCATGCGGGGCGTGTACTACCCCGACGAGATT
TTTAGAAGTGACACACTGTACCTGACCCAAGACCTTTTTCTCCCATTT
TATAGCAATGTCACGGGATTCCACACTATCAATCACACATTCGGAAA
CCCTGTTATCCCCTTTAAAGACGGTATCTACTTTGCTGCTACTGAGAA
ATCGAATGTTGTTCGCGGTTGGGTGTTCGGCTCAACCATGAACAACA
AGAGTCAGTCAGTAATAATTATAAACAACTCAACCAATGTCGTCATC
AGGGCTTGCAACTTCGAGCTCTGCGATAACCCCTTCTTTGCGGTGTC
CAAACCGATGGGCACTCAGACCCATACCATGATTTTTGACAATGCCT
TTAATTGTACTTTCGAATACATCAGCGATGCCTTCTCGCTGGATGTGT
CCGAGAAGAGCGGTAACTTCAAGCATTTGCGGGAGTTCGTTTTCAAA
AACAAAGACGGGTTTTTGTATGTCTACAAAGGCTATCAGCCCATTGA
TGTGGTCAGGGATCTGCCCAGTGGTTTCAACACACTGAAGCCCATCT
TCAAGTTGCCACTCGGCATCAACATCACTAATTTCCGCGCCATCCTA
ACTGCTTTTTCGCCAGCGCAGGATATTTGGGGGACATCCGCCGCAGC
TTACTTCGTGGGATATCTGAAGCCCACCACTTTTATGCTAAAGTACG
ACGAGAATGGCACCATCACCGATGCCGTGGACTGCTCACAGAATCC
TCTCGCAGAGCTCAAGTGTTCAGTGAAGTCATTTGAGATCGACAAAG
GGATCTACCAAACATCTAACTTTCGCGTCGTGCCTTCCGGTGACGTA
GTCCGTTTCCCAAATATCACTAACTTGTGCCCTTTTGGTGAAGTATTC
AACGCAACCAAATTCCCCAGTGTGTATGCGTGGGAGCGCAAAAAGA
TCAGTAACTGTGTGGCTGACTATAGTGTTCTGTACAATAGCACCTTC
TTCAGCACCTTCAAGTGTTATGGAGTGAGCGCTACAAAACTGAACGA
TCTTTGTTTCTCAAACGTGTACGCCGATTCATTTGTCGTTAAAGGTGA
CGATGTGAGGCAGATCGCTCCAGGCCAGACAGGTGTGATTGCTGAC
TATAATTACAAACTGCCAGACGACTTCATGGGGTGCGTGCTAGCTTG
GAATACAAGAAACATTGACGCCACCTCCACGGGAAATTACAATTAC
AAGTATCGTTACCTTCGCCATGGAAAGTTGAGACCCTTCGAGCGTGA
TATAAGTAACGTGCCCTTTAGTCCAGATGGAAAACCCTGCACACCCC
CTGCTCTCAATTGCTATTGGCCTCTCAATGACTACGGCTTTTACACAA
CTACTGGCATCGGATACCAGCCTTACCGGGTCGTGGTGCTCAGTTTT
GAGTTGCTTAACGCACCCGCCACCGTGTGTGGTCCTAAACTTTCTAC
TGACCTGATTAAAAACCAATGCGTCAACTTCAATTTTAACGGGCTGA
CCGGCACCGGTGTCCTGACCCCTAGCTCTAAGAGATTCCAGCCTTTT
CAGCAGTTCGGGAGGGATGTGAGCGACTTTACCGACTCTGTCAGGG
ATCCAAAGACCAGCGAGATACTGGATATCTCGCCCTGCAGTTTCGGT
GGCGTGTCCGTTATTACACCTGGCACCAACGCCTCCTCAGAGGTGGC
GGTGCTCTATCAAGATGTCAACTGCACTGATGTGTCAACTGCCATCC
ATGCCGATCAGCTGACCCCCGCCTGGCGCATCTACAGTACCGGGAAC
AACGTTTTTCAGACCCAGGCCGGCTGTCTAATCGGCGCAGAGCACGT
TGACACATCCTACGAATGTGACATACCTATCGGGGCAGGCATTTGCG
CTAGCTACCATACCGTGTCACTGTTGGCTTCCACGTCACAAAAGTCA
ATCGTTGCCTACACGATGAGTCTGGGGGCTGACTCATCTATCGCCTA
CAGCAACAATACCATTGCAATTCCCACAAACTTCAGTATCTCCATCA
CAACAGAGGTGATGCCCGTTTCTATGGCTAAAACATCAGTCGATTGC
AATATGTATATATGCGGCGATAGTACTGAGTGCGCCAATCTCTTGTT
ACAGTACGGCTCCTTTTGTACCCAGCTGAACCGAGCACTGTCTGGAA
TCGCCGCAGAACAGGATCGCAATACCCGGGAAGTCTTCGCCCAGGT
GAAGCAGATGTACAAAACGCCCACTCTCAAGTATTTCGGCGGATTCA
ACTTTTCTCAGATTTTGCCTGACCCGCTCAAGCCAACAAAACGATCT
TTTATCGAAGACCTTCTGTTTAACAAGGTCACACTGGCGGATGCTGG
GTTCATGAAACAGTACGGTGAATGCCTGGGGGACATCAATGCCAGA
GATCTGATCTGCGCCCAGAAATTCAATGGCTTAACAGTCCTCCCACC
TCTCTTGACCGACGATATGATCGCTGCGTACACCGCTGCTCTGGTAT
CGGGCACCGCGACTGCTGGCTGGACCTTTGGTGCCGGAGCCGCACTC
CAGATCCCATTCGCCATGCAGATGGCCTACCGCTTCAACGGAATCGG
GGTCACCCAGAACGTGCTGTATGAGAACCAGAAACAGATCGCCAAT
CAGTTCAATAAGGCAATTAGTCAGATTCAGGAGAGTCTTACCACTAC
CAGCACCGCCCTGGGCAAGCTGCAAGATGTTGTGAACCAGAATGCG
CAGGCATTAAACACTCTGGTTAAACAGCTGAGCTCAAATTTTGGTGC
AATCTCTTCAGTTCTGAACGATATCCTGAGTCGGCTGGATCCGCCAG
AGGCTGAAGTGCAAATTGATCGTTTGATCACCGGGAGGCTACAATCT
CTGCAGACGTACGTGACCCAGCAGCTCATCCGGGCAGCCGAAATTC
GCGCATCAGCCAACCTCGCTGCAACTAAGATGTCTGAGTGCGTGCTG
GGCCAGAGTAAGAGGGTGGACTTTTGTGGTAAGGGATACCACCTCA
TGTCCTTTCCGCAAGCGGCTCCCCACGGCGTGGTTTTCTTACACGTTA
CCTATGTGCCATCCCAAGAACGCAATTTCACCACCGCTCCAGCTATC
TGTCATGAGGGCAAAGCATATTTCCCCAGGGAAGGAGTATTTGTGTT
TAATGGCACGTCCTGGTTTATAACCCAACGTAACTTTTTCTCCCCACA
GATTATCACAACCGACAACACATTCGTGTCTGGGAATTGTGACGTCG
TGATCGGGATCATTAACAATACCGTTTACGATCCCTTGCAGCCCGAG
CTTGACTCCTTTAAAGAGGAACTAGACAAATACTTTAAGAATCACAC
CTCACCGGACGTAGATTTGGGAGACATCTCTGGAATTAATGCCTCTG
TGGTGAATATCCAGAAGGAGATCGACCGCCTGAATGAAGTCGCCAA
GAACCTCAACGAGTCCCTGATAGATCTGCAAGAACTGGGCAAATAT
GAACAGTACATCAAATGGCCGTGGTACcaaatactgtcaatttattcaacagtggcgag
ttccctagcactggcaatcatgatggctggtctatctttatggatgtgctccaatggatcgttacaatgcagaatttg
cattTAA
PDI-SARS-COV-1 H5iCT-DNA(SEQ ID NO:90)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTCCGA
TCTGGATCGGTGCACTACATTTGACGATGTGCAGGCACCTAATTATA
CTCAGCACACCTCTTCCATGCGGGGCGTGTACTACCCCGACGAGATT
TTTAGAAGTGACACACTGTACCTGACCCAAGACCTTTTTCTCCCATTT
TATAGCAATGTCACGGGATTCCACACTATCAATCACACATTCGGAAA
CCCTGTTATCCCCTTTAAAGACGGTATCTACTTTGCTGCTACTGAGAA
ATCGAATGTTGTTCGCGGTTGGGTGTTCGGCTCAACCATGAACAACA
AGAGTCAGTCAGTAATAATTATAAACAACTCAACCAATGTCGTCATC
AGGGCTTGCAACTTCGAGCTCTGCGATAACCCCTTCTTTGCGGTGTC
CAAACCGATGGGCACTCAGACCCATACCATGATTTTTGACAATGCCT
TTAATTGTACTTTCGAATACATCAGCGATGCCTTCTCGCTGGATGTGT
CCGAGAAGAGCGGTAACTTCAAGCATTTGCGGGAGTTCGTTTTCAAA
AACAAAGACGGGTTTTTGTATGTCTACAAAGGCTATCAGCCCATTGA
TGTGGTCAGGGATCTGCCCAGTGGTTTCAACACACTGAAGCCCATCT
TCAAGTTGCCACTCGGCATCAACATCACTAATTTCCGCGCCATCCTA
ACTGCTTTTTCGCCAGCGCAGGATATTTGGGGGACATCCGCCGCAGC
TTACTTCGTGGGATATCTGAAGCCCACCACTTTTATGCTAAAGTACG
ACGAGAATGGCACCATCACCGATGCCGTGGACTGCTCACAGAATCC
TCTCGCAGAGCTCAAGTGTTCAGTGAAGTCATTTGAGATCGACAAAG
GGATCTACCAAACATCTAACTTTCGCGTCGTGCCTTCCGGTGACGTA
GTCCGTTTCCCAAATATCACTAACTTGTGCCCTTTTGGTGAAGTATTC
AACGCAACCAAATTCCCCAGTGTGTATGCGTGGGAGCGCAAAAAGA
TCAGTAACTGTGTGGCTGACTATAGTGTTCTGTACAATAGCACCTTC
TTCAGCACCTTCAAGTGTTATGGAGTGAGCGCTACAAAACTGAACGA
TCTTTGTTTCTCAAACGTGTACGCCGATTCATTTGTCGTTAAAGGTGA
CGATGTGAGGCAGATCGCTCCAGGCCAGACAGGTGTGATTGCTGAC
TATAATTACAAACTGCCAGACGACTTCATGGGGTGCGTGCTAGCTTG
GAATACAAGAAACATTGACGCCACCTCCACGGGAAATTACAATTAC
AAGTATCGTTACCTTCGCCATGGAAAGTTGAGACCCTTCGAGCGTGA
TATAAGTAACGTGCCCTTTAGTCCAGATGGAAAACCCTGCACACCCC
CTGCTCTCAATTGCTATTGGCCTCTCAATGACTACGGCTTTTACACAA
CTACTGGCATCGGATACCAGCCTTACCGGGTCGTGGTGCTCAGTTTT
GAGTTGCTTAACGCACCCGCCACCGTGTGTGGTCCTAAACTTTCTAC
TGACCTGATTAAAAACCAATGCGTCAACTTCAATTTTAACGGGCTGA
CCGGCACCGGTGTCCTGACCCCTAGCTCTAAGAGATTCCAGCCTTTT
CAGCAGTTCGGGAGGGATGTGAGCGACTTTACCGACTCTGTCAGGG
ATCCAAAGACCAGCGAGATACTGGATATCTCGCCCTGCAGTTTCGGT
GGCGTGTCCGTTATTACACCTGGCACCAACGCCTCCTCAGAGGTGGC
GGTGCTCTATCAAGATGTCAACTGCACTGATGTGTCAACTGCCATCC
ATGCCGATCAGCTGACCCCCGCCTGGCGCATCTACAGTACCGGGAAC
AACGTTTTTCAGACCCAGGCCGGCTGTCTAATCGGCGCAGAGCACGT
TGACACATCCTACGAATGTGACATACCTATCGGGGCAGGCATTTGCG
CTAGCTACCATACCGTGTCACTGTTGGCTTCCACGTCACAAAAGTCA
ATCGTTGCCTACACGATGAGTCTGGGGGCTGACTCATCTATCGCCTA
CAGCAACAATACCATTGCAATTCCCACAAACTTCAGTATCTCCATCA
CAACAGAGGTGATGCCCGTTTCTATGGCTAAAACATCAGTCGATTGC
AATATGTATATATGCGGCGATAGTACTGAGTGCGCCAATCTCTTGTT
ACAGTACGGCTCCTTTTGTACCCAGCTGAACCGAGCACTGTCTGGAA
TCGCCGCAGAACAGGATCGCAATACCCGGGAAGTCTTCGCCCAGGT
GAAGCAGATGTACAAAACGCCCACTCTCAAGTATTTCGGCGGATTCA
ACTTTTCTCAGATTTTGCCTGACCCGCTCAAGCCAACAAAACGATCT
TTTATCGAAGACCTTCTGTTTAACAAGGTCACACTGGCGGATGCTGG
GTTCATGAAACAGTACGGTGAATGCCTGGGGGACATCAATGCCAGA
GATCTGATCTGCGCCCAGAAATTCAATGGCTTAACAGTCCTCCCACC
TCTCTTGACCGACGATATGATCGCTGCGTACACCGCTGCTCTGGTAT
CGGGCACCGCGACTGCTGGCTGGACCTTTGGTGCCGGAGCCGCACTC
CAGATCCCATTCGCCATGCAGATGGCCTACCGCTTCAACGGAATCGG
GGTCACCCAGAACGTGCTGTATGAGAACCAGAAACAGATCGCCAAT
CAGTTCAATAAGGCAATTAGTCAGATTCAGGAGAGTCTTACCACTAC
CAGCACCGCCCTGGGCAAGCTGCAAGATGTTGTGAACCAGAATGCG
CAGGCATTAAACACTCTGGTTAAACAGCTGAGCTCAAATTTTGGTGC
AATCTCTTCAGTTCTGAACGATATCCTGAGTCGGCTGGATCCGCCAG
AGGCTGAAGTGCAAATTGATCGTTTGATCACCGGGAGGCTACAATCT
CTGCAGACGTACGTGACCCAGCAGCTCATCCGGGCAGCCGAAATTC
GCGCATCAGCCAACCTCGCTGCAACTAAGATGTCTGAGTGCGTGCTG
GGCCAGAGTAAGAGGGTGGACTTTTGTGGTAAGGGATACCACCTCA
TGTCCTTTCCGCAAGCGGCTCCCCACGGCGTGGTTTTCTTACACGTTA
CCTATGTGCCATCCCAAGAACGCAATTTCACCACCGCTCCAGCTATC
TGTCATGAGGGCAAAGCATATTTCCCCAGGGAAGGAGTATTTGTGTT
TAATGGCACGTCCTGGTTTATAACCCAACGTAACTTTTTCTCCCCACA
GATTATCACAACCGACAACACATTCGTGTCTGGGAATTGTGACGTCG
TGATCGGGATCATTAACAATACCGTTTACGATCCCTTGCAGCCCGAG
CTTGACTCCTTTAAAGAGGAACTAGACAAATACTTTAAGAATCACAC
CTCACCGGACGTAGATTTGGGAGACATCTCTGGAATTAATGCCTCTG
TGGTGAATATCCAGAAGGAGATCGACCGCCTGAATGAAGTCGCCAA
GAACCTCAACGAGTCCCTGATAGATCTGCAAGAACTGGGCAAATAT
GAACAGTACATCAAATGGCCGTGGTACGTGTGGTTGGGCTTTATCGC
TGGACTTATTGCAATCGTGATGGTGACGATTCTGCTCtctttatggatgtgctcc
aatggatcgttacaatgcagaatttgcattTAA
PDI-SARS-COV-1 H5iCT(V4)-DNA(SEQ ID NO:91)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTCCGA
TCTGGATCGGTGCACTACATTTGACGATGTGCAGGCACCTAATTATA
CTCAGCACACCTCTTCCATGCGGGGCGTGTACTACCCCGACGAGATT
TTTAGAAGTGACACACTGTACCTGACCCAAGACCTTTTTCTCCCATTT
TATAGCAATGTCACGGGATTCCACACTATCAATCACACATTCGGAAA
CCCTGTTATCCCCTTTAAAGACGGTATCTACTTTGCTGCTACTGAGAA
ATCGAATGTTGTTCGCGGTTGGGTGTTCGGCTCAACCATGAACAACA
AGAGTCAGTCAGTAATAATTATAAACAACTCAACCAATGTCGTCATC
AGGGCTTGCAACTTCGAGCTCTGCGATAACCCCTTCTTTGCGGTGTC
CAAACCGATGGGCACTCAGACCCATACCATGATTTTTGACAATGCCT
TTAATTGTACTTTCGAATACATCAGCGATGCCTTCTCGCTGGATGTGT
CCGAGAAGAGCGGTAACTTCAAGCATTTGCGGGAGTTCGTTTTCAAA
AACAAAGACGGGTTTTTGTATGTCTACAAAGGCTATCAGCCCATTGA
TGTGGTCAGGGATCTGCCCAGTGGTTTCAACACACTGAAGCCCATCT
TCAAGTTGCCACTCGGCATCAACATCACTAATTTCCGCGCCATCCTA
ACTGCTTTTTCGCCAGCGCAGGATATTTGGGGGACATCCGCCGCAGC
TTACTTCGTGGGATATCTGAAGCCCACCACTTTTATGCTAAAGTACG
ACGAGAATGGCACCATCACCGATGCCGTGGACTGCTCACAGAATCC
TCTCGCAGAGCTCAAGTGTTCAGTGAAGTCATTTGAGATCGACAAAG
GGATCTACCAAACATCTAACTTTCGCGTCGTGCCTTCCGGTGACGTA
GTCCGTTTCCCAAATATCACTAACTTGTGCCCTTTTGGTGAAGTATTC
AACGCAACCAAATTCCCCAGTGTGTATGCGTGGGAGCGCAAAAAGA
TCAGTAACTGTGTGGCTGACTATAGTGTTCTGTACAATAGCACCTTC
TTCAGCACCTTCAAGTGTTATGGAGTGAGCGCTACAAAACTGAACGA
TCTTTGTTTCTCAAACGTGTACGCCGATTCATTTGTCGTTAAAGGTGA
CGATGTGAGGCAGATCGCTCCAGGCCAGACAGGTGTGATTGCTGAC
TATAATTACAAACTGCCAGACGACTTCATGGGGTGCGTGCTAGCTTG
GAATACAAGAAACATTGACGCCACCTCCACGGGAAATTACAATTAC
AAGTATCGTTACCTTCGCCATGGAAAGTTGAGACCCTTCGAGCGTGA
TATAAGTAACGTGCCCTTTAGTCCAGATGGAAAACCCTGCACACCCC
CTGCTCTCAATTGCTATTGGCCTCTCAATGACTACGGCTTTTACACAA
CTACTGGCATCGGATACCAGCCTTACCGGGTCGTGGTGCTCAGTTTT
GAGTTGCTTAACGCACCCGCCACCGTGTGTGGTCCTAAACTTTCTAC
TGACCTGATTAAAAACCAATGCGTCAACTTCAATTTTAACGGGCTGA
CCGGCACCGGTGTCCTGACCCCTAGCTCTAAGAGATTCCAGCCTTTT
CAGCAGTTCGGGAGGGATGTGAGCGACTTTACCGACTCTGTCAGGG
ATCCAAAGACCAGCGAGATACTGGATATCTCGCCCTGCAGTTTCGGT
GGCGTGTCCGTTATTACACCTGGCACCAACGCCTCCTCAGAGGTGGC
GGTGCTCTATCAAGATGTCAACTGCACTGATGTGTCAACTGCCATCC
ATGCCGATCAGCTGACCCCCGCCTGGCGCATCTACAGTACCGGGAAC
AACGTTTTTCAGACCCAGGCCGGCTGTCTAATCGGCGCAGAGCACGT
TGACACATCCTACGAATGTGACATACCTATCGGGGCAGGCATTTGCG
CTAGCTACCATACCGTGTCACTGTTGGCTTCCACGTCACAAAAGTCA
ATCGTTGCCTACACGATGAGTCTGGGGGCTGACTCATCTATCGCCTA
CAGCAACAATACCATTGCAATTCCCACAAACTTCAGTATCTCCATCA
CAACAGAGGTGATGCCCGTTTCTATGGCTAAAACATCAGTCGATTGC
AATATGTATATATGCGGCGATAGTACTGAGTGCGCCAATCTCTTGTT
ACAGTACGGCTCCTTTTGTACCCAGCTGAACCGAGCACTGTCTGGAA
TCGCCGCAGAACAGGATCGCAATACCCGGGAAGTCTTCGCCCAGGT
GAAGCAGATGTACAAAACGCCCACTCTCAAGTATTTCGGCGGATTCA
ACTTTTCTCAGATTTTGCCTGACCCGCTCAAGCCAACAAAACGATCT
TTTATCGAAGACCTTCTGTTTAACAAGGTCACACTGGCGGATGCTGG
GTTCATGAAACAGTACGGTGAATGCCTGGGGGACATCAATGCCAGA
GATCTGATCTGCGCCCAGAAATTCAATGGCTTAACAGTCCTCCCACC
TCTCTTGACCGACGATATGATCGCTGCGTACACCGCTGCTCTGGTAT
CGGGCACCGCGACTGCTGGCTGGACCTTTGGTGCCGGAGCCGCACTC
CAGATCCCATTCGCCATGCAGATGGCCTACCGCTTCAACGGAATCGG
GGTCACCCAGAACGTGCTGTATGAGAACCAGAAACAGATCGCCAAT
CAGTTCAATAAGGCAATTAGTCAGATTCAGGAGAGTCTTACCACTAC
CAGCACCGCCCTGGGCAAGCTGCAAGATGTTGTGAACCAGAATGCG
CAGGCATTAAACACTCTGGTTAAACAGCTGAGCTCAAATTTTGGTGC
AATCTCTTCAGTTCTGAACGATATCCTGAGTCGGCTGGATCCGCCAG
AGGCTGAAGTGCAAATTGATCGTTTGATCACCGGGAGGCTACAATCT
CTGCAGACGTACGTGACCCAGCAGCTCATCCGGGCAGCCGAAATTC
GCGCATCAGCCAACCTCGCTGCAACTAAGATGTCTGAGTGCGTGCTG
GGCCAGAGTAAGAGGGTGGACTTTTGTGGTAAGGGATACCACCTCA
TGTCCTTTCCGCAAGCGGCTCCCCACGGCGTGGTTTTCTTACACGTTA
CCTATGTGCCATCCCAAGAACGCAATTTCACCACCGCTCCAGCTATC
TGTCATGAGGGCAAAGCATATTTCCCCAGGGAAGGAGTATTTGTGTT
TAATGGCACGTCCTGGTTTATAACCCAACGTAACTTTTTCTCCCCACA
GATTATCACAACCGACAACACATTCGTGTCTGGGAATTGTGACGTCG
TGATCGGGATCATTAACAATACCGTTTACGATCCCTTGCAGCCCGAG
CTTGACTCCTTTAAAGAGGAACTAGACAAATACTTTAAGAATCACAC
CTCACCGGACGTAGATTTGGGAGACATCTCTGGAATTAATGCCTCTG
TGGTGAATATCCAGAAGGAGATCGACCGCCTGAATGAAGTCGCCAA
GAACCTCAACGAGTCCCTGATAGATCTGCAAGAACTGGGCAAATAT
GAACAGTACATCAAATGGCCGTGGTACGTGTGGTTGGGCTTTATCGC
TGGACTTATTGCAATCGTGATGGTGACGATTCTGCTCtgctgctccaatggatc
gttacaatgcagaatttgcattTAA
PDI-SARS-COV-1 H1cCT-DNA(SEQ ID NO:92)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTCCGA
TCTGGATCGGTGCACTACATTTGACGATGTGCAGGCACCTAATTATA
CTCAGCACACCTCTTCCATGCGGGGCGTGTACTACCCCGACGAGATT
TTTAGAAGTGACACACTGTACCTGACCCAAGACCTTTTTCTCCCATTT
TATAGCAATGTCACGGGATTCCACACTATCAATCACACATTCGGAAA
CCCTGTTATCCCCTTTAAAGACGGTATCTACTTTGCTGCTACTGAGAA
ATCGAATGTTGTTCGCGGTTGGGTGTTCGGCTCAACCATGAACAACA
AGAGTCAGTCAGTAATAATTATAAACAACTCAACCAATGTCGTCATC
AGGGCTTGCAACTTCGAGCTCTGCGATAACCCCTTCTTTGCGGTGTC
CAAACCGATGGGCACTCAGACCCATACCATGATTTTTGACAATGCCT
TTAATTGTACTTTCGAATACATCAGCGATGCCTTCTCGCTGGATGTGT
CCGAGAAGAGCGGTAACTTCAAGCATTTGCGGGAGTTCGTTTTCAAA
AACAAAGACGGGTTTTTGTATGTCTACAAAGGCTATCAGCCCATTGA
TGTGGTCAGGGATCTGCCCAGTGGTTTCAACACACTGAAGCCCATCT
TCAAGTTGCCACTCGGCATCAACATCACTAATTTCCGCGCCATCCTA
ACTGCTTTTTCGCCAGCGCAGGATATTTGGGGGACATCCGCCGCAGC
TTACTTCGTGGGATATCTGAAGCCCACCACTTTTATGCTAAAGTACG
ACGAGAATGGCACCATCACCGATGCCGTGGACTGCTCACAGAATCC
TCTCGCAGAGCTCAAGTGTTCAGTGAAGTCATTTGAGATCGACAAAG
GGATCTACCAAACATCTAACTTTCGCGTCGTGCCTTCCGGTGACGTA
GTCCGTTTCCCAAATATCACTAACTTGTGCCCTTTTGGTGAAGTATTC
AACGCAACCAAATTCCCCAGTGTGTATGCGTGGGAGCGCAAAAAGA
TCAGTAACTGTGTGGCTGACTATAGTGTTCTGTACAATAGCACCTTC
TTCAGCACCTTCAAGTGTTATGGAGTGAGCGCTACAAAACTGAACGA
TCTTTGTTTCTCAAACGTGTACGCCGATTCATTTGTCGTTAAAGGTGA
CGATGTGAGGCAGATCGCTCCAGGCCAGACAGGTGTGATTGCTGAC
TATAATTACAAACTGCCAGACGACTTCATGGGGTGCGTGCTAGCTTG
GAATACAAGAAACATTGACGCCACCTCCACGGGAAATTACAATTAC
AAGTATCGTTACCTTCGCCATGGAAAGTTGAGACCCTTCGAGCGTGA
TATAAGTAACGTGCCCTTTAGTCCAGATGGAAAACCCTGCACACCCC
CTGCTCTCAATTGCTATTGGCCTCTCAATGACTACGGCTTTTACACAA
CTACTGGCATCGGATACCAGCCTTACCGGGTCGTGGTGCTCAGTTTT
GAGTTGCTTAACGCACCCGCCACCGTGTGTGGTCCTAAACTTTCTAC
TGACCTGATTAAAAACCAATGCGTCAACTTCAATTTTAACGGGCTGA
CCGGCACCGGTGTCCTGACCCCTAGCTCTAAGAGATTCCAGCCTTTT
CAGCAGTTCGGGAGGGATGTGAGCGACTTTACCGACTCTGTCAGGG
ATCCAAAGACCAGCGAGATACTGGATATCTCGCCCTGCAGTTTCGGT
GGCGTGTCCGTTATTACACCTGGCACCAACGCCTCCTCAGAGGTGGC
GGTGCTCTATCAAGATGTCAACTGCACTGATGTGTCAACTGCCATCC
ATGCCGATCAGCTGACCCCCGCCTGGCGCATCTACAGTACCGGGAAC
AACGTTTTTCAGACCCAGGCCGGCTGTCTAATCGGCGCAGAGCACGT
TGACACATCCTACGAATGTGACATACCTATCGGGGCAGGCATTTGCG
CTAGCTACCATACCGTGTCACTGTTGGCTTCCACGTCACAAAAGTCA
ATCGTTGCCTACACGATGAGTCTGGGGGCTGACTCATCTATCGCCTA
CAGCAACAATACCATTGCAATTCCCACAAACTTCAGTATCTCCATCA
CAACAGAGGTGATGCCCGTTTCTATGGCTAAAACATCAGTCGATTGC
AATATGTATATATGCGGCGATAGTACTGAGTGCGCCAATCTCTTGTT
ACAGTACGGCTCCTTTTGTACCCAGCTGAACCGAGCACTGTCTGGAA
TCGCCGCAGAACAGGATCGCAATACCCGGGAAGTCTTCGCCCAGGT
GAAGCAGATGTACAAAACGCCCACTCTCAAGTATTTCGGCGGATTCA
ACTTTTCTCAGATTTTGCCTGACCCGCTCAAGCCAACAAAACGATCT
TTTATCGAAGACCTTCTGTTTAACAAGGTCACACTGGCGGATGCTGG
GTTCATGAAACAGTACGGTGAATGCCTGGGGGACATCAATGCCAGA
GATCTGATCTGCGCCCAGAAATTCAATGGCTTAACAGTCCTCCCACC
TCTCTTGACCGACGATATGATCGCTGCGTACACCGCTGCTCTGGTAT
CGGGCACCGCGACTGCTGGCTGGACCTTTGGTGCCGGAGCCGCACTC
CAGATCCCATTCGCCATGCAGATGGCCTACCGCTTCAACGGAATCGG
GGTCACCCAGAACGTGCTGTATGAGAACCAGAAACAGATCGCCAAT
CAGTTCAATAAGGCAATTAGTCAGATTCAGGAGAGTCTTACCACTAC
CAGCACCGCCCTGGGCAAGCTGCAAGATGTTGTGAACCAGAATGCG
CAGGCATTAAACACTCTGGTTAAACAGCTGAGCTCAAATTTTGGTGC
AATCTCTTCAGTTCTGAACGATATCCTGAGTCGGCTGGATCCGCCAG
AGGCTGAAGTGCAAATTGATCGTTTGATCACCGGGAGGCTACAATCT
CTGCAGACGTACGTGACCCAGCAGCTCATCCGGGCAGCCGAAATTC
GCGCATCAGCCAACCTCGCTGCAACTAAGATGTCTGAGTGCGTGCTG
GGCCAGAGTAAGAGGGTGGACTTTTGTGGTAAGGGATACCACCTCA
TGTCCTTTCCGCAAGCGGCTCCCCACGGCGTGGTTTTCTTACACGTTA
CCTATGTGCCATCCCAAGAACGCAATTTCACCACCGCTCCAGCTATC
TGTCATGAGGGCAAAGCATATTTCCCCAGGGAAGGAGTATTTGTGTT
TAATGGCACGTCCTGGTTTATAACCCAACGTAACTTTTTCTCCCCACA
GATTATCACAACCGACAACACATTCGTGTCTGGGAATTGTGACGTCG
TGATCGGGATCATTAACAATACCGTTTACGATCCCTTGCAGCCCGAG
CTTGACTCCTTTAAAGAGGAACTAGACAAATACTTTAAGAATCACAC
CTCACCGGACGTAGATTTGGGAGACATCTCTGGAATTAATGCCTCTG
TGGTGAATATCCAGAAGGAGATCGACCGCCTGAATGAAGTCGCCAA
GAACCTCAACGAGTCCCTGATAGATCTGCAAGAACTGGGCAAATAT
GAACAGTACATCAAATGGCCGTGGTACGTGTGGTTGGGCTTTATCGC
TGGACTTATTGCAATCGTGATGGTGACGATTCTGCTCagcttctggatgtgctct
aatgggtctctacagtgtagaatatgtattTAA
PDI-SARS-COV-1 wtTMCT-AA(SEQ ID NO:93)
MAKNVAIFGLLFSLLVLVPSQIFASDLDRCTTFDDVQAPNYTQHTSSMR
GVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFKDGIYF
AATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFF
AVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVF
KNKDGFLYVYKGYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAF
SPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQNPLAEL
KCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPS
VYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYA
DSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATS
TGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLND
YGFYTTTGIGYQPYRVVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNF
NGLTGTGVLTPSSKRFQPFQQFGRDVSDFTDSVRDPKTSEILDISPCSFG
GVSVITPGTNASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNN
VFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLASTSQKSIVAY
TMSLGADSSIAYSNNTIAIPTNFSISITTEVMPVSMAKTSVDCNMYICGD
STECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQMYKTPT
LKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAGFMKQYGECLG
DINARDLICAQKFNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFGA
GAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFNKAISQIQESLT
TTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPE
AEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQS
KRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEG
KAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNT
VYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRL
NEVAKNLNESLIDLQELGKYEQYIKWPWYVWLGFIAGLIAIVMVTILLC
CMTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT
PDI-SARS-COV-1 H5iTMCT-AA(SEQ ID NO:94)
MAKNVAIFGLLFSLLVLVPSQIFASDLDRCTTFDDVQAPNYTQHTSSMR
GVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFKDGIYF
AATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFF
AVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVF
KNKDGFLYVYKGYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAF
SPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQNPLAEL
KCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPS
VYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYA
DSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATS
TGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLND
YGFYTTTGIGYQPYRVVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNF
NGLTGTGVLTPSSKRFQPFQQFGRDVSDFTDSVRDPKTSEILDISPCSFG
GVSVITPGTNASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNN
VFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLASTSQKSIVAY
TMSLGADSSIAYSNNTIAIPTNFSISITTEVMPVSMAKTSVDCNMYICGD
STECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQMYKTPT
LKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAGFMKQYGECLG
DINARDLICAQKFNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFGA
GAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFNKAISQIQESLT
TTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPE
AEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQS
KRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEG
KAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNT
VYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRL
NEVAKNLNESLIDLQELGKYEQYIKWPWYQILSIYSTVASSLALAIMMA
GLSLWMCSNGSLQCRICI
PDI-SARS-COV-1 H5iCT-AA(SEQ ID NO:95)
MAKNVAIFGLLFSLLVLVPSQIFASDLDRCTTFDDVQAPNYTQHTSSMR
GVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFKDGIYF
AATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFF
AVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVF
KNKDGFLYVYKGYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAF
SPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQNPLAEL
KCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPS
VYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYA
DSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATS
TGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLND
YGFYTTTGIGYQPYRVVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNF
NGLTGTGVLTPSSKRFQPFQQFGRDVSDFTDSVRDPKTSEILDISPCSFG
GVSVITPGTNASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNN
VFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLASTSQKSIVAY
TMSLGADSSIAYSNNTIAIPTNFSISITTEVMPVSMAKTSVDCNMYICGD
STECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQMYKTPT
LKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAGFMKQYGECLG
DINARDLICAQKFNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFGA
GAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFNKAISQIQESLT
TTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPE
AEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQS
KRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEG
KAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNT
VYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRL
NEVAKNLNESLIDLQELGKYEQYIKWPWYVWLGFIAGLIAIVMVTILLS
LWMCSNGSLQCRICI
PDI-SARS-COV-1 H5iCT(V4)-AA(SEQ ID NO:96)
MAKNVAIFGLLFSLLVLVPSQIFASDLDRCTTFDDVQAPNYTQHTSSMR
GVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFKDGIYF
AATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFF
AVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVF
KNKDGFLYVYKGYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAF
SPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQNPLAEL
KCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPS
VYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYA
DSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATS
TGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLND
YGFYTTTGIGYQPYRVVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNF
NGLTGTGVLTPSSKRFQPFQQFGRDVSDFTDSVRDPKTSEILDISPCSFG
GVSVITPGTNASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNN
VFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLASTSQKSIVAY
TMSLGADSSIAYSNNTIAIPTNFSISITTEVMPVSMAKTSVDCNMYICGD
STECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQMYKTPT
LKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAGFMKQYGECLG
DINARDLICAQKFNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFGA
GAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFNKAISQIQESLT
TTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPE
AEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQS
KRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEG
KAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNT
VYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRL
NEVAKNLNESLIDLQELGKYEQYIKWPWYVWLGFIAGLIAIVMVTILLC
CSNGSLQCRICI
PDI-SARS-COV-1 H1cCT-AA(SEQ ID NO:97)
MAKNVAIFGLLFSLLVLVPSQIFASDLDRCTTFDDVQAPNYTQHTSSMR
GVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFKDGIYF
AATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFF
AVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVF
KNKDGFLYVYKGYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAF
SPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQNPLAEL
KCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPS
VYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYA
DSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATS
TGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLND
YGFYTTTGIGYQPYRVVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNF
NGLTGTGVLTPSSKRFQPFQQFGRDVSDFTDSVRDPKTSEILDISPCSFG
GVSVITPGTNASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNN
VFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLASTSQKSIVAY
TMSLGADSSIAYSNNTIAIPTNFSISITTEVMPVSMAKTSVDCNMYICGD
STECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQMYKTPT
LKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAGFMKQYGECLG
DINARDLICAQKFNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFGA
GAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFNKAISQIQESLT
TTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPE
AEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQS
KRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEG
KAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNT
VYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRL
NEVAKNLNESLIDLQELGKYEQYIKWPWYVWLGFIAGLIAIVMVTILLS
FWMCSNGSLQCRICI
IF(AvB+wtCT-MERS).r(SEQ ID NO:98)
ACGACACGACTAAGGCCTTCAGTGAACGTGGACCTTGTGAGGCTCA
AGGTCATACTCCTC
IF(H1cCT-wtTM).r(SEQ ID NO:99)
ACGACACGACTAAGGCCTTCAAATACATATTCTACACTGTAGAGACC
CA
IF(H5ITMCT).r(SEQ ID NO:100)
ACGACACGACTAAGGCCTTCAAATGCAAATTCTGCATTGTAACGATC
C
PDI-MERS-wtTMCT-DNA(SEQ ID NO:101)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTATGT
CGATGTGGGTCCCGATAGTGTTAAGTCCGCCTGCATCGAAGTGGACA
TTCAGCAGACCTTCTTCGATAAGACTTGGCCTCGGCCAATTGATGTG
TCCAAGGCCGACGGCATTATCTACCCCCAAGGTCGGACATATTCCAA
CATAACTATCACCTATCAGGGGCTATTCCCTTATCAGGGCGACCATG
GGGACATGTACGTTTACAGCGCTGGTCACGCTACAGGGACGACCCC
CCAGAAGCTCTTCGTGGCGAACTATAGTCAGGACGTGAAACAGTTTG
CCAACGGTTTTGTAGTGCGCATCGGGGCAGCCGCTAACTCCACTGGT
ACTGTTATTATCAGCCCTTCCACGAGTGCCACAATTCGAAAGATCTA
TCCGGCCTTCATGCTAGGATCCTCTGTGGGCAATTTTAGCGACGGTA
AGATGGGTCGGTTCTTCAACCACACGCTTGTGCTGCTTCCCGATGGG
TGCGGTACTTTGCTGAGGGCCTTTTACTGTATCCTAGAGCCCCGATC
CGGCAACCACTGCCCCGCCGGGAACTCGTATACTTCCTTTGCCACTT
ATCATACTCCAGCCACGGATTGTAGCGATGGGAACTACAATAGGAA
CGCCAGTTTGAATTCCTTTAAAGAGTACTTCAACTTGCGGAATTGTA
CCTTCATGTATACATATAACATTACTGAGGACGAAATTCTCGAATGG
TTCGGAATCACTCAAACAGCCCAGGGAGTGCACCTCTTTAGTTCTCG
CTATGTGGACTTATATGGAGGCAATATGTTTCAATTCGCCACCTTAC
CCGTCTACGATACGATCAAGTATTACTCGATCATACCCCACTCCATT
AGGTCCATTCAGAGCGATCGCAAGGCATGGGCCGCATTCTATGTGTA
TAAGCTCCAGCCCCTGACCTTCCTCTTGGATTTCTCCGTGGACGGCTA
CATCAGAAGGGCTATCGATTGCGGGTTCAACGACCTCAGCCAGCTGC
ATTGTTCTTATGAGAGCTTTGACGTGGAAAGCGGAGTTTACTCAGTC
TCTTCCTTTGAGGCTAAACCTTCAGGTAGCGTCGTAGAGCAAGCAGA
GGGTGTGGAGTGCGATTTCTCACCACTGCTCAGCGGAACCCCACCCC
AGGTCTACAACTTTAAGCGGCTCGTGTTCACAAACTGTAACTATAAC
TTGACTAAGTTGCTGTCACTCTTTTCCGTGAATGATTTTACATGCTCC
CAAATCAGCCCAGCCGCTATTGCGTCTAATTGCTATTCCTCATTGATC
CTGGATTACTTCAGTTACCCCCTCTCTATGAAGAGCGATCTCTCGGTT
AGTAGCGCTGGGCCTATTTCCCAGTTTAACTACAAACAATCCTTTTC
CAATCCAACATGCCTGATCTTAGCTACTGTACCCCACAACCTGACTA
CTATTACGAAGCCACTCAAGTACTCATACATTAATAAGTGCAGCCGA
TTCCTCAGTGATGATCGCACCGAAGTGCCGCAGCTTGTAAACGCGAA
CCAGTACTCCCCATGCGTCTCTATTGTGCCTTCTACAGTGTGGGAAG
ACGGCGATTATTATAGAAAGCAGCTGTCGCCACTGGAAGGTGGCGG
GTGGCTAGTTGCCAGTGGGTCCACAGTTGCCATGACCGAGCAACTTC
AGATGGGGTTTGGCATAACAGTGCAGTATGGTACCGATACGAACAG
CGTGTGTCCAAAATTGGAATTTGCTAACGACACCAAGATCGCCTCCC
AGTTGGGAAATTGTGTTGAATATTCCCTGTACGGAGTGTCAGGCCGG
GGGGTGTTCCAAAATTGCACCGCCGTGGGAGTGAGGCAGCAAAGAT
TCGTGTACGACGCATACCAGAATCTAGTCGGATACTATTCTGACGAT
GGAAACTACTACTGTCTGCGCGCTTGCGTCTCAGTGCCCGTGAGTGT
CATATATGATAAGGAGACCAAGACTCACGCTACTCTCTTTGGTTCTG
TCGCGTGCGAACACATTTCCTCTACAATGTCCCAGTATAGTCGCTCC
ACTCGGTCTATGTTAAAGCGCAGAGACAGTACCTACGGCCCTCTACA
GACACCTGTGGGGTGCGTTCTCGGCCTTGTCAATTCTAGCCTGTTTGT
GGAGGATTGTAAGCTGCCCCTTGGTCAAAGCTTATGCGCACTGCCCG
ATACGCCCAGCACACTTACACCAGCTTCAGTGGGGTCCGTCCCCGGG
GAAATGAGATTGGCCTCGATCGCTTTCAACCACCCCATACAGGTGGA
TCAGCTCAACTCGTCATACTTCAAGCTAAGCATCCCTACTAATTTCTC
CTTTGGTGTGACTCAGGAGTACATTCAGACCACAATTCAAAAGGTGA
CCGTTGACTGCAAGCAGTATGTGTGCAACGGGTTCCAGAAATGTGA
ACAGCTGCTCCGGGAGTATGGCCAGTTCTGTTCTAAAATCAACCAGG
CCCTCCACGGAGCAAACCTTAGGCAGGACGATTCTGTCAGAAACCTC
TTTGCCAGCGTCAAGAGTTCTCAGAGTTCCCCTATTATACCTGGCTTC
GGCGGGGATTTCAACCTGACACTACTTGAACCTGTAAGCATATCAAC
CGGAAGTCGCAGTGCCCGTTCCGCCATCGAGGATCTGCTCTTCGACA
AAGTAACTATTGCAGATCCCGGATACATGCAGGGGTATGACGACTG
CATGCAGCAGGGTCCAGCCTCTGCAAGGGATCTGATATGCGCACAG
TATGTCGCTGGGTACAAAGTGTTGCCTCCTCTCATGGACGTGAACAT
GGAAGCGGCCTATACCTCCTCACTTCTAGGCTCCATAGCGGGCGTGG
GATGGACCGCAGGGCTTTCAAGCTTCGCCGCAATTCCCTTTGCTCAA
TCTATCTTCTACAGGCTTAATGGCGTTGGAATCACCCAGCAGGTGTT
AAGCGAAAACCAGAAATTGATTGCCAATAAGTTTAACCAAGCTTTG
GGGGCCATGCAGACAGGCTTTACAACCACAAACGAGGCTTTCCATA
AAGTACAGGATGCGGTAAACAATAACGCACAAGCCCTGTCAAAGCT
GGCTTCAGAGCTCTCAAATACATTTGGCGCTATATCCGCGTCTATCG
GCGATATCATACAACGGTTGGACCCACCCGAACAGGACGCACAGAT
TGATCGTTTGATCAACGGGAGGCTTACCACCTTAAACGCTTTTGTGG
CCCAGCAACTGGTGCGGTCTGAGAGCGCCGCCTTGAGCGCTCAGCTG
GCAAAGGATAAAGTGAATGAATGCGTGAAAGCTCAATCAAAGAGAA
GTGGGTTTTGTGGGCAGGGTACTCATATTGTTTCCTTTGTGGTGAAC
GCCCCAAATGGACTCTACTTTATGCATGTTGGATACTACCCGAGCAA
CCACATCGAGGTCGTTTCCGCCTATGGGCTTTGTGACGCAGCAAACC
CTACTAACTGTATCGCGCCAGTTAATGGCTACTTTATTAAAACAAAT
AACACACGCATTGTGGATGAATGGAGTTACACAGGGTCCAGCTTCTA
CGCTCCAGAGCCTATCACCTCTCTGAACACAAAGTATGTGGCACCTC
AGGTCACATATCAGAACATCTCGACAAACCTGCCCCCCCCACTCTTG
GGCAACTCCACAGGGATCGACTTCCAGGACGAGCTTGACGAATTCTT
CAAGAACGTGTCCACCAGTATCCCTAATTTTGGTTCGCTGACCCAAA
TTAACACAACCCTGCTCGATCTGACATATGAAATGCTTTCACTACAG
CAGGTGGTCAAAGCGTTGAACGAGTCGTATATCGACCTGAAAGAGT
TAGGGAATTACACATACTATAACAAATGGCCCTGGTATATTTGGTTA
GGATTCATTGCCGGGCTGGTGGCCCTTGCCTTGTGCGTATTTTTCATC
TTGTGCTGTACCGGTTGCGGTACGAATTGCATGGGAAAACTGAAATG
TAATCGGTGCTGCGATCGCTATGAGGAGTATGACCTTGAGCCTCACA
AGGTCCACGTTCACTGA
PDI-MERS-H5iTMCT-DNA(SEQ ID NO:102)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTATGT
CGATGTGGGTCCCGATAGTGTTAAGTCCGCCTGCATCGAAGTGGACA
TTCAGCAGACCTTCTTCGATAAGACTTGGCCTCGGCCAATTGATGTG
TCCAAGGCCGACGGCATTATCTACCCCCAAGGTCGGACATATTCCAA
CATAACTATCACCTATCAGGGGCTATTCCCTTATCAGGGCGACCATG
GGGACATGTACGTTTACAGCGCTGGTCACGCTACAGGGACGACCCC
CCAGAAGCTCTTCGTGGCGAACTATAGTCAGGACGTGAAACAGTTTG
CCAACGGTTTTGTAGTGCGCATCGGGGCAGCCGCTAACTCCACTGGT
ACTGTTATTATCAGCCCTTCCACGAGTGCCACAATTCGAAAGATCTA
TCCGGCCTTCATGCTAGGATCCTCTGTGGGCAATTTTAGCGACGGTA
AGATGGGTCGGTTCTTCAACCACACGCTTGTGCTGCTTCCCGATGGG
TGCGGTACTTTGCTGAGGGCCTTTTACTGTATCCTAGAGCCCCGATC
CGGCAACCACTGCCCCGCCGGGAACTCGTATACTTCCTTTGCCACTT
ATCATACTCCAGCCACGGATTGTAGCGATGGGAACTACAATAGGAA
CGCCAGTTTGAATTCCTTTAAAGAGTACTTCAACTTGCGGAATTGTA
CCTTCATGTATACATATAACATTACTGAGGACGAAATTCTCGAATGG
TTCGGAATCACTCAAACAGCCCAGGGAGTGCACCTCTTTAGTTCTCG
CTATGTGGACTTATATGGAGGCAATATGTTTCAATTCGCCACCTTAC
CCGTCTACGATACGATCAAGTATTACTCGATCATACCCCACTCCATT
AGGTCCATTCAGAGCGATCGCAAGGCATGGGCCGCATTCTATGTGTA
TAAGCTCCAGCCCCTGACCTTCCTCTTGGATTTCTCCGTGGACGGCTA
CATCAGAAGGGCTATCGATTGCGGGTTCAACGACCTCAGCCAGCTGC
ATTGTTCTTATGAGAGCTTTGACGTGGAAAGCGGAGTTTACTCAGTC
TCTTCCTTTGAGGCTAAACCTTCAGGTAGCGTCGTAGAGCAAGCAGA
GGGTGTGGAGTGCGATTTCTCACCACTGCTCAGCGGAACCCCACCCC
AGGTCTACAACTTTAAGCGGCTCGTGTTCACAAACTGTAACTATAAC
TTGACTAAGTTGCTGTCACTCTTTTCCGTGAATGATTTTACATGCTCC
CAAATCAGCCCAGCCGCTATTGCGTCTAATTGCTATTCCTCATTGATC
CTGGATTACTTCAGTTACCCCCTCTCTATGAAGAGCGATCTCTCGGTT
AGTAGCGCTGGGCCTATTTCCCAGTTTAACTACAAACAATCCTTTTC
CAATCCAACATGCCTGATCTTAGCTACTGTACCCCACAACCTGACTA
CTATTACGAAGCCACTCAAGTACTCATACATTAATAAGTGCAGCCGA
TTCCTCAGTGATGATCGCACCGAAGTGCCGCAGCTTGTAAACGCGAA
CCAGTACTCCCCATGCGTCTCTATTGTGCCTTCTACAGTGTGGGAAG
ACGGCGATTATTATAGAAAGCAGCTGTCGCCACTGGAAGGTGGCGG
GTGGCTAGTTGCCAGTGGGTCCACAGTTGCCATGACCGAGCAACTTC
AGATGGGGTTTGGCATAACAGTGCAGTATGGTACCGATACGAACAG
CGTGTGTCCAAAATTGGAATTTGCTAACGACACCAAGATCGCCTCCC
AGTTGGGAAATTGTGTTGAATATTCCCTGTACGGAGTGTCAGGCCGG
GGGGTGTTCCAAAATTGCACCGCCGTGGGAGTGAGGCAGCAAAGAT
TCGTGTACGACGCATACCAGAATCTAGTCGGATACTATTCTGACGAT
GGAAACTACTACTGTCTGCGCGCTTGCGTCTCAGTGCCCGTGAGTGT
CATATATGATAAGGAGACCAAGACTCACGCTACTCTCTTTGGTTCTG
TCGCGTGCGAACACATTTCCTCTACAATGTCCCAGTATAGTCGCTCC
ACTCGGTCTATGTTAAAGCGCAGAGACAGTACCTACGGCCCTCTACA
GACACCTGTGGGGTGCGTTCTCGGCCTTGTCAATTCTAGCCTGTTTGT
GGAGGATTGTAAGCTGCCCCTTGGTCAAAGCTTATGCGCACTGCCCG
ATACGCCCAGCACACTTACACCAGCTTCAGTGGGGTCCGTCCCCGGG
GAAATGAGATTGGCCTCGATCGCTTTCAACCACCCCATACAGGTGGA
TCAGCTCAACTCGTCATACTTCAAGCTAAGCATCCCTACTAATTTCTC
CTTTGGTGTGACTCAGGAGTACATTCAGACCACAATTCAAAAGGTGA
CCGTTGACTGCAAGCAGTATGTGTGCAACGGGTTCCAGAAATGTGA
ACAGCTGCTCCGGGAGTATGGCCAGTTCTGTTCTAAAATCAACCAGG
CCCTCCACGGAGCAAACCTTAGGCAGGACGATTCTGTCAGAAACCTC
TTTGCCAGCGTCAAGAGTTCTCAGAGTTCCCCTATTATACCTGGCTTC
GGCGGGGATTTCAACCTGACACTACTTGAACCTGTAAGCATATCAAC
CGGAAGTCGCAGTGCCCGTTCCGCCATCGAGGATCTGCTCTTCGACA
AAGTAACTATTGCAGATCCCGGATACATGCAGGGGTATGACGACTG
CATGCAGCAGGGTCCAGCCTCTGCAAGGGATCTGATATGCGCACAG
TATGTCGCTGGGTACAAAGTGTTGCCTCCTCTCATGGACGTGAACAT
GGAAGCGGCCTATACCTCCTCACTTCTAGGCTCCATAGCGGGCGTGG
GATGGACCGCAGGGCTTTCAAGCTTCGCCGCAATTCCCTTTGCTCAA
TCTATCTTCTACAGGCTTAATGGCGTTGGAATCACCCAGCAGGTGTT
AAGCGAAAACCAGAAATTGATTGCCAATAAGTTTAACCAAGCTTTG
GGGGCCATGCAGACAGGCTTTACAACCACAAACGAGGCTTTCCATA
AAGTACAGGATGCGGTAAACAATAACGCACAAGCCCTGTCAAAGCT
GGCTTCAGAGCTCTCAAATACATTTGGCGCTATATCCGCGTCTATCG
GCGATATCATACAACGGTTGGACCCACCCGAACAGGACGCACAGAT
TGATCGTTTGATCAACGGGAGGCTTACCACCTTAAACGCTTTTGTGG
CCCAGCAACTGGTGCGGTCTGAGAGCGCCGCCTTGAGCGCTCAGCTG
GCAAAGGATAAAGTGAATGAATGCGTGAAAGCTCAATCAAAGAGAA
GTGGGTTTTGTGGGCAGGGTACTCATATTGTTTCCTTTGTGGTGAAC
GCCCCAAATGGACTCTACTTTATGCATGTTGGATACTACCCGAGCAA
CCACATCGAGGTCGTTTCCGCCTATGGGCTTTGTGACGCAGCAAACC
CTACTAACTGTATCGCGCCAGTTAATGGCTACTTTATTAAAACAAAT
AACACACGCATTGTGGATGAATGGAGTTACACAGGGTCCAGCTTCTA
CGCTCCAGAGCCTATCACCTCTCTGAACACAAAGTATGTGGCACCTC
AGGTCACATATCAGAACATCTCGACAAACCTGCCCCCCCCACTCTTG
GGCAACTCCACAGGGATCGACTTCCAGGACGAGCTTGACGAATTCTT
CAAGAACGTGTCCACCAGTATCCCTAATTTTGGTTCGCTGACCCAAA
TTAACACAACCCTGCTCGATCTGACATATGAAATGCTTTCACTACAG
CAGGTGGTCAAAGCGTTGAACGAGTCGTATATCGACCTGAAAGAGT
TAGGGAATTACACATACTATAACAAATGGCCCTGGTATcaaatactgtcaatt
tattcaacagtggcgagttccctagcactggcaatcatgatggctggtctatctttatggatgtgctccaatggatc
gttacaatgcagaatttgcattTGA
PDI-MERS-H5iCT-DNA(SEQ ID NO:103)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTATGT
CGATGTGGGTCCCGATAGTGTTAAGTCCGCCTGCATCGAAGTGGACA
TTCAGCAGACCTTCTTCGATAAGACTTGGCCTCGGCCAATTGATGTG
TCCAAGGCCGACGGCATTATCTACCCCCAAGGTCGGACATATTCCAA
CATAACTATCACCTATCAGGGGCTATTCCCTTATCAGGGCGACCATG
GGGACATGTACGTTTACAGCGCTGGTCACGCTACAGGGACGACCCC
CCAGAAGCTCTTCGTGGCGAACTATAGTCAGGACGTGAAACAGTTTG
CCAACGGTTTTGTAGTGCGCATCGGGGCAGCCGCTAACTCCACTGGT
ACTGTTATTATCAGCCCTTCCACGAGTGCCACAATTCGAAAGATCTA
TCCGGCCTTCATGCTAGGATCCTCTGTGGGCAATTTTAGCGACGGTA
AGATGGGTCGGTTCTTCAACCACACGCTTGTGCTGCTTCCCGATGGG
TGCGGTACTTTGCTGAGGGCCTTTTACTGTATCCTAGAGCCCCGATC
CGGCAACCACTGCCCCGCCGGGAACTCGTATACTTCCTTTGCCACTT
ATCATACTCCAGCCACGGATTGTAGCGATGGGAACTACAATAGGAA
CGCCAGTTTGAATTCCTTTAAAGAGTACTTCAACTTGCGGAATTGTA
CCTTCATGTATACATATAACATTACTGAGGACGAAATTCTCGAATGG
TTCGGAATCACTCAAACAGCCCAGGGAGTGCACCTCTTTAGTTCTCG
CTATGTGGACTTATATGGAGGCAATATGTTTCAATTCGCCACCTTAC
CCGTCTACGATACGATCAAGTATTACTCGATCATACCCCACTCCATT
AGGTCCATTCAGAGCGATCGCAAGGCATGGGCCGCATTCTATGTGTA
TAAGCTCCAGCCCCTGACCTTCCTCTTGGATTTCTCCGTGGACGGCTA
CATCAGAAGGGCTATCGATTGCGGGTTCAACGACCTCAGCCAGCTGC
ATTGTTCTTATGAGAGCTTTGACGTGGAAAGCGGAGTTTACTCAGTC
TCTTCCTTTGAGGCTAAACCTTCAGGTAGCGTCGTAGAGCAAGCAGA
GGGTGTGGAGTGCGATTTCTCACCACTGCTCAGCGGAACCCCACCCC
AGGTCTACAACTTTAAGCGGCTCGTGTTCACAAACTGTAACTATAAC
TTGACTAAGTTGCTGTCACTCTTTTCCGTGAATGATTTTACATGCTCC
CAAATCAGCCCAGCCGCTATTGCGTCTAATTGCTATTCCTCATTGATC
CTGGATTACTTCAGTTACCCCCTCTCTATGAAGAGCGATCTCTCGGTT
AGTAGCGCTGGGCCTATTTCCCAGTTTAACTACAAACAATCCTTTTC
CAATCCAACATGCCTGATCTTAGCTACTGTACCCCACAACCTGACTA
CTATTACGAAGCCACTCAAGTACTCATACATTAATAAGTGCAGCCGA
TTCCTCAGTGATGATCGCACCGAAGTGCCGCAGCTTGTAAACGCGAA
CCAGTACTCCCCATGCGTCTCTATTGTGCCTTCTACAGTGTGGGAAG
ACGGCGATTATTATAGAAAGCAGCTGTCGCCACTGGAAGGTGGCGG
GTGGCTAGTTGCCAGTGGGTCCACAGTTGCCATGACCGAGCAACTTC
AGATGGGGTTTGGCATAACAGTGCAGTATGGTACCGATACGAACAG
CGTGTGTCCAAAATTGGAATTTGCTAACGACACCAAGATCGCCTCCC
AGTTGGGAAATTGTGTTGAATATTCCCTGTACGGAGTGTCAGGCCGG
GGGGTGTTCCAAAATTGCACCGCCGTGGGAGTGAGGCAGCAAAGAT
TCGTGTACGACGCATACCAGAATCTAGTCGGATACTATTCTGACGAT
GGAAACTACTACTGTCTGCGCGCTTGCGTCTCAGTGCCCGTGAGTGT
CATATATGATAAGGAGACCAAGACTCACGCTACTCTCTTTGGTTCTG
TCGCGTGCGAACACATTTCCTCTACAATGTCCCAGTATAGTCGCTCC
ACTCGGTCTATGTTAAAGCGCAGAGACAGTACCTACGGCCCTCTACA
GACACCTGTGGGGTGCGTTCTCGGCCTTGTCAATTCTAGCCTGTTTGT
GGAGGATTGTAAGCTGCCCCTTGGTCAAAGCTTATGCGCACTGCCCG
ATACGCCCAGCACACTTACACCAGCTTCAGTGGGGTCCGTCCCCGGG
GAAATGAGATTGGCCTCGATCGCTTTCAACCACCCCATACAGGTGGA
TCAGCTCAACTCGTCATACTTCAAGCTAAGCATCCCTACTAATTTCTC
CTTTGGTGTGACTCAGGAGTACATTCAGACCACAATTCAAAAGGTGA
CCGTTGACTGCAAGCAGTATGTGTGCAACGGGTTCCAGAAATGTGA
ACAGCTGCTCCGGGAGTATGGCCAGTTCTGTTCTAAAATCAACCAGG
CCCTCCACGGAGCAAACCTTAGGCAGGACGATTCTGTCAGAAACCTC
TTTGCCAGCGTCAAGAGTTCTCAGAGTTCCCCTATTATACCTGGCTTC
GGCGGGGATTTCAACCTGACACTACTTGAACCTGTAAGCATATCAAC
CGGAAGTCGCAGTGCCCGTTCCGCCATCGAGGATCTGCTCTTCGACA
AAGTAACTATTGCAGATCCCGGATACATGCAGGGGTATGACGACTG
CATGCAGCAGGGTCCAGCCTCTGCAAGGGATCTGATATGCGCACAG
TATGTCGCTGGGTACAAAGTGTTGCCTCCTCTCATGGACGTGAACAT
GGAAGCGGCCTATACCTCCTCACTTCTAGGCTCCATAGCGGGCGTGG
GATGGACCGCAGGGCTTTCAAGCTTCGCCGCAATTCCCTTTGCTCAA
TCTATCTTCTACAGGCTTAATGGCGTTGGAATCACCCAGCAGGTGTT
AAGCGAAAACCAGAAATTGATTGCCAATAAGTTTAACCAAGCTTTG
GGGGCCATGCAGACAGGCTTTACAACCACAAACGAGGCTTTCCATA
AAGTACAGGATGCGGTAAACAATAACGCACAAGCCCTGTCAAAGCT
GGCTTCAGAGCTCTCAAATACATTTGGCGCTATATCCGCGTCTATCG
GCGATATCATACAACGGTTGGACCCACCCGAACAGGACGCACAGAT
TGATCGTTTGATCAACGGGAGGCTTACCACCTTAAACGCTTTTGTGG
CCCAGCAACTGGTGCGGTCTGAGAGCGCCGCCTTGAGCGCTCAGCTG
GCAAAGGATAAAGTGAATGAATGCGTGAAAGCTCAATCAAAGAGAA
GTGGGTTTTGTGGGCAGGGTACTCATATTGTTTCCTTTGTGGTGAAC
GCCCCAAATGGACTCTACTTTATGCATGTTGGATACTACCCGAGCAA
CCACATCGAGGTCGTTTCCGCCTATGGGCTTTGTGACGCAGCAAACC
CTACTAACTGTATCGCGCCAGTTAATGGCTACTTTATTAAAACAAAT
AACACACGCATTGTGGATGAATGGAGTTACACAGGGTCCAGCTTCTA
CGCTCCAGAGCCTATCACCTCTCTGAACACAAAGTATGTGGCACCTC
AGGTCACATATCAGAACATCTCGACAAACCTGCCCCCCCCACTCTTG
GGCAACTCCACAGGGATCGACTTCCAGGACGAGCTTGACGAATTCTT
CAAGAACGTGTCCACCAGTATCCCTAATTTTGGTTCGCTGACCCAAA
TTAACACAACCCTGCTCGATCTGACATATGAAATGCTTTCACTACAG
CAGGTGGTCAAAGCGTTGAACGAGTCGTATATCGACCTGAAAGAGT
TAGGGAATTACACATACTATAACAAATGGCCCTGGTATATTTGGTTA
GGATTCATTGCCGGGCTGGTGGCCCTTGCCTTGTGCGTATTTTTCATC
TTGtctttatggatgtgctccaatggatcgttacaatgcagaatttgcattTGA
PDI-MERS-H5iCT(V4)-DNA(SEQ ID NO:104)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTATGT
CGATGTGGGTCCCGATAGTGTTAAGTCCGCCTGCATCGAAGTGGACA
TTCAGCAGACCTTCTTCGATAAGACTTGGCCTCGGCCAATTGATGTG
TCCAAGGCCGACGGCATTATCTACCCCCAAGGTCGGACATATTCCAA
CATAACTATCACCTATCAGGGGCTATTCCCTTATCAGGGCGACCATG
GGGACATGTACGTTTACAGCGCTGGTCACGCTACAGGGACGACCCC
CCAGAAGCTCTTCGTGGCGAACTATAGTCAGGACGTGAAACAGTTTG
CCAACGGTTTTGTAGTGCGCATCGGGGCAGCCGCTAACTCCACTGGT
ACTGTTATTATCAGCCCTTCCACGAGTGCCACAATTCGAAAGATCTA
TCCGGCCTTCATGCTAGGATCCTCTGTGGGCAATTTTAGCGACGGTA
AGATGGGTCGGTTCTTCAACCACACGCTTGTGCTGCTTCCCGATGGG
TGCGGTACTTTGCTGAGGGCCTTTTACTGTATCCTAGAGCCCCGATC
CGGCAACCACTGCCCCGCCGGGAACTCGTATACTTCCTTTGCCACTT
ATCATACTCCAGCCACGGATTGTAGCGATGGGAACTACAATAGGAA
CGCCAGTTTGAATTCCTTTAAAGAGTACTTCAACTTGCGGAATTGTA
CCTTCATGTATACATATAACATTACTGAGGACGAAATTCTCGAATGG
TTCGGAATCACTCAAACAGCCCAGGGAGTGCACCTCTTTAGTTCTCG
CTATGTGGACTTATATGGAGGCAATATGTTTCAATTCGCCACCTTAC
CCGTCTACGATACGATCAAGTATTACTCGATCATACCCCACTCCATT
AGGTCCATTCAGAGCGATCGCAAGGCATGGGCCGCATTCTATGTGTA
TAAGCTCCAGCCCCTGACCTTCCTCTTGGATTTCTCCGTGGACGGCTA
CATCAGAAGGGCTATCGATTGCGGGTTCAACGACCTCAGCCAGCTGC
ATTGTTCTTATGAGAGCTTTGACGTGGAAAGCGGAGTTTACTCAGTC
TCTTCCTTTGAGGCTAAACCTTCAGGTAGCGTCGTAGAGCAAGCAGA
GGGTGTGGAGTGCGATTTCTCACCACTGCTCAGCGGAACCCCACCCC
AGGTCTACAACTTTAAGCGGCTCGTGTTCACAAACTGTAACTATAAC
TTGACTAAGTTGCTGTCACTCTTTTCCGTGAATGATTTTACATGCTCC
CAAATCAGCCCAGCCGCTATTGCGTCTAATTGCTATTCCTCATTGATC
CTGGATTACTTCAGTTACCCCCTCTCTATGAAGAGCGATCTCTCGGTT
AGTAGCGCTGGGCCTATTTCCCAGTTTAACTACAAACAATCCTTTTC
CAATCCAACATGCCTGATCTTAGCTACTGTACCCCACAACCTGACTA
CTATTACGAAGCCACTCAAGTACTCATACATTAATAAGTGCAGCCGA
TTCCTCAGTGATGATCGCACCGAAGTGCCGCAGCTTGTAAACGCGAA
CCAGTACTCCCCATGCGTCTCTATTGTGCCTTCTACAGTGTGGGAAG
ACGGCGATTATTATAGAAAGCAGCTGTCGCCACTGGAAGGTGGCGG
GTGGCTAGTTGCCAGTGGGTCCACAGTTGCCATGACCGAGCAACTTC
AGATGGGGTTTGGCATAACAGTGCAGTATGGTACCGATACGAACAG
CGTGTGTCCAAAATTGGAATTTGCTAACGACACCAAGATCGCCTCCC
AGTTGGGAAATTGTGTTGAATATTCCCTGTACGGAGTGTCAGGCCGG
GGGGTGTTCCAAAATTGCACCGCCGTGGGAGTGAGGCAGCAAAGAT
TCGTGTACGACGCATACCAGAATCTAGTCGGATACTATTCTGACGAT
GGAAACTACTACTGTCTGCGCGCTTGCGTCTCAGTGCCCGTGAGTGT
CATATATGATAAGGAGACCAAGACTCACGCTACTCTCTTTGGTTCTG
TCGCGTGCGAACACATTTCCTCTACAATGTCCCAGTATAGTCGCTCC
ACTCGGTCTATGTTAAAGCGCAGAGACAGTACCTACGGCCCTCTACA
GACACCTGTGGGGTGCGTTCTCGGCCTTGTCAATTCTAGCCTGTTTGT
GGAGGATTGTAAGCTGCCCCTTGGTCAAAGCTTATGCGCACTGCCCG
ATACGCCCAGCACACTTACACCAGCTTCAGTGGGGTCCGTCCCCGGG
GAAATGAGATTGGCCTCGATCGCTTTCAACCACCCCATACAGGTGGA
TCAGCTCAACTCGTCATACTTCAAGCTAAGCATCCCTACTAATTTCTC
CTTTGGTGTGACTCAGGAGTACATTCAGACCACAATTCAAAAGGTGA
CCGTTGACTGCAAGCAGTATGTGTGCAACGGGTTCCAGAAATGTGA
ACAGCTGCTCCGGGAGTATGGCCAGTTCTGTTCTAAAATCAACCAGG
CCCTCCACGGAGCAAACCTTAGGCAGGACGATTCTGTCAGAAACCTC
TTTGCCAGCGTCAAGAGTTCTCAGAGTTCCCCTATTATACCTGGCTTC
GGCGGGGATTTCAACCTGACACTACTTGAACCTGTAAGCATATCAAC
CGGAAGTCGCAGTGCCCGTTCCGCCATCGAGGATCTGCTCTTCGACA
AAGTAACTATTGCAGATCCCGGATACATGCAGGGGTATGACGACTG
CATGCAGCAGGGTCCAGCCTCTGCAAGGGATCTGATATGCGCACAG
TATGTCGCTGGGTACAAAGTGTTGCCTCCTCTCATGGACGTGAACAT
GGAAGCGGCCTATACCTCCTCACTTCTAGGCTCCATAGCGGGCGTGG
GATGGACCGCAGGGCTTTCAAGCTTCGCCGCAATTCCCTTTGCTCAA
TCTATCTTCTACAGGCTTAATGGCGTTGGAATCACCCAGCAGGTGTT
AAGCGAAAACCAGAAATTGATTGCCAATAAGTTTAACCAAGCTTTG
GGGGCCATGCAGACAGGCTTTACAACCACAAACGAGGCTTTCCATA
AAGTACAGGATGCGGTAAACAATAACGCACAAGCCCTGTCAAAGCT
GGCTTCAGAGCTCTCAAATACATTTGGCGCTATATCCGCGTCTATCG
GCGATATCATACAACGGTTGGACCCACCCGAACAGGACGCACAGAT
TGATCGTTTGATCAACGGGAGGCTTACCACCTTAAACGCTTTTGTGG
CCCAGCAACTGGTGCGGTCTGAGAGCGCCGCCTTGAGCGCTCAGCTG
GCAAAGGATAAAGTGAATGAATGCGTGAAAGCTCAATCAAAGAGAA
GTGGGTTTTGTGGGCAGGGTACTCATATTGTTTCCTTTGTGGTGAAC
GCCCCAAATGGACTCTACTTTATGCATGTTGGATACTACCCGAGCAA
CCACATCGAGGTCGTTTCCGCCTATGGGCTTTGTGACGCAGCAAACC
CTACTAACTGTATCGCGCCAGTTAATGGCTACTTTATTAAAACAAAT
AACACACGCATTGTGGATGAATGGAGTTACACAGGGTCCAGCTTCTA
CGCTCCAGAGCCTATCACCTCTCTGAACACAAAGTATGTGGCACCTC
AGGTCACATATCAGAACATCTCGACAAACCTGCCCCCCCCACTCTTG
GGCAACTCCACAGGGATCGACTTCCAGGACGAGCTTGACGAATTCTT
CAAGAACGTGTCCACCAGTATCCCTAATTTTGGTTCGCTGACCCAAA
TTAACACAACCCTGCTCGATCTGACATATGAAATGCTTTCACTACAG
CAGGTGGTCAAAGCGTTGAACGAGTCGTATATCGACCTGAAAGAGT
TAGGGAATTACACATACTATAACAAATGGCCCTGGTATATTTGGTTA
GGATTCATTGCCGGGCTGGTGGCCCTTGCCTTGTGCGTATTTTTCATC
TTGtgctgctccaatggatcgttacaatgcagaatttgcattTGA
PDI-MERS-H1cCT-DNA(SEQ ID NO:105)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgTATGT
CGATGTGGGTCCCGATAGTGTTAAGTCCGCCTGCATCGAAGTGGACA
TTCAGCAGACCTTCTTCGATAAGACTTGGCCTCGGCCAATTGATGTG
TCCAAGGCCGACGGCATTATCTACCCCCAAGGTCGGACATATTCCAA
CATAACTATCACCTATCAGGGGCTATTCCCTTATCAGGGCGACCATG
GGGACATGTACGTTTACAGCGCTGGTCACGCTACAGGGACGACCCC
CCAGAAGCTCTTCGTGGCGAACTATAGTCAGGACGTGAAACAGTTTG
CCAACGGTTTTGTAGTGCGCATCGGGGCAGCCGCTAACTCCACTGGT
ACTGTTATTATCAGCCCTTCCACGAGTGCCACAATTCGAAAGATCTA
TCCGGCCTTCATGCTAGGATCCTCTGTGGGCAATTTTAGCGACGGTA
AGATGGGTCGGTTCTTCAACCACACGCTTGTGCTGCTTCCCGATGGG
TGCGGTACTTTGCTGAGGGCCTTTTACTGTATCCTAGAGCCCCGATC
CGGCAACCACTGCCCCGCCGGGAACTCGTATACTTCCTTTGCCACTT
ATCATACTCCAGCCACGGATTGTAGCGATGGGAACTACAATAGGAA
CGCCAGTTTGAATTCCTTTAAAGAGTACTTCAACTTGCGGAATTGTA
CCTTCATGTATACATATAACATTACTGAGGACGAAATTCTCGAATGG
TTCGGAATCACTCAAACAGCCCAGGGAGTGCACCTCTTTAGTTCTCG
CTATGTGGACTTATATGGAGGCAATATGTTTCAATTCGCCACCTTAC
CCGTCTACGATACGATCAAGTATTACTCGATCATACCCCACTCCATT
AGGTCCATTCAGAGCGATCGCAAGGCATGGGCCGCATTCTATGTGTA
TAAGCTCCAGCCCCTGACCTTCCTCTTGGATTTCTCCGTGGACGGCTA
CATCAGAAGGGCTATCGATTGCGGGTTCAACGACCTCAGCCAGCTGC
ATTGTTCTTATGAGAGCTTTGACGTGGAAAGCGGAGTTTACTCAGTC
TCTTCCTTTGAGGCTAAACCTTCAGGTAGCGTCGTAGAGCAAGCAGA
GGGTGTGGAGTGCGATTTCTCACCACTGCTCAGCGGAACCCCACCCC
AGGTCTACAACTTTAAGCGGCTCGTGTTCACAAACTGTAACTATAAC
TTGACTAAGTTGCTGTCACTCTTTTCCGTGAATGATTTTACATGCTCC
CAAATCAGCCCAGCCGCTATTGCGTCTAATTGCTATTCCTCATTGATC
CTGGATTACTTCAGTTACCCCCTCTCTATGAAGAGCGATCTCTCGGTT
AGTAGCGCTGGGCCTATTTCCCAGTTTAACTACAAACAATCCTTTTC
CAATCCAACATGCCTGATCTTAGCTACTGTACCCCACAACCTGACTA
CTATTACGAAGCCACTCAAGTACTCATACATTAATAAGTGCAGCCGA
TTCCTCAGTGATGATCGCACCGAAGTGCCGCAGCTTGTAAACGCGAA
CCAGTACTCCCCATGCGTCTCTATTGTGCCTTCTACAGTGTGGGAAG
ACGGCGATTATTATAGAAAGCAGCTGTCGCCACTGGAAGGTGGCGG
GTGGCTAGTTGCCAGTGGGTCCACAGTTGCCATGACCGAGCAACTTC
AGATGGGGTTTGGCATAACAGTGCAGTATGGTACCGATACGAACAG
CGTGTGTCCAAAATTGGAATTTGCTAACGACACCAAGATCGCCTCCC
AGTTGGGAAATTGTGTTGAATATTCCCTGTACGGAGTGTCAGGCCGG
GGGGTGTTCCAAAATTGCACCGCCGTGGGAGTGAGGCAGCAAAGAT
TCGTGTACGACGCATACCAGAATCTAGTCGGATACTATTCTGACGAT
GGAAACTACTACTGTCTGCGCGCTTGCGTCTCAGTGCCCGTGAGTGT
CATATATGATAAGGAGACCAAGACTCACGCTACTCTCTTTGGTTCTG
TCGCGTGCGAACACATTTCCTCTACAATGTCCCAGTATAGTCGCTCC
ACTCGGTCTATGTTAAAGCGCAGAGACAGTACCTACGGCCCTCTACA
GACACCTGTGGGGTGCGTTCTCGGCCTTGTCAATTCTAGCCTGTTTGT
GGAGGATTGTAAGCTGCCCCTTGGTCAAAGCTTATGCGCACTGCCCG
ATACGCCCAGCACACTTACACCAGCTTCAGTGGGGTCCGTCCCCGGG
GAAATGAGATTGGCCTCGATCGCTTTCAACCACCCCATACAGGTGGA
TCAGCTCAACTCGTCATACTTCAAGCTAAGCATCCCTACTAATTTCTC
CTTTGGTGTGACTCAGGAGTACATTCAGACCACAATTCAAAAGGTGA
CCGTTGACTGCAAGCAGTATGTGTGCAACGGGTTCCAGAAATGTGA
ACAGCTGCTCCGGGAGTATGGCCAGTTCTGTTCTAAAATCAACCAGG
CCCTCCACGGAGCAAACCTTAGGCAGGACGATTCTGTCAGAAACCTC
TTTGCCAGCGTCAAGAGTTCTCAGAGTTCCCCTATTATACCTGGCTTC
GGCGGGGATTTCAACCTGACACTACTTGAACCTGTAAGCATATCAAC
CGGAAGTCGCAGTGCCCGTTCCGCCATCGAGGATCTGCTCTTCGACA
AAGTAACTATTGCAGATCCCGGATACATGCAGGGGTATGACGACTG
CATGCAGCAGGGTCCAGCCTCTGCAAGGGATCTGATATGCGCACAG
TATGTCGCTGGGTACAAAGTGTTGCCTCCTCTCATGGACGTGAACAT
GGAAGCGGCCTATACCTCCTCACTTCTAGGCTCCATAGCGGGCGTGG
GATGGACCGCAGGGCTTTCAAGCTTCGCCGCAATTCCCTTTGCTCAA
TCTATCTTCTACAGGCTTAATGGCGTTGGAATCACCCAGCAGGTGTT
AAGCGAAAACCAGAAATTGATTGCCAATAAGTTTAACCAAGCTTTG
GGGGCCATGCAGACAGGCTTTACAACCACAAACGAGGCTTTCCATA
AAGTACAGGATGCGGTAAACAATAACGCACAAGCCCTGTCAAAGCT
GGCTTCAGAGCTCTCAAATACATTTGGCGCTATATCCGCGTCTATCG
GCGATATCATACAACGGTTGGACCCACCCGAACAGGACGCACAGAT
TGATCGTTTGATCAACGGGAGGCTTACCACCTTAAACGCTTTTGTGG
CCCAGCAACTGGTGCGGTCTGAGAGCGCCGCCTTGAGCGCTCAGCTG
GCAAAGGATAAAGTGAATGAATGCGTGAAAGCTCAATCAAAGAGAA
GTGGGTTTTGTGGGCAGGGTACTCATATTGTTTCCTTTGTGGTGAAC
GCCCCAAATGGACTCTACTTTATGCATGTTGGATACTACCCGAGCAA
CCACATCGAGGTCGTTTCCGCCTATGGGCTTTGTGACGCAGCAAACC
CTACTAACTGTATCGCGCCAGTTAATGGCTACTTTATTAAAACAAAT
AACACACGCATTGTGGATGAATGGAGTTACACAGGGTCCAGCTTCTA
CGCTCCAGAGCCTATCACCTCTCTGAACACAAAGTATGTGGCACCTC
AGGTCACATATCAGAACATCTCGACAAACCTGCCCCCCCCACTCTTG
GGCAACTCCACAGGGATCGACTTCCAGGACGAGCTTGACGAATTCTT
CAAGAACGTGTCCACCAGTATCCCTAATTTTGGTTCGCTGACCCAAA
TTAACACAACCCTGCTCGATCTGACATATGAAATGCTTTCACTACAG
CAGGTGGTCAAAGCGTTGAACGAGTCGTATATCGACCTGAAAGAGT
TAGGGAATTACACATACTATAACAAATGGCCCTGGTATATTTGGTTA
GGATTCATTGCCGGGCTGGTGGCCCTTGCCTTGTGCGTATTTTTCATC
TTGagcttctggatgtgctctaatgggtctctacagtgtagaatatgtattTGA
PDI-MERS-wtTMCT-AA(SEQ ID NO:106)
MAKNVAIFGLLFSLLVLVPSQIFAYVDVGPDSVKSACIEVDIQQTFFDKT
WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMYVYSAGHA
TGTTPQKLFVANYSQDVKQFANGFVVRIGAAANSTGTVIISPSTSATIRK
IYPAFMLGSSVGNFSDGKMGRFFNHTLVLLPDGCGTLLRAFYCILEPRS
GNHCPAGNSYTSFATYHTPATDCSDGNYNRNASLNSFKEYFNLRNCTF
MYTYNITEDEILEWFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVY
DTIKYYSIIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAID
CGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGVECDFSP
LLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFTCSQISPAAIASNC
YSSLILDYFSYPLSMKSDLSVSSAGPISQFNYKQSFSNPTCLILATVPHNL
TTITKPLKYSYINKCSRFLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDG
DYYRKQLSPLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVC
PKLEFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYD
AYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFGSVACEH
ISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGLVNSSLFVEDCKLP
LGQSLCALPDTPSTLTPASVGSVPGEMRLASIAFNHPIQVDQLNSSYFKL
SIPTNFSFGVTQEYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCS
KINQALHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS
TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQY
VAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPFAQSIF
YRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTTTNEAFHKVQDA
VNNNAQALSKLASELSNTFGAISASIGDIIQRLDPPEQDAQIDRLINGRLT
TLNAFVAQQLVRSESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIV
SFVVNAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYF
IKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLL
GNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLSLQQVV
KALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVALALCVFFILCCT
GCGTNCMGKLKCNRCCDRYEEYDLEPHKVHVH
PDI-MERS-H5iTMCT-AA(SEQ ID NO:107)
MAKNVAIFGLLFSLLVLVPSQIFAYVDVGPDSVKSACIEVDIQQTFFDKT
WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMYVYSAGHA
TGTTPQKLFVANYSQDVKQFANGFVVRIGAAANSTGTVIISPSTSATIRK
IYPAFMLGSSVGNFSDGKMGRFFNHTLVLLPDGCGTLLRAFYCILEPRS
GNHCPAGNSYTSFATYHTPATDCSDGNYNRNASLNSFKEYFNLRNCTF
MYTYNITEDEILEWFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVY
DTIKYYSIIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAID
CGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGVECDFSP
LLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFTCSQISPAAIASNC
YSSLILDYFSYPLSMKSDLSVSSAGPISQFNYKQSFSNPTCLILATVPHNL
TTITKPLKYSYINKCSRFLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDG
DYYRKQLSPLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVC
PKLEFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYD
AYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFGSVACEH
ISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGLVNSSLFVEDCKLP
LGQSLCALPDTPSTLTPASVGSVPGEMRLASIAFNHPIQVDQLNSSYFKL
SIPTNFSFGVTQEYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCS
KINQALHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS
TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQY
VAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPFAQSIF
YRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTTTNEAFHKVQDA
VNNNAQALSKLASELSNTFGAISASIGDIIQRLDPPEQDAQIDRLINGRLT
TLNAFVAQQLVRSESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIV
SFVVNAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYF
IKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLL
GNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLSLQQVV
KALNESYIDLKELGNYTYYNKWPWYQILSIYSTVASSLALAIMMAGLSL
WMCSNGSLQCRICI
PDI-MERS-H5iCT-AA(SEQ ID NO:108)
MAKNVAIFGLLFSLLVLVPSQIFAYVDVGPDSVKSACIEVDIQQTFFDKT
WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMYVYSAGHA
TGTTPQKLFVANYSQDVKQFANGFVVRIGAAANSTGTVIISPSTSATIRK
IYPAFMLGSSVGNFSDGKMGRFFNHTLVLLPDGCGTLLRAFYCILEPRS
GNHCPAGNSYTSFATYHTPATDCSDGNYNRNASLNSFKEYFNLRNCTF
MYTYNITEDEILEWFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVY
DTIKYYSIIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAID
CGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGVECDFSP
LLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFTCSQISPAAIASNC
YSSLILDYFSYPLSMKSDLSVSSAGPISQFNYKQSFSNPTCLILATVPHNL
TTITKPLKYSYINKCSRFLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDG
DYYRKQLSPLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVC
PKLEFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYD
AYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFGSVACEH
ISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGLVNSSLFVEDCKLP
LGQSLCALPDTPSTLTPASVGSVPGEMRLASIAFNHPIQVDQLNSSYFKL
SIPTNFSFGVTQEYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCS
KINQALHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS
TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQY
VAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPFAQSIF
YRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTTTNEAFHKVQDA
VNNNAQALSKLASELSNTFGAISASIGDIIQRLDPPEQDAQIDRLINGRLT
TLNAFVAQQLVRSESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIV
SFVVNAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYF
IKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLL
GNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLSLQQVV
KALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVALALCVFFILSLW
MCSNGSLQCRICI
PDI-MERS-H5iCT(V4)-AA(SEQ ID NO:109)
MAKNVAIFGLLFSLLVLVPSQIFAYVDVGPDSVKSACIEVDIQQTFFDKT
WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMYVYSAGHA
TGTTPQKLFVANYSQDVKQFANGFVVRIGAAANSTGTVIISPSTSATIRK
IYPAFMLGSSVGNFSDGKMGRFFNHTLVLLPDGCGTLLRAFYCILEPRS
GNHCPAGNSYTSFATYHTPATDCSDGNYNRNASLNSFKEYFNLRNCTF
MYTYNITEDEILEWFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVY
DTIKYYSIIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAID
CGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGVECDFSP
LLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFTCSQISPAAIASNC
YSSLILDYFSYPLSMKSDLSVSSAGPISQFNYKQSFSNPTCLILATVPHNL
TTITKPLKYSYINKCSRFLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDG
DYYRKQLSPLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVC
PKLEFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYD
AYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFGSVACEH
ISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGLVNSSLFVEDCKLP
LGQSLCALPDTPSTLTPASVGSVPGEMRLASIAFNHPIQVDQLNSSYFKL
SIPTNFSFGVTQEYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCS
KINQALHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS
TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQY
VAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPFAQSIF
YRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTTTNEAFHKVQDA
VNNNAQALSKLASELSNTFGAISASIGDIIQRLDPPEQDAQIDRLINGRLT
TLNAFVAQQLVRSESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIV
SFVVNAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYF
IKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLL
GNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLSLQQVV
KALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVALALCVFFILCCSN
GSLQCRICI
PDI-MERS-H1cCT-AA(SEQ ID NO:110)
MAKNVAIFGLLFSLLVLVPSQIFAYVDVGPDSVKSACIEVDIQQTFFDKT
WPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMYVYSAGHA
TGTTPQKLFVANYSQDVKQFANGFVVRIGAAANSTGTVIISPSTSATIRK
IYPAFMLGSSVGNFSDGKMGRFFNHTLVLLPDGCGTLLRAFYCILEPRS
GNHCPAGNSYTSFATYHTPATDCSDGNYNRNASLNSFKEYFNLRNCTF
MYTYNITEDEILEWFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVY
DTIKYYSIIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAID
CGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGVECDFSP
LLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFTCSQISPAAIASNC
YSSLILDYFSYPLSMKSDLSVSSAGPISQFNYKQSFSNPTCLILATVPHNL
TTITKPLKYSYINKCSRFLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDG
DYYRKQLSPLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVC
PKLEFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYD
AYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFGSVACEH
ISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGLVNSSLFVEDCKLP
LGQSLCALPDTPSTLTPASVGSVPGEMRLASIAFNHPIQVDQLNSSYFKL
SIPTNFSFGVTQEYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCS
KINQALHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSIS
TGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQY
VAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPFAQSIF
YRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTTTNEAFHKVQDA
VNNNAQALSKLASELSNTFGAISASIGDIIQRLDPPEQDAQIDRLINGRLT
TLNAFVAQQLVRSESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIV
SFVVNAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYF
IKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLL
GNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLSLQQVV
KALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVALALCVFFILSFW
MCSNGSLQCRICI
Cloning vector 7147 from left to right T-DNA (SEQ ID NO: 111)
tggcaggatatattgtggtgtaaacaaattgacgcttagacaacttaataacacattgcggacgtttttaatgtactg
aattaacgccgaatcccgggctggtatatttatatgttgtcaaataactcaaaaaccataaaagtttaagttagcaa
gtgtgtacatttttacttgaacaaaaatattcacctactactgttataaatcattattaaacattagagtaaagaaatat
ggatgataagaacaagagtagtgatattttgacaacaattttgttgcaacatttgagaaaattttgttgttctctctttt
cattggtcaaaaacaatagagagagaaaaaggaagagggagaataaaaacataatgtgagtatgagagagaa
agttgtacaaaagttgtaccaaaatagttgtacaaatatcattgaggaatttgacaaaagctacacaaataagggtt
aattgctgtaaataaataaggatgacgcattagagagatgtaccattagagaatttttggcaagtcattaaaaaga
aagaataaattatttttaaaattaaaagttgagtcatttgattaaacatgtgattatttaatgaattgatgaaagagttg
gattaaagttgtattagtaattagaatttggtgtcaaatttaatttgacatttgatcttttcctatatattgccccatagag
tcagttaactcatttttatatttcatagatcaaataagagaaataacggtatattaatccctccaaaaaaaaaaaacg
gtatatttactaaaaaatctaagccacgtaggaggataacaggatccccgtaggaggataacatccaatccaacc
aatcacaacaatcctgatgagataacccactttaagcccacgcatctgtggcacatctacattatctaaatcacac
attcttccacacatctgagccacacaaaaaccaatccacatctttatcacccattctataaaaaatcacactttgtga
gtctacactttgattcccttcaaacacatacaaagagaagagactaattaattaattaatcatcttgagagaaaatg
gaacgagctatacaaggaaacgacgctagggaacaagctaacagtgaacgttgggatggaggatcaggagg
taccacttctcccttcaaacttcctgacgaaagtccgagttggactgagtggcggctacataacgatgagacgaa
ttcgaatcaagataatccccttggtttcaaggaaagctggggtttcgggaaagttgtatttaagagatatctcagat
acgacaggacggaagcttcactgcacagagtccttggatcttggacgggagattcggttaactatgcagcatct
cgatttttcggtttcgaccagatcggatgtacctatagtattcggtttcgaggagttagtatcaccgtttctggaggg
tcgcgaactcttcagcatctctgtgagatggcaattcggtctaagcaagaactgctacagcttgccccaatcgaa
gtggaaagtaatgtatcaagaggatgccctgaaggtactcaaaccttcgaaaaagaaagcgagtaagttaaaat
gcttcttcgtctcctatttataatatggtttgttattgttaattttgttcttgtagaagagcttaattaatcgttgttgttatg
aaatactatttgtatgagatgaactggtgtaatgtaattcatttacataagtggagtcagaatcagaatgtttcctcca
taactaactagacatgaagacctgccgcgtacaattgtcttatatttgaacaactaaaattgaacatcttttgccaca
actttataagtggttaatatagctcaaatatatggtcaagttcaatagattaataatggaaatatcagttatcgaaatt
cattaacaatcaacttaacgttattaactactaattttatatcatcccctttgataaatgatagtacaccaattaggaag
gagcatgctcgcctaggagattgtcgtttcccgccttcagtttgcaagctgctctagccgtgtagccaatacgcaa
accgcctctccccgcgcgttgggaattactagcgcgtgtcgacaagcttgcatgccggtcaacatggtggagca
cgacacacttgtctactccaaaaatatcaaagatacagtctcagaagaccaaagggcaattgagacttttcaaca
aagggtaatatccggaaacctcctcggattccattgcccagctatctgtcactttattgtgaagatagtggaaaag
gaaggtggctcctacaaatgccatcattgcgataaaggaaaggccatcgttgaagatgcctctgccgacagtgg
tcccaaagatggacccccacccacgaggagcatcgtggaaaaagaagacgttccaaccacgtcttcaaagca
agtggattgatgtgataacatggtggagcacgacacacttgtctactccaaaaatatcaaagatacagtctcaga
agaccaaagggcaattgagacttttcaacaaagggtaatatccggaaacctcctcggattccattgcccagctat
ctgtcactttattgtgaagatagtggaaaaggaaggtggctcctacaaatgccatcattgcgataaaggaaaggc
catcgttgaagatgcctctgccgacagtggtcccaaagatggacccccacccacgaggagcatcgtggaaaaa
gaagacgttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatgacgcaca
atcccactatccttcgcaagacccttcctctatataaggaagttcatttcatttggagaggcactccatttgaatctat
caaaccaaaacacattgagacgtcacgtactcctcagccaaaacgacacccccatctgtctatccactggcccc
tggatctgctgcccaaactaactccatggtgaccctgggatgcctggtcaagggctatttccctgagccagtgac
agtgacctggaactctggatccctgtccagcggtgtgcacaccttcccagctgtcctgcagtctgacctctacact
ctgagcagctcagtgactgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcccacccgg
ccagcagcaccaaggtggacaagaaaattgtgcccagggattgtggttgtaagccttgcatatgtacagtccca
gaagtatcatctgtcttcatcttccccccaaagcccaaggatgtgctcaccattactctgactcctaaggtcacgtg
tgttgtggtagacatcagcaaggatgatcccgaggtccagttcagctggtttgtagatgatgtggaggtgcacac
agctcagacgcaaccccgggaggagcagttcaacagcactttccgctcagtcagtgaacttcccatcatgcacc
aggactggctcaatggcaaggagacgtccagattttggcgatctattcaactgtcgccagttcattggtactggta
gtctccctgggggcaatcagtttctggatgtgctctaatgggtctctacagtgtagaatatgtatttaaaggccttag
tcgtgtcgtttttcaaataatataatccttttagggttttagttagtttaaattttctgttgctcctgtttagcaggtcgtgc
cttcagcaagcacacaaaaacagagtgtttattttaagttgtttgtttagtgattcaaaaaaaaaatcgttcaaacatt
tggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaattacgttaa
gcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtcccgcaattatacattt
aatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgttactag
atctctagagtctcaagcttggcgcgcccacgtgactagtggcactggccgtcgttttacaacgtcgtgactggg
aaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagag
gcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgctagagcagcttgagcttggatc
agattgtcgtttcccgccttcagtttaaactatcagtgtttgacaggatatattggcgggtaaacctaagagaaaag
agcgttta
Natural SARS-CoV-1S protein wtTM/CT AA P59594 (SEQ ID NO: 112) MFIFLLFLTLTSGSDLDRCTTFDDVQAPNYTQHTSSMRGVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFKDGIYFAATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFFAVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVFKNKDGFLYVYKGYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAFSPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQNPLAELKCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPSVYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQPYRVVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNFNGLTGTGVLTPSSKRFQPFQQFGRDVSDFTDSVRDPKTSEILDISPCSFGGVSVITPGTNASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNNVFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQKSIVAYTMSLGADSSIAYSNNTIAIPTNFSISITTEVMPVSMAKTSVDCNMYICGDSTECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQMYKTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAGFMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT
Natural MERS S protein wtTM/CT AA AFY13307 (SEQ ID NO: 113)
MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKTWPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMYVYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANSTGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHTLVLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPATDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILEWFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSIIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDCGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGVECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFTCSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFNYKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRFLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYDAYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFGSVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGLVNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTTTNEAFHKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVALALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKVHVH
Natural SARS-CoV-1S protein wtTM/CT AA P59594, NO signal peptide (SEQ ID NO: 114)
SDLDRCTTFDDVQAPNYTQHTSSMRGVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFKDGIYFAATEKSNVVRGWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFFAVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVFKNKDGFLYVYKGYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAFSPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQNPLAELKCSVKSFEIDKGIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPSVYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYADSFVVKGDDVRQIAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQPYRVVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNFNGLTGTGVLTPSSKRFQPFQQFGRDVSDFTDSVRDPKTSEILDISPCSFGGVSVITPGTNASSEVAVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNNVFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQKSIVAYTMSLGADSSIAYSNNTIAIPTNFSISITTEVMPVSMAKTSVDCNMYICGDSTECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQMYKTPTLKYFGGFNFSQILPDPLKPTKRSFIEDLLFNKVTLADAGFMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT
Natural MERS S protein wtTM/CT AA AFY13307, NO signal peptide (SEQ ID NO: 115) YVDVGPDSVKSACIEVDIQQTFFDKTWPRPIDVSKADGIIYPQGRTYSNITITYQGLFPYQGDHGDMYVYSAGHATGTTPQKLFVANYSQDVKQFANGFVVRIGAAANSTGTVIISPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHTLVLLPDGCGTLLRAFYCILEPRSGNHCPAGNSYTSFATYHTPATDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITEDEILEWFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSIIPHSIRSIQSDRKAWAAFYVYKLQPLTFLLDFSVDGYIRRAIDCGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQAEGVECDFSPLLSGTPPQVYNFKRLVFTNCNYNLTKLLSLFSVNDFTCSQISPAAIASNCYSSLILDYFSYPLSMKSDLSVSSAGPISQFNYKQSFSNPTCLILATVPHNLTTITKPLKYSYINKCSRFLSDDRTEVPQLVNANQYSPCVSIVPSTVWEDGDYYRKQLSPLEGGGWLVASGSTVAMTEQLQMGFGITVQYGTDTNSVCPKLEFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAVGVRQQRFVYDAYQNLVGYYSDDGNYYCLRACVSVPVSVIYDKETKTHATLFGSVACEHISSTMSQYSRSTRSMLKRRDSTYGPLQTPVGCVLGLVNSSLFVEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLASIAFNHPIQVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKINQALHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAIEDLLFDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAGLSSFAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTTTNEAFHKVQDAVNNNAQALSKLASELSNTFGAISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLAKDKVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNGYFIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAPQVTYQNISTNLPPPLLGNSTGIDFQDELDEFFKNVSTSIPNFGSLTQINTTLLDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWPWYIWLGFIAGLVALALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKVHVH
Modified TMCT region of PDI-SARS-COV-1wtTMCT-AA (SEQ ID NO: 116)
WYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT
Modified TMCT region of PDI-SARS-COV-1H5iTMCT-AA (SEQ ID NO: 117)
WYQILSIYSTVASSLALAIMMAGLSLWMCSNGSLQCRICI
Modified TMCT region of PDI-SARS-COV-1H5iCT-AA (SEQ ID NO: 118)
WYVWLGFIAGLIAIVMVTILLSLWMCSNGSLQCRICI
Modified TMCT region of PDI-SARS-COV-1H5iCT (V4) -AA (SEQ ID NO: 119)
WYVWLGFIAGLIAIVMVTILLCCSNGSLQCRICI
Modified TMCT region of PDI-SARS-COV-1H1cCT-AA (SEQ ID NO: 120)
WYVWLGFIAGLIAIVMVTILLSFWMCSNGSLQCRICI
Modified TMCT region of PDI-MERS-wtTMCT-AA (SEQ ID NO: 121)
WYIWLGFIAGLVALALCVFFILCCTGCGTNCMGKLKCNRCCDRYEEYDLEPHKVHVH
The TMCT region of modified PDI-MERS-H5iTMCT-AA (SEQ ID NO: 122)
WYQILSIYSTVASSLALAIMMAGLSLWMCSNGSLQCRICI
The TMCT region of modified PDI-MERS-H5iCT-AA (SEQ ID NO: 123)
WYIWLGFIAGLVALALCVFFILSLWMCSNGSLQCRICI
The TMCT region of modified PDI-MERS-H5iCT (V4) -AA (SEQ ID NO: 124)
WYIWLGFIAGLVALALCVFFILCCSNGSLQCRICI
Modified TMCT region of PDI-MERS-H1cCT-AA (SEQ ID NO: 125)
WYIWLGFIAGLVALALCVFFILSFWMCSNGSLQCRICI
Modified PDI-S protein+H2 Cal TMCT region (SEQ ID NO: 126)
WYIWLGFIAGLIAIVMVTIMLSFWMCSNGSLQCRICI
Modified PDI-S protein+H2 Minn TMCT region (SEQ ID NO: 127)
WYIWLGFIAGLIAIVMVTIMLMWACQKGNIRCNICI
The TMCT region of modified PDI-S protein +H2HK (SEQ ID NO: 128)
WYIWLGFIAGLIAIVMVTIMLGLWMCSNGSMQCRICI
Modified PDI-S protein+H27 Guangdong TMCT region (SEQ ID NO: 129)
WYIWLGFIAGLIAIVMVTIMLVFICVKNGNMRCTICI
The TMCT region of modified PDI-S protein +H2HK (SEQ ID NO: 130)
WYIWLGFIAGLIAIVMVTIMLLFWAMSNGSCRCNICI
Modified TMCT region of PDI-S protein+B/Wash (SEQ ID NO: 131)
WYIWLGFIAGLIAIVMVTIMLVVYMVSRDNVSCSICL
Consensus sequence of the TM domain of the coronavirus S protein (SEQ ID NO: 132)
WYXWLGFIAGLXAXXX { X } VXXL ({ X } may not be present)
Consensus sequence of the TM domain of the coronavirus S protein (SEQ ID NO: 133)
WY [ I/V ] WLGFIAGL [ V/I ] A [ L/I ] [ A/V ] [ L/M ] { X } V [ F/T ] [ F/I ] XL (wherein { X } may be C or absent)
The TM/CT region of the modified SARS-CoV-1S protein has the intermediate peptide sequence Xn (SEQ ID NO: 134)
WYVWLGFIAGLIAIVMVTIL-(X)n-CSNGSXXCXICI
Modified MERS S protein TM/CT region with intermediate peptide sequence Xn (SEQ ID NO: 135)
WYIWLGFIAGLVALALCVFFIL-(X)n–csngsXXCXICI
IF(AvB+wtCT-OC43).r(SEQ ID NO:136)
ACGACACGACTAAGGCCTTCAGTCGTCATGCGAGGTCTTAATGACAAGC
PDI-OC43-wtTMCT-DNA(SEQ ID NO:137)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgGTGATCGGCGATCTGAATTGTACCCTGGATCCCCGCCTGAAAGGGAGCTTTAACAACCGAGATACAGGACCCCCGTCTATATCCATAGATACAGTGGATGTTACGAACGGGCTCGGCACCTACTATGTGCTAGACCGAGTTTATTTGAACACCACCTTATTCCTCAATGGATACTACCCAACTTCAGGTAGTACTTACAGAAACATGGCGCTGAAGGGTACGGATCTGCTGAGCACCCTATGGTTTAAACCTCCCTTCCTCTCGGACTTTATTAATGGCATCTTCGCTAAGGTGAAAAACACGAAGGTTTTCAAAGATGGAGTGATGTATTC
AGAGTTCCCTGCGATCACCATTGGAAGTACCTTCGTGAATACTTCCT
ATAGCGTGGTGGTTCAACCACGGACAATCAACTCCACCCAGGACGG
CGTCAACAAGCTCCAGGGATTGCTGGAGGTGTCAGTCTGTCAATATA
ACATGTGTGAGTACCCACACACTATCTGTCACCCTAATCTAGGCAAC
CACTTTAAGGAACTGTGGCACTACGATACGGGGGTGGTAAGTTGCTT
ATATAAGAGAAATTTCACCTATGATGTTAATGCAACGTACCTGTACT
TTCACTTCTATCAAGAAGGAGGAACTTTCTACGCATATTTCACAGAT
ACCGGCTTTGTGACGAAATTCTTATTCAACGTTTACCTCGGAATGGC
ATTAAGCCATTATTACGTGATGCCTCTCACTTGCATCAGACGCCCTA
AGGATGGTTTTTCTCTGGAGTACTGGGTCACTCCCCTGACACCACGG
CAGTACCTGCTTGCTTTTAACCAGGACGGTATCATTTTTAATGCCGTC
GATTGTATGAGCGATTTTATGAGCGAGATAAAGTGCAAGACCCAAT
CTATTGCTCCGCCCACGGGGGTGTACGAACTGAATGGTTACACCGTC
CAGCCCGTTGCCGATGTATATAGACGGAAACCAGACCTGCCCAATTG
CAACATCGAAGCTTGGTTAAACGATAAGTCAGTGCCCTCCCCCCTCA
ATTGGGAGAGGAAGACTTTCTCCAACTGTAATTTCAACATGTCAAGC
CTGATGTCTTTCATTCAAGCCGATTCGTTCACTTGTAATAATATAGAT
GCAGCAAAGATCTATGGTATGTGCTTCAGTTCCATCACAATAGATAA
GTTTGCAATACCAAACCGTCGCAAGGTGGACCTTCAGCTCGGCAACC
TGGGCTATCTGCAGTCCAGCAATTATAGAATAGACACCACCGCCACA
TCATGTCAGCTGTACTATAACCTCCCAGCAGCGAACGTCAGTGTTAG
TAGGTTCAATCCTTCTACCTGGAATAAAAGGTTTGGATTCATCGAAG
ATAGTGTGTTCGTACCTCAGCCAACAGGAGTGTTCACCAATCACAGC
GTGGTCTACGCCCAACATTGCTTCAAGGCACCCAAAAATTTCTGCCC
ATGTAGCAGTTGCTCCTGCCCGGGTAAGAACAATGGGATCGGCACCT
GCCCAGCAGGCACCAATTCACTTACATGCGATAATCTGTGTACACTG
GATCCTATTACACTTAAGGCCCCTGATACCTACAAATGCCCCCAGAG
CAAGAGCCTGGTCGGTATCGGAGAACACTGTTCCGGACTTGCAGTA
AAAAGCGACTATTGTGGAAATAACTCTTGCACTTGTCAGCCACAAGC
CTTCCTCGGTTGGTCCGCTGACTCTTGTTTACAAGGGGATAAGTGTA
ACATCTTCGCAAATTTCATCTTACACGATGTGAATAACGGCTTAACA
TGCAGCACAGATCTCCAGAAGGCAAACACAGAGATCGAATTAGGAG
TCTGCGTTAATTACGATCTCTACGGGATCTCTGGCCAGGGCATCTTC
GTGGAGGTTAATGCTACCTACTACAATAGTTGGCAAAATCTGCTCTA
CGATAGCAATGGCAACCTCTATGGATTCAGAGACTATATTACTAACA
GGACGTTCATGATTCACTCGTGCTATTCCGGGCGGGTGTCAGCAGCT
TATCACGCAAATTCTTCAGAGCCAGCTCTGCTATTCCGAAACATAAA
ATGTAATTACGTGTTCAATAATTCACTGACTCGGCAGCTGCAGCCGA
TTAATTACAGCTTCGACAGCTACCTTGGTTGCGTTGTTAACGCCTAC
AACTCCACTGCCATATCAGTTCAGACCTGCGACCTTACTGTGGGCTC
TGGCTATTGTGTCGATTATTCAAAGAACGGGGGGAGCGGGTCCGCA
ATAACAACTGGCTATAGGTTCACCAATTTTGAGCCTTTCACCGTGAA
TAGTGTCAACGATAGCCTGGAGCCTGTCGGAGGTCTTTATGAGATAC
AAATCCCCTCCGAGTTCACAATTGGCAACATGGAAGAGTTCATCCAG
ACGAGTTCCCCAAAGGTGACGATCGATTGCGCGGCTTTCGTCTGCGG
CGACTACGCCGCATGCAAGTTACAACTCGTTGAGTATGGAAGTTTTT
GCGATAATATAAACGCAATTCTGACTGAAGTGAACGAACTGCTGGA
CACCACTCAGTTGCAGGTGGCAAATTCGCTCATGAACGGCGTGACAC
TGTCAACCAAACTGAAGGACGGTGTCAATTTCAATGTGGATGACATT
AACTTCAGCCCCGTACTGGGCTGTTTGGGTAGTGAGTGTTCTAAGGC
TAGCAGCCGCTCCGCCATTGAGGACTTGTTGTTTGATAAAGTTAAGC
TGAGTGACGTTGGATTTGTTGAGGCGTATAATAACTGTACCGGTGGT
GCAGAGATAAGGGATCTGATCTGTGTCCAGAGTTATAAGGGGATTA
AGGTTCTCCCCCCGCTACTCTCGGAGAATCAGATATCAGGATACACC
CTGGCCGCTACCTCAGCCTCGCTGTTTCCCCCTTGGACCGCTGCCGCC
GGTGTCCCATTTTATTTGAATGTGCAGTATCGGATCAACGGTCTGGG
AGTGACAATGGACGTGCTGTCTCAGAACCAGAAACTGATCGCCAAT
GCATTCAACAATGCTCTGCACGCCATCCAGCAAGGGTTTGACGCTAC
AAATTCTGCCCTCGTAAAAATCCAGGCCGTGGTGAATGCTAACGCCG
AAGCCCTTAATAATCTGCTCCAGCAGCTTTCTAACCGCTTTGGAGCT
ATTTCTGCCTCACTGCAGGAAATTCTATCCAGACTGGATCCCCCTGA
GGCAGAAGCCCAAATCGACCGTCTCATAAACGGCAGACTCACTGCT
CTTAACGCCTACGTTAGTCAACAATTGAGCGATTCGACCTTGGTGAA
ATTCAGCGCAGCTCAGGCTATGGAGAAGGTGAACGAGTGCGTGAAG
TCACAGAGCTCCAGAATCAATTTCTGTGGCAATGGGAACCATATCAT
CTCCTTGGTTCAGAATGCTCCCTACGGCCTGTATTTCATCCACTTCAA
CTACGTGCCCACGAAGTACGTTACAGCCAAAGTGTCCCCCGGACTGT
GCATCGCTGGTAACAGGGGCATTGCACCAAAATCCGGCTACTTCGTC
AATGTCAACAACACATGGATGTATACTGGGAGTGGTTATTATTACCC
TGAACCTATAACAGAGAACAATGTAGTAGTCATGTCCACATGCGCC
GTCAATTATACTAAGGCCCCCTATGTTATGCTCAACACTTCAATTCCC
AATCTCCCGGATTTCAAAGAAGAGCTGGATCAGTGGTTTAAGAATCA
GACATCCGTGGCCCCTGACTTAAGCTTGGATTATATCAATGTGACTT
TTTTAGACTTACAGGTCGAGATGAACCGACTCCAGGAAGCTATAAA
AGTACTGAACCACTCCTATATCAATCTGAAAGATATCGGTACATACG
AATATTACGTAAAATGGCCTTGGTATGTGTGGCTACTAATTTGCCTT
GCGGGCGTGGCTATGCTGGTCCTGCTGTTCTTCATTTGCTGCTGTACT
GGGTGCGGTACTTCCTGCTTCAAAAAGTGCGGTGGTTGCTGCGACGA
CTACACTGGGTACCAGGAGCTTGTCATTAAGACCTCGCATGACGACT
GA
PDI-OC43-H5iTMCT-DNA(SEQ ID NO:138)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgGTGAT
CGGCGATCTGAATTGTACCCTGGATCCCCGCCTGAAAGGGAGCTTTA
ACAACCGAGATACAGGACCCCCGTCTATATCCATAGATACAGTGGA
TGTTACGAACGGGCTCGGCACCTACTATGTGCTAGACCGAGTTTATT
TGAACACCACCTTATTCCTCAATGGATACTACCCAACTTCAGGTAGT
ACTTACAGAAACATGGCGCTGAAGGGTACGGATCTGCTGAGCACCC
TATGGTTTAAACCTCCCTTCCTCTCGGACTTTATTAATGGCATCTTCG
CTAAGGTGAAAAACACGAAGGTTTTCAAAGATGGAGTGATGTATTC
AGAGTTCCCTGCGATCACCATTGGAAGTACCTTCGTGAATACTTCCT
ATAGCGTGGTGGTTCAACCACGGACAATCAACTCCACCCAGGACGG
CGTCAACAAGCTCCAGGGATTGCTGGAGGTGTCAGTCTGTCAATATA
ACATGTGTGAGTACCCACACACTATCTGTCACCCTAATCTAGGCAAC
CACTTTAAGGAACTGTGGCACTACGATACGGGGGTGGTAAGTTGCTT
ATATAAGAGAAATTTCACCTATGATGTTAATGCAACGTACCTGTACT
TTCACTTCTATCAAGAAGGAGGAACTTTCTACGCATATTTCACAGAT
ACCGGCTTTGTGACGAAATTCTTATTCAACGTTTACCTCGGAATGGC
ATTAAGCCATTATTACGTGATGCCTCTCACTTGCATCAGACGCCCTA
AGGATGGTTTTTCTCTGGAGTACTGGGTCACTCCCCTGACACCACGG
CAGTACCTGCTTGCTTTTAACCAGGACGGTATCATTTTTAATGCCGTC
GATTGTATGAGCGATTTTATGAGCGAGATAAAGTGCAAGACCCAAT
CTATTGCTCCGCCCACGGGGGTGTACGAACTGAATGGTTACACCGTC
CAGCCCGTTGCCGATGTATATAGACGGAAACCAGACCTGCCCAATTG
CAACATCGAAGCTTGGTTAAACGATAAGTCAGTGCCCTCCCCCCTCA
ATTGGGAGAGGAAGACTTTCTCCAACTGTAATTTCAACATGTCAAGC
CTGATGTCTTTCATTCAAGCCGATTCGTTCACTTGTAATAATATAGAT
GCAGCAAAGATCTATGGTATGTGCTTCAGTTCCATCACAATAGATAA
GTTTGCAATACCAAACCGTCGCAAGGTGGACCTTCAGCTCGGCAACC
TGGGCTATCTGCAGTCCAGCAATTATAGAATAGACACCACCGCCACA
TCATGTCAGCTGTACTATAACCTCCCAGCAGCGAACGTCAGTGTTAG
TAGGTTCAATCCTTCTACCTGGAATAAAAGGTTTGGATTCATCGAAG
ATAGTGTGTTCGTACCTCAGCCAACAGGAGTGTTCACCAATCACAGC
GTGGTCTACGCCCAACATTGCTTCAAGGCACCCAAAAATTTCTGCCC
ATGTAGCAGTTGCTCCTGCCCGGGTAAGAACAATGGGATCGGCACCT
GCCCAGCAGGCACCAATTCACTTACATGCGATAATCTGTGTACACTG
GATCCTATTACACTTAAGGCCCCTGATACCTACAAATGCCCCCAGAG
CAAGAGCCTGGTCGGTATCGGAGAACACTGTTCCGGACTTGCAGTA
AAAAGCGACTATTGTGGAAATAACTCTTGCACTTGTCAGCCACAAGC
CTTCCTCGGTTGGTCCGCTGACTCTTGTTTACAAGGGGATAAGTGTA
ACATCTTCGCAAATTTCATCTTACACGATGTGAATAACGGCTTAACA
TGCAGCACAGATCTCCAGAAGGCAAACACAGAGATCGAATTAGGAG
TCTGCGTTAATTACGATCTCTACGGGATCTCTGGCCAGGGCATCTTC
GTGGAGGTTAATGCTACCTACTACAATAGTTGGCAAAATCTGCTCTA
CGATAGCAATGGCAACCTCTATGGATTCAGAGACTATATTACTAACA
GGACGTTCATGATTCACTCGTGCTATTCCGGGCGGGTGTCAGCAGCT
TATCACGCAAATTCTTCAGAGCCAGCTCTGCTATTCCGAAACATAAA
ATGTAATTACGTGTTCAATAATTCACTGACTCGGCAGCTGCAGCCGA
TTAATTACAGCTTCGACAGCTACCTTGGTTGCGTTGTTAACGCCTAC
AACTCCACTGCCATATCAGTTCAGACCTGCGACCTTACTGTGGGCTC
TGGCTATTGTGTCGATTATTCAAAGAACGGGGGGAGCGGGTCCGCA
ATAACAACTGGCTATAGGTTCACCAATTTTGAGCCTTTCACCGTGAA
TAGTGTCAACGATAGCCTGGAGCCTGTCGGAGGTCTTTATGAGATAC
AAATCCCCTCCGAGTTCACAATTGGCAACATGGAAGAGTTCATCCAG
ACGAGTTCCCCAAAGGTGACGATCGATTGCGCGGCTTTCGTCTGCGG
CGACTACGCCGCATGCAAGTTACAACTCGTTGAGTATGGAAGTTTTT
GCGATAATATAAACGCAATTCTGACTGAAGTGAACGAACTGCTGGA
CACCACTCAGTTGCAGGTGGCAAATTCGCTCATGAACGGCGTGACAC
TGTCAACCAAACTGAAGGACGGTGTCAATTTCAATGTGGATGACATT
AACTTCAGCCCCGTACTGGGCTGTTTGGGTAGTGAGTGTTCTAAGGC
TAGCAGCCGCTCCGCCATTGAGGACTTGTTGTTTGATAAAGTTAAGC
TGAGTGACGTTGGATTTGTTGAGGCGTATAATAACTGTACCGGTGGT
GCAGAGATAAGGGATCTGATCTGTGTCCAGAGTTATAAGGGGATTA
AGGTTCTCCCCCCGCTACTCTCGGAGAATCAGATATCAGGATACACC
CTGGCCGCTACCTCAGCCTCGCTGTTTCCCCCTTGGACCGCTGCCGCC
GGTGTCCCATTTTATTTGAATGTGCAGTATCGGATCAACGGTCTGGG
AGTGACAATGGACGTGCTGTCTCAGAACCAGAAACTGATCGCCAAT
GCATTCAACAATGCTCTGCACGCCATCCAGCAAGGGTTTGACGCTAC
AAATTCTGCCCTCGTAAAAATCCAGGCCGTGGTGAATGCTAACGCCG
AAGCCCTTAATAATCTGCTCCAGCAGCTTTCTAACCGCTTTGGAGCT
ATTTCTGCCTCACTGCAGGAAATTCTATCCAGACTGGATCCCCCTGA
GGCAGAAGCCCAAATCGACCGTCTCATAAACGGCAGACTCACTGCT
CTTAACGCCTACGTTAGTCAACAATTGAGCGATTCGACCTTGGTGAA
ATTCAGCGCAGCTCAGGCTATGGAGAAGGTGAACGAGTGCGTGAAG
TCACAGAGCTCCAGAATCAATTTCTGTGGCAATGGGAACCATATCAT
CTCCTTGGTTCAGAATGCTCCCTACGGCCTGTATTTCATCCACTTCAA
CTACGTGCCCACGAAGTACGTTACAGCCAAAGTGTCCCCCGGACTGT
GCATCGCTGGTAACAGGGGCATTGCACCAAAATCCGGCTACTTCGTC
AATGTCAACAACACATGGATGTATACTGGGAGTGGTTATTATTACCC
TGAACCTATAACAGAGAACAATGTAGTAGTCATGTCCACATGCGCC
GTCAATTATACTAAGGCCCCCTATGTTATGCTCAACACTTCAATTCCC
AATCTCCCGGATTTCAAAGAAGAGCTGGATCAGTGGTTTAAGAATCA
GACATCCGTGGCCCCTGACTTAAGCTTGGATTATATCAATGTGACTT
TTTTAGACTTACAGGTCGAGATGAACCGACTCCAGGAAGCTATAAA
AGTACTGAACCACTCCTATATCAATCTGAAAGATATCGGTACATACG
AATATTACGTAAAATGGCCTTGGTATcaaatactgtcaatttattcaacagtggcgagttc
cctagcactggcaatcatgatggctggtctatctttatggatgtgctccaatggatcgttacaatgcagaatttgcat
tTGA
PDI-OC43-H5iCT-DNA(SEQ ID NO:139)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgGTGAT
CGGCGATCTGAATTGTACCCTGGATCCCCGCCTGAAAGGGAGCTTTA
ACAACCGAGATACAGGACCCCCGTCTATATCCATAGATACAGTGGA
TGTTACGAACGGGCTCGGCACCTACTATGTGCTAGACCGAGTTTATT
TGAACACCACCTTATTCCTCAATGGATACTACCCAACTTCAGGTAGT
ACTTACAGAAACATGGCGCTGAAGGGTACGGATCTGCTGAGCACCC
TATGGTTTAAACCTCCCTTCCTCTCGGACTTTATTAATGGCATCTTCG
CTAAGGTGAAAAACACGAAGGTTTTCAAAGATGGAGTGATGTATTC
AGAGTTCCCTGCGATCACCATTGGAAGTACCTTCGTGAATACTTCCT
ATAGCGTGGTGGTTCAACCACGGACAATCAACTCCACCCAGGACGG
CGTCAACAAGCTCCAGGGATTGCTGGAGGTGTCAGTCTGTCAATATA
ACATGTGTGAGTACCCACACACTATCTGTCACCCTAATCTAGGCAAC
CACTTTAAGGAACTGTGGCACTACGATACGGGGGTGGTAAGTTGCTT
ATATAAGAGAAATTTCACCTATGATGTTAATGCAACGTACCTGTACT
TTCACTTCTATCAAGAAGGAGGAACTTTCTACGCATATTTCACAGAT
ACCGGCTTTGTGACGAAATTCTTATTCAACGTTTACCTCGGAATGGC
ATTAAGCCATTATTACGTGATGCCTCTCACTTGCATCAGACGCCCTA
AGGATGGTTTTTCTCTGGAGTACTGGGTCACTCCCCTGACACCACGG
CAGTACCTGCTTGCTTTTAACCAGGACGGTATCATTTTTAATGCCGTC
GATTGTATGAGCGATTTTATGAGCGAGATAAAGTGCAAGACCCAAT
CTATTGCTCCGCCCACGGGGGTGTACGAACTGAATGGTTACACCGTC
CAGCCCGTTGCCGATGTATATAGACGGAAACCAGACCTGCCCAATTG
CAACATCGAAGCTTGGTTAAACGATAAGTCAGTGCCCTCCCCCCTCA
ATTGGGAGAGGAAGACTTTCTCCAACTGTAATTTCAACATGTCAAGC
CTGATGTCTTTCATTCAAGCCGATTCGTTCACTTGTAATAATATAGAT
GCAGCAAAGATCTATGGTATGTGCTTCAGTTCCATCACAATAGATAA
GTTTGCAATACCAAACCGTCGCAAGGTGGACCTTCAGCTCGGCAACC
TGGGCTATCTGCAGTCCAGCAATTATAGAATAGACACCACCGCCACA
TCATGTCAGCTGTACTATAACCTCCCAGCAGCGAACGTCAGTGTTAG
TAGGTTCAATCCTTCTACCTGGAATAAAAGGTTTGGATTCATCGAAG
ATAGTGTGTTCGTACCTCAGCCAACAGGAGTGTTCACCAATCACAGC
GTGGTCTACGCCCAACATTGCTTCAAGGCACCCAAAAATTTCTGCCC
ATGTAGCAGTTGCTCCTGCCCGGGTAAGAACAATGGGATCGGCACCT
GCCCAGCAGGCACCAATTCACTTACATGCGATAATCTGTGTACACTG
GATCCTATTACACTTAAGGCCCCTGATACCTACAAATGCCCCCAGAG
CAAGAGCCTGGTCGGTATCGGAGAACACTGTTCCGGACTTGCAGTA
AAAAGCGACTATTGTGGAAATAACTCTTGCACTTGTCAGCCACAAGC
CTTCCTCGGTTGGTCCGCTGACTCTTGTTTACAAGGGGATAAGTGTA
ACATCTTCGCAAATTTCATCTTACACGATGTGAATAACGGCTTAACA
TGCAGCACAGATCTCCAGAAGGCAAACACAGAGATCGAATTAGGAG
TCTGCGTTAATTACGATCTCTACGGGATCTCTGGCCAGGGCATCTTC
GTGGAGGTTAATGCTACCTACTACAATAGTTGGCAAAATCTGCTCTA
CGATAGCAATGGCAACCTCTATGGATTCAGAGACTATATTACTAACA
GGACGTTCATGATTCACTCGTGCTATTCCGGGCGGGTGTCAGCAGCT
TATCACGCAAATTCTTCAGAGCCAGCTCTGCTATTCCGAAACATAAA
ATGTAATTACGTGTTCAATAATTCACTGACTCGGCAGCTGCAGCCGA
TTAATTACAGCTTCGACAGCTACCTTGGTTGCGTTGTTAACGCCTAC
AACTCCACTGCCATATCAGTTCAGACCTGCGACCTTACTGTGGGCTC
TGGCTATTGTGTCGATTATTCAAAGAACGGGGGGAGCGGGTCCGCA
ATAACAACTGGCTATAGGTTCACCAATTTTGAGCCTTTCACCGTGAA
TAGTGTCAACGATAGCCTGGAGCCTGTCGGAGGTCTTTATGAGATAC
AAATCCCCTCCGAGTTCACAATTGGCAACATGGAAGAGTTCATCCAG
ACGAGTTCCCCAAAGGTGACGATCGATTGCGCGGCTTTCGTCTGCGG
CGACTACGCCGCATGCAAGTTACAACTCGTTGAGTATGGAAGTTTTT
GCGATAATATAAACGCAATTCTGACTGAAGTGAACGAACTGCTGGA
CACCACTCAGTTGCAGGTGGCAAATTCGCTCATGAACGGCGTGACAC
TGTCAACCAAACTGAAGGACGGTGTCAATTTCAATGTGGATGACATT
AACTTCAGCCCCGTACTGGGCTGTTTGGGTAGTGAGTGTTCTAAGGC
TAGCAGCCGCTCCGCCATTGAGGACTTGTTGTTTGATAAAGTTAAGC
TGAGTGACGTTGGATTTGTTGAGGCGTATAATAACTGTACCGGTGGT
GCAGAGATAAGGGATCTGATCTGTGTCCAGAGTTATAAGGGGATTA
AGGTTCTCCCCCCGCTACTCTCGGAGAATCAGATATCAGGATACACC
CTGGCCGCTACCTCAGCCTCGCTGTTTCCCCCTTGGACCGCTGCCGCC
GGTGTCCCATTTTATTTGAATGTGCAGTATCGGATCAACGGTCTGGG
AGTGACAATGGACGTGCTGTCTCAGAACCAGAAACTGATCGCCAAT
GCATTCAACAATGCTCTGCACGCCATCCAGCAAGGGTTTGACGCTAC
AAATTCTGCCCTCGTAAAAATCCAGGCCGTGGTGAATGCTAACGCCG
AAGCCCTTAATAATCTGCTCCAGCAGCTTTCTAACCGCTTTGGAGCT
ATTTCTGCCTCACTGCAGGAAATTCTATCCAGACTGGATCCCCCTGA
GGCAGAAGCCCAAATCGACCGTCTCATAAACGGCAGACTCACTGCT
CTTAACGCCTACGTTAGTCAACAATTGAGCGATTCGACCTTGGTGAA
ATTCAGCGCAGCTCAGGCTATGGAGAAGGTGAACGAGTGCGTGAAG
TCACAGAGCTCCAGAATCAATTTCTGTGGCAATGGGAACCATATCAT
CTCCTTGGTTCAGAATGCTCCCTACGGCCTGTATTTCATCCACTTCAA
CTACGTGCCCACGAAGTACGTTACAGCCAAAGTGTCCCCCGGACTGT
GCATCGCTGGTAACAGGGGCATTGCACCAAAATCCGGCTACTTCGTC
AATGTCAACAACACATGGATGTATACTGGGAGTGGTTATTATTACCC
TGAACCTATAACAGAGAACAATGTAGTAGTCATGTCCACATGCGCC
GTCAATTATACTAAGGCCCCCTATGTTATGCTCAACACTTCAATTCCC
AATCTCCCGGATTTCAAAGAAGAGCTGGATCAGTGGTTTAAGAATCA
GACATCCGTGGCCCCTGACTTAAGCTTGGATTATATCAATGTGACTT
TTTTAGACTTACAGGTCGAGATGAACCGACTCCAGGAAGCTATAAA
AGTACTGAACCACTCCTATATCAATCTGAAAGATATCGGTACATACG
AATATTACGTAAAATGGCCTTGGTATGTGTGGCTACTAATTTGCCTT
GCGGGCGTGGCTATGCTGGTCCTGCTGTTCTTCATTtctttatggatgtgctccaa
tggatcgttacaatgcagaatttgcattTGA
PDI-OC43-H5iCT(V4)-DNA(SEQ ID NO:140)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgGTGAT
CGGCGATCTGAATTGTACCCTGGATCCCCGCCTGAAAGGGAGCTTTA
ACAACCGAGATACAGGACCCCCGTCTATATCCATAGATACAGTGGA
TGTTACGAACGGGCTCGGCACCTACTATGTGCTAGACCGAGTTTATT
TGAACACCACCTTATTCCTCAATGGATACTACCCAACTTCAGGTAGT
ACTTACAGAAACATGGCGCTGAAGGGTACGGATCTGCTGAGCACCC
TATGGTTTAAACCTCCCTTCCTCTCGGACTTTATTAATGGCATCTTCG
CTAAGGTGAAAAACACGAAGGTTTTCAAAGATGGAGTGATGTATTC
AGAGTTCCCTGCGATCACCATTGGAAGTACCTTCGTGAATACTTCCT
ATAGCGTGGTGGTTCAACCACGGACAATCAACTCCACCCAGGACGG
CGTCAACAAGCTCCAGGGATTGCTGGAGGTGTCAGTCTGTCAATATA
ACATGTGTGAGTACCCACACACTATCTGTCACCCTAATCTAGGCAAC
CACTTTAAGGAACTGTGGCACTACGATACGGGGGTGGTAAGTTGCTT
ATATAAGAGAAATTTCACCTATGATGTTAATGCAACGTACCTGTACT
TTCACTTCTATCAAGAAGGAGGAACTTTCTACGCATATTTCACAGAT
ACCGGCTTTGTGACGAAATTCTTATTCAACGTTTACCTCGGAATGGC
ATTAAGCCATTATTACGTGATGCCTCTCACTTGCATCAGACGCCCTA
AGGATGGTTTTTCTCTGGAGTACTGGGTCACTCCCCTGACACCACGG
CAGTACCTGCTTGCTTTTAACCAGGACGGTATCATTTTTAATGCCGTC
GATTGTATGAGCGATTTTATGAGCGAGATAAAGTGCAAGACCCAAT
CTATTGCTCCGCCCACGGGGGTGTACGAACTGAATGGTTACACCGTC
CAGCCCGTTGCCGATGTATATAGACGGAAACCAGACCTGCCCAATTG
CAACATCGAAGCTTGGTTAAACGATAAGTCAGTGCCCTCCCCCCTCA
ATTGGGAGAGGAAGACTTTCTCCAACTGTAATTTCAACATGTCAAGC
CTGATGTCTTTCATTCAAGCCGATTCGTTCACTTGTAATAATATAGAT
GCAGCAAAGATCTATGGTATGTGCTTCAGTTCCATCACAATAGATAA
GTTTGCAATACCAAACCGTCGCAAGGTGGACCTTCAGCTCGGCAACC
TGGGCTATCTGCAGTCCAGCAATTATAGAATAGACACCACCGCCACA
TCATGTCAGCTGTACTATAACCTCCCAGCAGCGAACGTCAGTGTTAG
TAGGTTCAATCCTTCTACCTGGAATAAAAGGTTTGGATTCATCGAAG
ATAGTGTGTTCGTACCTCAGCCAACAGGAGTGTTCACCAATCACAGC
GTGGTCTACGCCCAACATTGCTTCAAGGCACCCAAAAATTTCTGCCC
ATGTAGCAGTTGCTCCTGCCCGGGTAAGAACAATGGGATCGGCACCT
GCCCAGCAGGCACCAATTCACTTACATGCGATAATCTGTGTACACTG
GATCCTATTACACTTAAGGCCCCTGATACCTACAAATGCCCCCAGAG
CAAGAGCCTGGTCGGTATCGGAGAACACTGTTCCGGACTTGCAGTA
AAAAGCGACTATTGTGGAAATAACTCTTGCACTTGTCAGCCACAAGC
CTTCCTCGGTTGGTCCGCTGACTCTTGTTTACAAGGGGATAAGTGTA
ACATCTTCGCAAATTTCATCTTACACGATGTGAATAACGGCTTAACA
TGCAGCACAGATCTCCAGAAGGCAAACACAGAGATCGAATTAGGAG
TCTGCGTTAATTACGATCTCTACGGGATCTCTGGCCAGGGCATCTTC
GTGGAGGTTAATGCTACCTACTACAATAGTTGGCAAAATCTGCTCTA
CGATAGCAATGGCAACCTCTATGGATTCAGAGACTATATTACTAACA
GGACGTTCATGATTCACTCGTGCTATTCCGGGCGGGTGTCAGCAGCT
TATCACGCAAATTCTTCAGAGCCAGCTCTGCTATTCCGAAACATAAA
ATGTAATTACGTGTTCAATAATTCACTGACTCGGCAGCTGCAGCCGA
TTAATTACAGCTTCGACAGCTACCTTGGTTGCGTTGTTAACGCCTAC
AACTCCACTGCCATATCAGTTCAGACCTGCGACCTTACTGTGGGCTC
TGGCTATTGTGTCGATTATTCAAAGAACGGGGGGAGCGGGTCCGCA
ATAACAACTGGCTATAGGTTCACCAATTTTGAGCCTTTCACCGTGAA
TAGTGTCAACGATAGCCTGGAGCCTGTCGGAGGTCTTTATGAGATAC
AAATCCCCTCCGAGTTCACAATTGGCAACATGGAAGAGTTCATCCAG
ACGAGTTCCCCAAAGGTGACGATCGATTGCGCGGCTTTCGTCTGCGG
CGACTACGCCGCATGCAAGTTACAACTCGTTGAGTATGGAAGTTTTT
GCGATAATATAAACGCAATTCTGACTGAAGTGAACGAACTGCTGGA
CACCACTCAGTTGCAGGTGGCAAATTCGCTCATGAACGGCGTGACAC
TGTCAACCAAACTGAAGGACGGTGTCAATTTCAATGTGGATGACATT
AACTTCAGCCCCGTACTGGGCTGTTTGGGTAGTGAGTGTTCTAAGGC
TAGCAGCCGCTCCGCCATTGAGGACTTGTTGTTTGATAAAGTTAAGC
TGAGTGACGTTGGATTTGTTGAGGCGTATAATAACTGTACCGGTGGT
GCAGAGATAAGGGATCTGATCTGTGTCCAGAGTTATAAGGGGATTA
AGGTTCTCCCCCCGCTACTCTCGGAGAATCAGATATCAGGATACACC
CTGGCCGCTACCTCAGCCTCGCTGTTTCCCCCTTGGACCGCTGCCGCC
GGTGTCCCATTTTATTTGAATGTGCAGTATCGGATCAACGGTCTGGG
AGTGACAATGGACGTGCTGTCTCAGAACCAGAAACTGATCGCCAAT
GCATTCAACAATGCTCTGCACGCCATCCAGCAAGGGTTTGACGCTAC
AAATTCTGCCCTCGTAAAAATCCAGGCCGTGGTGAATGCTAACGCCG
AAGCCCTTAATAATCTGCTCCAGCAGCTTTCTAACCGCTTTGGAGCT
ATTTCTGCCTCACTGCAGGAAATTCTATCCAGACTGGATCCCCCTGA
GGCAGAAGCCCAAATCGACCGTCTCATAAACGGCAGACTCACTGCT
CTTAACGCCTACGTTAGTCAACAATTGAGCGATTCGACCTTGGTGAA
ATTCAGCGCAGCTCAGGCTATGGAGAAGGTGAACGAGTGCGTGAAG
TCACAGAGCTCCAGAATCAATTTCTGTGGCAATGGGAACCATATCAT
CTCCTTGGTTCAGAATGCTCCCTACGGCCTGTATTTCATCCACTTCAA
CTACGTGCCCACGAAGTACGTTACAGCCAAAGTGTCCCCCGGACTGT
GCATCGCTGGTAACAGGGGCATTGCACCAAAATCCGGCTACTTCGTC
AATGTCAACAACACATGGATGTATACTGGGAGTGGTTATTATTACCC
TGAACCTATAACAGAGAACAATGTAGTAGTCATGTCCACATGCGCC
GTCAATTATACTAAGGCCCCCTATGTTATGCTCAACACTTCAATTCCC
AATCTCCCGGATTTCAAAGAAGAGCTGGATCAGTGGTTTAAGAATCA
GACATCCGTGGCCCCTGACTTAAGCTTGGATTATATCAATGTGACTT
TTTTAGACTTACAGGTCGAGATGAACCGACTCCAGGAAGCTATAAA
AGTACTGAACCACTCCTATATCAATCTGAAAGATATCGGTACATACG
AATATTACGTAAAATGGCCTTGGTATGTGTGGCTACTAATTTGCCTT
GCGGGCGTGGCTATGCTGGTCCTGCTGTTCTTCATTtgctgctccaatggatcgt
tacaatgcagaatttgcattTGA
PDI-OC43-H1cCT-DNA(SEQ ID NO:141)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgGTGAT
CGGCGATCTGAATTGTACCCTGGATCCCCGCCTGAAAGGGAGCTTTA
ACAACCGAGATACAGGACCCCCGTCTATATCCATAGATACAGTGGA
TGTTACGAACGGGCTCGGCACCTACTATGTGCTAGACCGAGTTTATT
TGAACACCACCTTATTCCTCAATGGATACTACCCAACTTCAGGTAGT
ACTTACAGAAACATGGCGCTGAAGGGTACGGATCTGCTGAGCACCC
TATGGTTTAAACCTCCCTTCCTCTCGGACTTTATTAATGGCATCTTCG
CTAAGGTGAAAAACACGAAGGTTTTCAAAGATGGAGTGATGTATTC
AGAGTTCCCTGCGATCACCATTGGAAGTACCTTCGTGAATACTTCCT
ATAGCGTGGTGGTTCAACCACGGACAATCAACTCCACCCAGGACGG
CGTCAACAAGCTCCAGGGATTGCTGGAGGTGTCAGTCTGTCAATATA
ACATGTGTGAGTACCCACACACTATCTGTCACCCTAATCTAGGCAAC
CACTTTAAGGAACTGTGGCACTACGATACGGGGGTGGTAAGTTGCTT
ATATAAGAGAAATTTCACCTATGATGTTAATGCAACGTACCTGTACT
TTCACTTCTATCAAGAAGGAGGAACTTTCTACGCATATTTCACAGAT
ACCGGCTTTGTGACGAAATTCTTATTCAACGTTTACCTCGGAATGGC
ATTAAGCCATTATTACGTGATGCCTCTCACTTGCATCAGACGCCCTA
AGGATGGTTTTTCTCTGGAGTACTGGGTCACTCCCCTGACACCACGG
CAGTACCTGCTTGCTTTTAACCAGGACGGTATCATTTTTAATGCCGTC
GATTGTATGAGCGATTTTATGAGCGAGATAAAGTGCAAGACCCAAT
CTATTGCTCCGCCCACGGGGGTGTACGAACTGAATGGTTACACCGTC
CAGCCCGTTGCCGATGTATATAGACGGAAACCAGACCTGCCCAATTG
CAACATCGAAGCTTGGTTAAACGATAAGTCAGTGCCCTCCCCCCTCA
ATTGGGAGAGGAAGACTTTCTCCAACTGTAATTTCAACATGTCAAGC
CTGATGTCTTTCATTCAAGCCGATTCGTTCACTTGTAATAATATAGAT
GCAGCAAAGATCTATGGTATGTGCTTCAGTTCCATCACAATAGATAA
GTTTGCAATACCAAACCGTCGCAAGGTGGACCTTCAGCTCGGCAACC
TGGGCTATCTGCAGTCCAGCAATTATAGAATAGACACCACCGCCACA
TCATGTCAGCTGTACTATAACCTCCCAGCAGCGAACGTCAGTGTTAG
TAGGTTCAATCCTTCTACCTGGAATAAAAGGTTTGGATTCATCGAAG
ATAGTGTGTTCGTACCTCAGCCAACAGGAGTGTTCACCAATCACAGC
GTGGTCTACGCCCAACATTGCTTCAAGGCACCCAAAAATTTCTGCCC
ATGTAGCAGTTGCTCCTGCCCGGGTAAGAACAATGGGATCGGCACCT
GCCCAGCAGGCACCAATTCACTTACATGCGATAATCTGTGTACACTG
GATCCTATTACACTTAAGGCCCCTGATACCTACAAATGCCCCCAGAG
CAAGAGCCTGGTCGGTATCGGAGAACACTGTTCCGGACTTGCAGTA
AAAAGCGACTATTGTGGAAATAACTCTTGCACTTGTCAGCCACAAGC
CTTCCTCGGTTGGTCCGCTGACTCTTGTTTACAAGGGGATAAGTGTA
ACATCTTCGCAAATTTCATCTTACACGATGTGAATAACGGCTTAACA
TGCAGCACAGATCTCCAGAAGGCAAACACAGAGATCGAATTAGGAG
TCTGCGTTAATTACGATCTCTACGGGATCTCTGGCCAGGGCATCTTC
GTGGAGGTTAATGCTACCTACTACAATAGTTGGCAAAATCTGCTCTA
CGATAGCAATGGCAACCTCTATGGATTCAGAGACTATATTACTAACA
GGACGTTCATGATTCACTCGTGCTATTCCGGGCGGGTGTCAGCAGCT
TATCACGCAAATTCTTCAGAGCCAGCTCTGCTATTCCGAAACATAAA
ATGTAATTACGTGTTCAATAATTCACTGACTCGGCAGCTGCAGCCGA
TTAATTACAGCTTCGACAGCTACCTTGGTTGCGTTGTTAACGCCTAC
AACTCCACTGCCATATCAGTTCAGACCTGCGACCTTACTGTGGGCTC
TGGCTATTGTGTCGATTATTCAAAGAACGGGGGGAGCGGGTCCGCA
ATAACAACTGGCTATAGGTTCACCAATTTTGAGCCTTTCACCGTGAA
TAGTGTCAACGATAGCCTGGAGCCTGTCGGAGGTCTTTATGAGATAC
AAATCCCCTCCGAGTTCACAATTGGCAACATGGAAGAGTTCATCCAG
ACGAGTTCCCCAAAGGTGACGATCGATTGCGCGGCTTTCGTCTGCGG
CGACTACGCCGCATGCAAGTTACAACTCGTTGAGTATGGAAGTTTTT
GCGATAATATAAACGCAATTCTGACTGAAGTGAACGAACTGCTGGA
CACCACTCAGTTGCAGGTGGCAAATTCGCTCATGAACGGCGTGACAC
TGTCAACCAAACTGAAGGACGGTGTCAATTTCAATGTGGATGACATT
AACTTCAGCCCCGTACTGGGCTGTTTGGGTAGTGAGTGTTCTAAGGC
TAGCAGCCGCTCCGCCATTGAGGACTTGTTGTTTGATAAAGTTAAGC
TGAGTGACGTTGGATTTGTTGAGGCGTATAATAACTGTACCGGTGGT
GCAGAGATAAGGGATCTGATCTGTGTCCAGAGTTATAAGGGGATTA
AGGTTCTCCCCCCGCTACTCTCGGAGAATCAGATATCAGGATACACC
CTGGCCGCTACCTCAGCCTCGCTGTTTCCCCCTTGGACCGCTGCCGCC
GGTGTCCCATTTTATTTGAATGTGCAGTATCGGATCAACGGTCTGGG
AGTGACAATGGACGTGCTGTCTCAGAACCAGAAACTGATCGCCAAT
GCATTCAACAATGCTCTGCACGCCATCCAGCAAGGGTTTGACGCTAC
AAATTCTGCCCTCGTAAAAATCCAGGCCGTGGTGAATGCTAACGCCG
AAGCCCTTAATAATCTGCTCCAGCAGCTTTCTAACCGCTTTGGAGCT
ATTTCTGCCTCACTGCAGGAAATTCTATCCAGACTGGATCCCCCTGA
GGCAGAAGCCCAAATCGACCGTCTCATAAACGGCAGACTCACTGCT
CTTAACGCCTACGTTAGTCAACAATTGAGCGATTCGACCTTGGTGAA
ATTCAGCGCAGCTCAGGCTATGGAGAAGGTGAACGAGTGCGTGAAG
TCACAGAGCTCCAGAATCAATTTCTGTGGCAATGGGAACCATATCAT
CTCCTTGGTTCAGAATGCTCCCTACGGCCTGTATTTCATCCACTTCAA
CTACGTGCCCACGAAGTACGTTACAGCCAAAGTGTCCCCCGGACTGT
GCATCGCTGGTAACAGGGGCATTGCACCAAAATCCGGCTACTTCGTC
AATGTCAACAACACATGGATGTATACTGGGAGTGGTTATTATTACCC
TGAACCTATAACAGAGAACAATGTAGTAGTCATGTCCACATGCGCC
GTCAATTATACTAAGGCCCCCTATGTTATGCTCAACACTTCAATTCCC
AATCTCCCGGATTTCAAAGAAGAGCTGGATCAGTGGTTTAAGAATCA
GACATCCGTGGCCCCTGACTTAAGCTTGGATTATATCAATGTGACTT
TTTTAGACTTACAGGTCGAGATGAACCGACTCCAGGAAGCTATAAA
AGTACTGAACCACTCCTATATCAATCTGAAAGATATCGGTACATACG
AATATTACGTAAAATGGCCTTGGTATGTGTGGCTACTAATTTGCCTT
GCGGGCGTGGCTATGCTGGTCCTGCTGTTCTTCATTagcttctggatgtgctcta
atgggtctctacagtgtagaatatgtattTGA
PDI-OC43-wtTMCT-AA(SEQ ID NO:142)
MAKNVAIFGLLFSLLVLVPSQIFAVIGDLNCTLDPRLKGSFNNRDTGPPS
ISIDTVDVTNGLGTYYVLDRVYLNTTLFLNGYYPTSGSTYRNMALKGT
DLLSTLWFKPPFLSDFINGIFAKVKNTKVFKDGVMYSEFPAITIGSTFVN
TSYSVVVQPRTINSTQDGVNKLQGLLEVSVCQYNMCEYPHTICHPNLG
NHFKELWHYDTGVVSCLYKRNFTYDVNATYLYFHFYQEGGTFYAYFT
DTGFVTKFLFNVYLGMALSHYYVMPLTCIRRPKDGFSLEYWVTPLTPR
QYLLAFNQDGIIFNAVDCMSDFMSEIKCKTQSIAPPTGVYELNGYTVQP
VADVYRRKPDLPNCNIEAWLNDKSVPSPLNWERKTFSNCNFNMSSLMS
FIQADSFTCNNIDAAKIYGMCFSSITIDKFAIPNRRKVDLQLGNLGYLQSS
NYRIDTTATSCQLYYNLPAANVSVSRFNPSTWNKRFGFIEDSVFVPQPT
GVFTNHSVVYAQHCFKAPKNFCPCSSCSCPGKNNGIGTCPAGTNSLTCD
NLCTLDPITLKAPDTYKCPQSKSLVGIGEHCSGLAVKSDYCGNNSCTCQ
PQAFLGWSADSCLQGDKCNIFANFILHDVNNGLTCSTDLQKANTEIELG
VCVNYDLYGISGQGIFVEVNATYYNSWQNLLYDSNGNLYGFRDYITNR
TFMIHSCYSGRVSAAYHANSSEPALLFRNIKCNYVFNNSLTRQLQPINYS
FDSYLGCVVNAYNSTAISVQTCDLTVGSGYCVDYSKNGGSGSAITTGY
RFTNFEPFTVNSVNDSLEPVGGLYEIQIPSEFTIGNMEEFIQTSSPKVTIDC
AAFVCGDYAACKLQLVEYGSFCDNINAILTEVNELLDTTQLQVANSLM
NGVTLSTKLKDGVNFNVDDINFSPVLGCLGSECSKASSRSAIEDLLFDK
VKLSDVGFVEAYNNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTL
AATSASLFPPWTAAAGVPFYLNVQYRINGLGVTMDVLSQNQKLIANAF
NNALHAIQQGFDATNSALVKIQAVVNANAEALNNLLQQLSNRFGAISA
SLQEILSRLDPPEAEAQIDRLINGRLTALNAYVSQQLSDSTLVKFSAAQA
MEKVNECVKSQSSRINFCGNGNHIISLVQNAPYGLYFIHFNYVPTKYVT
AKVSPGLCIAGNRGIAPKSGYFVNVNNTWMYTGSGYYYPEPITENNVV
VMSTCAVNYTKAPYVMLNTSIPNLPDFKEELDQWFKNQTSVAPDLSLD
YINVTFLDLQVEMNRLQEAIKVLNHSYINLKDIGTYEYYVKWPWYVWL
LICLAGVAMLVLLFFICCCTGCGTSCFKKCGGCCDDYTGYQELVIKTSH
DD
PDI-OC43-H5iTMCT-AA(SEQ ID NO:143)
MAKNVAIFGLLFSLLVLVPSQIFAVIGDLNCTLDPRLKGSFNNRDTGPPS
ISIDTVDVTNGLGTYYVLDRVYLNTTLFLNGYYPTSGSTYRNMALKGT
DLLSTLWFKPPFLSDFINGIFAKVKNTKVFKDGVMYSEFPAITIGSTFVN
TSYSVVVQPRTINSTQDGVNKLQGLLEVSVCQYNMCEYPHTICHPNLG
NHFKELWHYDTGVVSCLYKRNFTYDVNATYLYFHFYQEGGTFYAYFT
DTGFVTKFLFNVYLGMALSHYYVMPLTCIRRPKDGFSLEYWVTPLTPR
QYLLAFNQDGIIFNAVDCMSDFMSEIKCKTQSIAPPTGVYELNGYTVQP
VADVYRRKPDLPNCNIEAWLNDKSVPSPLNWERKTFSNCNFNMSSLMS
FIQADSFTCNNIDAAKIYGMCFSSITIDKFAIPNRRKVDLQLGNLGYLQSS
NYRIDTTATSCQLYYNLPAANVSVSRFNPSTWNKRFGFIEDSVFVPQPT
GVFTNHSVVYAQHCFKAPKNFCPCSSCSCPGKNNGIGTCPAGTNSLTCD
NLCTLDPITLKAPDTYKCPQSKSLVGIGEHCSGLAVKSDYCGNNSCTCQ
PQAFLGWSADSCLQGDKCNIFANFILHDVNNGLTCSTDLQKANTEIELG
VCVNYDLYGISGQGIFVEVNATYYNSWQNLLYDSNGNLYGFRDYITNR
TFMIHSCYSGRVSAAYHANSSEPALLFRNIKCNYVFNNSLTRQLQPINYS
FDSYLGCVVNAYNSTAISVQTCDLTVGSGYCVDYSKNGGSGSAITTGY
RFTNFEPFTVNSVNDSLEPVGGLYEIQIPSEFTIGNMEEFIQTSSPKVTIDC
AAFVCGDYAACKLQLVEYGSFCDNINAILTEVNELLDTTQLQVANSLM
NGVTLSTKLKDGVNFNVDDINFSPVLGCLGSECSKASSRSAIEDLLFDK
VKLSDVGFVEAYNNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTL
AATSASLFPPWTAAAGVPFYLNVQYRINGLGVTMDVLSQNQKLIANAF
NNALHAIQQGFDATNSALVKIQAVVNANAEALNNLLQQLSNRFGAISA
SLQEILSRLDPPEAEAQIDRLINGRLTALNAYVSQQLSDSTLVKFSAAQA
MEKVNECVKSQSSRINFCGNGNHIISLVQNAPYGLYFIHFNYVPTKYVT
AKVSPGLCIAGNRGIAPKSGYFVNVNNTWMYTGSGYYYPEPITENNVV
VMSTCAVNYTKAPYVMLNTSIPNLPDFKEELDQWFKNQTSVAPDLSLD
YINVTFLDLQVEMNRLQEAIKVLNHSYINLKDIGTYEYYVKWPWYQILS
IYSTVASSLALAIMMAGLSLWMCSNGSLQCRICI
PDI-OC43-H5iCT-AA(SEQ ID NO:144)
MAKNVAIFGLLFSLLVLVPSQIFAVIGDLNCTLDPRLKGSFNNRDTGPPS
ISIDTVDVTNGLGTYYVLDRVYLNTTLFLNGYYPTSGSTYRNMALKGT
DLLSTLWFKPPFLSDFINGIFAKVKNTKVFKDGVMYSEFPAITIGSTFVN
TSYSVVVQPRTINSTQDGVNKLQGLLEVSVCQYNMCEYPHTICHPNLG
NHFKELWHYDTGVVSCLYKRNFTYDVNATYLYFHFYQEGGTFYAYFT
DTGFVTKFLFNVYLGMALSHYYVMPLTCIRRPKDGFSLEYWVTPLTPR
QYLLAFNQDGIIFNAVDCMSDFMSEIKCKTQSIAPPTGVYELNGYTVQP
VADVYRRKPDLPNCNIEAWLNDKSVPSPLNWERKTFSNCNFNMSSLMS
FIQADSFTCNNIDAAKIYGMCFSSITIDKFAIPNRRKVDLQLGNLGYLQSS
NYRIDTTATSCQLYYNLPAANVSVSRFNPSTWNKRFGFIEDSVFVPQPT
GVFTNHSVVYAQHCFKAPKNFCPCSSCSCPGKNNGIGTCPAGTNSLTCD
NLCTLDPITLKAPDTYKCPQSKSLVGIGEHCSGLAVKSDYCGNNSCTCQ
PQAFLGWSADSCLQGDKCNIFANFILHDVNNGLTCSTDLQKANTEIELG
VCVNYDLYGISGQGIFVEVNATYYNSWQNLLYDSNGNLYGFRDYITNR
TFMIHSCYSGRVSAAYHANSSEPALLFRNIKCNYVFNNSLTRQLQPINYS
FDSYLGCVVNAYNSTAISVQTCDLTVGSGYCVDYSKNGGSGSAITTGY
RFTNFEPFTVNSVNDSLEPVGGLYEIQIPSEFTIGNMEEFIQTSSPKVTIDC
AAFVCGDYAACKLQLVEYGSFCDNINAILTEVNELLDTTQLQVANSLM
NGVTLSTKLKDGVNFNVDDINFSPVLGCLGSECSKASSRSAIEDLLFDK
VKLSDVGFVEAYNNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTL
AATSASLFPPWTAAAGVPFYLNVQYRINGLGVTMDVLSQNQKLIANAF
NNALHAIQQGFDATNSALVKIQAVVNANAEALNNLLQQLSNRFGAISA
SLQEILSRLDPPEAEAQIDRLINGRLTALNAYVSQQLSDSTLVKFSAAQA
MEKVNECVKSQSSRINFCGNGNHIISLVQNAPYGLYFIHFNYVPTKYVT
AKVSPGLCIAGNRGIAPKSGYFVNVNNTWMYTGSGYYYPEPITENNVV
VMSTCAVNYTKAPYVMLNTSIPNLPDFKEELDQWFKNQTSVAPDLSLD
YINVTFLDLQVEMNRLQEAIKVLNHSYINLKDIGTYEYYVKWPWYVWL
LICLAGVAMLVLLFFISLWMCSNGSLQCRICI
PDI-OC43-H5iCT(V4)-AA(SEQ ID NO:145)
MAKNVAIFGLLFSLLVLVPSQIFAVIGDLNCTLDPRLKGSFNNRDTGPPS
ISIDTVDVTNGLGTYYVLDRVYLNTTLFLNGYYPTSGSTYRNMALKGT
DLLSTLWFKPPFLSDFINGIFAKVKNTKVFKDGVMYSEFPAITIGSTFVN
TSYSVVVQPRTINSTQDGVNKLQGLLEVSVCQYNMCEYPHTICHPNLG
NHFKELWHYDTGVVSCLYKRNFTYDVNATYLYFHFYQEGGTFYAYFT
DTGFVTKFLFNVYLGMALSHYYVMPLTCIRRPKDGFSLEYWVTPLTPR
QYLLAFNQDGIIFNAVDCMSDFMSEIKCKTQSIAPPTGVYELNGYTVQP
VADVYRRKPDLPNCNIEAWLNDKSVPSPLNWERKTFSNCNFNMSSLMS
FIQADSFTCNNIDAAKIYGMCFSSITIDKFAIPNRRKVDLQLGNLGYLQSS
NYRIDTTATSCQLYYNLPAANVSVSRFNPSTWNKRFGFIEDSVFVPQPT
GVFTNHSVVYAQHCFKAPKNFCPCSSCSCPGKNNGIGTCPAGTNSLTCD
NLCTLDPITLKAPDTYKCPQSKSLVGIGEHCSGLAVKSDYCGNNSCTCQ
PQAFLGWSADSCLQGDKCNIFANFILHDVNNGLTCSTDLQKANTEIELG
VCVNYDLYGISGQGIFVEVNATYYNSWQNLLYDSNGNLYGFRDYITNR
TFMIHSCYSGRVSAAYHANSSEPALLFRNIKCNYVFNNSLTRQLQPINYS
FDSYLGCVVNAYNSTAISVQTCDLTVGSGYCVDYSKNGGSGSAITTGY
RFTNFEPFTVNSVNDSLEPVGGLYEIQIPSEFTIGNMEEFIQTSSPKVTIDC
AAFVCGDYAACKLQLVEYGSFCDNINAILTEVNELLDTTQLQVANSLM
NGVTLSTKLKDGVNFNVDDINFSPVLGCLGSECSKASSRSAIEDLLFDK
VKLSDVGFVEAYNNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTL
AATSASLFPPWTAAAGVPFYLNVQYRINGLGVTMDVLSQNQKLIANAF
NNALHAIQQGFDATNSALVKIQAVVNANAEALNNLLQQLSNRFGAISA
SLQEILSRLDPPEAEAQIDRLINGRLTALNAYVSQQLSDSTLVKFSAAQA
MEKVNECVKSQSSRINFCGNGNHIISLVQNAPYGLYFIHFNYVPTKYVT
AKVSPGLCIAGNRGIAPKSGYFVNVNNTWMYTGSGYYYPEPITENNVV
VMSTCAVNYTKAPYVMLNTSIPNLPDFKEELDQWFKNQTSVAPDLSLD
YINVTFLDLQVEMNRLQEAIKVLNHSYINLKDIGTYEYYVKWPWYVWL
LICLAGVAMLVLLFFICCSNGSLQCRICI
PDI-OC43-H1cCT-AA(SEQ ID NO:146)
MAKNVAIFGLLFSLLVLVPSQIFAVIGDLNCTLDPRLKGSFNNRDTGPPS
ISIDTVDVTNGLGTYYVLDRVYLNTTLFLNGYYPTSGSTYRNMALKGT
DLLSTLWFKPPFLSDFINGIFAKVKNTKVFKDGVMYSEFPAITIGSTFVN
TSYSVVVQPRTINSTQDGVNKLQGLLEVSVCQYNMCEYPHTICHPNLG
NHFKELWHYDTGVVSCLYKRNFTYDVNATYLYFHFYQEGGTFYAYFT
DTGFVTKFLFNVYLGMALSHYYVMPLTCIRRPKDGFSLEYWVTPLTPR
QYLLAFNQDGIIFNAVDCMSDFMSEIKCKTQSIAPPTGVYELNGYTVQP
VADVYRRKPDLPNCNIEAWLNDKSVPSPLNWERKTFSNCNFNMSSLMS
FIQADSFTCNNIDAAKIYGMCFSSITIDKFAIPNRRKVDLQLGNLGYLQSS
NYRIDTTATSCQLYYNLPAANVSVSRFNPSTWNKRFGFIEDSVFVPQPT
GVFTNHSVVYAQHCFKAPKNFCPCSSCSCPGKNNGIGTCPAGTNSLTCD
NLCTLDPITLKAPDTYKCPQSKSLVGIGEHCSGLAVKSDYCGNNSCTCQ
PQAFLGWSADSCLQGDKCNIFANFILHDVNNGLTCSTDLQKANTEIELG
VCVNYDLYGISGQGIFVEVNATYYNSWQNLLYDSNGNLYGFRDYITNR
TFMIHSCYSGRVSAAYHANSSEPALLFRNIKCNYVFNNSLTRQLQPINYS
FDSYLGCVVNAYNSTAISVQTCDLTVGSGYCVDYSKNGGSGSAITTGY
RFTNFEPFTVNSVNDSLEPVGGLYEIQIPSEFTIGNMEEFIQTSSPKVTIDC
AAFVCGDYAACKLQLVEYGSFCDNINAILTEVNELLDTTQLQVANSLM
NGVTLSTKLKDGVNFNVDDINFSPVLGCLGSECSKASSRSAIEDLLFDK
VKLSDVGFVEAYNNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTL
AATSASLFPPWTAAAGVPFYLNVQYRINGLGVTMDVLSQNQKLIANAF
NNALHAIQQGFDATNSALVKIQAVVNANAEALNNLLQQLSNRFGAISA
SLQEILSRLDPPEAEAQIDRLINGRLTALNAYVSQQLSDSTLVKFSAAQA
MEKVNECVKSQSSRINFCGNGNHIISLVQNAPYGLYFIHFNYVPTKYVT
AKVSPGLCIAGNRGIAPKSGYFVNVNNTWMYTGSGYYYPEPITENNVV
VMSTCAVNYTKAPYVMLNTSIPNLPDFKEELDQWFKNQTSVAPDLSLD
YINVTFLDLQVEMNRLQEAIKVLNHSYINLKDIGTYEYYVKWPWYVWL
LICLAGVAMLVLLFFISFWMCSNGSLQCRICI
IF(CoV229EwtCT).r(SEQ ID NO:147)
ACGACACGACTAAGGCCTTCACTGTATGTGGATCTTTTCGACATCGT
A
PDI-229E-wtTMCT-DNA(SEQ ID NO:148)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgCAAAC
GACTAATGGGCTGAACACCAGTTACAGCGTCTGTAACGGCTGCGTCG
GATATAGCGAGAACGTGTTCGCAGTGGAAAGTGGGGGGTACATTCC
TTCCGACTTCGCTTTCAATAACTGGTTTCTCCTGACTAACACAAGCTC
CGTCGTGGATGGCGTGGTCAGGTCCTTTCAGCCTCTTCTCCTGAATTG
CCTGTGGTCTGTGTCCGGGTTAAGATTCACTACAGGCTTCGTATACTT
CAACGGGACGGGCCGGGGGGATTGCAAGGGCTTCTCCTCCGACGTG
CTGTCAGATGTGATCCGTTACAATCTGAACTTCGAAGAGAACTTACG
GCGGGGGACAATCCTGTTCAAAACATCATATGGCGTAGTCGTATTTT
ACTGCACCAATAATACCCTGGTGAGTGGGGACGCCCATATTCCCTTC
GGAACAGTGCTGGGTAACTTTTACTGTTTTGTCAACACTACGATCGG
AAACGAAACCACTAGCGCCTTTGTCGGAGCTCTGCCAAAAACAGTT
AGGGAGTTCGTGATCTCTCGGACCGGTCACTTCTATATCAACGGCTA
CCGTTATTTTACTTTGGGCAACGTCGAAGCCGTCAATTTTAATGTGA
CAACTGCAGAGACAACTGACTTTTGCACTGTGGCTCTCGCCAGTTAT
GCCGATGTGCTGGTGAATGTAAGTCAAACGTCAATTGCCAACATCAT
CTATTGTAACTCAGTAATCAACCGGCTCCGCTGTGACCAACTCTCAT
TCGACGTCCCCGACGGATTCTATTCCACGAGCCCGATTCAGAGCGTG
GAACTGCCAGTTTCCATCGTATCCCTCCCAGTTTACCACAAGCACAC
TTTTATCGTTCTCTACGTAGATTTTAAACCCCAGTCAGGAGGAGGGA
AATGCTTCAACTGCTACCCGGCTGGCGTGAACATCACCTTGGCCAAT
TTTAATGAAACTAAAGGGCCCCTTTGCGTGGATACGTCACACTTTAC
CACAAAGTATGTTGCAGTCTATGCTAACGTCGGCAGGTGGTCAGCGT
CCATTAACACAGGCAATTGCCCGTTCTCTTTCGGGAAAGTGAACAAC
TTCGTGAAGTTTGGAAGTGTGTGCTTCAGTTTGAAAGACATTCCGGG
CGGCTGCGCCATGCCTATTGTGGCTAATTGGGCTTATTCCAAGTACT
ACACCATTGGCTCTCTCTACGTTAGCTGGAGCGACGGTGACGGTATA
ACGGGCGTACCACAACCGGTGGAAGGGGTCAGCTCTTTCATGAATG
TCACTCTGGACAAGTGTACCAAATATAATATATACGATGTGAGTGGA
GTGGGCGTTATACGCGTGTCTAACGACACCTTTCTAAACGGCATAAC
CTACACAAGCACGTCAGGCAATCTGTTAGGTTTTAAAGACGTCACTA
AAGGCACTATATATAGCATCACCCCATGCAACCCACCTGATCAATTA
GTCGTATATCAGCAAGCTGTTGTGGGTGCTATGCTGTCAGAAAACTT
CACCAGCTACGGGTTCTCCAATGTGGTGGAACTGCCCAAATTCTTTT
ACGCTAGCAATGGCACATATAACTGTACTGACGCCGTCTTGACTTAC
AGTTCATTCGGAGTGTGCGCGGACGGCAGCATTATCGCCGTGCAGCC
GGCCAATGTCAGCTATGATTCCGTTTCCGCCATCGTGACAGCCAACT
TGTCGATTCCCTCTAACTGGACAACGTCTGTCCAAGTCGAATATCTG
CAGATCACCTCAACCCCCATAGTAGTCGATTGCTCAACCTACGTCTG
CAACGGTAATGTCAGATGTGTCGAGCTGCTCAAGCAGTACACCTCCG
CCTGTAAGACTATTGAGGATGCATTAAGAAATAGTGCAAGATTGGA
AAGCGCCGATGTGTCGGAAATGCTAACCTTCGATAAGAAGGCATTC
ACACTGGCGAACGTAAGCTCTTTCGGCGATTACAACCTGTCTTCGGT
AATCCCTAGCTTGCCCACATCCGGCTCTCGGGTGGCGGGGCGGAGCG
CTATCGAGGACATTTTATTCTCGAAACTGGTTACATCTGGGCTCGGA
ACTGTGGACGCCGATTACAAGAAGTGCACCAAGGGCCTAAGCATCG
CCGACCTCGCCTGTGCTCAGTACTACAACGGAATTATGGTGCTGCCA
GGTGTCGCTGACGCAGAGCGGATGGCTATGTATACCGGCAGTCTCAT
TGGCGGGATTGCGTTGGGCGGCCTGACGTCCGCTGTCTCCATCCCTT
TCTCTCTGGCTATACAAGCCCGACTGAATTATGTGGCCCTGCAGACT
GATGTCCTGCAAGAAAATCAGAAGATTCTTGCCGCCAGCTTCAACAA
GGCCATGACTAATATTGTGGATGCGTTTACCGGAGTGAATGACGCCA
TCACCCAAACGTCCCAAGCCCTGCAGACAGTCGCCACGGCGTTAAA
CAAAATCCAGGATGTAGTGAATCAGCAAGGGAACAGCTTGAATCAC
CTGACGTCCCAGTTAAGACAGAACTTTCAGGCAATCAGTAGCTCAAT
CCAGGCTATCTACGATCGATTAGATCCTCCTCAGGCAGATCAGCAGG
TGGATCGGCTCATCACCGGCCGCCTCGCGGCATTGAATGTTTTCGTA
AGTCATACCTTGACCAAGTACACGGAGGTGAGGGCCAGTCGCCAGC
TGGCTCAGCAAAAAGTGAATGAGTGTGTGAAATCACAGAGCAAACG
GTACGGGTTTTGTGGAAATGGGACGCACATCTTTAGCATCGTTAATG
CTGCCCCCGAAGGGTTAGTCTTCCTGCACACTGTGCTCCTTCCTACCC
AGTATAAAGATGTCGAAGCATGGTCTGGGCTCTGTGTCGATGGAACT
AACGGTTATGTCCTTCGACAGCCAAACCTCGCTCTCTATAAAGAAGG
GAATTACTATAGGATCACCTCAAGAATCATGTTCGAGCCCAGGATAC
CAACAATGGCCGATTTTGTGCAGATTGAAAATTGTAACGTGACCTTT
GTGAATATCAGTCGATCCGAGCTTCAAACGATTGTTCCTGAGTACAT
CGACGTGAATAAAACTCTACAAGAGCTGTCCTATAAACTGCCTAATT
ATACCGTGCCTGACCTTGTAGTCGAGCAATACAACCAGACTATTCTG
AACCTGACATCGGAAATCTCTACATTGGAGAATAAAAGCGCCGAGC
TCAATTACACAGTGCAGAAGCTGCAGACCCTGATCGACAATATTAAC
AGCACTCTTGTGGACTTAAAGTGGCTGAACCGTGTGGAGACTTACAT
CAAGTGGCCCTGGTGGGTGTGGCTCTGTATTTCCGTGGTCCTTATATT
TGTTGTAAGTATGCTGCTCCTGTGCTGTTGCTCAACCGGGTGCTGCG
GTTTTTTCTCCTGTTTCGCCTCATCCATCCGTGGCTGTTGTGAGAGCA
CTAAACTGCCATATTACGATGTCGAAAAGATCCACATACAGTGA
PDI-229E-H5iTMCT-DNA(SEQ ID NO:149)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgCAAAC
GACTAATGGGCTGAACACCAGTTACAGCGTCTGTAACGGCTGCGTCG
GATATAGCGAGAACGTGTTCGCAGTGGAAAGTGGGGGGTACATTCC
TTCCGACTTCGCTTTCAATAACTGGTTTCTCCTGACTAACACAAGCTC
CGTCGTGGATGGCGTGGTCAGGTCCTTTCAGCCTCTTCTCCTGAATTG
CCTGTGGTCTGTGTCCGGGTTAAGATTCACTACAGGCTTCGTATACTT
CAACGGGACGGGCCGGGGGGATTGCAAGGGCTTCTCCTCCGACGTG
CTGTCAGATGTGATCCGTTACAATCTGAACTTCGAAGAGAACTTACG
GCGGGGGACAATCCTGTTCAAAACATCATATGGCGTAGTCGTATTTT
ACTGCACCAATAATACCCTGGTGAGTGGGGACGCCCATATTCCCTTC
GGAACAGTGCTGGGTAACTTTTACTGTTTTGTCAACACTACGATCGG
AAACGAAACCACTAGCGCCTTTGTCGGAGCTCTGCCAAAAACAGTT
AGGGAGTTCGTGATCTCTCGGACCGGTCACTTCTATATCAACGGCTA
CCGTTATTTTACTTTGGGCAACGTCGAAGCCGTCAATTTTAATGTGA
CAACTGCAGAGACAACTGACTTTTGCACTGTGGCTCTCGCCAGTTAT
GCCGATGTGCTGGTGAATGTAAGTCAAACGTCAATTGCCAACATCAT
CTATTGTAACTCAGTAATCAACCGGCTCCGCTGTGACCAACTCTCAT
TCGACGTCCCCGACGGATTCTATTCCACGAGCCCGATTCAGAGCGTG
GAACTGCCAGTTTCCATCGTATCCCTCCCAGTTTACCACAAGCACAC
TTTTATCGTTCTCTACGTAGATTTTAAACCCCAGTCAGGAGGAGGGA
AATGCTTCAACTGCTACCCGGCTGGCGTGAACATCACCTTGGCCAAT
TTTAATGAAACTAAAGGGCCCCTTTGCGTGGATACGTCACACTTTAC
CACAAAGTATGTTGCAGTCTATGCTAACGTCGGCAGGTGGTCAGCGT
CCATTAACACAGGCAATTGCCCGTTCTCTTTCGGGAAAGTGAACAAC
TTCGTGAAGTTTGGAAGTGTGTGCTTCAGTTTGAAAGACATTCCGGG
CGGCTGCGCCATGCCTATTGTGGCTAATTGGGCTTATTCCAAGTACT
ACACCATTGGCTCTCTCTACGTTAGCTGGAGCGACGGTGACGGTATA
ACGGGCGTACCACAACCGGTGGAAGGGGTCAGCTCTTTCATGAATG
TCACTCTGGACAAGTGTACCAAATATAATATATACGATGTGAGTGGA
GTGGGCGTTATACGCGTGTCTAACGACACCTTTCTAAACGGCATAAC
CTACACAAGCACGTCAGGCAATCTGTTAGGTTTTAAAGACGTCACTA
AAGGCACTATATATAGCATCACCCCATGCAACCCACCTGATCAATTA
GTCGTATATCAGCAAGCTGTTGTGGGTGCTATGCTGTCAGAAAACTT
CACCAGCTACGGGTTCTCCAATGTGGTGGAACTGCCCAAATTCTTTT
ACGCTAGCAATGGCACATATAACTGTACTGACGCCGTCTTGACTTAC
AGTTCATTCGGAGTGTGCGCGGACGGCAGCATTATCGCCGTGCAGCC
GGCCAATGTCAGCTATGATTCCGTTTCCGCCATCGTGACAGCCAACT
TGTCGATTCCCTCTAACTGGACAACGTCTGTCCAAGTCGAATATCTG
CAGATCACCTCAACCCCCATAGTAGTCGATTGCTCAACCTACGTCTG
CAACGGTAATGTCAGATGTGTCGAGCTGCTCAAGCAGTACACCTCCG
CCTGTAAGACTATTGAGGATGCATTAAGAAATAGTGCAAGATTGGA
AAGCGCCGATGTGTCGGAAATGCTAACCTTCGATAAGAAGGCATTC
ACACTGGCGAACGTAAGCTCTTTCGGCGATTACAACCTGTCTTCGGT
AATCCCTAGCTTGCCCACATCCGGCTCTCGGGTGGCGGGGCGGAGCG
CTATCGAGGACATTTTATTCTCGAAACTGGTTACATCTGGGCTCGGA
ACTGTGGACGCCGATTACAAGAAGTGCACCAAGGGCCTAAGCATCG
CCGACCTCGCCTGTGCTCAGTACTACAACGGAATTATGGTGCTGCCA
GGTGTCGCTGACGCAGAGCGGATGGCTATGTATACCGGCAGTCTCAT
TGGCGGGATTGCGTTGGGCGGCCTGACGTCCGCTGTCTCCATCCCTT
TCTCTCTGGCTATACAAGCCCGACTGAATTATGTGGCCCTGCAGACT
GATGTCCTGCAAGAAAATCAGAAGATTCTTGCCGCCAGCTTCAACAA
GGCCATGACTAATATTGTGGATGCGTTTACCGGAGTGAATGACGCCA
TCACCCAAACGTCCCAAGCCCTGCAGACAGTCGCCACGGCGTTAAA
CAAAATCCAGGATGTAGTGAATCAGCAAGGGAACAGCTTGAATCAC
CTGACGTCCCAGTTAAGACAGAACTTTCAGGCAATCAGTAGCTCAAT
CCAGGCTATCTACGATCGATTAGATCCTCCTCAGGCAGATCAGCAGG
TGGATCGGCTCATCACCGGCCGCCTCGCGGCATTGAATGTTTTCGTA
AGTCATACCTTGACCAAGTACACGGAGGTGAGGGCCAGTCGCCAGC
TGGCTCAGCAAAAAGTGAATGAGTGTGTGAAATCACAGAGCAAACG
GTACGGGTTTTGTGGAAATGGGACGCACATCTTTAGCATCGTTAATG
CTGCCCCCGAAGGGTTAGTCTTCCTGCACACTGTGCTCCTTCCTACCC
AGTATAAAGATGTCGAAGCATGGTCTGGGCTCTGTGTCGATGGAACT
AACGGTTATGTCCTTCGACAGCCAAACCTCGCTCTCTATAAAGAAGG
GAATTACTATAGGATCACCTCAAGAATCATGTTCGAGCCCAGGATAC
CAACAATGGCCGATTTTGTGCAGATTGAAAATTGTAACGTGACCTTT
GTGAATATCAGTCGATCCGAGCTTCAAACGATTGTTCCTGAGTACAT
CGACGTGAATAAAACTCTACAAGAGCTGTCCTATAAACTGCCTAATT
ATACCGTGCCTGACCTTGTAGTCGAGCAATACAACCAGACTATTCTG
AACCTGACATCGGAAATCTCTACATTGGAGAATAAAAGCGCCGAGC
TCAATTACACAGTGCAGAAGCTGCAGACCCTGATCGACAATATTAAC
AGCACTCTTGTGGACTTAAAGTGGCTGAACCGTGTGGAGACTTACAT
CAAGTGGCCCTGGTGGcaaatactgtcaatttattcaacagtggcgagttccctagcactggcaat
catgatggctggtctatctttatggatgtgctccaatggatcgttacaatgcagaatttgcattTGA
PDI-229E-H5iCT-DNA(SEQ ID NO:150)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgCAAAC
GACTAATGGGCTGAACACCAGTTACAGCGTCTGTAACGGCTGCGTCG
GATATAGCGAGAACGTGTTCGCAGTGGAAAGTGGGGGGTACATTCC
TTCCGACTTCGCTTTCAATAACTGGTTTCTCCTGACTAACACAAGCTC
CGTCGTGGATGGCGTGGTCAGGTCCTTTCAGCCTCTTCTCCTGAATTG
CCTGTGGTCTGTGTCCGGGTTAAGATTCACTACAGGCTTCGTATACTT
CAACGGGACGGGCCGGGGGGATTGCAAGGGCTTCTCCTCCGACGTG
CTGTCAGATGTGATCCGTTACAATCTGAACTTCGAAGAGAACTTACG
GCGGGGGACAATCCTGTTCAAAACATCATATGGCGTAGTCGTATTTT
ACTGCACCAATAATACCCTGGTGAGTGGGGACGCCCATATTCCCTTC
GGAACAGTGCTGGGTAACTTTTACTGTTTTGTCAACACTACGATCGG
AAACGAAACCACTAGCGCCTTTGTCGGAGCTCTGCCAAAAACAGTT
AGGGAGTTCGTGATCTCTCGGACCGGTCACTTCTATATCAACGGCTA
CCGTTATTTTACTTTGGGCAACGTCGAAGCCGTCAATTTTAATGTGA
CAACTGCAGAGACAACTGACTTTTGCACTGTGGCTCTCGCCAGTTAT
GCCGATGTGCTGGTGAATGTAAGTCAAACGTCAATTGCCAACATCAT
CTATTGTAACTCAGTAATCAACCGGCTCCGCTGTGACCAACTCTCAT
TCGACGTCCCCGACGGATTCTATTCCACGAGCCCGATTCAGAGCGTG
GAACTGCCAGTTTCCATCGTATCCCTCCCAGTTTACCACAAGCACAC
TTTTATCGTTCTCTACGTAGATTTTAAACCCCAGTCAGGAGGAGGGA
AATGCTTCAACTGCTACCCGGCTGGCGTGAACATCACCTTGGCCAAT
TTTAATGAAACTAAAGGGCCCCTTTGCGTGGATACGTCACACTTTAC
CACAAAGTATGTTGCAGTCTATGCTAACGTCGGCAGGTGGTCAGCGT
CCATTAACACAGGCAATTGCCCGTTCTCTTTCGGGAAAGTGAACAAC
TTCGTGAAGTTTGGAAGTGTGTGCTTCAGTTTGAAAGACATTCCGGG
CGGCTGCGCCATGCCTATTGTGGCTAATTGGGCTTATTCCAAGTACT
ACACCATTGGCTCTCTCTACGTTAGCTGGAGCGACGGTGACGGTATA
ACGGGCGTACCACAACCGGTGGAAGGGGTCAGCTCTTTCATGAATG
TCACTCTGGACAAGTGTACCAAATATAATATATACGATGTGAGTGGA
GTGGGCGTTATACGCGTGTCTAACGACACCTTTCTAAACGGCATAAC
CTACACAAGCACGTCAGGCAATCTGTTAGGTTTTAAAGACGTCACTA
AAGGCACTATATATAGCATCACCCCATGCAACCCACCTGATCAATTA
GTCGTATATCAGCAAGCTGTTGTGGGTGCTATGCTGTCAGAAAACTT
CACCAGCTACGGGTTCTCCAATGTGGTGGAACTGCCCAAATTCTTTT
ACGCTAGCAATGGCACATATAACTGTACTGACGCCGTCTTGACTTAC
AGTTCATTCGGAGTGTGCGCGGACGGCAGCATTATCGCCGTGCAGCC
GGCCAATGTCAGCTATGATTCCGTTTCCGCCATCGTGACAGCCAACT
TGTCGATTCCCTCTAACTGGACAACGTCTGTCCAAGTCGAATATCTG
CAGATCACCTCAACCCCCATAGTAGTCGATTGCTCAACCTACGTCTG
CAACGGTAATGTCAGATGTGTCGAGCTGCTCAAGCAGTACACCTCCG
CCTGTAAGACTATTGAGGATGCATTAAGAAATAGTGCAAGATTGGA
AAGCGCCGATGTGTCGGAAATGCTAACCTTCGATAAGAAGGCATTC
ACACTGGCGAACGTAAGCTCTTTCGGCGATTACAACCTGTCTTCGGT
AATCCCTAGCTTGCCCACATCCGGCTCTCGGGTGGCGGGGCGGAGCG
CTATCGAGGACATTTTATTCTCGAAACTGGTTACATCTGGGCTCGGA
ACTGTGGACGCCGATTACAAGAAGTGCACCAAGGGCCTAAGCATCG
CCGACCTCGCCTGTGCTCAGTACTACAACGGAATTATGGTGCTGCCA
GGTGTCGCTGACGCAGAGCGGATGGCTATGTATACCGGCAGTCTCAT
TGGCGGGATTGCGTTGGGCGGCCTGACGTCCGCTGTCTCCATCCCTT
TCTCTCTGGCTATACAAGCCCGACTGAATTATGTGGCCCTGCAGACT
GATGTCCTGCAAGAAAATCAGAAGATTCTTGCCGCCAGCTTCAACAA
GGCCATGACTAATATTGTGGATGCGTTTACCGGAGTGAATGACGCCA
TCACCCAAACGTCCCAAGCCCTGCAGACAGTCGCCACGGCGTTAAA
CAAAATCCAGGATGTAGTGAATCAGCAAGGGAACAGCTTGAATCAC
CTGACGTCCCAGTTAAGACAGAACTTTCAGGCAATCAGTAGCTCAAT
CCAGGCTATCTACGATCGATTAGATCCTCCTCAGGCAGATCAGCAGG
TGGATCGGCTCATCACCGGCCGCCTCGCGGCATTGAATGTTTTCGTA
AGTCATACCTTGACCAAGTACACGGAGGTGAGGGCCAGTCGCCAGC
TGGCTCAGCAAAAAGTGAATGAGTGTGTGAAATCACAGAGCAAACG
GTACGGGTTTTGTGGAAATGGGACGCACATCTTTAGCATCGTTAATG
CTGCCCCCGAAGGGTTAGTCTTCCTGCACACTGTGCTCCTTCCTACCC
AGTATAAAGATGTCGAAGCATGGTCTGGGCTCTGTGTCGATGGAACT
AACGGTTATGTCCTTCGACAGCCAAACCTCGCTCTCTATAAAGAAGG
GAATTACTATAGGATCACCTCAAGAATCATGTTCGAGCCCAGGATAC
CAACAATGGCCGATTTTGTGCAGATTGAAAATTGTAACGTGACCTTT
GTGAATATCAGTCGATCCGAGCTTCAAACGATTGTTCCTGAGTACAT
CGACGTGAATAAAACTCTACAAGAGCTGTCCTATAAACTGCCTAATT
ATACCGTGCCTGACCTTGTAGTCGAGCAATACAACCAGACTATTCTG
AACCTGACATCGGAAATCTCTACATTGGAGAATAAAAGCGCCGAGC
TCAATTACACAGTGCAGAAGCTGCAGACCCTGATCGACAATATTAAC
AGCACTCTTGTGGACTTAAAGTGGCTGAACCGTGTGGAGACTTACAT
CAAGTGGCCCTGGTGGGTGTGGCTCTGTATTTCCGTGGTCCTTATATT
TGTTGTAAGTATGCTGCTCCTGtctttatggatgtgctccaatggatcgttacaatgcagaattt
gcattTGA
PDI-229E-H5iCT(V4)-DNA(SEQ ID NO:151)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgCAAAC
GACTAATGGGCTGAACACCAGTTACAGCGTCTGTAACGGCTGCGTCG
GATATAGCGAGAACGTGTTCGCAGTGGAAAGTGGGGGGTACATTCC
TTCCGACTTCGCTTTCAATAACTGGTTTCTCCTGACTAACACAAGCTC
CGTCGTGGATGGCGTGGTCAGGTCCTTTCAGCCTCTTCTCCTGAATTG
CCTGTGGTCTGTGTCCGGGTTAAGATTCACTACAGGCTTCGTATACTT
CAACGGGACGGGCCGGGGGGATTGCAAGGGCTTCTCCTCCGACGTG
CTGTCAGATGTGATCCGTTACAATCTGAACTTCGAAGAGAACTTACG
GCGGGGGACAATCCTGTTCAAAACATCATATGGCGTAGTCGTATTTT
ACTGCACCAATAATACCCTGGTGAGTGGGGACGCCCATATTCCCTTC
GGAACAGTGCTGGGTAACTTTTACTGTTTTGTCAACACTACGATCGG
AAACGAAACCACTAGCGCCTTTGTCGGAGCTCTGCCAAAAACAGTT
AGGGAGTTCGTGATCTCTCGGACCGGTCACTTCTATATCAACGGCTA
CCGTTATTTTACTTTGGGCAACGTCGAAGCCGTCAATTTTAATGTGA
CAACTGCAGAGACAACTGACTTTTGCACTGTGGCTCTCGCCAGTTAT
GCCGATGTGCTGGTGAATGTAAGTCAAACGTCAATTGCCAACATCAT
CTATTGTAACTCAGTAATCAACCGGCTCCGCTGTGACCAACTCTCAT
TCGACGTCCCCGACGGATTCTATTCCACGAGCCCGATTCAGAGCGTG
GAACTGCCAGTTTCCATCGTATCCCTCCCAGTTTACCACAAGCACAC
TTTTATCGTTCTCTACGTAGATTTTAAACCCCAGTCAGGAGGAGGGA
AATGCTTCAACTGCTACCCGGCTGGCGTGAACATCACCTTGGCCAAT
TTTAATGAAACTAAAGGGCCCCTTTGCGTGGATACGTCACACTTTAC
CACAAAGTATGTTGCAGTCTATGCTAACGTCGGCAGGTGGTCAGCGT
CCATTAACACAGGCAATTGCCCGTTCTCTTTCGGGAAAGTGAACAAC
TTCGTGAAGTTTGGAAGTGTGTGCTTCAGTTTGAAAGACATTCCGGG
CGGCTGCGCCATGCCTATTGTGGCTAATTGGGCTTATTCCAAGTACT
ACACCATTGGCTCTCTCTACGTTAGCTGGAGCGACGGTGACGGTATA
ACGGGCGTACCACAACCGGTGGAAGGGGTCAGCTCTTTCATGAATG
TCACTCTGGACAAGTGTACCAAATATAATATATACGATGTGAGTGGA
GTGGGCGTTATACGCGTGTCTAACGACACCTTTCTAAACGGCATAAC
CTACACAAGCACGTCAGGCAATCTGTTAGGTTTTAAAGACGTCACTA
AAGGCACTATATATAGCATCACCCCATGCAACCCACCTGATCAATTA
GTCGTATATCAGCAAGCTGTTGTGGGTGCTATGCTGTCAGAAAACTT
CACCAGCTACGGGTTCTCCAATGTGGTGGAACTGCCCAAATTCTTTT
ACGCTAGCAATGGCACATATAACTGTACTGACGCCGTCTTGACTTAC
AGTTCATTCGGAGTGTGCGCGGACGGCAGCATTATCGCCGTGCAGCC
GGCCAATGTCAGCTATGATTCCGTTTCCGCCATCGTGACAGCCAACT
TGTCGATTCCCTCTAACTGGACAACGTCTGTCCAAGTCGAATATCTG
CAGATCACCTCAACCCCCATAGTAGTCGATTGCTCAACCTACGTCTG
CAACGGTAATGTCAGATGTGTCGAGCTGCTCAAGCAGTACACCTCCG
CCTGTAAGACTATTGAGGATGCATTAAGAAATAGTGCAAGATTGGA
AAGCGCCGATGTGTCGGAAATGCTAACCTTCGATAAGAAGGCATTC
ACACTGGCGAACGTAAGCTCTTTCGGCGATTACAACCTGTCTTCGGT
AATCCCTAGCTTGCCCACATCCGGCTCTCGGGTGGCGGGGCGGAGCG
CTATCGAGGACATTTTATTCTCGAAACTGGTTACATCTGGGCTCGGA
ACTGTGGACGCCGATTACAAGAAGTGCACCAAGGGCCTAAGCATCG
CCGACCTCGCCTGTGCTCAGTACTACAACGGAATTATGGTGCTGCCA
GGTGTCGCTGACGCAGAGCGGATGGCTATGTATACCGGCAGTCTCAT
TGGCGGGATTGCGTTGGGCGGCCTGACGTCCGCTGTCTCCATCCCTT
TCTCTCTGGCTATACAAGCCCGACTGAATTATGTGGCCCTGCAGACT
GATGTCCTGCAAGAAAATCAGAAGATTCTTGCCGCCAGCTTCAACAA
GGCCATGACTAATATTGTGGATGCGTTTACCGGAGTGAATGACGCCA
TCACCCAAACGTCCCAAGCCCTGCAGACAGTCGCCACGGCGTTAAA
CAAAATCCAGGATGTAGTGAATCAGCAAGGGAACAGCTTGAATCAC
CTGACGTCCCAGTTAAGACAGAACTTTCAGGCAATCAGTAGCTCAAT
CCAGGCTATCTACGATCGATTAGATCCTCCTCAGGCAGATCAGCAGG
TGGATCGGCTCATCACCGGCCGCCTCGCGGCATTGAATGTTTTCGTA
AGTCATACCTTGACCAAGTACACGGAGGTGAGGGCCAGTCGCCAGC
TGGCTCAGCAAAAAGTGAATGAGTGTGTGAAATCACAGAGCAAACG
GTACGGGTTTTGTGGAAATGGGACGCACATCTTTAGCATCGTTAATG
CTGCCCCCGAAGGGTTAGTCTTCCTGCACACTGTGCTCCTTCCTACCC
AGTATAAAGATGTCGAAGCATGGTCTGGGCTCTGTGTCGATGGAACT
AACGGTTATGTCCTTCGACAGCCAAACCTCGCTCTCTATAAAGAAGG
GAATTACTATAGGATCACCTCAAGAATCATGTTCGAGCCCAGGATAC
CAACAATGGCCGATTTTGTGCAGATTGAAAATTGTAACGTGACCTTT
GTGAATATCAGTCGATCCGAGCTTCAAACGATTGTTCCTGAGTACAT
CGACGTGAATAAAACTCTACAAGAGCTGTCCTATAAACTGCCTAATT
ATACCGTGCCTGACCTTGTAGTCGAGCAATACAACCAGACTATTCTG
AACCTGACATCGGAAATCTCTACATTGGAGAATAAAAGCGCCGAGC
TCAATTACACAGTGCAGAAGCTGCAGACCCTGATCGACAATATTAAC
AGCACTCTTGTGGACTTAAAGTGGCTGAACCGTGTGGAGACTTACAT
CAAGTGGCCCTGGTGGGTGTGGCTCTGTATTTCCGTGGTCCTTATATT
TGTTGTAAGTATGCTGCTCCTGtgctgctccaatggatcgttacaatgcagaatttgcattTG
A
PDI-229E-H1cCT-DNA(SEQ ID NO:152)
atggcgaaaaacgttgcgattttcggcttattgttttctcttcttgtgttggttccttctcagatcttcgcgCAAAC
GACTAATGGGCTGAACACCAGTTACAGCGTCTGTAACGGCTGCGTCG
GATATAGCGAGAACGTGTTCGCAGTGGAAAGTGGGGGGTACATTCC
TTCCGACTTCGCTTTCAATAACTGGTTTCTCCTGACTAACACAAGCTC
CGTCGTGGATGGCGTGGTCAGGTCCTTTCAGCCTCTTCTCCTGAATTG
CCTGTGGTCTGTGTCCGGGTTAAGATTCACTACAGGCTTCGTATACTT
CAACGGGACGGGCCGGGGGGATTGCAAGGGCTTCTCCTCCGACGTG
CTGTCAGATGTGATCCGTTACAATCTGAACTTCGAAGAGAACTTACG
GCGGGGGACAATCCTGTTCAAAACATCATATGGCGTAGTCGTATTTT
ACTGCACCAATAATACCCTGGTGAGTGGGGACGCCCATATTCCCTTC
GGAACAGTGCTGGGTAACTTTTACTGTTTTGTCAACACTACGATCGG
AAACGAAACCACTAGCGCCTTTGTCGGAGCTCTGCCAAAAACAGTT
AGGGAGTTCGTGATCTCTCGGACCGGTCACTTCTATATCAACGGCTA
CCGTTATTTTACTTTGGGCAACGTCGAAGCCGTCAATTTTAATGTGA
CAACTGCAGAGACAACTGACTTTTGCACTGTGGCTCTCGCCAGTTAT
GCCGATGTGCTGGTGAATGTAAGTCAAACGTCAATTGCCAACATCAT
CTATTGTAACTCAGTAATCAACCGGCTCCGCTGTGACCAACTCTCAT
TCGACGTCCCCGACGGATTCTATTCCACGAGCCCGATTCAGAGCGTG
GAACTGCCAGTTTCCATCGTATCCCTCCCAGTTTACCACAAGCACAC
TTTTATCGTTCTCTACGTAGATTTTAAACCCCAGTCAGGAGGAGGGA
AATGCTTCAACTGCTACCCGGCTGGCGTGAACATCACCTTGGCCAAT
TTTAATGAAACTAAAGGGCCCCTTTGCGTGGATACGTCACACTTTAC
CACAAAGTATGTTGCAGTCTATGCTAACGTCGGCAGGTGGTCAGCGT
CCATTAACACAGGCAATTGCCCGTTCTCTTTCGGGAAAGTGAACAAC
TTCGTGAAGTTTGGAAGTGTGTGCTTCAGTTTGAAAGACATTCCGGG
CGGCTGCGCCATGCCTATTGTGGCTAATTGGGCTTATTCCAAGTACT
ACACCATTGGCTCTCTCTACGTTAGCTGGAGCGACGGTGACGGTATA
ACGGGCGTACCACAACCGGTGGAAGGGGTCAGCTCTTTCATGAATG
TCACTCTGGACAAGTGTACCAAATATAATATATACGATGTGAGTGGA
GTGGGCGTTATACGCGTGTCTAACGACACCTTTCTAAACGGCATAAC
CTACACAAGCACGTCAGGCAATCTGTTAGGTTTTAAAGACGTCACTA
AAGGCACTATATATAGCATCACCCCATGCAACCCACCTGATCAATTA
GTCGTATATCAGCAAGCTGTTGTGGGTGCTATGCTGTCAGAAAACTT
CACCAGCTACGGGTTCTCCAATGTGGTGGAACTGCCCAAATTCTTTT
ACGCTAGCAATGGCACATATAACTGTACTGACGCCGTCTTGACTTAC
AGTTCATTCGGAGTGTGCGCGGACGGCAGCATTATCGCCGTGCAGCC
GGCCAATGTCAGCTATGATTCCGTTTCCGCCATCGTGACAGCCAACT
TGTCGATTCCCTCTAACTGGACAACGTCTGTCCAAGTCGAATATCTG
CAGATCACCTCAACCCCCATAGTAGTCGATTGCTCAACCTACGTCTG
CAACGGTAATGTCAGATGTGTCGAGCTGCTCAAGCAGTACACCTCCG
CCTGTAAGACTATTGAGGATGCATTAAGAAATAGTGCAAGATTGGA
AAGCGCCGATGTGTCGGAAATGCTAACCTTCGATAAGAAGGCATTC
ACACTGGCGAACGTAAGCTCTTTCGGCGATTACAACCTGTCTTCGGT
AATCCCTAGCTTGCCCACATCCGGCTCTCGGGTGGCGGGGCGGAGCG
CTATCGAGGACATTTTATTCTCGAAACTGGTTACATCTGGGCTCGGA
ACTGTGGACGCCGATTACAAGAAGTGCACCAAGGGCCTAAGCATCG
CCGACCTCGCCTGTGCTCAGTACTACAACGGAATTATGGTGCTGCCA
GGTGTCGCTGACGCAGAGCGGATGGCTATGTATACCGGCAGTCTCAT
TGGCGGGATTGCGTTGGGCGGCCTGACGTCCGCTGTCTCCATCCCTT
TCTCTCTGGCTATACAAGCCCGACTGAATTATGTGGCCCTGCAGACT
GATGTCCTGCAAGAAAATCAGAAGATTCTTGCCGCCAGCTTCAACAA
GGCCATGACTAATATTGTGGATGCGTTTACCGGAGTGAATGACGCCA
TCACCCAAACGTCCCAAGCCCTGCAGACAGTCGCCACGGCGTTAAA
CAAAATCCAGGATGTAGTGAATCAGCAAGGGAACAGCTTGAATCAC
CTGACGTCCCAGTTAAGACAGAACTTTCAGGCAATCAGTAGCTCAAT
CCAGGCTATCTACGATCGATTAGATCCTCCTCAGGCAGATCAGCAGG
TGGATCGGCTCATCACCGGCCGCCTCGCGGCATTGAATGTTTTCGTA
AGTCATACCTTGACCAAGTACACGGAGGTGAGGGCCAGTCGCCAGC
TGGCTCAGCAAAAAGTGAATGAGTGTGTGAAATCACAGAGCAAACG
GTACGGGTTTTGTGGAAATGGGACGCACATCTTTAGCATCGTTAATG
CTGCCCCCGAAGGGTTAGTCTTCCTGCACACTGTGCTCCTTCCTACCC
AGTATAAAGATGTCGAAGCATGGTCTGGGCTCTGTGTCGATGGAACT
AACGGTTATGTCCTTCGACAGCCAAACCTCGCTCTCTATAAAGAAGG
GAATTACTATAGGATCACCTCAAGAATCATGTTCGAGCCCAGGATAC
CAACAATGGCCGATTTTGTGCAGATTGAAAATTGTAACGTGACCTTT
GTGAATATCAGTCGATCCGAGCTTCAAACGATTGTTCCTGAGTACAT
CGACGTGAATAAAACTCTACAAGAGCTGTCCTATAAACTGCCTAATT
ATACCGTGCCTGACCTTGTAGTCGAGCAATACAACCAGACTATTCTG
AACCTGACATCGGAAATCTCTACATTGGAGAATAAAAGCGCCGAGC
TCAATTACACAGTGCAGAAGCTGCAGACCCTGATCGACAATATTAAC
AGCACTCTTGTGGACTTAAAGTGGCTGAACCGTGTGGAGACTTACAT
CAAGTGGCCCTGGTGGGTGTGGCTCTGTATTTCCGTGGTCCTTATATT
TGTTGTAAGTATGCTGCTCCTGagcttctggatgtgctctaatgggtctctacagtgtagaata
tgtattTGA
PDI-229E-wtTMCT-AA(SEQ ID NO:153)
MAKNVAIFGLLFSLLVLVPSQIFAQTTNGLNTSYSVCNGCVGYSENVFA
VESGGYIPSDFAFNNWFLLTNTSSVVDGVVRSFQPLLLNCLWSVSGLRF
TTGFVYFNGTGRGDCKGFSSDVLSDVIRYNLNFEENLRRGTILFKTSYG
VVVFYCTNNTLVSGDAHIPFGTVLGNFYCFVNTTIGNETTSAFVGALPK
TVREFVISRTGHFYINGYRYFTLGNVEAVNFNVTTAETTDFCTVALASY
ADVLVNVSQTSIANIIYCNSVINRLRCDQLSFDVPDGFYSTSPIQSVELPV
SIVSLPVYHKHTFIVLYVDFKPQSGGGKCFNCYPAGVNITLANFNETKG
PLCVDTSHFTTKYVAVYANVGRWSASINTGNCPFSFGKVNNFVKFGSV
CFSLKDIPGGCAMPIVANWAYSKYYTIGSLYVSWSDGDGITGVPQPVEG
VSSFMNVTLDKCTKYNIYDVSGVGVIRVSNDTFLNGITYTSTSGNLLGF
KDVTKGTIYSITPCNPPDQLVVYQQAVVGAMLSENFTSYGFSNVVELPK
FFYASNGTYNCTDAVLTYSSFGVCADGSIIAVQPANVSYDSVSAIVTAN
LSIPSNWTTSVQVEYLQITSTPIVVDCSTYVCNGNVRCVELLKQYTSAC
KTIEDALRNSARLESADVSEMLTFDKKAFTLANVSSFGDYNLSSVIPSLP
TSGSRVAGRSAIEDILFSKLVTSGLGTVDADYKKCTKGLSIADLACAQY
YNGIMVLPGVADAERMAMYTGSLIGGIALGGLTSAVSIPFSLAIQARLN
YVALQTDVLQENQKILAASFNKAMTNIVDAFTGVNDAITQTSQALQTV
ATALNKIQDVVNQQGNSLNHLTSQLRQNFQAISSSIQAIYDRLDPPQAD
QQVDRLITGRLAALNVFVSHTLTKYTEVRASRQLAQQKVNECVKSQSK
RYGFCGNGTHIFSIVNAAPEGLVFLHTVLLPTQYKDVEAWSGLCVDGT
NGYVLRQPNLALYKEGNYYRITSRIMFEPRIPTMADFVQIENCNVTFVNI
SRSELQTIVPEYIDVNKTLQELSYKLPNYTVPDLVVEQYNQTILNLTSEIS
TLENKSAELNYTVQKLQTLIDNINSTLVDLKWLNRVETYIKWPWWVW
LCISVVLIFVVSMLLLCCCSTGCCGFFSCFASSIRGCCESTKLPYYDVEKI
HIQ
PDI-229E-H5iTMCT-AA(SEQ ID NO:154)
MAKNVAIFGLLFSLLVLVPSQIFAQTTNGLNTSYSVCNGCVGYSENVFA
VESGGYIPSDFAFNNWFLLTNTSSVVDGVVRSFQPLLLNCLWSVSGLRF
TTGFVYFNGTGRGDCKGFSSDVLSDVIRYNLNFEENLRRGTILFKTSYG
VVVFYCTNNTLVSGDAHIPFGTVLGNFYCFVNTTIGNETTSAFVGALPK
TVREFVISRTGHFYINGYRYFTLGNVEAVNFNVTTAETTDFCTVALASY
ADVLVNVSQTSIANIIYCNSVINRLRCDQLSFDVPDGFYSTSPIQSVELPV
SIVSLPVYHKHTFIVLYVDFKPQSGGGKCFNCYPAGVNITLANFNETKG
PLCVDTSHFTTKYVAVYANVGRWSASINTGNCPFSFGKVNNFVKFGSV
CFSLKDIPGGCAMPIVANWAYSKYYTIGSLYVSWSDGDGITGVPQPVEG
VSSFMNVTLDKCTKYNIYDVSGVGVIRVSNDTFLNGITYTSTSGNLLGF
KDVTKGTIYSITPCNPPDQLVVYQQAVVGAMLSENFTSYGFSNVVELPK
FFYASNGTYNCTDAVLTYSSFGVCADGSIIAVQPANVSYDSVSAIVTAN
LSIPSNWTTSVQVEYLQITSTPIVVDCSTYVCNGNVRCVELLKQYTSAC
KTIEDALRNSARLESADVSEMLTFDKKAFTLANVSSFGDYNLSSVIPSLP
TSGSRVAGRSAIEDILFSKLVTSGLGTVDADYKKCTKGLSIADLACAQY
YNGIMVLPGVADAERMAMYTGSLIGGIALGGLTSAVSIPFSLAIQARLN
YVALQTDVLQENQKILAASFNKAMTNIVDAFTGVNDAITQTSQALQTV
ATALNKIQDVVNQQGNSLNHLTSQLRQNFQAISSSIQAIYDRLDPPQAD
QQVDRLITGRLAALNVFVSHTLTKYTEVRASRQLAQQKVNECVKSQSK
RYGFCGNGTHIFSIVNAAPEGLVFLHTVLLPTQYKDVEAWSGLCVDGT
NGYVLRQPNLALYKEGNYYRITSRIMFEPRIPTMADFVQIENCNVTFVNI
SRSELQTIVPEYIDVNKTLQELSYKLPNYTVPDLVVEQYNQTILNLTSEIS
TLENKSAELNYTVQKLQTLIDNINSTLVDLKWLNRVETYIKWPWWQIL
SIYSTVASSLALAIMMAGLSLWMCSNGSLQCRICI
PDI-229E-H5iCT-AA(SEQ ID NO:155)
MAKNVAIFGLLFSLLVLVPSQIFAQTTNGLNTSYSVCNGCVGYSENVFA
VESGGYIPSDFAFNNWFLLTNTSSVVDGVVRSFQPLLLNCLWSVSGLRF
TTGFVYFNGTGRGDCKGFSSDVLSDVIRYNLNFEENLRRGTILFKTSYG
VVVFYCTNNTLVSGDAHIPFGTVLGNFYCFVNTTIGNETTSAFVGALPK
TVREFVISRTGHFYINGYRYFTLGNVEAVNFNVTTAETTDFCTVALASY
ADVLVNVSQTSIANIIYCNSVINRLRCDQLSFDVPDGFYSTSPIQSVELPV
SIVSLPVYHKHTFIVLYVDFKPQSGGGKCFNCYPAGVNITLANFNETKG
PLCVDTSHFTTKYVAVYANVGRWSASINTGNCPFSFGKVNNFVKFGSV
CFSLKDIPGGCAMPIVANWAYSKYYTIGSLYVSWSDGDGITGVPQPVEG
VSSFMNVTLDKCTKYNIYDVSGVGVIRVSNDTFLNGITYTSTSGNLLGF
KDVTKGTIYSITPCNPPDQLVVYQQAVVGAMLSENFTSYGFSNVVELPK
FFYASNGTYNCTDAVLTYSSFGVCADGSIIAVQPANVSYDSVSAIVTAN
LSIPSNWTTSVQVEYLQITSTPIVVDCSTYVCNGNVRCVELLKQYTSAC
KTIEDALRNSARLESADVSEMLTFDKKAFTLANVSSFGDYNLSSVIPSLP
TSGSRVAGRSAIEDILFSKLVTSGLGTVDADYKKCTKGLSIADLACAQY
YNGIMVLPGVADAERMAMYTGSLIGGIALGGLTSAVSIPFSLAIQARLN
YVALQTDVLQENQKILAASFNKAMTNIVDAFTGVNDAITQTSQALQTV
ATALNKIQDVVNQQGNSLNHLTSQLRQNFQAISSSIQAIYDRLDPPQAD
QQVDRLITGRLAALNVFVSHTLTKYTEVRASRQLAQQKVNECVKSQSK
RYGFCGNGTHIFSIVNAAPEGLVFLHTVLLPTQYKDVEAWSGLCVDGT
NGYVLRQPNLALYKEGNYYRITSRIMFEPRIPTMADFVQIENCNVTFVNI
SRSELQTIVPEYIDVNKTLQELSYKLPNYTVPDLVVEQYNQTILNLTSEIS
TLENKSAELNYTVQKLQTLIDNINSTLVDLKWLNRVETYIKWPWWVW
LCISVVLIFVVSMLLLSLWMCSNGSLQCRICI
PDI-229E-H5iCT(V4)-AA(SEQ ID NO:156)
MAKNVAIFGLLFSLLVLVPSQIFAQTTNGLNTSYSVCNGCVGYSENVFA
VESGGYIPSDFAFNNWFLLTNTSSVVDGVVRSFQPLLLNCLWSVSGLRF
TTGFVYFNGTGRGDCKGFSSDVLSDVIRYNLNFEENLRRGTILFKTSYG
VVVFYCTNNTLVSGDAHIPFGTVLGNFYCFVNTTIGNETTSAFVGALPK
TVREFVISRTGHFYINGYRYFTLGNVEAVNFNVTTAETTDFCTVALASY
ADVLVNVSQTSIANIIYCNSVINRLRCDQLSFDVPDGFYSTSPIQSVELPV
SIVSLPVYHKHTFIVLYVDFKPQSGGGKCFNCYPAGVNITLANFNETKG
PLCVDTSHFTTKYVAVYANVGRWSASINTGNCPFSFGKVNNFVKFGSV
CFSLKDIPGGCAMPIVANWAYSKYYTIGSLYVSWSDGDGITGVPQPVEG
VSSFMNVTLDKCTKYNIYDVSGVGVIRVSNDTFLNGITYTSTSGNLLGF
KDVTKGTIYSITPCNPPDQLVVYQQAVVGAMLSENFTSYGFSNVVELPK
FFYASNGTYNCTDAVLTYSSFGVCADGSIIAVQPANVSYDSVSAIVTAN
LSIPSNWTTSVQVEYLQITSTPIVVDCSTYVCNGNVRCVELLKQYTSAC
KTIEDALRNSARLESADVSEMLTFDKKAFTLANVSSFGDYNLSSVIPSLP
TSGSRVAGRSAIEDILFSKLVTSGLGTVDADYKKCTKGLSIADLACAQY
YNGIMVLPGVADAERMAMYTGSLIGGIALGGLTSAVSIPFSLAIQARLN
YVALQTDVLQENQKILAASFNKAMTNIVDAFTGVNDAITQTSQALQTV
ATALNKIQDVVNQQGNSLNHLTSQLRQNFQAISSSIQAIYDRLDPPQAD
QQVDRLITGRLAALNVFVSHTLTKYTEVRASRQLAQQKVNECVKSQSK
RYGFCGNGTHIFSIVNAAPEGLVFLHTVLLPTQYKDVEAWSGLCVDGT
NGYVLRQPNLALYKEGNYYRITSRIMFEPRIPTMADFVQIENCNVTFVNI
SRSELQTIVPEYIDVNKTLQELSYKLPNYTVPDLVVEQYNQTILNLTSEIS
TLENKSAELNYTVQKLQTLIDNINSTLVDLKWLNRVETYIKWPWWVW
LCISVVLIFVVSMLLLCCSNGSLQCRICI
PDI-229E-H1cCT-AA(SEQ ID NO:157)
MAKNVAIFGLLFSLLVLVPSQIFAQTTNGLNTSYSVCNGCVGYSENVFA
VESGGYIPSDFAFNNWFLLTNTSSVVDGVVRSFQPLLLNCLWSVSGLRF
TTGFVYFNGTGRGDCKGFSSDVLSDVIRYNLNFEENLRRGTILFKTSYG
VVVFYCTNNTLVSGDAHIPFGTVLGNFYCFVNTTIGNETTSAFVGALPK
TVREFVISRTGHFYINGYRYFTLGNVEAVNFNVTTAETTDFCTVALASY
ADVLVNVSQTSIANIIYCNSVINRLRCDQLSFDVPDGFYSTSPIQSVELPV
SIVSLPVYHKHTFIVLYVDFKPQSGGGKCFNCYPAGVNITLANFNETKG
PLCVDTSHFTTKYVAVYANVGRWSASINTGNCPFSFGKVNNFVKFGSV
CFSLKDIPGGCAMPIVANWAYSKYYTIGSLYVSWSDGDGITGVPQPVEG
VSSFMNVTLDKCTKYNIYDVSGVGVIRVSNDTFLNGITYTSTSGNLLGF
KDVTKGTIYSITPCNPPDQLVVYQQAVVGAMLSENFTSYGFSNVVELPK
FFYASNGTYNCTDAVLTYSSFGVCADGSIIAVQPANVSYDSVSAIVTAN
LSIPSNWTTSVQVEYLQITSTPIVVDCSTYVCNGNVRCVELLKQYTSAC
KTIEDALRNSARLESADVSEMLTFDKKAFTLANVSSFGDYNLSSVIPSLP
TSGSRVAGRSAIEDILFSKLVTSGLGTVDADYKKCTKGLSIADLACAQY
YNGIMVLPGVADAERMAMYTGSLIGGIALGGLTSAVSIPFSLAIQARLN
YVALQTDVLQENQKILAASFNKAMTNIVDAFTGVNDAITQTSQALQTV
ATALNKIQDVVNQQGNSLNHLTSQLRQNFQAISSSIQAIYDRLDPPQAD
QQVDRLITGRLAALNVFVSHTLTKYTEVRASRQLAQQKVNECVKSQSK
RYGFCGNGTHIFSIVNAAPEGLVFLHTVLLPTQYKDVEAWSGLCVDGT
NGYVLRQPNLALYKEGNYYRITSRIMFEPRIPTMADFVQIENCNVTFVNI
SRSELQTIVPEYIDVNKTLQELSYKLPNYTVPDLVVEQYNQTILNLTSEIS
TLENKSAELNYTVQKLQTLIDNINSTLVDLKWLNRVETYIKWPWWVW
LCISVVLIFVVSMLLLSFWMCSNGSLQCRICI
Natural OC43-CoV S protein wtTM/CT AA (AVR 40344) (SEQ ID NO: 158) MFLILLISLPTAFAVIGDLNCTLDPRLKGSFNNRDTGPPSISIDTVDVTNGLGTYYVLDRVYLNTTLFLNGYYPTSGSTYRNMALKGTDLLSTLWFKPPFLSDFINGIFAKVKNTKVFKDGVMYSEFPAITIGSTFVNTSYSVVVQPRTINSTQDGVNKLQGLLEVSVCQYNMCEYPHTICHPNLGNHFKELWHYDTGVVSCLYKRNFTYDVNATYLYFHFYQEGGTFYAYFTDTGFVTKFLFNVYLGMALSHYYVMPLTCIRRPKDGFSLEYWVTPLTPRQYLLAFNQDGIIFNAVDCMSDFMSEIKCKTQSIAPPTGVYELNGYTVQPVADVYRRKPDLPNCNIEAWLNDKSVPSPLNWERKTFSNCNFNMSSLMSFIQADSFTCNNIDAAKIYGMCFSSITIDKFAIPNRRKVDLQLGNLGYLQSSNYRIDTTATSCQLYYNLPAANVSVSRFNPSTWNKRFGFIEDSVFVPQPTGVFTNHSVVYAQHCFKAPKNFCPCSSCSCPGKNNGIGTCPAGTNSLTCDNLCTLDPITLKAPDTYKCPQSKSLVGIGEHCSGLAVKSDYCGNNSCTCQPQAFLGWSADSCLQGDKCNIFANFILHDVNNGLTCSTDLQKANTEIELGVCVNYDLYGISGQGIFVEVNATYYNSWQNLLYDSNGNLYGFRDYITNRTFMIHSCYSGRVSAAYHANSSEPALLFRNIKCNYVFNNSLTRQLQPINYSFDSYLGCVVNAYNSTAISVQTCDLTVGSGYCVDYSKNRRSRRAITTGYRFTNFEPFTVNSVNDSLEPVGGLYEIQIPSEFTIGNMEEFIQTSSPKVTIDCAAFVCGDYAACKLQLVEYGSFCDNINAILTEVNELLDTTQLQVANSLMNGVTLSTKLKDGVNFNVDDINFSPVLGCLGSECSKASSRSAIEDLLFDKVKLSDVGFVEAYNNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTLAATSASLFPPWTAAAGVPFYLNVQYRINGLGVTMDVLSQNQKLIANAFNNALHAIQQGFDATNSALVKIQAVVNANAEALNNLLQQLSNRFGAISASLQEILSRLDALEAEAQIDRLINGRLTALNAYVSQQLSDSTLVKFSAAQAMEKVNECVKSQSSRINFCGNGNHIISLVQNAPYGLYFIHFNYVPTKYVTAKVSPGLCIAGNRGIAPKSGYFVNVNNTWMYTGSGYYYPEPITENNVVVMSTCAVNYTKAPYVMLNTSIPNLPDFKEELDQWFKNQTSVAPDLSLDYINVTFLDLQVEMNRLQEAIKVLNHSYINLKDIGTYEYYVKWPWYVWLLICLAGVAMLVLLFFICCCTGCGTSCFKKCGGCCDDYTGYQELVIKTSHDD
Natural 229E S protein wtTM/CT AA (P15423) (SEQ ID NO: 159)
MFVLLVAYALLHIAGCQTTNGLNTSYSVCNGCVGYSENVFAVESGGYI
PSDFAFNNWFLLTNTSSVVDGVVRSFQPLLLNCLWSVSGLRFTTGFVYF
NGTGRGDCKGFSSDVLSDVIRYNLNFEENLRRGTILFKTSYGVVVFYCT
NNTLVSGDAHIPFGTVLGNFYCFVNTTIGNETTSAFVGALPKTVREFVIS
RTGHFYINGYRYFTLGNVEAVNFNVTTAETTDFCTVALASYADVLVNV
SQTSIANIIYCNSVINRLRCDQLSFDVPDGFYSTSPIQSVELPVSIVSLPVY
HKHTFIVLYVDFKPQSGGGKCFNCYPAGVNITLANFNETKGPLCVDTSH
FTTKYVAVYANVGRWSASINTGNCPFSFGKVNNFVKFGSVCFSLKDIPG
GCAMPIVANWAYSKYYTIGSLYVSWSDGDGITGVPQPVEGVSSFMNVT
LDKCTKYNIYDVSGVGVIRVSNDTFLNGITYTSTSGNLLGFKDVTKGTI
YSITPCNPPDQLVVYQQAVVGAMLSENFTSYGFSNVVELPKFFYASNGT
YNCTDAVLTYSSFGVCADGSIIAVQPRNVSYDSVSAIVTANLSIPSNWTT
SVQVEYLQITSTPIVVDCSTYVCNGNVRCVELLKQYTSACKTIEDALRN
SARLESADVSEMLTFDKKAFTLANVSSFGDYNLSSVIPSLPTSGSRVAGR
SAIEDILFSKLVTSGLGTVDADYKKCTKGLSIADLACAQYYNGIMVLPG
VADAERMAMYTGSLIGGIALGGLTSAVSIPFSLAIQARLNYVALQTDVL
QENQKILAASFNKAMTNIVDAFTGVNDAITQTSQALQTVATALNKIQD
VVNQQGNSLNHLTSQLRQNFQAISSSIQAIYDRLDTIQADQQVDRLITGR
LAALNVFVSHTLTKYTEVRASRQLAQQKVNECVKSQSKRYGFCGNGT
HIFSIVNAAPEGLVFLHTVLLPTQYKDVEAWSGLCVDGTNGYVLRQPN
LALYKEGNYYRITSRIMFEPRIPTMADFVQIENCNVTFVNISRSELQTIVP
EYIDVNKTLQELSYKLPNYTVPDLVVEQYNQTILNLTSEISTLENKSAEL
NYTVQKLQTLIDNINSTLVDLKWLNRVETYIKWPWWVWLCISVVLIFV
VSMLLLCCCSTGCCGFFSCFASSIRGCCESTKLPYYDVEKIHIQ Natural OC43-CoV S protein wtTM/CTA (AVR 40344), signal-free peptide (SEQ ID NO: 160)
VIGDLNCTLDPRLKGSFNNRDTGPPSISIDTVDVTNGLGTYYVLDRVYL
NTTLFLNGYYPTSGSTYRNMALKGTDLLSTLWFKPPFLSDFINGIFAKV
KNTKVFKDGVMYSEFPAITIGSTFVNTSYSVVVQPRTINSTQDGVNKLQ
GLLEVSVCQYNMCEYPHTICHPNLGNHFKELWHYDTGVVSCLYKRNFT
YDVNATYLYFHFYQEGGTFYAYFTDTGFVTKFLFNVYLGMALSHYYV
MPLTCIRRPKDGFSLEYWVTPLTPRQYLLAFNQDGIIFNAVDCMSDFMS
EIKCKTQSIAPPTGVYELNGYTVQPVADVYRRKPDLPNCNIEAWLNDKS
VPSPLNWERKTFSNCNFNMSSLMSFIQADSFTCNNIDAAKIYGMCFSSIT
IDKFAIPNRRKVDLQLGNLGYLQSSNYRIDTTATSCQLYYNLPAANVSV
SRFNPSTWNKRFGFIEDSVFVPQPTGVFTNHSVVYAQHCFKAPKNFCPC
SSCSCPGKNNGIGTCPAGTNSLTCDNLCTLDPITLKAPDTYKCPQSKSLV
GIGEHCSGLAVKSDYCGNNSCTCQPQAFLGWSADSCLQGDKCNIFANFI
LHDVNNGLTCSTDLQKANTEIELGVCVNYDLYGISGQGIFVEVNATYY
NSWQNLLYDSNGNLYGFRDYITNRTFMIHSCYSGRVSAAYHANSSEPA
LLFRNIKCNYVFNNSLTRQLQPINYSFDSYLGCVVNAYNSTAISVQTCD
LTVGSGYCVDYSKNRRSRRAITTGYRFTNFEPFTVNSVNDSLEPVGGLY
EIQIPSEFTIGNMEEFIQTSSPKVTIDCAAFVCGDYAACKLQLVEYGSFCD
NINAILTEVNELLDTTQLQVANSLMNGVTLSTKLKDGVNFNVDDINFSP
VLGCLGSECSKASSRSAIEDLLFDKVKLSDVGFVEAYNNCTGGAEIRDLI
CVQSYKGIKVLPPLLSENQISGYTLAATSASLFPPWTAAAGVPFYLNVQ
YRINGLGVTMDVLSQNQKLIANAFNNALHAIQQGFDATNSALVKIQAV
VNANAEALNNLLQQLSNRFGAISASLQEILSRLDALEAEAQIDRLINGRL
TALNAYVSQQLSDSTLVKFSAAQAMEKVNECVKSQSSRINFCGNGNHII
SLVQNAPYGLYFIHFNYVPTKYVTAKVSPGLCIAGNRGIAPKSGYFVNV
NNTWMYTGSGYYYPEPITENNVVVMSTCAVNYTKAPYVMLNTSIPNLP
DFKEELDQWFKNQTSVAPDLSLDYINVTFLDLQVEMNRLQEAIKVLNH
SYINLKDIGTYEYYVKWPWYVWLLICLAGVAMLVLLFFICCCTGCGTS
CFKKCGGCCDDYTGYQELVIKTSHDD
Natural 229E S protein wtTM/CT AA (P15423), NO signal peptide (SEQ ID NO: 161) QTTNGLNTSYSVCNGCVGYSENVFAVESGGYIPSDFAFNNWFLLTNTSSVVDGVVRSFQPLLLNCLWSVSGLRFTTGFVYFNGTGRGDCKGFSSDVLSDVIRYNLNFEENLRRGTILFKTSYGVVVFYCTNNTLVSGDAHIPFGTVLGNFYCFVNTTIGNETTSAFVGALPKTVREFVISRTGHFYINGYRYFTLGNVEAVNFNVTTAETTDFCTVALASYADVLVNVSQTSIANIIYCNSVINRLRCDQLSFDVPDGFYSTSPIQSVELPVSIVSLPVYHKHTFIVLYVDFKPQSGGGKCFNCYPAGVNITLANFNETKGPLCVDTSHFTTKYVAVYANVGRWSASINTGNCPFSFGKVNNFVKFGSVCFSLKDIPGGCAMPIVANWAYSKYYTIGSLYVSWSDGDGITGVPQPVEGVSSFMNVTLDKCTKYNIYDVSGVGVIRVSNDTFLNGITYTSTSGNLLGFKDVTKGTIYSITPCNPPDQLVVYQQAVVGAMLSENFTSYGFSNVVELPKFFYASNGTYNCTDAVLTYSSFGVCADGSIIAVQPRNVSYDSVSAIVTANLSIPSNWTTSVQVEYLQITSTPIVVDCSTYVCNGNVRCVELLKQYTSACKTIEDALRNSARLESADVSEMLTFDKKAFTLANVSSFGDYNLSSVIPSLPTSGSRVAGRSAIEDILFSKLVTSGLGTVDADYKKCTKGLSIADLACAQYYNGIMVLPGVADAERMAMYTGSLIGGIALGGLTSAVSIPFSLAIQARLNYVALQTDVLQENQKILAASFNKAMTNIVDAFTGVNDAITQTSQALQTVATALNKIQDVVNQQGNSLNHLTSQLRQNFQAISSSIQAIYDRLDTIQADQQVDRLITGRLAALNVFVSHTLTKYTEVRASRQLAQQKVNECVKSQSKRYGFCGNGTHIFSIVNAAPEGLVFLHTVLLPTQYKDVEAWSGLCVDGTNGYVLRQPNLALYKEGNYYRITSRIMFEPRIPTMADFVQIENCNVTFVNISRSELQTIVPEYIDVNKTLQELSYKLPNYTVPDLVVEQYNQTILNLTSEISTLENKSAELNYTVQKLQTLIDNINSTLVDLKWLNRVETYIKWPWWVWLCISVVLIFVVSMLLLCCCSTGCCGFFSCFASSIRGCCESTKLPYYDVEKIHIQ
Modified PDI-OC43-COV wtTMCT-AA TMCT region (SEQ ID NO: 162)
WYVWLLICLAGVAMLVLLFFICCCTGCGTSCFKKCGGCCDDYTGYQELVIKTSHDD
Modified PDI-OC43-COV H5iTMCT-AA TMCT region (SEQ ID NO: 163)
WYQILSIYSTVASSLALAIMMAGLSLWMCSNGSLQCRICI
Modified PDI-OC43-COV H5iCT-AA TMCT region (SEQ ID NO: 164)
WYVWLLICLAGVAMLVLLFFISLWMCSNGSLQCRICI
Modified PDI-OC43-COV H5iCT (V4) -AA TMCT region (SEQ ID NO: 165)
WYVWLLICLAGVAMLVLLFFICCSNGSLQCRICI
Modified PDI-OC43-COV H1cCT-AA TMCT region (SEQ ID NO: 166)
WYVWLLICLAGVAMLVLLFFISFWMCSNGSLQCRICI
Modified PDI-229E-wtTMCT-AA TMCT region (SEQ ID NO: 167)
WWVWLCISVVLIFVVSMLLLCCCSTGCCGFFSCFASSIRGCCESTKLPYYDVEKIHIQ
Modified PDI-229E-H5iTMCT-AA TMCT region (SEQ ID NO: 168)
WWQILSIYSTVASSLALAIMMAGLSLWMCSNGSLQCRICI
Modified PDI-229E-H5iCT-AA TMCT region (SEQ ID NO: 169)
WWVWLCISVVLIFVVSMLLLSLWMCSNGSLQCRICI
Modified PDI-229E-H5iCT (V4) -AA TMCT region (SEQ ID NO: 170)
WWVWLCISVVLIFVVSMLLLCCSNGSLQCRICI
Modified PDI-229E-H1cCT-AA TMCT region (SEQ ID NO: 171)
WWVWLCISVVLIFVVSMLLLSFWMCSNGSLQCRICI
Modified OC43-CoV S protein TM/CT region with intermediate peptide sequence Xn (SEQ ID NO: 172)
WYVWLLICLAGVAMLVLLFFI-(X)n–csngsXXCXICI
Modified OC43-CoV S protein TM/CT region with intermediate peptide sequence Xn (SEQ ID NO: 173)
WWVWLCISVVLIFVVSMLLL-(X)n–csngsXXCXICI
All references are incorporated herein by reference.
The present invention has been described with respect to one or more embodiments. However, it will be apparent to a person skilled in the art that several changes and modifications may be made without departing from the scope of the invention as defined in the claims.
Sequence listing
<110> mideca Kagaku Co Ltd
<120> modified viral structural proteins
<130> V815385WO
<141> 2023-04-19
<150> US 63/073,327
<151> 2020-09-01
<150> US 63/211,716
<151> 2021-06-17
<160> 173
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1273
<212> PRT
<213> SARS-CoV-2
<400> 1
Met Phe Val Phe Leu Val Leu Leu Pro Leu Val Ser Ser Gln Cys Val
1 5 10 15
Asn Leu Thr Thr Arg Thr Gln Leu Pro Pro Ala Tyr Thr Asn Ser Phe
20 25 30
Thr Arg Gly Val Tyr Tyr Pro Asp Lys Val Phe Arg Ser Ser Val Leu
35 40 45
His Ser Thr Gln Asp Leu Phe Leu Pro Phe Phe Ser Asn Val Thr Trp
50 55 60
Phe His Ala Ile His Val Ser Gly Thr Asn Gly Thr Lys Arg Phe Asp
65 70 75 80
Asn Pro Val Leu Pro Phe Asn Asp Gly Val Tyr Phe Ala Ser Thr Glu
85 90 95
Lys Ser Asn Ile Ile Arg Gly Trp Ile Phe Gly Thr Thr Leu Asp Ser
100 105 110
Lys Thr Gln Ser Leu Leu Ile Val Asn Asn Ala Thr Asn Val Val Ile
115 120 125
Lys Val Cys Glu Phe Gln Phe Cys Asn Asp Pro Phe Leu Gly Val Tyr
130 135 140
Tyr His Lys Asn Asn Lys Ser Trp Met Glu Ser Glu Phe Arg Val Tyr
145 150 155 160
Ser Ser Ala Asn Asn Cys Thr Phe Glu Tyr Val Ser Gln Pro Phe Leu
165 170 175
Met Asp Leu Glu Gly Lys Gln Gly Asn Phe Lys Asn Leu Arg Glu Phe
180 185 190
Val Phe Lys Asn Ile Asp Gly Tyr Phe Lys Ile Tyr Ser Lys His Thr
195 200 205
Pro Ile Asn Leu Val Arg Asp Leu Pro Gln Gly Phe Ser Ala Leu Glu
210 215 220
Pro Leu Val Asp Leu Pro Ile Gly Ile Asn Ile Thr Arg Phe Gln Thr
225 230 235 240
Leu Leu Ala Leu His Arg Ser Tyr Leu Thr Pro Gly Asp Ser Ser Ser
245 250 255
Gly Trp Thr Ala Gly Ala Ala Ala Tyr Tyr Val Gly Tyr Leu Gln Pro
260 265 270
Arg Thr Phe Leu Leu Lys Tyr Asn Glu Asn Gly Thr Ile Thr Asp Ala
275 280 285
Val Asp Cys Ala Leu Asp Pro Leu Ser Glu Thr Lys Cys Thr Leu Lys
290 295 300
Ser Phe Thr Val Glu Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg Val
305 310 315 320
Gln Pro Thr Glu Ser Ile Val Arg Phe Pro Asn Ile Thr Asn Leu Cys
325 330 335
Pro Phe Gly Glu Val Phe Asn Ala Thr Arg Phe Ala Ser Val Tyr Ala
340 345 350
Trp Asn Arg Lys Arg Ile Ser Asn Cys Val Ala Asp Tyr Ser Val Leu
355 360 365
Tyr Asn Ser Ala Ser Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser Pro
370 375 380
Thr Lys Leu Asn Asp Leu Cys Phe Thr Asn Val Tyr Ala Asp Ser Phe
385 390 395 400
Val Ile Arg Gly Asp Glu Val Arg Gln Ile Ala Pro Gly Gln Thr Gly
405 410 415
Lys Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Thr Gly Cys
420 425 430
Val Ile Ala Trp Asn Ser Asn Asn Leu Asp Ser Lys Val Gly Gly Asn
435 440 445
Tyr Asn Tyr Leu Tyr Arg Leu Phe Arg Lys Ser Asn Leu Lys Pro Phe
450 455 460
Glu Arg Asp Ile Ser Thr Glu Ile Tyr Gln Ala Gly Ser Thr Pro Cys
465 470 475 480
Asn Gly Val Glu Gly Phe Asn Cys Tyr Phe Pro Leu Gln Ser Tyr Gly
485 490 495
Phe Gln Pro Thr Asn Gly Val Gly Tyr Gln Pro Tyr Arg Val Val Val
500 505 510
Leu Ser Phe Glu Leu Leu His Ala Pro Ala Thr Val Cys Gly Pro Lys
515 520 525
Lys Ser Thr Asn Leu Val Lys Asn Lys Cys Val Asn Phe Asn Phe Asn
530 535 540
Gly Leu Thr Gly Thr Gly Val Leu Thr Glu Ser Asn Lys Lys Phe Leu
545 550 555 560
Pro Phe Gln Gln Phe Gly Arg Asp Ile Ala Asp Thr Thr Asp Ala Val
565 570 575
Arg Asp Pro Gln Thr Leu Glu Ile Leu Asp Ile Thr Pro Cys Ser Phe
580 585 590
Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Thr Ser Asn Gln Val
595 600 605
Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Glu Val Pro Val Ala Ile
610 615 620
His Ala Asp Gln Leu Thr Pro Thr Trp Arg Val Tyr Ser Thr Gly Ser
625 630 635 640
Asn Val Phe Gln Thr Arg Ala Gly Cys Leu Ile Gly Ala Glu His Val
645 650 655
Asn Asn Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala
660 665 670
Ser Tyr Gln Thr Gln Thr Asn Ser Pro Arg Arg Ala Arg Ser Val Ala
675 680 685
Ser Gln Ser Ile Ile Ala Tyr Thr Met Ser Leu Gly Ala Glu Asn Ser
690 695 700
Val Ala Tyr Ser Asn Asn Ser Ile Ala Ile Pro Thr Asn Phe Thr Ile
705 710 715 720
Ser Val Thr Thr Glu Ile Leu Pro Val Ser Met Thr Lys Thr Ser Val
725 730 735
Asp Cys Thr Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ser Asn Leu
740 745 750
Leu Leu Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Thr
755 760 765
Gly Ile Ala Val Glu Gln Asp Lys Asn Thr Gln Glu Val Phe Ala Gln
770 775 780
Val Lys Gln Ile Tyr Lys Thr Pro Pro Ile Lys Asp Phe Gly Gly Phe
785 790 795 800
Asn Phe Ser Gln Ile Leu Pro Asp Pro Ser Lys Pro Ser Lys Arg Ser
805 810 815
Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala Gly
820 825 830
Phe Ile Lys Gln Tyr Gly Asp Cys Leu Gly Asp Ile Ala Ala Arg Asp
835 840 845
Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro Leu
850 855 860
Leu Thr Asp Glu Met Ile Ala Gln Tyr Thr Ser Ala Leu Leu Ala Gly
865 870 875 880
Thr Ile Thr Ser Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile
885 890 895
Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr
900 905 910
Gln Asn Val Leu Tyr Glu Asn Gln Lys Leu Ile Ala Asn Gln Phe Asn
915 920 925
Ser Ala Ile Gly Lys Ile Gln Asp Ser Leu Ser Ser Thr Ala Ser Ala
930 935 940
Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu Asn
945 950 955 960
Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val
965 970 975
Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln
980 985 990
Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr Val
995 1000 1005
Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu
1010 1015 1020
Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg Val
1025 1030 1035 1040
Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ser Ala
1045 1050 1055
Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ala Gln Glu
1060 1065 1070
Lys Asn Phe Thr Thr Ala Pro Ala Ile Cys His Asp Gly Lys Ala His
1075 1080 1085
Phe Pro Arg Glu Gly Val Phe Val Ser Asn Gly Thr His Trp Phe Val
1090 1095 1100
Thr Gln Arg Asn Phe Tyr Glu Pro Gln Ile Ile Thr Thr Asp Asn Thr
1105 1110 1115 1120
Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly Ile Val Asn Asn Thr
1125 1130 1135
Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu
1140 1145 1150
Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp
1155 1160 1165
Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp
1170 1175 1180
Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu
1185 1190 1195 1200
Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Ile
1205 1210 1215
Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile
1220 1225 1230
Met Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Cys Cys
1235 1240 1245
Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val
1250 1255 1260
Leu Lys Gly Val Lys Leu His Tyr Thr
1265 1270
<210> 2
<211> 1258
<212> PRT
<213> SARS-CoV-2
<400> 2
Val Asn Leu Thr Thr Arg Thr Gln Leu Pro Pro Ala Tyr Thr Asn Ser
1 5 10 15
Phe Thr Arg Gly Val Tyr Tyr Pro Asp Lys Val Phe Arg Ser Ser Val
20 25 30
Leu His Ser Thr Gln Asp Leu Phe Leu Pro Phe Phe Ser Asn Val Thr
35 40 45
Trp Phe His Ala Ile His Val Ser Gly Thr Asn Gly Thr Lys Arg Phe
50 55 60
Asp Asn Pro Val Leu Pro Phe Asn Asp Gly Val Tyr Phe Ala Ser Thr
65 70 75 80
Glu Lys Ser Asn Ile Ile Arg Gly Trp Ile Phe Gly Thr Thr Leu Asp
85 90 95
Ser Lys Thr Gln Ser Leu Leu Ile Val Asn Asn Ala Thr Asn Val Val
100 105 110
Ile Lys Val Cys Glu Phe Gln Phe Cys Asn Asp Pro Phe Leu Gly Val
115 120 125
Tyr Tyr His Lys Asn Asn Lys Ser Trp Met Glu Ser Glu Phe Arg Val
130 135 140
Tyr Ser Ser Ala Asn Asn Cys Thr Phe Glu Tyr Val Ser Gln Pro Phe
145 150 155 160
Leu Met Asp Leu Glu Gly Lys Gln Gly Asn Phe Lys Asn Leu Arg Glu
165 170 175
Phe Val Phe Lys Asn Ile Asp Gly Tyr Phe Lys Ile Tyr Ser Lys His
180 185 190
Thr Pro Ile Asn Leu Val Arg Asp Leu Pro Gln Gly Phe Ser Ala Leu
195 200 205
Glu Pro Leu Val Asp Leu Pro Ile Gly Ile Asn Ile Thr Arg Phe Gln
210 215 220
Thr Leu Leu Ala Leu His Arg Ser Tyr Leu Thr Pro Gly Asp Ser Ser
225 230 235 240
Ser Gly Trp Thr Ala Gly Ala Ala Ala Tyr Tyr Val Gly Tyr Leu Gln
245 250 255
Pro Arg Thr Phe Leu Leu Lys Tyr Asn Glu Asn Gly Thr Ile Thr Asp
260 265 270
Ala Val Asp Cys Ala Leu Asp Pro Leu Ser Glu Thr Lys Cys Thr Leu
275 280 285
Lys Ser Phe Thr Val Glu Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg
290 295 300
Val Gln Pro Thr Glu Ser Ile Val Arg Phe Pro Asn Ile Thr Asn Leu
305 310 315 320
Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Arg Phe Ala Ser Val Tyr
325 330 335
Ala Trp Asn Arg Lys Arg Ile Ser Asn Cys Val Ala Asp Tyr Ser Val
340 345 350
Leu Tyr Asn Ser Ala Ser Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser
355 360 365
Pro Thr Lys Leu Asn Asp Leu Cys Phe Thr Asn Val Tyr Ala Asp Ser
370 375 380
Phe Val Ile Arg Gly Asp Glu Val Arg Gln Ile Ala Pro Gly Gln Thr
385 390 395 400
Gly Lys Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Thr Gly
405 410 415
Cys Val Ile Ala Trp Asn Ser Asn Asn Leu Asp Ser Lys Val Gly Gly
420 425 430
Asn Tyr Asn Tyr Leu Tyr Arg Leu Phe Arg Lys Ser Asn Leu Lys Pro
435 440 445
Phe Glu Arg Asp Ile Ser Thr Glu Ile Tyr Gln Ala Gly Ser Thr Pro
450 455 460
Cys Asn Gly Val Glu Gly Phe Asn Cys Tyr Phe Pro Leu Gln Ser Tyr
465 470 475 480
Gly Phe Gln Pro Thr Asn Gly Val Gly Tyr Gln Pro Tyr Arg Val Val
485 490 495
Val Leu Ser Phe Glu Leu Leu His Ala Pro Ala Thr Val Cys Gly Pro
500 505 510
Lys Lys Ser Thr Asn Leu Val Lys Asn Lys Cys Val Asn Phe Asn Phe
515 520 525
Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Glu Ser Asn Lys Lys Phe
530 535 540
Leu Pro Phe Gln Gln Phe Gly Arg Asp Ile Ala Asp Thr Thr Asp Ala
545 550 555 560
Val Arg Asp Pro Gln Thr Leu Glu Ile Leu Asp Ile Thr Pro Cys Ser
565 570 575
Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Thr Ser Asn Gln
580 585 590
Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Glu Val Pro Val Ala
595 600 605
Ile His Ala Asp Gln Leu Thr Pro Thr Trp Arg Val Tyr Ser Thr Gly
610 615 620
Ser Asn Val Phe Gln Thr Arg Ala Gly Cys Leu Ile Gly Ala Glu His
625 630 635 640
Val Asn Asn Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys
645 650 655
Ala Ser Tyr Gln Thr Gln Thr Asn Ser Pro Arg Arg Ala Arg Ser Val
660 665 670
Ala Ser Gln Ser Ile Ile Ala Tyr Thr Met Ser Leu Gly Ala Glu Asn
675 680 685
Ser Val Ala Tyr Ser Asn Asn Ser Ile Ala Ile Pro Thr Asn Phe Thr
690 695 700
Ile Ser Val Thr Thr Glu Ile Leu Pro Val Ser Met Thr Lys Thr Ser
705 710 715 720
Val Asp Cys Thr Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ser Asn
725 730 735
Leu Leu Leu Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu
740 745 750
Thr Gly Ile Ala Val Glu Gln Asp Lys Asn Thr Gln Glu Val Phe Ala
755 760 765
Gln Val Lys Gln Ile Tyr Lys Thr Pro Pro Ile Lys Asp Phe Gly Gly
770 775 780
Phe Asn Phe Ser Gln Ile Leu Pro Asp Pro Ser Lys Pro Ser Lys Arg
785 790 795 800
Ser Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala
805 810 815
Gly Phe Ile Lys Gln Tyr Gly Asp Cys Leu Gly Asp Ile Ala Ala Arg
820 825 830
Asp Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro
835 840 845
Leu Leu Thr Asp Glu Met Ile Ala Gln Tyr Thr Ser Ala Leu Leu Ala
850 855 860
Gly Thr Ile Thr Ser Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln
865 870 875 880
Ile Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val
885 890 895
Thr Gln Asn Val Leu Tyr Glu Asn Gln Lys Leu Ile Ala Asn Gln Phe
900 905 910
Asn Ser Ala Ile Gly Lys Ile Gln Asp Ser Leu Ser Ser Thr Ala Ser
915 920 925
Ala Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu
930 935 940
Asn Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser
945 950 955 960
Val Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val
965 970 975
Gln Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr
980 985 990
Val Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn
995 1000 1005
Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg
1010 1015 1020
Val Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ser
1025 1030 1035 1040
Ala Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ala Gln
1045 1050 1055
Glu Lys Asn Phe Thr Thr Ala Pro Ala Ile Cys His Asp Gly Lys Ala
1060 1065 1070
His Phe Pro Arg Glu Gly Val Phe Val Ser Asn Gly Thr His Trp Phe
1075 1080 1085
Val Thr Gln Arg Asn Phe Tyr Glu Pro Gln Ile Ile Thr Thr Asp Asn
1090 1095 1100
Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly Ile Val Asn Asn
1105 1110 1115 1120
Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu
1125 1130 1135
Leu Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly
1140 1145 1150
Asp Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile
1155 1160 1165
Asp Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp
1170 1175 1180
Leu Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr
1185 1190 1195 1200
Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr
1205 1210 1215
Ile Met Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Cys
1220 1225 1230
Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro
1235 1240 1245
Val Leu Lys Gly Val Lys Leu His Tyr Thr
1250 1255
<210> 3
<211> 568
<212> PRT
<213> influenza
<400> 3
Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser
1 5 10 15
Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val
20 25 30
Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
35 40 45
Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys
50 55 60
Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn
65 70 75 80
Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val
85 90 95
Glu Lys Ala Asn Pro Thr Asn Asp Leu Cys Tyr Pro Gly Ser Phe Asn
100 105 110
Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu
115 120 125
Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Asp His Glu Ala Ser
130 135 140
Ser Gly Val Ser Ser Ala Cys Pro Tyr Leu Gly Ser Pro Ser Phe Phe
145 150 155 160
Arg Asn Val Val Trp Leu Ile Lys Lys Asn Ser Thr Tyr Pro Thr Ile
165 170 175
Lys Lys Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp
180 185 190
Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln
195 200 205
Asn Pro Thr Thr Tyr Ile Ser Ile Gly Thr Ser Thr Leu Asn Gln Arg
210 215 220
Leu Val Pro Lys Ile Ala Thr Arg Ser Lys Val Asn Gly Gln Ser Gly
225 230 235 240
Arg Met Glu Phe Phe Trp Thr Ile Leu Lys Pro Asn Asp Ala Ile Asn
245 250 255
Phe Glu Ser Asn Gly Asn Phe Ile Ala Pro Glu Tyr Ala Tyr Lys Ile
260 265 270
Val Lys Lys Gly Asp Ser Ala Ile Met Lys Ser Glu Leu Glu Tyr Gly
275 280 285
Asn Cys Asn Thr Lys Cys Gln Thr Pro Met Gly Ala Ile Asn Ser Ser
290 295 300
Met Pro Phe His Asn Ile His Pro Leu Thr Ile Gly Glu Cys Pro Lys
305 310 315 320
Tyr Val Lys Ser Asn Arg Leu Val Leu Ala Thr Gly Leu Arg Asn Ser
325 330 335
Pro Gln Arg Glu Ser Arg Arg Lys Lys Arg Gly Leu Phe Gly Ala Ile
340 345 350
Ala Gly Phe Ile Glu Gly Gly Trp Gln Gly Met Val Asp Gly Trp Tyr
355 360 365
Gly Tyr His His Ser Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Lys
370 375 380
Glu Ser Thr Gln Lys Ala Ile Asp Gly Val Thr Asn Lys Val Asn Ser
385 390 395 400
Ile Ile Asp Lys Met Asn Thr Gln Phe Glu Ala Val Gly Arg Glu Phe
405 410 415
Asn Asn Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Met Glu Asp
420 425 430
Gly Phe Leu Asp Val Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Met
435 440 445
Glu Asn Glu Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu
450 455 460
Tyr Asp Lys Val Arg Leu Gln Leu Arg Asp Asn Ala Lys Glu Leu Gly
465 470 475 480
Asn Gly Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Glu Cys Met Glu
485 490 495
Ser Ile Arg Asn Gly Thr Tyr Asn Tyr Pro Gln Tyr Ser Glu Glu Ala
500 505 510
Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
515 520 525
Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
530 535 540
Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
545 550 555 560
Ser Leu Gln Cys Arg Ile Cys Ile
565
<210> 4
<211> 1729
<212> DNA
<213> influenza
<400> 4
ctgtaaaaat ggagaaaata gtgcttcttc ttgcaatagt cagtcttgtt aaaagtgatc 60
agatttgcat tggttaccat gcaaacaatt caacagagca ggttgacaca atcatggaaa 120
agaacgttac tgttacacat gcccaagaca tactggaaaa gacacacaac gggaagctct 180
gcgatctaga tggagtgaag cctctaattt taagagattg tagtgtagct ggatggctcc 240
tcgggaaccc aatgtgtgac gaattcatca atgtaccgga atggtcttac atagtggaga 300
aggccaatcc aaccaatgac ctctgttacc cagggagttt caacgactat gaagaactga 360
aacacctatt gagcagaata aaccattttg agaaaattca aatcatcccc aaaagttctt 420
ggtccgatca tgaagcctca tcaggagtga gctcagcatg tccatacctg ggaagtccct 480
ccttttttag aaatgtggta tggcttatca aaaagaacag tacataccca acaataaaga 540
aaagctacaa taataccaac caagaagatc ttttggtact gtggggaatt caccatccta 600
atgatgcggc agagcagaca aggctatatc aaaacccaac cacctatatt tccattggga 660
catcaacact aaaccagaga ttggtaccaa aaatagctac tagatccaaa gtaaacgggc 720
aaagtggaag gatggagttc ttctggacaa ttttaaaacc taatgatgca atcaacttcg 780
agagtaatgg aaatttcatt gctccagaat atgcatacaa aattgtcaag aaaggggact 840
cagcaattat gaaaagtgaa ttggaatatg gtaactgcaa caccaagtgt caaactccaa 900
tgggggcgat aaactctagt atgccattcc acaacataca ccctctcacc atcggggaat 960
gccccaaata tgtgaaatca aacagattag tccttgcaac agggctcaga aatagccctc 1020
aaagagagag cagaagaaaa aagagaggac tatttggagc tatagcaggt tttatagagg 1080
gaggatggca gggaatggta gatggttggt atgggtacca ccatagcaat gagcagggga 1140
gtgggtacgc tgcagacaaa gaatccactc aaaaggcaat agatggagtc accaataagg 1200
tcaactcaat cattgacaaa atgaacactc agtttgaggc cgttggaagg gaatttaata 1260
acttagaaag gagaatagag aatttaaaca agaagatgga agacgggttt ctagatgtct 1320
ggacttataa tgccgaactt ctggttctca tggaaaatga gagaactcta gactttcatg 1380
actcaaatgt taagaacctc tacgacaagg tccgactaca gcttagggat aatgcaaagg 1440
agctgggtaa cggttgtttc gagttctatc acaaatgtga taatgaatgt atggaaagta 1500
taagaaacgg aacgtacaac tatccgcagt attcagaaga agcaagatta aaaagagagg 1560
aaataagtgg ggtaaaattg gaatcaatag gaacttacca aatactgtca atttattcaa 1620
cagtggcgag ttccctagca ctggcaatca tgatggctgg tctatcttta tggatgtgct 1680
ccaatggatc gttacaatgc agaatttgca tttaaatttg tgagttcag 1729
<210> 5
<211> 1250
<212> PRT
<213> artificial sequence
<220>
<223> modified SARS-CoV-2 with H5A/Indonesia/5/05 hemagglutinin CT AA
<400> 5
Met Phe Val Phe Leu Val Leu Leu Pro Leu Val Ser Ser Gln Cys Val
1 5 10 15
Asn Leu Thr Thr Arg Thr Gln Leu Pro Pro Ala Tyr Thr Asn Ser Phe
20 25 30
Thr Arg Gly Val Tyr Tyr Pro Asp Lys Val Phe Arg Ser Ser Val Leu
35 40 45
His Ser Thr Gln Asp Leu Phe Leu Pro Phe Phe Ser Asn Val Thr Trp
50 55 60
Phe His Ala Ile His Val Ser Gly Thr Asn Gly Thr Lys Arg Phe Asp
65 70 75 80
Asn Pro Val Leu Pro Phe Asn Asp Gly Val Tyr Phe Ala Ser Thr Glu
85 90 95
Lys Ser Asn Ile Ile Arg Gly Trp Ile Phe Gly Thr Thr Leu Asp Ser
100 105 110
Lys Thr Gln Ser Leu Leu Ile Val Asn Asn Ala Thr Asn Val Val Ile
115 120 125
Lys Val Cys Glu Phe Gln Phe Cys Asn Asp Pro Phe Leu Gly Val Tyr
130 135 140
Tyr His Lys Asn Asn Lys Ser Trp Met Glu Ser Glu Phe Arg Val Tyr
145 150 155 160
Ser Ser Ala Asn Asn Cys Thr Phe Glu Tyr Val Ser Gln Pro Phe Leu
165 170 175
Met Asp Leu Glu Gly Lys Gln Gly Asn Phe Lys Asn Leu Arg Glu Phe
180 185 190
Val Phe Lys Asn Ile Asp Gly Tyr Phe Lys Ile Tyr Ser Lys His Thr
195 200 205
Pro Ile Asn Leu Val Arg Asp Leu Pro Gln Gly Phe Ser Ala Leu Glu
210 215 220
Pro Leu Val Asp Leu Pro Ile Gly Ile Asn Ile Thr Arg Phe Gln Thr
225 230 235 240
Leu Leu Ala Leu His Arg Ser Tyr Leu Thr Pro Gly Asp Ser Ser Ser
245 250 255
Gly Trp Thr Ala Gly Ala Ala Ala Tyr Tyr Val Gly Tyr Leu Gln Pro
260 265 270
Arg Thr Phe Leu Leu Lys Tyr Asn Glu Asn Gly Thr Ile Thr Asp Ala
275 280 285
Val Asp Cys Ala Leu Asp Pro Leu Ser Glu Thr Lys Cys Thr Leu Lys
290 295 300
Ser Phe Thr Val Glu Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg Val
305 310 315 320
Gln Pro Thr Glu Ser Ile Val Arg Phe Pro Asn Ile Thr Asn Leu Cys
325 330 335
Pro Phe Gly Glu Val Phe Asn Ala Thr Arg Phe Ala Ser Val Tyr Ala
340 345 350
Trp Asn Arg Lys Arg Ile Ser Asn Cys Val Ala Asp Tyr Ser Val Leu
355 360 365
Tyr Asn Ser Ala Ser Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser Pro
370 375 380
Thr Lys Leu Asn Asp Leu Cys Phe Thr Asn Val Tyr Ala Asp Ser Phe
385 390 395 400
Val Ile Arg Gly Asp Glu Val Arg Gln Ile Ala Pro Gly Gln Thr Gly
405 410 415
Lys Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Thr Gly Cys
420 425 430
Val Ile Ala Trp Asn Ser Asn Asn Leu Asp Ser Lys Val Gly Gly Asn
435 440 445
Tyr Asn Tyr Leu Tyr Arg Leu Phe Arg Lys Ser Asn Leu Lys Pro Phe
450 455 460
Glu Arg Asp Ile Ser Thr Glu Ile Tyr Gln Ala Gly Ser Thr Pro Cys
465 470 475 480
Asn Gly Val Glu Gly Phe Asn Cys Tyr Phe Pro Leu Gln Ser Tyr Gly
485 490 495
Phe Gln Pro Thr Asn Gly Val Gly Tyr Gln Pro Tyr Arg Val Val Val
500 505 510
Leu Ser Phe Glu Leu Leu His Ala Pro Ala Thr Val Cys Gly Pro Lys
515 520 525
Lys Ser Thr Asn Leu Val Lys Asn Lys Cys Val Asn Phe Asn Phe Asn
530 535 540
Gly Leu Thr Gly Thr Gly Val Leu Thr Glu Ser Asn Lys Lys Phe Leu
545 550 555 560
Pro Phe Gln Gln Phe Gly Arg Asp Ile Ala Asp Thr Thr Asp Ala Val
565 570 575
Arg Asp Pro Gln Thr Leu Glu Ile Leu Asp Ile Thr Pro Cys Ser Phe
580 585 590
Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Thr Ser Asn Gln Val
595 600 605
Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Glu Val Pro Val Ala Ile
610 615 620
His Ala Asp Gln Leu Thr Pro Thr Trp Arg Val Tyr Ser Thr Gly Ser
625 630 635 640
Asn Val Phe Gln Thr Arg Ala Gly Cys Leu Ile Gly Ala Glu His Val
645 650 655
Asn Asn Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala
660 665 670
Ser Tyr Gln Thr Gln Thr Asn Ser Pro Arg Arg Ala Arg Ser Val Ala
675 680 685
Ser Gln Ser Ile Ile Ala Tyr Thr Met Ser Leu Gly Ala Glu Asn Ser
690 695 700
Val Ala Tyr Ser Asn Asn Ser Ile Ala Ile Pro Thr Asn Phe Thr Ile
705 710 715 720
Ser Val Thr Thr Glu Ile Leu Pro Val Ser Met Thr Lys Thr Ser Val
725 730 735
Asp Cys Thr Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ser Asn Leu
740 745 750
Leu Leu Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Thr
755 760 765
Gly Ile Ala Val Glu Gln Asp Lys Asn Thr Gln Glu Val Phe Ala Gln
770 775 780
Val Lys Gln Ile Tyr Lys Thr Pro Pro Ile Lys Asp Phe Gly Gly Phe
785 790 795 800
Asn Phe Ser Gln Ile Leu Pro Asp Pro Ser Lys Pro Ser Lys Arg Ser
805 810 815
Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala Gly
820 825 830
Phe Ile Lys Gln Tyr Gly Asp Cys Leu Gly Asp Ile Ala Ala Arg Asp
835 840 845
Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro Leu
850 855 860
Leu Thr Asp Glu Met Ile Ala Gln Tyr Thr Ser Ala Leu Leu Ala Gly
865 870 875 880
Thr Ile Thr Ser Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile
885 890 895
Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr
900 905 910
Gln Asn Val Leu Tyr Glu Asn Gln Lys Leu Ile Ala Asn Gln Phe Asn
915 920 925
Ser Ala Ile Gly Lys Ile Gln Asp Ser Leu Ser Ser Thr Ala Ser Ala
930 935 940
Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu Asn
945 950 955 960
Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val
965 970 975
Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln
980 985 990
Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr Val
995 1000 1005
Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu
1010 1015 1020
Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg Val
1025 1030 1035 1040
Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ser Ala
1045 1050 1055
Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ala Gln Glu
1060 1065 1070
Lys Asn Phe Thr Thr Ala Pro Ala Ile Cys His Asp Gly Lys Ala His
1075 1080 1085
Phe Pro Arg Glu Gly Val Phe Val Ser Asn Gly Thr His Trp Phe Val
1090 1095 1100
Thr Gln Arg Asn Phe Tyr Glu Pro Gln Ile Ile Thr Thr Asp Asn Thr
1105 1110 1115 1120
Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly Ile Val Asn Asn Thr
1125 1130 1135
Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu
1140 1145 1150
Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp
1155 1160 1165
Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp
1170 1175 1180
Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu
1185 1190 1195 1200
Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Ile
1205 1210 1215
Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile
1220 1225 1230
Met Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile
1235 1240 1245
Cys Ile
1250
<210> 6
<211> 50
<212> PRT
<213> influenza
<400> 6
Ile Asp Gly Val Lys Leu Glu Ser Thr Arg Ile Tyr Gln Ile Leu Ala
1 5 10 15
Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Val Val Ser Leu Gly
20 25 30
Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile
35 40 45
Cys Ile
50
<210> 7
<211> 50
<212> PRT
<213> influenza
<400> 7
Ile Lys Gly Val Lys Leu Ser Ser Met Gly Val Tyr Gln Ile Leu Ala
1 5 10 15
Ile Tyr Ala Thr Val Ala Gly Ser Leu Ser Leu Ala Ile Met Met Ala
20 25 30
Gly Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile
35 40 45
Cys Ile
50
<210> 8
<211> 49
<212> PRT
<213> influenza
<400> 8
Ile Lys Gly Val Glu Leu Lys Ser Gly Tyr Lys Asp Trp Ile Leu Trp
1 5 10 15
Ile Ser Phe Ala Ile Ser Cys Phe Leu Leu Cys Val Ala Leu Leu Gly
20 25 30
Phe Ile Met Trp Ala Cys Gln Lys Gly Asn Ile Arg Cys Asn Ile Cys
35 40 45
Ile
<210> 9
<211> 50
<212> PRT
<213> influenza
<400> 9
Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser
1 5 10 15
Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile Met Met Ala
20 25 30
Gly Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile
35 40 45
Cys Ile
50
<210> 10
<211> 50
<212> PRT
<213> influenza
<400> 10
Ile Glu Ser Val Lys Leu Glu Asn Leu Gly Val Tyr Gln Ile Leu Ala
1 5 10 15
Ile Tyr Ser Thr Val Ser Ser Ser Leu Val Leu Val Gly Leu Ile Met
20 25 30
Ala Met Gly Leu Trp Met Cys Ser Asn Gly Ser Met Gln Cys Arg Ile
35 40 45
Cys Ile
50
<210> 11
<211> 49
<212> PRT
<213> influenza
<400> 11
Ile Asp Pro Val Lys Leu Ser Ser Gly Tyr Lys Asp Val Ile Leu Trp
1 5 10 15
Phe Ser Phe Gly Ala Ser Cys Phe Ile Leu Leu Ala Ile Val Met Gly
20 25 30
Leu Val Phe Ile Cys Val Lys Asn Gly Asn Met Arg Cys Thr Ile Cys
35 40 45
Ile
<210> 12
<211> 50
<212> PRT
<213> influenza
<400> 12
Ile Glu Gly Val Lys Leu Glu Ser Glu Gly Thr Tyr Lys Ile Leu Thr
1 5 10 15
Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Ala Met Gly Phe Ala
20 25 30
Ala Phe Leu Phe Trp Ala Met Ser Asn Gly Ser Cys Arg Cys Asn Ile
35 40 45
Cys Ile
50
<210> 13
<211> 50
<212> PRT
<213> influenza
<400> 13
Ala Ala Ser Leu Asn Asp Asp Gly Leu Asp Asn His Thr Ile Leu Leu
1 5 10 15
Tyr Tyr Ser Thr Ala Ala Ser Ser Leu Ala Val Thr Leu Met Ile Ala
20 25 30
Ile Phe Val Val Tyr Met Val Ser Arg Asp Asn Val Ser Cys Ser Ile
35 40 45
Cys Leu
50
<210> 14
<211> 50
<212> PRT
<213> artificial sequence
<220>
<223> consensus sequence of C-terminal region of influenza hemagglutinin
<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (7)..(7)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (9)..(9)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (11)..(11)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (13)..(13)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (16)..(16)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (26)..(26)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (28)..(36)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (44)..(45)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (47)..(47)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (2)..(2)
<223> The 'Xaa' at location 2 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (7)..(7)
<223> The 'Xaa' at location 7 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (9)..(9)
<223> The 'Xaa' at location 9 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (11)..(11)
<223> The 'Xaa' at location 11 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (13)..(13)
<223> The 'Xaa' at location 13 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (16)..(16)
<223> The 'Xaa' at location 16 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (26)..(26)
<223> The 'Xaa' at location 26 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (28)..(28)
<223> The 'Xaa' at location 28 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (29)..(29)
<223> The 'Xaa' at location 29 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (30)..(30)
<223> The 'Xaa' at location 30 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (31)..(31)
<223> The 'Xaa' at location 31 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (32)..(32)
<223> The 'Xaa' at location 32 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (33)..(33)
<223> The 'Xaa' at location 33 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (34)..(34)
<223> The 'Xaa' at location 34 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (35)..(35)
<223> The 'Xaa' at location 35 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (36)..(36)
<223> The 'Xaa' at location 36 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (44)..(44)
<223> The 'Xaa' at location 44 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (45)..(45)
<223> The 'Xaa' at location 45 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (47)..(47)
<223> The 'Xaa' at location 47 stands for Gln, Arg, Pro, or Leu.
<400> 14
Ile Xaa Gly Val Lys Leu Xaa Ser Xaa Gly Xaa Tyr Xaa Ile Leu Xaa
1 5 10 15
Ile Tyr Ser Thr Val Ala Ser Ser Leu Xaa Leu Xaa Xaa Xaa Xaa Xaa
20 25 30
Xaa Xaa Xaa Xaa Trp Met Cys Ser Asn Gly Ser Xaa Xaa Cys Xaa Ile
35 40 45
Cys Ile
50
<210> 15
<211> 16
<212> PRT
<213> artificial sequence
<220>
<223> consensus sequence of CT Domain of influenza hemagglutinin
<220>
<221> misc_feature
<222> (1)..(2)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (10)..(11)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (13)..(13)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (1)..(1)
<223> The 'Xaa' at location 1 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (2)..(2)
<223> The 'Xaa' at location 2 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (10)..(10)
<223> The 'Xaa' at location 10 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (11)..(11)
<223> The 'Xaa' at location 11 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (13)..(13)
<223> The 'Xaa' at location 13 stands for Gln, Arg, Pro, or Leu.
<400> 15
Xaa Xaa Trp Met Cys Ser Asn Gly Ser Xaa Xaa Cys Xaa Ile Cys Ile
1 5 10 15
<210> 16
<211> 69
<212> PRT
<213> SARS-CoV-2
<400> 16
Trp Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe
1 5 10 15
Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Cys Cys
20 25 30
Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Cys Cys Ser Cys Gly Ser
35 40 45
Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys Gly Val
50 55 60
Lys Leu His Tyr Thr
65
<210> 17
<211> 50
<212> PRT
<213> influenza
<400> 17
Ile Ser Gly Val Lys Leu Glu Ser Ile Gly Thr Tyr Gln Ile Leu Ser
1 5 10 15
Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala Leu Ala Ile Met Met Ala
20 25 30
Gly Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile
35 40 45
Cys Ile
50
<210> 18
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> modified SARS-CoV-2S protein, having the C-terminal region of H5i hemagglutinin CT
<400> 18
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln
20 25 30
Cys Arg Ile Cys Ile
35
<210> 19
<211> 40
<212> PRT
<213> artificial sequence
<220>
<223> modified SARS-CoV-2S protein, having H5i hemagglutinin CT, C-terminal region of Change 1
<400> 19
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
20 25 30
Ser Leu Gln Cys Arg Ile Cys Ile
35 40
<210> 20
<211> 1258
<212> PRT
<213> artificial sequence
<220>
<223> (SP-free) SARS-CoV-2S protein GSAS+PP wtTM/CT AA
<400> 20
Val Asn Leu Thr Thr Arg Thr Gln Leu Pro Pro Ala Tyr Thr Asn Ser
1 5 10 15
Phe Thr Arg Gly Val Tyr Tyr Pro Asp Lys Val Phe Arg Ser Ser Val
20 25 30
Leu His Ser Thr Gln Asp Leu Phe Leu Pro Phe Phe Ser Asn Val Thr
35 40 45
Trp Phe His Ala Ile His Val Ser Gly Thr Asn Gly Thr Lys Arg Phe
50 55 60
Asp Asn Pro Val Leu Pro Phe Asn Asp Gly Val Tyr Phe Ala Ser Thr
65 70 75 80
Glu Lys Ser Asn Ile Ile Arg Gly Trp Ile Phe Gly Thr Thr Leu Asp
85 90 95
Ser Lys Thr Gln Ser Leu Leu Ile Val Asn Asn Ala Thr Asn Val Val
100 105 110
Ile Lys Val Cys Glu Phe Gln Phe Cys Asn Asp Pro Phe Leu Gly Val
115 120 125
Tyr Tyr His Lys Asn Asn Lys Ser Trp Met Glu Ser Glu Phe Arg Val
130 135 140
Tyr Ser Ser Ala Asn Asn Cys Thr Phe Glu Tyr Val Ser Gln Pro Phe
145 150 155 160
Leu Met Asp Leu Glu Gly Lys Gln Gly Asn Phe Lys Asn Leu Arg Glu
165 170 175
Phe Val Phe Lys Asn Ile Asp Gly Tyr Phe Lys Ile Tyr Ser Lys His
180 185 190
Thr Pro Ile Asn Leu Val Arg Asp Leu Pro Gln Gly Phe Ser Ala Leu
195 200 205
Glu Pro Leu Val Asp Leu Pro Ile Gly Ile Asn Ile Thr Arg Phe Gln
210 215 220
Thr Leu Leu Ala Leu His Arg Ser Tyr Leu Thr Pro Gly Asp Ser Ser
225 230 235 240
Ser Gly Trp Thr Ala Gly Ala Ala Ala Tyr Tyr Val Gly Tyr Leu Gln
245 250 255
Pro Arg Thr Phe Leu Leu Lys Tyr Asn Glu Asn Gly Thr Ile Thr Asp
260 265 270
Ala Val Asp Cys Ala Leu Asp Pro Leu Ser Glu Thr Lys Cys Thr Leu
275 280 285
Lys Ser Phe Thr Val Glu Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg
290 295 300
Val Gln Pro Thr Glu Ser Ile Val Arg Phe Pro Asn Ile Thr Asn Leu
305 310 315 320
Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Arg Phe Ala Ser Val Tyr
325 330 335
Ala Trp Asn Arg Lys Arg Ile Ser Asn Cys Val Ala Asp Tyr Ser Val
340 345 350
Leu Tyr Asn Ser Ala Ser Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser
355 360 365
Pro Thr Lys Leu Asn Asp Leu Cys Phe Thr Asn Val Tyr Ala Asp Ser
370 375 380
Phe Val Ile Arg Gly Asp Glu Val Arg Gln Ile Ala Pro Gly Gln Thr
385 390 395 400
Gly Lys Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Thr Gly
405 410 415
Cys Val Ile Ala Trp Asn Ser Asn Asn Leu Asp Ser Lys Val Gly Gly
420 425 430
Asn Tyr Asn Tyr Leu Tyr Arg Leu Phe Arg Lys Ser Asn Leu Lys Pro
435 440 445
Phe Glu Arg Asp Ile Ser Thr Glu Ile Tyr Gln Ala Gly Ser Thr Pro
450 455 460
Cys Asn Gly Val Glu Gly Phe Asn Cys Tyr Phe Pro Leu Gln Ser Tyr
465 470 475 480
Gly Phe Gln Pro Thr Asn Gly Val Gly Tyr Gln Pro Tyr Arg Val Val
485 490 495
Val Leu Ser Phe Glu Leu Leu His Ala Pro Ala Thr Val Cys Gly Pro
500 505 510
Lys Lys Ser Thr Asn Leu Val Lys Asn Lys Cys Val Asn Phe Asn Phe
515 520 525
Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Glu Ser Asn Lys Lys Phe
530 535 540
Leu Pro Phe Gln Gln Phe Gly Arg Asp Ile Ala Asp Thr Thr Asp Ala
545 550 555 560
Val Arg Asp Pro Gln Thr Leu Glu Ile Leu Asp Ile Thr Pro Cys Ser
565 570 575
Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Thr Ser Asn Gln
580 585 590
Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Glu Val Pro Val Ala
595 600 605
Ile His Ala Asp Gln Leu Thr Pro Thr Trp Arg Val Tyr Ser Thr Gly
610 615 620
Ser Asn Val Phe Gln Thr Arg Ala Gly Cys Leu Ile Gly Ala Glu His
625 630 635 640
Val Asn Asn Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys
645 650 655
Ala Ser Tyr Gln Thr Gln Thr Asn Ser Pro Gly Ser Ala Ser Ser Val
660 665 670
Ala Ser Gln Ser Ile Ile Ala Tyr Thr Met Ser Leu Gly Ala Glu Asn
675 680 685
Ser Val Ala Tyr Ser Asn Asn Ser Ile Ala Ile Pro Thr Asn Phe Thr
690 695 700
Ile Ser Val Thr Thr Glu Ile Leu Pro Val Ser Met Thr Lys Thr Ser
705 710 715 720
Val Asp Cys Thr Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ser Asn
725 730 735
Leu Leu Leu Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu
740 745 750
Thr Gly Ile Ala Val Glu Gln Asp Lys Asn Thr Gln Glu Val Phe Ala
755 760 765
Gln Val Lys Gln Ile Tyr Lys Thr Pro Pro Ile Lys Asp Phe Gly Gly
770 775 780
Phe Asn Phe Ser Gln Ile Leu Pro Asp Pro Ser Lys Pro Ser Lys Arg
785 790 795 800
Ser Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala
805 810 815
Gly Phe Ile Lys Gln Tyr Gly Asp Cys Leu Gly Asp Ile Ala Ala Arg
820 825 830
Asp Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro
835 840 845
Leu Leu Thr Asp Glu Met Ile Ala Gln Tyr Thr Ser Ala Leu Leu Ala
850 855 860
Gly Thr Ile Thr Ser Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln
865 870 875 880
Ile Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val
885 890 895
Thr Gln Asn Val Leu Tyr Glu Asn Gln Lys Leu Ile Ala Asn Gln Phe
900 905 910
Asn Ser Ala Ile Gly Lys Ile Gln Asp Ser Leu Ser Ser Thr Ala Ser
915 920 925
Ala Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu
930 935 940
Asn Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser
945 950 955 960
Val Leu Asn Asp Ile Leu Ser Arg Leu Asp Pro Pro Glu Ala Glu Val
965 970 975
Gln Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr
980 985 990
Val Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn
995 1000 1005
Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg
1010 1015 1020
Val Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ser
1025 1030 1035 1040
Ala Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ala Gln
1045 1050 1055
Glu Lys Asn Phe Thr Thr Ala Pro Ala Ile Cys His Asp Gly Lys Ala
1060 1065 1070
His Phe Pro Arg Glu Gly Val Phe Val Ser Asn Gly Thr His Trp Phe
1075 1080 1085
Val Thr Gln Arg Asn Phe Tyr Glu Pro Gln Ile Ile Thr Thr Asp Asn
1090 1095 1100
Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly Ile Val Asn Asn
1105 1110 1115 1120
Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu
1125 1130 1135
Leu Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly
1140 1145 1150
Asp Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile
1155 1160 1165
Asp Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp
1170 1175 1180
Leu Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr
1185 1190 1195 1200
Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr
1205 1210 1215
Ile Met Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Cys
1220 1225 1230
Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro
1235 1240 1245
Val Leu Lys Gly Val Lys Leu His Tyr Thr
1250 1255
<210> 21
<211> 1235
<212> PRT
<213> artificial sequence
<220>
<223> (no SP) modified SARS-CoV-2S protein GSAS+PP, having H5i hemagglutinin CT AA
<400> 21
Val Asn Leu Thr Thr Arg Thr Gln Leu Pro Pro Ala Tyr Thr Asn Ser
1 5 10 15
Phe Thr Arg Gly Val Tyr Tyr Pro Asp Lys Val Phe Arg Ser Ser Val
20 25 30
Leu His Ser Thr Gln Asp Leu Phe Leu Pro Phe Phe Ser Asn Val Thr
35 40 45
Trp Phe His Ala Ile His Val Ser Gly Thr Asn Gly Thr Lys Arg Phe
50 55 60
Asp Asn Pro Val Leu Pro Phe Asn Asp Gly Val Tyr Phe Ala Ser Thr
65 70 75 80
Glu Lys Ser Asn Ile Ile Arg Gly Trp Ile Phe Gly Thr Thr Leu Asp
85 90 95
Ser Lys Thr Gln Ser Leu Leu Ile Val Asn Asn Ala Thr Asn Val Val
100 105 110
Ile Lys Val Cys Glu Phe Gln Phe Cys Asn Asp Pro Phe Leu Gly Val
115 120 125
Tyr Tyr His Lys Asn Asn Lys Ser Trp Met Glu Ser Glu Phe Arg Val
130 135 140
Tyr Ser Ser Ala Asn Asn Cys Thr Phe Glu Tyr Val Ser Gln Pro Phe
145 150 155 160
Leu Met Asp Leu Glu Gly Lys Gln Gly Asn Phe Lys Asn Leu Arg Glu
165 170 175
Phe Val Phe Lys Asn Ile Asp Gly Tyr Phe Lys Ile Tyr Ser Lys His
180 185 190
Thr Pro Ile Asn Leu Val Arg Asp Leu Pro Gln Gly Phe Ser Ala Leu
195 200 205
Glu Pro Leu Val Asp Leu Pro Ile Gly Ile Asn Ile Thr Arg Phe Gln
210 215 220
Thr Leu Leu Ala Leu His Arg Ser Tyr Leu Thr Pro Gly Asp Ser Ser
225 230 235 240
Ser Gly Trp Thr Ala Gly Ala Ala Ala Tyr Tyr Val Gly Tyr Leu Gln
245 250 255
Pro Arg Thr Phe Leu Leu Lys Tyr Asn Glu Asn Gly Thr Ile Thr Asp
260 265 270
Ala Val Asp Cys Ala Leu Asp Pro Leu Ser Glu Thr Lys Cys Thr Leu
275 280 285
Lys Ser Phe Thr Val Glu Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg
290 295 300
Val Gln Pro Thr Glu Ser Ile Val Arg Phe Pro Asn Ile Thr Asn Leu
305 310 315 320
Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Arg Phe Ala Ser Val Tyr
325 330 335
Ala Trp Asn Arg Lys Arg Ile Ser Asn Cys Val Ala Asp Tyr Ser Val
340 345 350
Leu Tyr Asn Ser Ala Ser Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser
355 360 365
Pro Thr Lys Leu Asn Asp Leu Cys Phe Thr Asn Val Tyr Ala Asp Ser
370 375 380
Phe Val Ile Arg Gly Asp Glu Val Arg Gln Ile Ala Pro Gly Gln Thr
385 390 395 400
Gly Lys Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Thr Gly
405 410 415
Cys Val Ile Ala Trp Asn Ser Asn Asn Leu Asp Ser Lys Val Gly Gly
420 425 430
Asn Tyr Asn Tyr Leu Tyr Arg Leu Phe Arg Lys Ser Asn Leu Lys Pro
435 440 445
Phe Glu Arg Asp Ile Ser Thr Glu Ile Tyr Gln Ala Gly Ser Thr Pro
450 455 460
Cys Asn Gly Val Glu Gly Phe Asn Cys Tyr Phe Pro Leu Gln Ser Tyr
465 470 475 480
Gly Phe Gln Pro Thr Asn Gly Val Gly Tyr Gln Pro Tyr Arg Val Val
485 490 495
Val Leu Ser Phe Glu Leu Leu His Ala Pro Ala Thr Val Cys Gly Pro
500 505 510
Lys Lys Ser Thr Asn Leu Val Lys Asn Lys Cys Val Asn Phe Asn Phe
515 520 525
Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Glu Ser Asn Lys Lys Phe
530 535 540
Leu Pro Phe Gln Gln Phe Gly Arg Asp Ile Ala Asp Thr Thr Asp Ala
545 550 555 560
Val Arg Asp Pro Gln Thr Leu Glu Ile Leu Asp Ile Thr Pro Cys Ser
565 570 575
Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Thr Ser Asn Gln
580 585 590
Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Glu Val Pro Val Ala
595 600 605
Ile His Ala Asp Gln Leu Thr Pro Thr Trp Arg Val Tyr Ser Thr Gly
610 615 620
Ser Asn Val Phe Gln Thr Arg Ala Gly Cys Leu Ile Gly Ala Glu His
625 630 635 640
Val Asn Asn Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys
645 650 655
Ala Ser Tyr Gln Thr Gln Thr Asn Ser Pro Gly Ser Ala Ser Ser Val
660 665 670
Ala Ser Gln Ser Ile Ile Ala Tyr Thr Met Ser Leu Gly Ala Glu Asn
675 680 685
Ser Val Ala Tyr Ser Asn Asn Ser Ile Ala Ile Pro Thr Asn Phe Thr
690 695 700
Ile Ser Val Thr Thr Glu Ile Leu Pro Val Ser Met Thr Lys Thr Ser
705 710 715 720
Val Asp Cys Thr Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ser Asn
725 730 735
Leu Leu Leu Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu
740 745 750
Thr Gly Ile Ala Val Glu Gln Asp Lys Asn Thr Gln Glu Val Phe Ala
755 760 765
Gln Val Lys Gln Ile Tyr Lys Thr Pro Pro Ile Lys Asp Phe Gly Gly
770 775 780
Phe Asn Phe Ser Gln Ile Leu Pro Asp Pro Ser Lys Pro Ser Lys Arg
785 790 795 800
Ser Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala
805 810 815
Gly Phe Ile Lys Gln Tyr Gly Asp Cys Leu Gly Asp Ile Ala Ala Arg
820 825 830
Asp Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro
835 840 845
Leu Leu Thr Asp Glu Met Ile Ala Gln Tyr Thr Ser Ala Leu Leu Ala
850 855 860
Gly Thr Ile Thr Ser Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln
865 870 875 880
Ile Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val
885 890 895
Thr Gln Asn Val Leu Tyr Glu Asn Gln Lys Leu Ile Ala Asn Gln Phe
900 905 910
Asn Ser Ala Ile Gly Lys Ile Gln Asp Ser Leu Ser Ser Thr Ala Ser
915 920 925
Ala Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu
930 935 940
Asn Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser
945 950 955 960
Val Leu Asn Asp Ile Leu Ser Arg Leu Asp Pro Pro Glu Ala Glu Val
965 970 975
Gln Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr
980 985 990
Val Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn
995 1000 1005
Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg
1010 1015 1020
Val Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ser
1025 1030 1035 1040
Ala Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ala Gln
1045 1050 1055
Glu Lys Asn Phe Thr Thr Ala Pro Ala Ile Cys His Asp Gly Lys Ala
1060 1065 1070
His Phe Pro Arg Glu Gly Val Phe Val Ser Asn Gly Thr His Trp Phe
1075 1080 1085
Val Thr Gln Arg Asn Phe Tyr Glu Pro Gln Ile Ile Thr Thr Asp Asn
1090 1095 1100
Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly Ile Val Asn Asn
1105 1110 1115 1120
Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu
1125 1130 1135
Leu Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly
1140 1145 1150
Asp Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile
1155 1160 1165
Asp Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp
1170 1175 1180
Leu Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr
1185 1190 1195 1200
Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr
1205 1210 1215
Ile Met Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg
1220 1225 1230
Ile Cys Ile
1235
<210> 22
<211> 3849
<212> DNA
<213> artificial sequence
<220>
<223> PDI-SARS-CoV-2S protein GSAS+PP wtTM/CT-DNA
<400> 22
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctct gctgcatgac ctcttgctgc tcctgtctga aaggctgctg ctcttgcgga 3780
tcctgctgca aatttgatga ggatgacagt gaaccagtcc tgaagggcgt gaagctgcac 3840
tatacttag 3849
<210> 23
<211> 1282
<212> PRT
<213> artificial sequence
<220>
<223> PDI-SARS-CoV-2S protein GSAS+PP wtTM/CT-AA
<400> 23
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Cys Cys Met Thr Ser
1235 1240 1245
Cys Cys Ser Cys Leu Lys Gly Cys Cys Ser Cys Gly Ser Cys Cys Lys
1250 1255 1260
Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys Gly Val Lys Leu His
1265 1270 1275 1280
Tyr Thr
<210> 24
<211> 52
<212> DNA
<213> artificial sequence
<220>
<223> IF(PDI)-CoV(opt2).c
<400> 24
tctcagatct tcgcggtgaa tcttacgacg cgaacacagt taccacccgc at 52
<210> 25
<211> 51
<212> DNA
<213> artificial sequence
<220>
<223> IF(AVB)-CoV(opt2).r
<400> 25
acgacacgac taaggcctct aagtatagtg cagcttcacg cccttcagga c 51
<210> 26
<211> 3789
<212> DNA
<213> artificial sequence
<220>
<223> PDI-modified SARS-CoV-2S protein GSAS+PP H5iTM/CT-DNA
<400> 26
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atcaaatact gtcaatttat tcaacagtgg cgagttccct agcactggca 3720
atcatgatgg ctggtctatc tttatggatg tgctccaatg gatcgttaca atgcagaatt 3780
tgcatttaa 3789
<210> 27
<211> 1262
<212> PRT
<213> artificial sequence
<220>
<223> PDI-modified SARS-CoV-2S protein GSAS+PP H5iTM/CT-AA
<400> 27
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Gln Ile Leu Ser Ile Tyr Ser Thr
1220 1225 1230
Val Ala Ser Ser Leu Ala Leu Ala Ile Met Met Ala Gly Leu Ser Leu
1235 1240 1245
Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255 1260
<210> 28
<211> 48
<212> DNA
<213> artificial sequence
<220>
<223> IF(Avb)-H5I.r
<400> 28
acgacacgac taaggccttt aaatgcaaat tctgcattgt aacgatcc 48
<210> 29
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-modified SARS-CoV-2S protein GSAS+PP wtTM/H5iCT-DNA
<400> 29
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctct ctttatggat gtgctccaat ggatcgttac aatgcagaat ttgcatttaa 3780
<210> 30
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> PDI-modified SARS-CoV-2S protein GSAS+PP wtTM/H5iCT-AA
<400> 30
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Ser Leu Trp Met Cys
1235 1240 1245
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 31
<211> 4474
<212> DNA
<213> artificial sequence
<220>
<223> cloning vector 8501 from left to right T-DNA
<400> 31
tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 60
gacgttttta atgtactgaa ttaacgccga atcccgggct ggtatattta tatgttgtca 120
aataactcaa aaaccataaa agtttaagtt agcaagtgtg tacattttta cttgaacaaa 180
aatattcacc tactactgtt ataaatcatt attaaacatt agagtaaaga aatatggatg 240
ataagaacaa gagtagtgat attttgacaa caattttgtt gcaacatttg agaaaatttt 300
gttgttctct cttttcattg gtcaaaaaca atagagagag aaaaaggaag agggagaata 360
aaaacataat gtgagtatga gagagaaagt tgtacaaaag ttgtaccaaa atagttgtac 420
aaatatcatt gaggaatttg acaaaagcta cacaaataag ggttaattgc tgtaaataaa 480
taaggatgac gcattagaga gatgtaccat tagagaattt ttggcaagtc attaaaaaga 540
aagaataaat tatttttaaa attaaaagtt gagtcatttg attaaacatg tgattattta 600
atgaattgat gaaagagttg gattaaagtt gtattagtaa ttagaatttg gtgtcaaatt 660
taatttgaca tttgatcttt tcctatatat tgccccatag agtcagttaa ctcattttta 720
tatttcatag atcaaataag agaaataacg gtatattaat ccctccaaaa aaaaaaaacg 780
gtatatttac taaaaaatct aagccacgta ggaggataac aggatccccg taggaggata 840
acatccaatc caaccaatca caacaatcct gatgagataa cccactttaa gcccacgcat 900
ctgtggcaca tctacattat ctaaatcaca cattcttcca cacatctgag ccacacaaaa 960
accaatccac atctttatca cccattctat aaaaaatcac actttgtgag tctacacttt 1020
gattcccttc aaacacatac aaagagaaga gactaattaa ttaattaatc atcttgagag 1080
aaaatggaac gagctataca aggaaacgac gctagggaac aagctaacag tgaacgttgg 1140
gatggaggat caggaggtac cacttctccc ttcaaacttc ctgacgaaag tccgagttgg 1200
actgagtggc ggctacataa cgatgagacg aattcgaatc aagataatcc ccttggtttc 1260
aaggaaagct ggggtttcgg gaaagttgta tttaagagat atctcagata cgacaggacg 1320
gaagcttcac tgcacagagt ccttggatct tggacgggag attcggttaa ctatgcagca 1380
tctcgatttt tcggtttcga ccagatcgga tgtacctata gtattcggtt tcgaggagtt 1440
agtatcaccg tttctggagg gtcgcgaact cttcagcatc tctgtgagat ggcaattcgg 1500
tctaagcaag aactgctaca gcttgcccca atcgaagtgg aaagtaatgt atcaagagga 1560
tgccctgaag gtactcaaac cttcgaaaaa gaaagcgagt aagttaaaat gcttcttcgt 1620
ctcctattta taatatggtt tgttattgtt aattttgttc ttgtagaaga gcttaattaa 1680
tcgttgttgt tatgaaatac tatttgtatg agatgaactg gtgtaatgta attcatttac 1740
ataagtggag tcagaatcag aatgtttcct ccataactaa ctagacatga agacctgccg 1800
cgtacaattg tcttatattt gaacaactaa aattgaacat cttttgccac aactttataa 1860
gtggttaata tagctcaaat atatggtcaa gttcaataga ttaataatgg aaatatcagt 1920
tatcgaaatt cattaacaat caacttaacg ttattaacta ctaattttat atcatcccct 1980
ttgataaatg atagtacacc aattaggaag gagcatgctc gcctaggaga ttgtcgtttc 2040
ccgccttcag tttgcaagct gctctagccg tgtagccaat acgcaaaccg cctctccccg 2100
cgcgttggga attactagcg cgtgtcgaca agcttgcatg ccggtcaaca tggtggagca 2160
cgacacactt gtctactcca aaaatatcaa agatacagtc tcagaagacc aaagggcaat 2220
tgagactttt caacaaaggg taatatccgg aaacctcctc ggattccatt gcccagctat 2280
ctgtcacttt attgtgaaga tagtggaaaa ggaaggtggc tcctacaaat gccatcattg 2340
cgataaagga aaggccatcg ttgaagatgc ctctgccgac agtggtccca aagatggacc 2400
cccacccacg aggagcatcg tggaaaaaga agacgttcca accacgtctt caaagcaagt 2460
ggattgatgt gataacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga 2520
tacagtctca gaagaccaaa gggcaattga gacttttcaa caaagggtaa tatccggaaa 2580
cctcctcgga ttccattgcc cagctatctg tcactttatt gtgaagatag tggaaaagga 2640
aggtggctcc tacaaatgcc atcattgcga taaaggaaag gccatcgttg aagatgcctc 2700
tgccgacagt ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga 2760
cgttccaacc acgtcttcaa agcaagtgga ttgatgtgat atctccactg acgtaaggga 2820
tgacgcacaa tcccactatc cttcgcaaga cccttcctct atataaggaa gttcatttca 2880
tttggagagg cacacaattt gctttagtga ttaaactttc ttttacaaca aattaaaggt 2940
ctattatctc ccaacaacat aagaaaacaa tggcgaaaaa cgttgcgatt ttcggcttat 3000
tgttttctct tcttgtgttg gttccttctc agatcttcgc gacgtcactc ctcagccaaa 3060
acgacacccc catctgtcta tccactggcc cctggatctg ctgcccaaac taactccatg 3120
gtgaccctgg gatgcctggt caagggctat ttccctgagc cagtgacagt gacctggaac 3180
tctggatccc tgtccagcgg tgtgcacacc ttcccagctg tcctgcagtc tgacctctac 3240
actctgagca gctcagtgac tgtcccctcc agcacctggc ccagcgagac cgtcacctgc 3300
aacgttgccc acccggccag cagcaccaag gtggacaaga aaattgtgcc cagggattgt 3360
ggttgtaagc cttgcatatg tacagtccca gaagtatcat ctgtcttcat cttcccccca 3420
aagcccaagg atgtgctcac cattactctg actcctaagg tcacgtgtgt tgtggtagac 3480
atcagcaagg atgatcccga ggtccagttc agctggtttg tagatgatgt ggaggtgcac 3540
acagctcaga cgcaaccccg ggaggagcag ttcaacagca ctttccgctc agtcagtgaa 3600
cttcccatca tgcaccagga ctggctcaat ggcaaggaga cgtccagatt ttggcgatct 3660
attcaactgt cgccagttca ttggtactgg tagtctccct gggggcaatc agtttctgga 3720
tgtgctctaa tgggtctcta cagtgtagaa tatgtattta aaggccttag tcgtgtcgtt 3780
tttcaaataa tataatcctt ttagggtttt agttagttta aattttctgt tgctcctgtt 3840
tagcaggtcg tgccttcagc aagcacacaa aaacagagtg tttattttaa gttgtttgtt 3900
tagtgattca aaaaaaaaat cgttcaaaca tttggcaata aagtttctta agattgaatc 3960
ctgttgccgg tcttgcgatg attatcatat aatttctgtt gaattacgtt aagcatgtaa 4020
taattaacat gtaatgcatg acgttattta tgagatgggt ttttatgatt agagtcccgc 4080
aattatacat ttaatacgcg atagaaaaca aaatatagcg cgcaaactag gataaattat 4140
cgcgcgcggt gtcatctatg ttactagatc tctagagtct caagcttggc gcgcccacgt 4200
gactagtggc actggccgtc gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc 4260
aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc gaagaggccc 4320
gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatgctag agcagcttga 4380
gcttggatca gattgtcgtt tcccgccttc agtttaaact atcagtgttt gacaggatat 4440
attggcgggt aaacctaaga gaaaagagcg ttta 4474
<210> 32
<211> 5083
<212> DNA
<213> artificial sequence
<220>
<223> construct 8586 from 2X35S prom to NOS term
<400> 32
gtcaacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga tacagtctca 60
gaagaccaaa gggcaattga gacttttcaa caaagggtaa tatccggaaa cctcctcgga 120
ttccattgcc cagctatctg tcactttatt gtgaagatag tggaaaagga aggtggctcc 180
tacaaatgcc atcattgcga taaaggaaag gccatcgttg aagatgcctc tgccgacagt 240
ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga cgttccaacc 300
acgtcttcaa agcaagtgga ttgatgtgat aacatggtgg agcacgacac acttgtctac 360
tccaaaaata tcaaagatac agtctcagaa gaccaaaggg caattgagac ttttcaacaa 420
agggtaatat ccggaaacct cctcggattc cattgcccag ctatctgtca ctttattgtg 480
aagatagtgg aaaaggaagg tggctcctac aaatgccatc attgcgataa aggaaaggcc 540
atcgttgaag atgcctctgc cgacagtggt cccaaagatg gacccccacc cacgaggagc 600
atcgtggaaa aagaagacgt tccaaccacg tcttcaaagc aagtggattg atgtgatatc 660
tccactgacg taagggatga cgcacaatcc cactatcctt cgcaagaccc ttcctctata 720
taaggaagtt catttcattt ggagaggcac acaatttgct ttagtgatta aactttcttt 780
tacaacaaat taaaggtcta ttatctccca acaacataag aaaacaatgg cgaaaaacgt 840
tgcgattttc ggcttattgt tttctcttct tgtgttggtt ccttctcaga tcttcgcggt 900
gaatcttacg acgcgaacac agttaccacc cgcatataca aatagcttca ctcggggtgt 960
ttattacccc gacaaagtgt tcaggtcctc cgtgctccac tcaacacagg acctctttct 1020
tcctttcttt tctaacgtga catggtttca tgccattcat gtatccggca ctaacggtac 1080
taagaggttc gataatcctg tgctcccttt caatgacggc gtttactttg caagcacaga 1140
gaagagtaac atcatccgag gttggatctt tggcactacc ctcgattcaa agacgcagag 1200
cctcctcatt gtgaacaatg ccactaacgt ggtgatcaaa gtttgcgagt ttcagttctg 1260
caatgaccct ttcttggggg tgtactatca taagaacaac aagtcttgga tggaatctga 1320
attccgcgtc tatagcagcg ccaacaactg cacctttgaa tacgtgtccc agcccttcct 1380
tatggacctg gagggaaagc agggaaactt taagaatctg agagagttcg tgtttaaaaa 1440
tatcgacggc tattttaaga tctattctaa gcacacgcct attaatctcg tgcgcgatct 1500
tccacaaggc ttcagcgccc tggaaccact cgtggacctc ccaattggta tcaacatcac 1560
tagatttcag actctgcttg ccctccaccg atcctatctg acacccggag actcctctag 1620
cggctggact gccggcgctg ccgcttatta cgttggttat cttcagccac gcacgttcct 1680
gctgaagtat aacgagaatg gtactattac cgatgccgtg gattgtgccc ttgaccccct 1740
gtccgaaact aagtgcacac tcaagtcatt cactgtggaa aaaggaatct accagacaag 1800
caattttcgg gtccagccta ctgagagcat tgtgcgcttt cctaacatca caaatctttg 1860
ccccttcgga gaggttttca atgctacacg gtttgcctcc gtgtatgcct ggaaccgcaa 1920
gagaatttcc aattgcgtgg ccgattactc cgtgctctac aatagtgcaa gctttagcac 1980
ctttaagtgc tatggcgtat cccctactaa gcttaacgac ttgtgtttca caaacgtgta 2040
tgccgactcc tttgtgatac ggggcgacga agttagacag atagcaccag gacagacggg 2100
aaagatagct gactacaact ataagcttcc tgatgacttc actggctgcg ttatcgcgtg 2160
gaattctaac aacctggact caaaagtcgg cggcaactat aactatctct atcggctgtt 2220
ccgcaagagt aaccttaagc cctttgagag agatataagc actgaaatct accaggctgg 2280
cagtacgccc tgtaatggcg tggaaggctt taattgttat tttccactgc aatcctatgg 2340
ttttcagcca accaatggcg tgggctacca accataccgc gtcgtggtgc tctcctttga 2400
actgctccac gctcccgcga ctgtctgcgg ccccaagaag tccacgaacc ttgtgaagaa 2460
taagtgcgtt aattttaatt tcaacggcct cactggaaca ggagtgctca ctgagagtaa 2520
caagaagttc ctgccatttc aacaatttgg cagagacata gccgatacta ctgacgccgt 2580
tagggacccc cagaccctcg agattctcga tataacgccc tgctccttcg gtggagtttc 2640
cgtgatcacg ccaggcacca ataccagtaa ccaggtcgcc gtgctgtatc aggatgtcaa 2700
ctgtactgag gtgcccgtag ccatccatgc ggatcagctc acaccaactt ggagggtgta 2760
cagcaccggc tccaatgtat tccagactcg ggccggatgc cttattggcg ccgaacacgt 2820
gaacaatagt tacgaatgcg atattccaat tggcgccgga atctgtgcta gctaccagac 2880
tcagacgaac tccccaggca gcgccagcag cgttgccagc cagtcaatca tcgcttatac 2940
aatgtcactt ggagccgaaa actccgtggc ttactcaaac aacagcatcg ccatccccac 3000
aaacttcacc atatccgtga caactgagat tctgccagtg tccatgacta agacgtccgt 3060
agattgcact atgtacatat gcggcgacag cacagaatgt tctaatctgc tgctgcaata 3120
tggaagcttc tgcactcaac tgaacagagc gctcacaggc atcgccgtgg agcaggataa 3180
gaatacccag gaggtgttcg cccaagttaa gcagatctac aagaccccac ccataaagga 3240
tttcggtgga ttcaatttta gtcagatact cccagaccca tctaagccat ccaagaggag 3300
ctttatcgag gatcttttgt ttaacaaagt tactctggcc gacgccggtt tcatcaagca 3360
gtacggagat tgcctcggcg acatcgctgc tcgtgacctc atctgtgcgc aaaagtttaa 3420
cggtctgacg gtgctgcctc ccctccttac tgatgaaatg atcgcccagt ataccagcgc 3480
actcctcgct ggcaccataa catccggttg gacattcggc gctggtgcag cactgcagat 3540
accattcgcc atgcaaatgg catatcgttt caacggtatc ggtgtcacac agaatgtcct 3600
atatgagaac cagaagctga tcgcaaatca gttcaatagt gccatcggaa aaatccagga 3660
tagccttagc agcacagcct cagcccttgg caaactccag gatgtcgtga accagaatgc 3720
ccaggctctc aataccctcg tgaagcagct ctcatctaat ttcggcgcaa tttccagtgt 3780
cctcaacgac atcctcagcc gcctcgaccc ccccgaggcc gaagtgcaga ttgacagact 3840
gattacaggt cgactccaga gcctccagac ttacgtgact cagcagctga taagagccgc 3900
cgagataagg gccagcgcta acctggctgc cacaaagatg tctgagtgcg tgctgggcca 3960
gtccaagaga gtagacttct gtggcaaagg ctaccatctg atgagcttcc cacaatccgc 4020
acctcacggc gtagtgttcc tccacgtgac atatgtaccg gctcaggaga agaatttcac 4080
taccgctcct gctatatgcc atgatggaaa ggctcacttc ccccgggagg gggtgttcgt 4140
gtccaacggc acccattggt ttgtgactca gcggaatttc tacgaacccc agatcataac 4200
cactgacaac acatttgtgt ccggaaattg tgacgtggtc attggaatag tgaacaacac 4260
tgtttatgat ccactgcagc cagaacttga cagctttaag gaggagctcg acaagtactt 4320
caagaatcat acgtcaccag atgtggacct cggagatatt agcggtatca atgccagtgt 4380
tgtcaatatt cagaaggaaa tagaccgcct taatgaggtc gccaaaaatc tgaacgagag 4440
cctcatcgat cttcaggagc tgggcaaata tgagcagtac atcaagtggc cttggtatat 4500
ttggcttggc ttcatcgccg gcctgatcgc catagtaatg gtcacaatta tgctctgctg 4560
catgacctct tgctgctcct gtctgaaagg ctgctgctct tgcggatcct gctgcaaatt 4620
tgatgaggat gacagtgaac cagtcctgaa gggcgtgaag ctgcactata cttagaggcc 4680
ttagtcgtgt cgtttttcaa ataatataat ccttttaggg ttttagttag tttaaatttt 4740
ctgttgctcc tgtttagcag gtcgtgcctt cagcaagcac acaaaaacag agtgtttatt 4800
ttaagttgtt tgtttagtga ttcaaaaaaa aaatcgttca aacatttggc aataaagttt 4860
cttaagattg aatcctgttg ccggtcttgc gatgattatc atataatttc tgttgaatta 4920
cgttaagcat gtaataatta acatgtaatg catgacgtta tttatgagat gggtttttat 4980
gattagagtc ccgcaattat acatttaata cgcgatagaa aacaaaatat agcgcgcaaa 5040
ctaggataaa ttatcgcgcg cggtgtcatc tatgttacta gat 5083
<210> 33
<211> 4461
<212> DNA
<213> artificial sequence
<220>
<223> cloning vector 8500 from left to right T-DNA
<400> 33
tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 60
gacgttttta atgtactgaa ttaacgccga atcccgggct ggtatattta tatgttgtca 120
aataactcaa aaaccataaa agtttaagtt agcaagtgtg tacattttta cttgaacaaa 180
aatattcacc tactactgtt ataaatcatt attaaacatt agagtaaaga aatatggatg 240
ataagaacaa gagtagtgat attttgacaa caattttgtt gcaacatttg agaaaatttt 300
gttgttctct cttttcattg gtcaaaaaca atagagagag aaaaaggaag agggagaata 360
aaaacataat gtgagtatga gagagaaagt tgtacaaaag ttgtaccaaa atagttgtac 420
aaatatcatt gaggaatttg acaaaagcta cacaaataag ggttaattgc tgtaaataaa 480
taaggatgac gcattagaga gatgtaccat tagagaattt ttggcaagtc attaaaaaga 540
aagaataaat tatttttaaa attaaaagtt gagtcatttg attaaacatg tgattattta 600
atgaattgat gaaagagttg gattaaagtt gtattagtaa ttagaatttg gtgtcaaatt 660
taatttgaca tttgatcttt tcctatatat tgccccatag agtcagttaa ctcattttta 720
tatttcatag atcaaataag agaaataacg gtatattaat ccctccaaaa aaaaaaaacg 780
gtatatttac taaaaaatct aagccacgta ggaggataac aggatccccg taggaggata 840
acatccaatc caaccaatca caacaatcct gatgagataa cccactttaa gcccacgcat 900
ctgtggcaca tctacattat ctaaatcaca cattcttcca cacatctgag ccacacaaaa 960
accaatccac atctttatca cccattctat aaaaaatcac actttgtgag tctacacttt 1020
gattcccttc aaacacatac aaagagaaga gactaattaa ttaattaatc atcttgagag 1080
aaaatggaac gagctataca aggaaacgac gctagggaac aagctaacag tgaacgttgg 1140
gatggaggat caggaggtac cacttctccc ttcaaacttc ctgacgaaag tccgagttgg 1200
actgagtggc ggctacataa cgatgagacg aattcgaatc aagataatcc ccttggtttc 1260
aaggaaagct ggggtttcgg gaaagttgta tttaagagat atctcagata cgacaggacg 1320
gaagcttcac tgcacagagt ccttggatct tggacgggag attcggttaa ctatgcagca 1380
tctcgatttt tcggtttcga ccagatcgga tgtacctata gtattcggtt tcgaggagtt 1440
agtatcaccg tttctggagg gtcgcgaact cttcagcatc tctgtgagat ggcaattcgg 1500
tctaagcaag aactgctaca gcttgcccca atcgaagtgg aaagtaatgt atcaagagga 1560
tgccctgaag gtactcaaac cttcgaaaaa gaaagcgagt aagttaaaat gcttcttcgt 1620
ctcctattta taatatggtt tgttattgtt aattttgttc ttgtagaaga gcttaattaa 1680
tcgttgttgt tatgaaatac tatttgtatg agatgaactg gtgtaatgta attcatttac 1740
ataagtggag tcagaatcag aatgtttcct ccataactaa ctagacatga agacctgccg 1800
cgtacaattg tcttatattt gaacaactaa aattgaacat cttttgccac aactttataa 1860
gtggttaata tagctcaaat atatggtcaa gttcaataga ttaataatgg aaatatcagt 1920
tatcgaaatt cattaacaat caacttaacg ttattaacta ctaattttat atcatcccct 1980
ttgataaatg atagtacacc aattaggaag gagcatgctc gcctaggaga ttgtcgtttc 2040
ccgccttcag tttgcaagct gctctagccg tgtagccaat acgcaaaccg cctctccccg 2100
cgcgttggga attactagcg cgtgtcgaca agcttgcatg ccggtcaaca tggtggagca 2160
cgacacactt gtctactcca aaaatatcaa agatacagtc tcagaagacc aaagggcaat 2220
tgagactttt caacaaaggg taatatccgg aaacctcctc ggattccatt gcccagctat 2280
ctgtcacttt attgtgaaga tagtggaaaa ggaaggtggc tcctacaaat gccatcattg 2340
cgataaagga aaggccatcg ttgaagatgc ctctgccgac agtggtccca aagatggacc 2400
cccacccacg aggagcatcg tggaaaaaga agacgttcca accacgtctt caaagcaagt 2460
ggattgatgt gataacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga 2520
tacagtctca gaagaccaaa gggcaattga gacttttcaa caaagggtaa tatccggaaa 2580
cctcctcgga ttccattgcc cagctatctg tcactttatt gtgaagatag tggaaaagga 2640
aggtggctcc tacaaatgcc atcattgcga taaaggaaag gccatcgttg aagatgcctc 2700
tgccgacagt ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga 2760
cgttccaacc acgtcttcaa agcaagtgga ttgatgtgat atctccactg acgtaaggga 2820
tgacgcacaa tcccactatc cttcgcaaga cccttcctct atataaggaa gttcatttca 2880
tttggagagg cacttttcta atcaatcatc aaacagaacg cagaaaattt cctaaaaaca 2940
aaaaaaaggc atacaaatgg cgaaaaacgt tgcgattttc ggcttattgt tttctcttct 3000
tgtgttggtt ccttctcaga tcttcgcgac gtcactcctc agccaaaacg acacccccat 3060
ctgtctatcc actggcccct ggatctgctg cccaaactaa ctccatggtg accctgggat 3120
gcctggtcaa gggctatttc cctgagccag tgacagtgac ctggaactct ggatccctgt 3180
ccagcggtgt gcacaccttc ccagctgtcc tgcagtctga cctctacact ctgagcagct 3240
cagtgactgt cccctccagc acctggccca gcgagaccgt cacctgcaac gttgcccacc 3300
cggccagcag caccaaggtg gacaagaaaa ttgtgcccag ggattgtggt tgtaagcctt 3360
gcatatgtac agtcccagaa gtatcatctg tcttcatctt ccccccaaag cccaaggatg 3420
tgctcaccat tactctgact cctaaggtca cgtgtgttgt ggtagacatc agcaaggatg 3480
atcccgaggt ccagttcagc tggtttgtag atgatgtgga ggtgcacaca gctcagacgc 3540
aaccccggga ggagcagttc aacagcactt tccgctcagt cagtgaactt cccatcatgc 3600
accaggactg gctcaatggc aaggagacgt ccagattttg gcgatctatt caactgtcgc 3660
cagttcattg gtactggtag tctccctggg ggcaatcagt ttctggatgt gctctaatgg 3720
gtctctacag tgtagaatat gtatttaaag gccttagtcg tgtcgttttt caaataatat 3780
aatcctttta gggttttagt tagtttaaat tttctgttgc tcctgtttag caggtcgtgc 3840
cttcagcaag cacacaaaaa cagagtgttt attttaagtt gtttgtttag tgattcaaaa 3900
aaaaaatcgt tcaaacattt ggcaataaag tttcttaaga ttgaatcctg ttgccggtct 3960
tgcgatgatt atcatataat ttctgttgaa ttacgttaag catgtaataa ttaacatgta 4020
atgcatgacg ttatttatga gatgggtttt tatgattaga gtcccgcaat tatacattta 4080
atacgcgata gaaaacaaaa tatagcgcgc aaactaggat aaattatcgc gcgcggtgtc 4140
atctatgtta ctagatctct agagtctcaa gcttggcgcg cccacgtgac tagtggcact 4200
ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgcct 4260
tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca ccgatcgccc 4320
ttcccaacag ttgcgcagcc tgaatggcga atgctagagc agcttgagct tggatcagat 4380
tgtcgtttcc cgccttcagt ttaaactatc agtgtttgac aggatatatt ggcgggtaaa 4440
cctaagagaa aagagcgttt a 4461
<210> 34
<211> 5070
<212> DNA
<213> artificial sequence
<220>
<223> construct 8589 from 2X35S prom to NOS term
<400> 34
gtcaacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga tacagtctca 60
gaagaccaaa gggcaattga gacttttcaa caaagggtaa tatccggaaa cctcctcgga 120
ttccattgcc cagctatctg tcactttatt gtgaagatag tggaaaagga aggtggctcc 180
tacaaatgcc atcattgcga taaaggaaag gccatcgttg aagatgcctc tgccgacagt 240
ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga cgttccaacc 300
acgtcttcaa agcaagtgga ttgatgtgat aacatggtgg agcacgacac acttgtctac 360
tccaaaaata tcaaagatac agtctcagaa gaccaaaggg caattgagac ttttcaacaa 420
agggtaatat ccggaaacct cctcggattc cattgcccag ctatctgtca ctttattgtg 480
aagatagtgg aaaaggaagg tggctcctac aaatgccatc attgcgataa aggaaaggcc 540
atcgttgaag atgcctctgc cgacagtggt cccaaagatg gacccccacc cacgaggagc 600
atcgtggaaa aagaagacgt tccaaccacg tcttcaaagc aagtggattg atgtgatatc 660
tccactgacg taagggatga cgcacaatcc cactatcctt cgcaagaccc ttcctctata 720
taaggaagtt catttcattt ggagaggcac ttttctaatc aatcatcaaa cagaacgcag 780
aaaatttcct aaaaacaaaa aaaaggcata caaatggcga aaaacgttgc gattttcggc 840
ttattgtttt ctcttcttgt gttggttcct tctcagatct tcgcggtgaa tcttacgacg 900
cgaacacagt taccacccgc atatacaaat agcttcactc ggggtgttta ttaccccgac 960
aaagtgttca ggtcctccgt gctccactca acacaggacc tctttcttcc tttcttttct 1020
aacgtgacat ggtttcatgc cattcatgta tccggcacta acggtactaa gaggttcgat 1080
aatcctgtgc tccctttcaa tgacggcgtt tactttgcaa gcacagagaa gagtaacatc 1140
atccgaggtt ggatctttgg cactaccctc gattcaaaga cgcagagcct cctcattgtg 1200
aacaatgcca ctaacgtggt gatcaaagtt tgcgagtttc agttctgcaa tgaccctttc 1260
ttgggggtgt actatcataa gaacaacaag tcttggatgg aatctgaatt ccgcgtctat 1320
agcagcgcca acaactgcac ctttgaatac gtgtcccagc ccttccttat ggacctggag 1380
ggaaagcagg gaaactttaa gaatctgaga gagttcgtgt ttaaaaatat cgacggctat 1440
tttaagatct attctaagca cacgcctatt aatctcgtgc gcgatcttcc acaaggcttc 1500
agcgccctgg aaccactcgt ggacctccca attggtatca acatcactag atttcagact 1560
ctgcttgccc tccaccgatc ctatctgaca cccggagact cctctagcgg ctggactgcc 1620
ggcgctgccg cttattacgt tggttatctt cagccacgca cgttcctgct gaagtataac 1680
gagaatggta ctattaccga tgccgtggat tgtgcccttg accccctgtc cgaaactaag 1740
tgcacactca agtcattcac tgtggaaaaa ggaatctacc agacaagcaa ttttcgggtc 1800
cagcctactg agagcattgt gcgctttcct aacatcacaa atctttgccc cttcggagag 1860
gttttcaatg ctacacggtt tgcctccgtg tatgcctgga accgcaagag aatttccaat 1920
tgcgtggccg attactccgt gctctacaat agtgcaagct ttagcacctt taagtgctat 1980
ggcgtatccc ctactaagct taacgacttg tgtttcacaa acgtgtatgc cgactccttt 2040
gtgatacggg gcgacgaagt tagacagata gcaccaggac agacgggaaa gatagctgac 2100
tacaactata agcttcctga tgacttcact ggctgcgtta tcgcgtggaa ttctaacaac 2160
ctggactcaa aagtcggcgg caactataac tatctctatc ggctgttccg caagagtaac 2220
cttaagccct ttgagagaga tataagcact gaaatctacc aggctggcag tacgccctgt 2280
aatggcgtgg aaggctttaa ttgttatttt ccactgcaat cctatggttt tcagccaacc 2340
aatggcgtgg gctaccaacc ataccgcgtc gtggtgctct cctttgaact gctccacgct 2400
cccgcgactg tctgcggccc caagaagtcc acgaaccttg tgaagaataa gtgcgttaat 2460
tttaatttca acggcctcac tggaacagga gtgctcactg agagtaacaa gaagttcctg 2520
ccatttcaac aatttggcag agacatagcc gatactactg acgccgttag ggacccccag 2580
accctcgaga ttctcgatat aacgccctgc tccttcggtg gagtttccgt gatcacgcca 2640
ggcaccaata ccagtaacca ggtcgccgtg ctgtatcagg atgtcaactg tactgaggtg 2700
cccgtagcca tccatgcgga tcagctcaca ccaacttgga gggtgtacag caccggctcc 2760
aatgtattcc agactcgggc cggatgcctt attggcgccg aacacgtgaa caatagttac 2820
gaatgcgata ttccaattgg cgccggaatc tgtgctagct accagactca gacgaactcc 2880
ccaggcagcg ccagcagcgt tgccagccag tcaatcatcg cttatacaat gtcacttgga 2940
gccgaaaact ccgtggctta ctcaaacaac agcatcgcca tccccacaaa cttcaccata 3000
tccgtgacaa ctgagattct gccagtgtcc atgactaaga cgtccgtaga ttgcactatg 3060
tacatatgcg gcgacagcac agaatgttct aatctgctgc tgcaatatgg aagcttctgc 3120
actcaactga acagagcgct cacaggcatc gccgtggagc aggataagaa tacccaggag 3180
gtgttcgccc aagttaagca gatctacaag accccaccca taaaggattt cggtggattc 3240
aattttagtc agatactccc agacccatct aagccatcca agaggagctt tatcgaggat 3300
cttttgttta acaaagttac tctggccgac gccggtttca tcaagcagta cggagattgc 3360
ctcggcgaca tcgctgctcg tgacctcatc tgtgcgcaaa agtttaacgg tctgacggtg 3420
ctgcctcccc tccttactga tgaaatgatc gcccagtata ccagcgcact cctcgctggc 3480
accataacat ccggttggac attcggcgct ggtgcagcac tgcagatacc attcgccatg 3540
caaatggcat atcgtttcaa cggtatcggt gtcacacaga atgtcctata tgagaaccag 3600
aagctgatcg caaatcagtt caatagtgcc atcggaaaaa tccaggatag ccttagcagc 3660
acagcctcag cccttggcaa actccaggat gtcgtgaacc agaatgccca ggctctcaat 3720
accctcgtga agcagctctc atctaatttc ggcgcaattt ccagtgtcct caacgacatc 3780
ctcagccgcc tcgacccccc cgaggccgaa gtgcagattg acagactgat tacaggtcga 3840
ctccagagcc tccagactta cgtgactcag cagctgataa gagccgccga gataagggcc 3900
agcgctaacc tggctgccac aaagatgtct gagtgcgtgc tgggccagtc caagagagta 3960
gacttctgtg gcaaaggcta ccatctgatg agcttcccac aatccgcacc tcacggcgta 4020
gtgttcctcc acgtgacata tgtaccggct caggagaaga atttcactac cgctcctgct 4080
atatgccatg atggaaaggc tcacttcccc cgggaggggg tgttcgtgtc caacggcacc 4140
cattggtttg tgactcagcg gaatttctac gaaccccaga tcataaccac tgacaacaca 4200
tttgtgtccg gaaattgtga cgtggtcatt ggaatagtga acaacactgt ttatgatcca 4260
ctgcagccag aacttgacag ctttaaggag gagctcgaca agtacttcaa gaatcatacg 4320
tcaccagatg tggacctcgg agatattagc ggtatcaatg ccagtgttgt caatattcag 4380
aaggaaatag accgccttaa tgaggtcgcc aaaaatctga acgagagcct catcgatctt 4440
caggagctgg gcaaatatga gcagtacatc aagtggcctt ggtatatttg gcttggcttc 4500
atcgccggcc tgatcgccat agtaatggtc acaattatgc tctgctgcat gacctcttgc 4560
tgctcctgtc tgaaaggctg ctgctcttgc ggatcctgct gcaaatttga tgaggatgac 4620
agtgaaccag tcctgaaggg cgtgaagctg cactatactt agaggcctta gtcgtgtcgt 4680
ttttcaaata atataatcct tttagggttt tagttagttt aaattttctg ttgctcctgt 4740
ttagcaggtc gtgccttcag caagcacaca aaaacagagt gtttatttta agttgtttgt 4800
ttagtgattc aaaaaaaaaa tcgttcaaac atttggcaat aaagtttctt aagattgaat 4860
cctgttgccg gtcttgcgat gattatcata taatttctgt tgaattacgt taagcatgta 4920
ataattaaca tgtaatgcat gacgttattt atgagatggg tttttatgat tagagtcccg 4980
caattataca tttaatacgc gatagaaaac aaaatatagc gcgcaaacta ggataaatta 5040
tcgcgcgcgg tgtcatctat gttactagat 5070
<210> 35
<211> 4436
<212> DNA
<213> artificial sequence
<220>
<223> cloning vector 8716 left-to-right T-DNA
<400> 35
tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 60
gacgttttta atgtactgaa ttaacgccga atcccgggct ggtatattta tatgttgtca 120
aataactcaa aaaccataaa agtttaagtt agcaagtgtg tacattttta cttgaacaaa 180
aatattcacc tactactgtt ataaatcatt attaaacatt agagtaaaga aatatggatg 240
ataagaacaa gagtagtgat attttgacaa caattttgtt gcaacatttg agaaaatttt 300
gttgttctct cttttcattg gtcaaaaaca atagagagag aaaaaggaag agggagaata 360
aaaacataat gtgagtatga gagagaaagt tgtacaaaag ttgtaccaaa atagttgtac 420
aaatatcatt gaggaatttg acaaaagcta cacaaataag ggttaattgc tgtaaataaa 480
taaggatgac gcattagaga gatgtaccat tagagaattt ttggcaagtc attaaaaaga 540
aagaataaat tatttttaaa attaaaagtt gagtcatttg attaaacatg tgattattta 600
atgaattgat gaaagagttg gattaaagtt gtattagtaa ttagaatttg gtgtcaaatt 660
taatttgaca tttgatcttt tcctatatat tgccccatag agtcagttaa ctcattttta 720
tatttcatag atcaaataag agaaataacg gtatattaat ccctccaaaa aaaaaaaacg 780
gtatatttac taaaaaatct aagccacgta ggaggataac aggatccccg taggaggata 840
acatccaatc caaccaatca caacaatcct gatgagataa cccactttaa gcccacgcat 900
ctgtggcaca tctacattat ctaaatcaca cattcttcca cacatctgag ccacacaaaa 960
accaatccac atctttatca cccattctat aaaaaatcac actttgtgag tctacacttt 1020
gattcccttc aaacacatac aaagagaaga gactaattaa ttaattaatc atcttgagag 1080
aaaatggaac gagctataca aggaaacgac gctagggaac aagctaacag tgaacgttgg 1140
gatggaggat caggaggtac cacttctccc ttcaaacttc ctgacgaaag tccgagttgg 1200
actgagtggc ggctacataa cgatgagacg aattcgaatc aagataatcc ccttggtttc 1260
aaggaaagct ggggtttcgg gaaagttgta tttaagagat atctcagata cgacaggacg 1320
gaagcttcac tgcacagagt ccttggatct tggacgggag attcggttaa ctatgcagca 1380
tctcgatttt tcggtttcga ccagatcgga tgtacctata gtattcggtt tcgaggagtt 1440
agtatcaccg tttctggagg gtcgcgaact cttcagcatc tctgtgagat ggcaattcgg 1500
tctaagcaag aactgctaca gcttgcccca atcgaagtgg aaagtaatgt atcaagagga 1560
tgccctgaag gtactcaaac cttcgaaaaa gaaagcgagt aagttaaaat gcttcttcgt 1620
ctcctattta taatatggtt tgttattgtt aattttgttc ttgtagaaga gcttaattaa 1680
tcgttgttgt tatgaaatac tatttgtatg agatgaactg gtgtaatgta attcatttac 1740
ataagtggag tcagaatcag aatgtttcct ccataactaa ctagacatga agacctgccg 1800
cgtacaattg tcttatattt gaacaactaa aattgaacat cttttgccac aactttataa 1860
gtggttaata tagctcaaat atatggtcaa gttcaataga ttaataatgg aaatatcagt 1920
tatcgaaatt cattaacaat caacttaacg ttattaacta ctaattttat atcatcccct 1980
ttgataaatg atagtacacc aattaggaag gagcatgctc gcctaggaga ttgtcgtttc 2040
ccgccttcag tttgcaagct gctctagccg tgtagccaat acgcaaaccg cctctccccg 2100
cgcgttggga attactagcg cgtgtcgaca agcttgcatg ccggtcaaca tggtggagca 2160
cgacacactt gtctactcca aaaatatcaa agatacagtc tcagaagacc aaagggcaat 2220
tgagactttt caacaaaggg taatatccgg aaacctcctc ggattccatt gcccagctat 2280
ctgtcacttt attgtgaaga tagtggaaaa ggaaggtggc tcctacaaat gccatcattg 2340
cgataaagga aaggccatcg ttgaagatgc ctctgccgac agtggtccca aagatggacc 2400
cccacccacg aggagcatcg tggaaaaaga agacgttcca accacgtctt caaagcaagt 2460
ggattgatgt gataacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga 2520
tacagtctca gaagaccaaa gggcaattga gacttttcaa caaagggtaa tatccggaaa 2580
cctcctcgga ttccattgcc cagctatctg tcactttatt gtgaagatag tggaaaagga 2640
aggtggctcc tacaaatgcc atcattgcga taaaggaaag gccatcgttg aagatgcctc 2700
tgccgacagt ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga 2760
cgttccaacc acgtcttcaa agcaagtgga ttgatgtgat atctccactg acgtaaggga 2820
tgacgcacaa tcccactatc cttcgcaaga cccttcctct atataaggaa gttcatttca 2880
tttggagagg cactccattt gaatctatca aaccaaaaca cattgagcaa aatggcgaaa 2940
aacgttgcga ttttcggctt attgttttct cttcttgtgt tggttccttc tcagatcttc 3000
gcgacgtcac tcctcagcca aaacgacacc cccatctgtc tatccactgg cccctggatc 3060
tgctgcccaa actaactcca tggtgaccct gggatgcctg gtcaagggct atttccctga 3120
gccagtgaca gtgacctgga actctggatc cctgtccagc ggtgtgcaca ccttcccagc 3180
tgtcctgcag tctgacctct acactctgag cagctcagtg actgtcccct ccagcacctg 3240
gcccagcgag accgtcacct gcaacgttgc ccacccggcc agcagcacca aggtggacaa 3300
gaaaattgtg cccagggatt gtggttgtaa gccttgcata tgtacagtcc cagaagtatc 3360
atctgtcttc atcttccccc caaagcccaa ggatgtgctc accattactc tgactcctaa 3420
ggtcacgtgt gttgtggtag acatcagcaa ggatgatccc gaggtccagt tcagctggtt 3480
tgtagatgat gtggaggtgc acacagctca gacgcaaccc cgggaggagc agttcaacag 3540
cactttccgc tcagtcagtg aacttcccat catgcaccag gactggctca atggcaagga 3600
gacgtccaga ttttggcgat ctattcaact gtcgccagtt cattggtact ggtagtctcc 3660
ctgggggcaa tcagtttctg gatgtgctct aatgggtctc tacagtgtag aatatgtatt 3720
taaaggcctt agtcgtgtcg tttttcaaat aatataatcc ttttagggtt ttagttagtt 3780
taaattttct gttgctcctg tttagcaggt cgtgccttca gcaagcacac aaaaacagag 3840
tgtttatttt aagttgtttg tttagtgatt caaaaaaaaa atcgttcaaa catttggcaa 3900
taaagtttct taagattgaa tcctgttgcc ggtcttgcga tgattatcat ataatttctg 3960
ttgaattacg ttaagcatgt aataattaac atgtaatgca tgacgttatt tatgagatgg 4020
gtttttatga ttagagtccc gcaattatac atttaatacg cgatagaaaa caaaatatag 4080
cgcgcaaact aggataaatt atcgcgcgcg gtgtcatcta tgttactaga tctctagagt 4140
ctcaagcttg gcgcgcccac gtgactagtg gcactggccg tcgttttaca acgtcgtgac 4200
tgggaaaacc ctggcgttac ccaacttaat cgccttgcag cacatccccc tttcgccagc 4260
tggcgtaata gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg cagcctgaat 4320
ggcgaatgct agagcagctt gagcttggat cagattgtcg tttcccgcct tcagtttaaa 4380
ctatcagtgt ttgacaggat atattggcgg gtaaacctaa gagaaaagag cgttta 4436
<210> 36
<211> 5045
<212> DNA
<213> artificial sequence
<220>
<223> construct 8591 from 2X35S prom to NOS term
<400> 36
gtcaacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga tacagtctca 60
gaagaccaaa gggcaattga gacttttcaa caaagggtaa tatccggaaa cctcctcgga 120
ttccattgcc cagctatctg tcactttatt gtgaagatag tggaaaagga aggtggctcc 180
tacaaatgcc atcattgcga taaaggaaag gccatcgttg aagatgcctc tgccgacagt 240
ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga cgttccaacc 300
acgtcttcaa agcaagtgga ttgatgtgat aacatggtgg agcacgacac acttgtctac 360
tccaaaaata tcaaagatac agtctcagaa gaccaaaggg caattgagac ttttcaacaa 420
agggtaatat ccggaaacct cctcggattc cattgcccag ctatctgtca ctttattgtg 480
aagatagtgg aaaaggaagg tggctcctac aaatgccatc attgcgataa aggaaaggcc 540
atcgttgaag atgcctctgc cgacagtggt cccaaagatg gacccccacc cacgaggagc 600
atcgtggaaa aagaagacgt tccaaccacg tcttcaaagc aagtggattg atgtgatatc 660
tccactgacg taagggatga cgcacaatcc cactatcctt cgcaagaccc ttcctctata 720
taaggaagtt catttcattt ggagaggcac tccatttgaa tctatcaaac caaaacacat 780
tgagcaaaat ggcgaaaaac gttgcgattt tcggcttatt gttttctctt cttgtgttgg 840
ttccttctca gatcttcgcg gtgaatctta cgacgcgaac acagttacca cccgcatata 900
caaatagctt cactcggggt gtttattacc ccgacaaagt gttcaggtcc tccgtgctcc 960
actcaacaca ggacctcttt cttcctttct tttctaacgt gacatggttt catgccattc 1020
atgtatccgg cactaacggt actaagaggt tcgataatcc tgtgctccct ttcaatgacg 1080
gcgtttactt tgcaagcaca gagaagagta acatcatccg aggttggatc tttggcacta 1140
ccctcgattc aaagacgcag agcctcctca ttgtgaacaa tgccactaac gtggtgatca 1200
aagtttgcga gtttcagttc tgcaatgacc ctttcttggg ggtgtactat cataagaaca 1260
acaagtcttg gatggaatct gaattccgcg tctatagcag cgccaacaac tgcacctttg 1320
aatacgtgtc ccagcccttc cttatggacc tggagggaaa gcagggaaac tttaagaatc 1380
tgagagagtt cgtgtttaaa aatatcgacg gctattttaa gatctattct aagcacacgc 1440
ctattaatct cgtgcgcgat cttccacaag gcttcagcgc cctggaacca ctcgtggacc 1500
tcccaattgg tatcaacatc actagatttc agactctgct tgccctccac cgatcctatc 1560
tgacacccgg agactcctct agcggctgga ctgccggcgc tgccgcttat tacgttggtt 1620
atcttcagcc acgcacgttc ctgctgaagt ataacgagaa tggtactatt accgatgccg 1680
tggattgtgc ccttgacccc ctgtccgaaa ctaagtgcac actcaagtca ttcactgtgg 1740
aaaaaggaat ctaccagaca agcaattttc gggtccagcc tactgagagc attgtgcgct 1800
ttcctaacat cacaaatctt tgccccttcg gagaggtttt caatgctaca cggtttgcct 1860
ccgtgtatgc ctggaaccgc aagagaattt ccaattgcgt ggccgattac tccgtgctct 1920
acaatagtgc aagctttagc acctttaagt gctatggcgt atcccctact aagcttaacg 1980
acttgtgttt cacaaacgtg tatgccgact cctttgtgat acggggcgac gaagttagac 2040
agatagcacc aggacagacg ggaaagatag ctgactacaa ctataagctt cctgatgact 2100
tcactggctg cgttatcgcg tggaattcta acaacctgga ctcaaaagtc ggcggcaact 2160
ataactatct ctatcggctg ttccgcaaga gtaaccttaa gccctttgag agagatataa 2220
gcactgaaat ctaccaggct ggcagtacgc cctgtaatgg cgtggaaggc tttaattgtt 2280
attttccact gcaatcctat ggttttcagc caaccaatgg cgtgggctac caaccatacc 2340
gcgtcgtggt gctctccttt gaactgctcc acgctcccgc gactgtctgc ggccccaaga 2400
agtccacgaa ccttgtgaag aataagtgcg ttaattttaa tttcaacggc ctcactggaa 2460
caggagtgct cactgagagt aacaagaagt tcctgccatt tcaacaattt ggcagagaca 2520
tagccgatac tactgacgcc gttagggacc cccagaccct cgagattctc gatataacgc 2580
cctgctcctt cggtggagtt tccgtgatca cgccaggcac caataccagt aaccaggtcg 2640
ccgtgctgta tcaggatgtc aactgtactg aggtgcccgt agccatccat gcggatcagc 2700
tcacaccaac ttggagggtg tacagcaccg gctccaatgt attccagact cgggccggat 2760
gccttattgg cgccgaacac gtgaacaata gttacgaatg cgatattcca attggcgccg 2820
gaatctgtgc tagctaccag actcagacga actccccagg cagcgccagc agcgttgcca 2880
gccagtcaat catcgcttat acaatgtcac ttggagccga aaactccgtg gcttactcaa 2940
acaacagcat cgccatcccc acaaacttca ccatatccgt gacaactgag attctgccag 3000
tgtccatgac taagacgtcc gtagattgca ctatgtacat atgcggcgac agcacagaat 3060
gttctaatct gctgctgcaa tatggaagct tctgcactca actgaacaga gcgctcacag 3120
gcatcgccgt ggagcaggat aagaataccc aggaggtgtt cgcccaagtt aagcagatct 3180
acaagacccc acccataaag gatttcggtg gattcaattt tagtcagata ctcccagacc 3240
catctaagcc atccaagagg agctttatcg aggatctttt gtttaacaaa gttactctgg 3300
ccgacgccgg tttcatcaag cagtacggag attgcctcgg cgacatcgct gctcgtgacc 3360
tcatctgtgc gcaaaagttt aacggtctga cggtgctgcc tcccctcctt actgatgaaa 3420
tgatcgccca gtataccagc gcactcctcg ctggcaccat aacatccggt tggacattcg 3480
gcgctggtgc agcactgcag ataccattcg ccatgcaaat ggcatatcgt ttcaacggta 3540
tcggtgtcac acagaatgtc ctatatgaga accagaagct gatcgcaaat cagttcaata 3600
gtgccatcgg aaaaatccag gatagcctta gcagcacagc ctcagccctt ggcaaactcc 3660
aggatgtcgt gaaccagaat gcccaggctc tcaataccct cgtgaagcag ctctcatcta 3720
atttcggcgc aatttccagt gtcctcaacg acatcctcag ccgcctcgac ccccccgagg 3780
ccgaagtgca gattgacaga ctgattacag gtcgactcca gagcctccag acttacgtga 3840
ctcagcagct gataagagcc gccgagataa gggccagcgc taacctggct gccacaaaga 3900
tgtctgagtg cgtgctgggc cagtccaaga gagtagactt ctgtggcaaa ggctaccatc 3960
tgatgagctt cccacaatcc gcacctcacg gcgtagtgtt cctccacgtg acatatgtac 4020
cggctcagga gaagaatttc actaccgctc ctgctatatg ccatgatgga aaggctcact 4080
tcccccggga gggggtgttc gtgtccaacg gcacccattg gtttgtgact cagcggaatt 4140
tctacgaacc ccagatcata accactgaca acacatttgt gtccggaaat tgtgacgtgg 4200
tcattggaat agtgaacaac actgtttatg atccactgca gccagaactt gacagcttta 4260
aggaggagct cgacaagtac ttcaagaatc atacgtcacc agatgtggac ctcggagata 4320
ttagcggtat caatgccagt gttgtcaata ttcagaagga aatagaccgc cttaatgagg 4380
tcgccaaaaa tctgaacgag agcctcatcg atcttcagga gctgggcaaa tatgagcagt 4440
acatcaagtg gccttggtat atttggcttg gcttcatcgc cggcctgatc gccatagtaa 4500
tggtcacaat tatgctctgc tgcatgacct cttgctgctc ctgtctgaaa ggctgctgct 4560
cttgcggatc ctgctgcaaa tttgatgagg atgacagtga accagtcctg aagggcgtga 4620
agctgcacta tacttagagg ccttagtcgt gtcgtttttc aaataatata atccttttag 4680
ggttttagtt agtttaaatt ttctgttgct cctgtttagc aggtcgtgcc ttcagcaagc 4740
acacaaaaac agagtgttta ttttaagttg tttgtttagt gattcaaaaa aaaaatcgtt 4800
caaacatttg gcaataaagt ttcttaagat tgaatcctgt tgccggtctt gcgatgatta 4860
tcatataatt tctgttgaat tacgttaagc atgtaataat taacatgtaa tgcatgacgt 4920
tatttatgag atgggttttt atgattagag tcccgcaatt atacatttaa tacgcgatag 4980
aaaacaaaat atagcgcgca aactaggata aattatcgcg cgcggtgtca tctatgttac 5040
tagat 5045
<210> 37
<211> 39
<212> PRT
<213> artificial sequence
<220>
<223> modified SARS-CoV-2S protein, having H5i hemagglutinin CT, C-terminal region of Change 2
<400> 37
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly Ser
20 25 30
Leu Gln Cys Arg Ile Cys Ile
35
<210> 38
<211> 36
<212> PRT
<213> artificial sequence
<220>
<223> modified SARS-CoV-2S protein, having H5i hemagglutinin CT, C-terminal region of variation 3
<400> 38
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Leu Cys Cys Met Cys Ser Asn Gly Ser Leu Gln Cys
20 25 30
Arg Ile Cys Ile
35
<210> 39
<211> 34
<212> PRT
<213> artificial sequence
<220>
<223> modified SARS-CoV-2S protein, having H5i hemagglutinin CT, C-terminal region of variation 4
<400> 39
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Leu Cys Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile
20 25 30
Cys Ile
<210> 40
<211> 151
<212> DNA
<213> Arracacha Virus B
<400> 40
tagtcgtgtc gtttttcaaa taatataatc cttttagggt tttagttagt ttaaattttc 60
tgttgctcct gtttagcagg tcgtgccttc agcaagcaca caaaaacaga gtgtttattt 120
taagttgttt gtttagtgat tcaaaaaaaa a 151
<210> 41
<211> 182
<212> DNA
<213> beet necrotic yellow vein virus
<400> 41
cctatcttga tgaaggttgt tgtggttttc tcattactgt tttattattg tttgagttgc 60
ttatgtcggt tcttgattat gtggtgcata attattgaac taattgtttg ttgggttgta 120
atgtactgac tgggtgtgaa ttgtaccagt cgttaaaggg tttactatca gtatattgat 180
at 182
<210> 42
<211> 132
<212> DNA
<213> southern Bean mosaic Virus
<400> 42
tgaggagttg tataataata cctgcaccct tctctttggc agggagggtg tttcgttttc 60
acaatgccac gcgcttgagg gagaatgcac gttaatcatc cctccgctag tgatggagcg 120
taatccaaaa gt 132
<210> 43
<211> 282
<212> DNA
<213> turnip round-spot virus
<400> 43
tgatttataa tagccataga ttaagtttaa atgtattacg tttgtatttt attctctttt 60
ttaagtttcc tatgttgttt taaattaaat atctgtataa ttagtagatg taaatctgct 120
ttgtgcgttt gacagtctgt ggaaacgcac tggttcatga gataggacca cctaggaggt 180
aggactctgg gttttaatta tctcatttct tagttatacc gtattatata tatgatttag 240
tagtaattgt tttctcttga tatgtattat tactttttta tt 282
<210> 44
<211> 165
<212> DNA
<213> cowpea mosaic Virus
<400> 44
attttcttta gtttgaattt actgttattc ggtgtgcatt tctatgtttg gtgagcggtt 60
ttctgtgctc agagtgtgtt tattttatgt aatttaattt ctttgtgagc tcctgtttag 120
caggtcgtcc cttcagcaag gacacaaaaa gattttaatt ttatt 165
<210> 45
<211> 275
<212> DNA
<213> broad Bean true mosaic Virus
<400> 45
tagttttctt ccgcttttct tttgtagtgt gtggttttct ttgtttcttc ttttcttttc 60
tctttccttt tctcttactc ctgcctggca ggtcgtgcct tcagtaagca caacaaaaat 120
atgcatttat tagagtattt ctttcttctt tagcataaag gtattgaaga cctataaact 180
tcgtccgggt tggggaaagt accagcttag catatcttta gaaaactata tagagctctt 240
taccttgagt tgtttcctaa agtttatgca aaaaa 275
<210> 46
<211> 147
<212> DNA
<213> European melon Virus
<400> 46
ctcacgtctg gggtgagccc tagccaaata ggaaaacgat aagcgctttg catgcaaaat 60
gagttgggcc acaagtgcca ctcgcagcga aggcggtctg aggtttcccc ctggcggtta 120
cttccatatc tttgggagat aactggg 147
<210> 47
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, having H5i hemagglutinin CT AA
<400> 47
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Ser Leu Trp Met Cys
1235 1240 1245
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 48
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+4P, having H5i hemagglutinin CT AA
<400> 48
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Pro Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Pro Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Ser Leu Trp Met Cys
1235 1240 1245
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 49
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+6P, having H5i hemagglutinin CT AA
<400> 49
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Pro Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Pro Ala Leu Gln Ile Pro Phe Pro Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Pro Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Ser Leu Trp Met Cys
1235 1240 1245
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 50
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP+923, having H5i hemagglutinin CT AA
<400> 50
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Phe Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Ser Leu Trp Met Cys
1235 1240 1245
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 51
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+4P+923, having H5i hemagglutinin CT AA
<400> 51
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Pro Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Phe Ser Ser Thr Pro Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Ser Leu Trp Met Cys
1235 1240 1245
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 52
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+6P+923, having H5i hemagglutinin CT AA
<400> 52
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Pro Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Pro Ala Leu Gln Ile Pro Phe Pro Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Phe Ser Ser Thr Pro Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Ser Leu Trp Met Cys
1235 1240 1245
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 53
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, with H1 Cal hemagglutinin CT AA
<400> 53
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Ser Phe Trp Met Cys
1235 1240 1245
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 54
<211> 1258
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, having H3 Minn hemagglutinin CT AA
<400> 54
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Met Trp Ala Cys Gln
1235 1240 1245
Lys Gly Asn Ile Arg Cys Asn Ile Cys Ile
1250 1255
<210> 55
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, having H6 HK hemagglutinin CT AA
<400> 55
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Gly Leu Trp Met Cys
1235 1240 1245
Ser Asn Gly Ser Met Gln Cys Arg Ile Cys Ile
1250 1255
<210> 56
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, having H7 Guangdong hemagglutinin CT AA
<400> 56
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Val Phe Ile Cys Val
1235 1240 1245
Lys Asn Gly Asn Met Arg Cys Thr Ile Cys Ile
1250 1255
<210> 57
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, having H9 HK hemagglutinin CT AA
<400> 57
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Leu Phe Trp Ala Met
1235 1240 1245
Ser Asn Gly Ser Cys Arg Cys Asn Ile Cys Ile
1250 1255
<210> 58
<211> 1259
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, with B/Wash hemagglutinin CT AA
<400> 58
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Val Val Tyr Met Val
1235 1240 1245
Ser Arg Asp Asn Val Ser Cys Ser Ile Cys Leu
1250 1255
<210> 59
<211> 1262
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, having H5i hemagglutinin CT (alternative 1) AA
<400> 59
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Met Ala Gly Leu Ser Leu
1235 1240 1245
Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255 1260
<210> 60
<211> 1261
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, having H5i hemagglutinin CT (alternative 2) AA
<400> 60
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Ala Gly Leu Ser Leu Trp
1235 1240 1245
Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255 1260
<210> 61
<211> 1258
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, having H5i hemagglutinin CT (alternative 3) AA
<400> 61
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Cys Cys Met Cys Ser
1235 1240 1245
Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 62
<211> 1256
<212> PRT
<213> artificial sequence
<220>
<223> (PDI) modified SARS-CoV-2S protein GSAS+PP, having H5i hemagglutinin CT (alternative 4) AA
<400> 62
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Asn Leu Thr Thr Arg Thr Gln
20 25 30
Leu Pro Pro Ala Tyr Thr Asn Ser Phe Thr Arg Gly Val Tyr Tyr Pro
35 40 45
Asp Lys Val Phe Arg Ser Ser Val Leu His Ser Thr Gln Asp Leu Phe
50 55 60
Leu Pro Phe Phe Ser Asn Val Thr Trp Phe His Ala Ile His Val Ser
65 70 75 80
Gly Thr Asn Gly Thr Lys Arg Phe Asp Asn Pro Val Leu Pro Phe Asn
85 90 95
Asp Gly Val Tyr Phe Ala Ser Thr Glu Lys Ser Asn Ile Ile Arg Gly
100 105 110
Trp Ile Phe Gly Thr Thr Leu Asp Ser Lys Thr Gln Ser Leu Leu Ile
115 120 125
Val Asn Asn Ala Thr Asn Val Val Ile Lys Val Cys Glu Phe Gln Phe
130 135 140
Cys Asn Asp Pro Phe Leu Gly Val Tyr Tyr His Lys Asn Asn Lys Ser
145 150 155 160
Trp Met Glu Ser Glu Phe Arg Val Tyr Ser Ser Ala Asn Asn Cys Thr
165 170 175
Phe Glu Tyr Val Ser Gln Pro Phe Leu Met Asp Leu Glu Gly Lys Gln
180 185 190
Gly Asn Phe Lys Asn Leu Arg Glu Phe Val Phe Lys Asn Ile Asp Gly
195 200 205
Tyr Phe Lys Ile Tyr Ser Lys His Thr Pro Ile Asn Leu Val Arg Asp
210 215 220
Leu Pro Gln Gly Phe Ser Ala Leu Glu Pro Leu Val Asp Leu Pro Ile
225 230 235 240
Gly Ile Asn Ile Thr Arg Phe Gln Thr Leu Leu Ala Leu His Arg Ser
245 250 255
Tyr Leu Thr Pro Gly Asp Ser Ser Ser Gly Trp Thr Ala Gly Ala Ala
260 265 270
Ala Tyr Tyr Val Gly Tyr Leu Gln Pro Arg Thr Phe Leu Leu Lys Tyr
275 280 285
Asn Glu Asn Gly Thr Ile Thr Asp Ala Val Asp Cys Ala Leu Asp Pro
290 295 300
Leu Ser Glu Thr Lys Cys Thr Leu Lys Ser Phe Thr Val Glu Lys Gly
305 310 315 320
Ile Tyr Gln Thr Ser Asn Phe Arg Val Gln Pro Thr Glu Ser Ile Val
325 330 335
Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn
340 345 350
Ala Thr Arg Phe Ala Ser Val Tyr Ala Trp Asn Arg Lys Arg Ile Ser
355 360 365
Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn Ser Ala Ser Phe Ser
370 375 380
Thr Phe Lys Cys Tyr Gly Val Ser Pro Thr Lys Leu Asn Asp Leu Cys
385 390 395 400
Phe Thr Asn Val Tyr Ala Asp Ser Phe Val Ile Arg Gly Asp Glu Val
405 410 415
Arg Gln Ile Ala Pro Gly Gln Thr Gly Lys Ile Ala Asp Tyr Asn Tyr
420 425 430
Lys Leu Pro Asp Asp Phe Thr Gly Cys Val Ile Ala Trp Asn Ser Asn
435 440 445
Asn Leu Asp Ser Lys Val Gly Gly Asn Tyr Asn Tyr Leu Tyr Arg Leu
450 455 460
Phe Arg Lys Ser Asn Leu Lys Pro Phe Glu Arg Asp Ile Ser Thr Glu
465 470 475 480
Ile Tyr Gln Ala Gly Ser Thr Pro Cys Asn Gly Val Glu Gly Phe Asn
485 490 495
Cys Tyr Phe Pro Leu Gln Ser Tyr Gly Phe Gln Pro Thr Asn Gly Val
500 505 510
Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu His
515 520 525
Ala Pro Ala Thr Val Cys Gly Pro Lys Lys Ser Thr Asn Leu Val Lys
530 535 540
Asn Lys Cys Val Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val
545 550 555 560
Leu Thr Glu Ser Asn Lys Lys Phe Leu Pro Phe Gln Gln Phe Gly Arg
565 570 575
Asp Ile Ala Asp Thr Thr Asp Ala Val Arg Asp Pro Gln Thr Leu Glu
580 585 590
Ile Leu Asp Ile Thr Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr
595 600 605
Pro Gly Thr Asn Thr Ser Asn Gln Val Ala Val Leu Tyr Gln Asp Val
610 615 620
Asn Cys Thr Glu Val Pro Val Ala Ile His Ala Asp Gln Leu Thr Pro
625 630 635 640
Thr Trp Arg Val Tyr Ser Thr Gly Ser Asn Val Phe Gln Thr Arg Ala
645 650 655
Gly Cys Leu Ile Gly Ala Glu His Val Asn Asn Ser Tyr Glu Cys Asp
660 665 670
Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr Gln Thr Gln Thr Asn
675 680 685
Ser Pro Gly Ser Ala Ser Ser Val Ala Ser Gln Ser Ile Ile Ala Tyr
690 695 700
Thr Met Ser Leu Gly Ala Glu Asn Ser Val Ala Tyr Ser Asn Asn Ser
705 710 715 720
Ile Ala Ile Pro Thr Asn Phe Thr Ile Ser Val Thr Thr Glu Ile Leu
725 730 735
Pro Val Ser Met Thr Lys Thr Ser Val Asp Cys Thr Met Tyr Ile Cys
740 745 750
Gly Asp Ser Thr Glu Cys Ser Asn Leu Leu Leu Gln Tyr Gly Ser Phe
755 760 765
Cys Thr Gln Leu Asn Arg Ala Leu Thr Gly Ile Ala Val Glu Gln Asp
770 775 780
Lys Asn Thr Gln Glu Val Phe Ala Gln Val Lys Gln Ile Tyr Lys Thr
785 790 795 800
Pro Pro Ile Lys Asp Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
805 810 815
Asp Pro Ser Lys Pro Ser Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
820 825 830
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Ile Lys Gln Tyr Gly Asp
835 840 845
Cys Leu Gly Asp Ile Ala Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
850 855 860
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Glu Met Ile Ala
865 870 875 880
Gln Tyr Thr Ser Ala Leu Leu Ala Gly Thr Ile Thr Ser Gly Trp Thr
885 890 895
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
900 905 910
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
915 920 925
Gln Lys Leu Ile Ala Asn Gln Phe Asn Ser Ala Ile Gly Lys Ile Gln
930 935 940
Asp Ser Leu Ser Ser Thr Ala Ser Ala Leu Gly Lys Leu Gln Asp Val
945 950 955 960
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
965 970 975
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
980 985 990
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
995 1000 1005
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
1010 1015 1020
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1025 1030 1035 1040
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1045 1050 1055
His Leu Met Ser Phe Pro Gln Ser Ala Pro His Gly Val Val Phe Leu
1060 1065 1070
His Val Thr Tyr Val Pro Ala Gln Glu Lys Asn Phe Thr Thr Ala Pro
1075 1080 1085
Ala Ile Cys His Asp Gly Lys Ala His Phe Pro Arg Glu Gly Val Phe
1090 1095 1100
Val Ser Asn Gly Thr His Trp Phe Val Thr Gln Arg Asn Phe Tyr Glu
1105 1110 1115 1120
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1125 1130 1135
Val Val Ile Gly Ile Val Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1140 1145 1150
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1155 1160 1165
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1170 1175 1180
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1185 1190 1195 1200
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1205 1210 1215
Gln Tyr Ile Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly
1220 1225 1230
Leu Ile Ala Ile Val Met Val Thr Ile Met Leu Cys Cys Ser Asn Gly
1235 1240 1245
Ser Leu Gln Cys Arg Ile Cys Ile
1250 1255
<210> 63
<211> 31
<212> PRT
<213> SARS-CoV-2
<400> 63
Met Phe Val Phe Leu Val Leu Leu Pro Leu Val Ser Ser Gln Cys Val
1 5 10 15
Asn Leu Thr Thr Arg Thr Gln Leu Pro Pro Ala Tyr Thr Asn Ser
20 25 30
<210> 64
<211> 33
<212> PRT
<213> artificial sequence
<220>
<223> modified TMCT has the intermediate peptide sequence (X) n
<220>
<221> MISC_FEATURE
<222> (21)..(21)
<223> Xaa can be any combination of 0 to 10 amino acids
<220>
<221> misc_feature
<222> (27)..(28)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (30)..(30)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (21)..(21)
<223> The 'Xaa' at location 21 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (27)..(27)
<223> The 'Xaa' at location 27 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (28)..(28)
<223> The 'Xaa' at location 28 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (30)..(30)
<223> The 'Xaa' at location 30 stands for Gln, Arg, Pro, or Leu.
<400> 64
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Xaa Cys Ser Asn Gly Ser Xaa Xaa Cys Xaa Ile Cys
20 25 30
Ile
<210> 65
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S protein GSAS+4P-DNA
<400> 65
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagccccat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca ccctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctct ctttatggat gtgctccaat ggatcgttac aatgcagaat ttgcatttaa 3780
<210> 66
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S protein GSAS+6P-DNA
<400> 66
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagccccat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
cccgcactgc agataccatt ccccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca ccctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctct ctttatggat gtgctccaat ggatcgttac aatgcagaat ttgcatttaa 3780
<210> 67
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S protein GSAS+2P+L92DF-DNA
<400> 67
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagctt cagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctct ctttatggat gtgctccaat ggatcgttac aatgcagaat ttgcatttaa 3780
<210> 68
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S protein GSAS+4P+L92DF-DNA
<400> 68
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagccccat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagctt cagcagcaca ccctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctct ctttatggat gtgctccaat ggatcgttac aatgcagaat ttgcatttaa 3780
<210> 69
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S protein GSAS+6P+L92DF-DNA
<400> 69
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagccccat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
cccgcactgc agataccatt ccccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagctt cagcagcaca ccctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctct ctttatggat gtgctccaat ggatcgttac aatgcagaat ttgcatttaa 3780
<210> 70
<211> 3789
<212> DNA
<213> artificial sequence
<220>
<223> PDI-modified S protein with H5i hemagglutinin CT (V1) DNA
<400> 70
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgatgg ccggcctctc tttatggatg tgctccaatg gatcgttaca atgcagaatt 3780
tgcatttaa 3789
<210> 71
<211> 3786
<212> DNA
<213> artificial sequence
<220>
<223> PDI-modified S protein with H5i hemagglutinin CT (V2) DNA
<400> 71
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatggccg gcctctcttt atggatgtgc tccaatggat cgttacaatg cagaatttgc 3780
atttaa 3786
<210> 72
<211> 3777
<212> DNA
<213> artificial sequence
<220>
<223> PDI-modified S protein with H5i hemagglutinin CT (V3) DNA
<400> 72
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctct gctgcatgtg ctccaatgga tcgttacaat gcagaatttg catttaa 3777
<210> 73
<211> 3771
<212> DNA
<213> artificial sequence
<220>
<223> PDI-modified S protein with H5i hemagglutinin CT (V4) DNA
<400> 73
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctct gctgctccaa tggatcgtta caatgcagaa tttgcattta a 3771
<210> 74
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S-protein+H2CalDNA
<400> 74
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctca gcttctggat gtgctctaat gggtctctac agtgtagaat atgtatttaa 3780
<210> 75
<211> 3777
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S-protein+H2MinnDNA
<400> 75
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctca tgtgggcctg tcagaagggc aacatcagat gcaacatctg catctaa 3777
<210> 76
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S-protein+H2HKDNA
<400> 76
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctcg gtctttggat gtgttcaaat ggttcaatgc agtgcaggat atgtatataa 3780
<210> 77
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S-protein+H27 Guangdong DNA
<400> 77
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctcg tcttcatatg tgtgaagaat ggaaacatgc ggtgcactat ttgtatataa 3780
<210> 78
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S-protein+H2HK DNA
<400> 78
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctcc tgttctgggc catgtccaat ggatcttgca gatgcaacat ttgtatataa 3780
<210> 79
<211> 3780
<212> DNA
<213> artificial sequence
<220>
<223> PDI-S-protein+B/Wash DNA
<400> 79
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgaatct tacgacgcga acacagttac cacccgcata tacaaatagc 120
ttcactcggg gtgtttatta ccccgacaaa gtgttcaggt cctccgtgct ccactcaaca 180
caggacctct ttcttccttt cttttctaac gtgacatggt ttcatgccat tcatgtatcc 240
ggcactaacg gtactaagag gttcgataat cctgtgctcc ctttcaatga cggcgtttac 300
tttgcaagca cagagaagag taacatcatc cgaggttgga tctttggcac taccctcgat 360
tcaaagacgc agagcctcct cattgtgaac aatgccacta acgtggtgat caaagtttgc 420
gagtttcagt tctgcaatga ccctttcttg ggggtgtact atcataagaa caacaagtct 480
tggatggaat ctgaattccg cgtctatagc agcgccaaca actgcacctt tgaatacgtg 540
tcccagccct tccttatgga cctggaggga aagcagggaa actttaagaa tctgagagag 600
ttcgtgttta aaaatatcga cggctatttt aagatctatt ctaagcacac gcctattaat 660
ctcgtgcgcg atcttccaca aggcttcagc gccctggaac cactcgtgga cctcccaatt 720
ggtatcaaca tcactagatt tcagactctg cttgccctcc accgatccta tctgacaccc 780
ggagactcct ctagcggctg gactgccggc gctgccgctt attacgttgg ttatcttcag 840
ccacgcacgt tcctgctgaa gtataacgag aatggtacta ttaccgatgc cgtggattgt 900
gcccttgacc ccctgtccga aactaagtgc acactcaagt cattcactgt ggaaaaagga 960
atctaccaga caagcaattt tcgggtccag cctactgaga gcattgtgcg ctttcctaac 1020
atcacaaatc tttgcccctt cggagaggtt ttcaatgcta cacggtttgc ctccgtgtat 1080
gcctggaacc gcaagagaat ttccaattgc gtggccgatt actccgtgct ctacaatagt 1140
gcaagcttta gcacctttaa gtgctatggc gtatccccta ctaagcttaa cgacttgtgt 1200
ttcacaaacg tgtatgccga ctcctttgtg atacggggcg acgaagttag acagatagca 1260
ccaggacaga cgggaaagat agctgactac aactataagc ttcctgatga cttcactggc 1320
tgcgttatcg cgtggaattc taacaacctg gactcaaaag tcggcggcaa ctataactat 1380
ctctatcggc tgttccgcaa gagtaacctt aagccctttg agagagatat aagcactgaa 1440
atctaccagg ctggcagtac gccctgtaat ggcgtggaag gctttaattg ttattttcca 1500
ctgcaatcct atggttttca gccaaccaat ggcgtgggct accaaccata ccgcgtcgtg 1560
gtgctctcct ttgaactgct ccacgctccc gcgactgtct gcggccccaa gaagtccacg 1620
aaccttgtga agaataagtg cgttaatttt aatttcaacg gcctcactgg aacaggagtg 1680
ctcactgaga gtaacaagaa gttcctgcca tttcaacaat ttggcagaga catagccgat 1740
actactgacg ccgttaggga cccccagacc ctcgagattc tcgatataac gccctgctcc 1800
ttcggtggag tttccgtgat cacgccaggc accaatacca gtaaccaggt cgccgtgctg 1860
tatcaggatg tcaactgtac tgaggtgccc gtagccatcc atgcggatca gctcacacca 1920
acttggaggg tgtacagcac cggctccaat gtattccaga ctcgggccgg atgccttatt 1980
ggcgccgaac acgtgaacaa tagttacgaa tgcgatattc caattggcgc cggaatctgt 2040
gctagctacc agactcagac gaactcccca ggcagcgcca gcagcgttgc cagccagtca 2100
atcatcgctt atacaatgtc acttggagcc gaaaactccg tggcttactc aaacaacagc 2160
atcgccatcc ccacaaactt caccatatcc gtgacaactg agattctgcc agtgtccatg 2220
actaagacgt ccgtagattg cactatgtac atatgcggcg acagcacaga atgttctaat 2280
ctgctgctgc aatatggaag cttctgcact caactgaaca gagcgctcac aggcatcgcc 2340
gtggagcagg ataagaatac ccaggaggtg ttcgcccaag ttaagcagat ctacaagacc 2400
ccacccataa aggatttcgg tggattcaat tttagtcaga tactcccaga cccatctaag 2460
ccatccaaga ggagctttat cgaggatctt ttgtttaaca aagttactct ggccgacgcc 2520
ggtttcatca agcagtacgg agattgcctc ggcgacatcg ctgctcgtga cctcatctgt 2580
gcgcaaaagt ttaacggtct gacggtgctg cctcccctcc ttactgatga aatgatcgcc 2640
cagtatacca gcgcactcct cgctggcacc ataacatccg gttggacatt cggcgctggt 2700
gcagcactgc agataccatt cgccatgcaa atggcatatc gtttcaacgg tatcggtgtc 2760
acacagaatg tcctatatga gaaccagaag ctgatcgcaa atcagttcaa tagtgccatc 2820
ggaaaaatcc aggatagcct tagcagcaca gcctcagccc ttggcaaact ccaggatgtc 2880
gtgaaccaga atgcccaggc tctcaatacc ctcgtgaagc agctctcatc taatttcggc 2940
gcaatttcca gtgtcctcaa cgacatcctc agccgcctcg acccccccga ggccgaagtg 3000
cagattgaca gactgattac aggtcgactc cagagcctcc agacttacgt gactcagcag 3060
ctgataagag ccgccgagat aagggccagc gctaacctgg ctgccacaaa gatgtctgag 3120
tgcgtgctgg gccagtccaa gagagtagac ttctgtggca aaggctacca tctgatgagc 3180
ttcccacaat ccgcacctca cggcgtagtg ttcctccacg tgacatatgt accggctcag 3240
gagaagaatt tcactaccgc tcctgctata tgccatgatg gaaaggctca cttcccccgg 3300
gagggggtgt tcgtgtccaa cggcacccat tggtttgtga ctcagcggaa tttctacgaa 3360
ccccagatca taaccactga caacacattt gtgtccggaa attgtgacgt ggtcattgga 3420
atagtgaaca acactgttta tgatccactg cagccagaac ttgacagctt taaggaggag 3480
ctcgacaagt acttcaagaa tcatacgtca ccagatgtgg acctcggaga tattagcggt 3540
atcaatgcca gtgttgtcaa tattcagaag gaaatagacc gccttaatga ggtcgccaaa 3600
aatctgaacg agagcctcat cgatcttcag gagctgggca aatatgagca gtacatcaag 3660
tggccttggt atatttggct tggcttcatc gccggcctga tcgccatagt aatggtcaca 3720
attatgctcg ttgtttatat ggtctccaga gacaatgttt cttgctccat ttgtctataa 3780
<210> 80
<211> 48
<212> DNA
<213> artificial sequence
<220>
<223> IF-H1HawaiiCT.r
<400> 80
acgacacgac taaggccttt aaatacatat tctacactgt agagaccc 48
<210> 81
<211> 54
<212> DNA
<213> artificial sequence
<220>
<223> IF-H3MinnesotaCT.r
<400> 81
acgacacgac taaggccttt agatgcagat gttgcatctg atgttgccct tctg 54
<210> 82
<211> 52
<212> DNA
<213> artificial sequence
<220>
<223> IF-HongKongCT.r
<400> 82
acgacacgac taaggccttt atatacatat cctgcactgc attgaaccat tt 52
<210> 83
<211> 49
<212> DNA
<213> artificial sequence
<220>
<223> IF-GuangdongCT.r
<400> 83
acgacacgac taaggccttt atatacaaat agtgcaccgc atgtttcca 49
<210> 84
<211> 50
<212> DNA
<213> artificial sequence
<220>
<223> IF-H9HKCT.r
<400> 84
acgacacgac taaggccttt atatacaaat gttgcatctg caagatccat 50
<210> 85
<211> 50
<212> DNA
<213> artificial sequence
<220>
<223> IF-BWashCT.r
<400> 85
acgacacgac taaggccttt atagacaaat ggagcaagaa acattgtctc 50
<210> 86
<211> 50
<212> DNA
<213> artificial sequence
<220>
<223> IF(nbHEL40)-PDI.c
<400> 86
ccaaaacaca ttgagcaaaa tggcgaaaaa cgttgcgatt ttcggcttat 50
<210> 87
<211> 50
<212> DNA
<213> artificial sequence
<220>
<223> IF(AvB+wtCT).r
<400> 87
acgacacgac taaggccttt aggtataatg gagtttcacc cccttcagaa 50
<210> 88
<211> 3801
<212> DNA
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 wtTMCT-DNA
<400> 88
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtccgatct ggatcggtgc actacatttg acgatgtgca ggcacctaat 120
tatactcagc acacctcttc catgcggggc gtgtactacc ccgacgagat ttttagaagt 180
gacacactgt acctgaccca agaccttttt ctcccatttt atagcaatgt cacgggattc 240
cacactatca atcacacatt cggaaaccct gttatcccct ttaaagacgg tatctacttt 300
gctgctactg agaaatcgaa tgttgttcgc ggttgggtgt tcggctcaac catgaacaac 360
aagagtcagt cagtaataat tataaacaac tcaaccaatg tcgtcatcag ggcttgcaac 420
ttcgagctct gcgataaccc cttctttgcg gtgtccaaac cgatgggcac tcagacccat 480
accatgattt ttgacaatgc ctttaattgt actttcgaat acatcagcga tgccttctcg 540
ctggatgtgt ccgagaagag cggtaacttc aagcatttgc gggagttcgt tttcaaaaac 600
aaagacgggt ttttgtatgt ctacaaaggc tatcagccca ttgatgtggt cagggatctg 660
cccagtggtt tcaacacact gaagcccatc ttcaagttgc cactcggcat caacatcact 720
aatttccgcg ccatcctaac tgctttttcg ccagcgcagg atatttgggg gacatccgcc 780
gcagcttact tcgtgggata tctgaagccc accactttta tgctaaagta cgacgagaat 840
ggcaccatca ccgatgccgt ggactgctca cagaatcctc tcgcagagct caagtgttca 900
gtgaagtcat ttgagatcga caaagggatc taccaaacat ctaactttcg cgtcgtgcct 960
tccggtgacg tagtccgttt cccaaatatc actaacttgt gcccttttgg tgaagtattc 1020
aacgcaacca aattccccag tgtgtatgcg tgggagcgca aaaagatcag taactgtgtg 1080
gctgactata gtgttctgta caatagcacc ttcttcagca ccttcaagtg ttatggagtg 1140
agcgctacaa aactgaacga tctttgtttc tcaaacgtgt acgccgattc atttgtcgtt 1200
aaaggtgacg atgtgaggca gatcgctcca ggccagacag gtgtgattgc tgactataat 1260
tacaaactgc cagacgactt catggggtgc gtgctagctt ggaatacaag aaacattgac 1320
gccacctcca cgggaaatta caattacaag tatcgttacc ttcgccatgg aaagttgaga 1380
cccttcgagc gtgatataag taacgtgccc tttagtccag atggaaaacc ctgcacaccc 1440
cctgctctca attgctattg gcctctcaat gactacggct tttacacaac tactggcatc 1500
ggataccagc cttaccgggt cgtggtgctc agttttgagt tgcttaacgc acccgccacc 1560
gtgtgtggtc ctaaactttc tactgacctg attaaaaacc aatgcgtcaa cttcaatttt 1620
aacgggctga ccggcaccgg tgtcctgacc cctagctcta agagattcca gccttttcag 1680
cagttcggga gggatgtgag cgactttacc gactctgtca gggatccaaa gaccagcgag 1740
atactggata tctcgccctg cagtttcggt ggcgtgtccg ttattacacc tggcaccaac 1800
gcctcctcag aggtggcggt gctctatcaa gatgtcaact gcactgatgt gtcaactgcc 1860
atccatgccg atcagctgac ccccgcctgg cgcatctaca gtaccgggaa caacgttttt 1920
cagacccagg ccggctgtct aatcggcgca gagcacgttg acacatccta cgaatgtgac 1980
atacctatcg gggcaggcat ttgcgctagc taccataccg tgtcactgtt ggcttccacg 2040
tcacaaaagt caatcgttgc ctacacgatg agtctggggg ctgactcatc tatcgcctac 2100
agcaacaata ccattgcaat tcccacaaac ttcagtatct ccatcacaac agaggtgatg 2160
cccgtttcta tggctaaaac atcagtcgat tgcaatatgt atatatgcgg cgatagtact 2220
gagtgcgcca atctcttgtt acagtacggc tccttttgta cccagctgaa ccgagcactg 2280
tctggaatcg ccgcagaaca ggatcgcaat acccgggaag tcttcgccca ggtgaagcag 2340
atgtacaaaa cgcccactct caagtatttc ggcggattca acttttctca gattttgcct 2400
gacccgctca agccaacaaa acgatctttt atcgaagacc ttctgtttaa caaggtcaca 2460
ctggcggatg ctgggttcat gaaacagtac ggtgaatgcc tgggggacat caatgccaga 2520
gatctgatct gcgcccagaa attcaatggc ttaacagtcc tcccacctct cttgaccgac 2580
gatatgatcg ctgcgtacac cgctgctctg gtatcgggca ccgcgactgc tggctggacc 2640
tttggtgccg gagccgcact ccagatccca ttcgccatgc agatggccta ccgcttcaac 2700
ggaatcgggg tcacccagaa cgtgctgtat gagaaccaga aacagatcgc caatcagttc 2760
aataaggcaa ttagtcagat tcaggagagt cttaccacta ccagcaccgc cctgggcaag 2820
ctgcaagatg ttgtgaacca gaatgcgcag gcattaaaca ctctggttaa acagctgagc 2880
tcaaattttg gtgcaatctc ttcagttctg aacgatatcc tgagtcggct ggatccgcca 2940
gaggctgaag tgcaaattga tcgtttgatc accgggaggc tacaatctct gcagacgtac 3000
gtgacccagc agctcatccg ggcagccgaa attcgcgcat cagccaacct cgctgcaact 3060
aagatgtctg agtgcgtgct gggccagagt aagagggtgg acttttgtgg taagggatac 3120
cacctcatgt cctttccgca agcggctccc cacggcgtgg ttttcttaca cgttacctat 3180
gtgccatccc aagaacgcaa tttcaccacc gctccagcta tctgtcatga gggcaaagca 3240
tatttcccca gggaaggagt atttgtgttt aatggcacgt cctggtttat aacccaacgt 3300
aactttttct ccccacagat tatcacaacc gacaacacat tcgtgtctgg gaattgtgac 3360
gtcgtgatcg ggatcattaa caataccgtt tacgatccct tgcagcccga gcttgactcc 3420
tttaaagagg aactagacaa atactttaag aatcacacct caccggacgt agatttggga 3480
gacatctctg gaattaatgc ctctgtggtg aatatccaga aggagatcga ccgcctgaat 3540
gaagtcgcca agaacctcaa cgagtccctg atagatctgc aagaactggg caaatatgaa 3600
cagtacatca aatggccgtg gtacgtgtgg ttgggcttta tcgctggact tattgcaatc 3660
gtgatggtga cgattctgct ctgctgtatg acttcctgct gctcttgtct gaagggcgcc 3720
tgtagctgtg gttcctgctg caagttcgac gaagacgact ccgaaccagt tctgaagggg 3780
gtgaaactcc attataccta a 3801
<210> 89
<211> 3741
<212> DNA
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 H5iTMCT-DNA
<400> 89
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtccgatct ggatcggtgc actacatttg acgatgtgca ggcacctaat 120
tatactcagc acacctcttc catgcggggc gtgtactacc ccgacgagat ttttagaagt 180
gacacactgt acctgaccca agaccttttt ctcccatttt atagcaatgt cacgggattc 240
cacactatca atcacacatt cggaaaccct gttatcccct ttaaagacgg tatctacttt 300
gctgctactg agaaatcgaa tgttgttcgc ggttgggtgt tcggctcaac catgaacaac 360
aagagtcagt cagtaataat tataaacaac tcaaccaatg tcgtcatcag ggcttgcaac 420
ttcgagctct gcgataaccc cttctttgcg gtgtccaaac cgatgggcac tcagacccat 480
accatgattt ttgacaatgc ctttaattgt actttcgaat acatcagcga tgccttctcg 540
ctggatgtgt ccgagaagag cggtaacttc aagcatttgc gggagttcgt tttcaaaaac 600
aaagacgggt ttttgtatgt ctacaaaggc tatcagccca ttgatgtggt cagggatctg 660
cccagtggtt tcaacacact gaagcccatc ttcaagttgc cactcggcat caacatcact 720
aatttccgcg ccatcctaac tgctttttcg ccagcgcagg atatttgggg gacatccgcc 780
gcagcttact tcgtgggata tctgaagccc accactttta tgctaaagta cgacgagaat 840
ggcaccatca ccgatgccgt ggactgctca cagaatcctc tcgcagagct caagtgttca 900
gtgaagtcat ttgagatcga caaagggatc taccaaacat ctaactttcg cgtcgtgcct 960
tccggtgacg tagtccgttt cccaaatatc actaacttgt gcccttttgg tgaagtattc 1020
aacgcaacca aattccccag tgtgtatgcg tgggagcgca aaaagatcag taactgtgtg 1080
gctgactata gtgttctgta caatagcacc ttcttcagca ccttcaagtg ttatggagtg 1140
agcgctacaa aactgaacga tctttgtttc tcaaacgtgt acgccgattc atttgtcgtt 1200
aaaggtgacg atgtgaggca gatcgctcca ggccagacag gtgtgattgc tgactataat 1260
tacaaactgc cagacgactt catggggtgc gtgctagctt ggaatacaag aaacattgac 1320
gccacctcca cgggaaatta caattacaag tatcgttacc ttcgccatgg aaagttgaga 1380
cccttcgagc gtgatataag taacgtgccc tttagtccag atggaaaacc ctgcacaccc 1440
cctgctctca attgctattg gcctctcaat gactacggct tttacacaac tactggcatc 1500
ggataccagc cttaccgggt cgtggtgctc agttttgagt tgcttaacgc acccgccacc 1560
gtgtgtggtc ctaaactttc tactgacctg attaaaaacc aatgcgtcaa cttcaatttt 1620
aacgggctga ccggcaccgg tgtcctgacc cctagctcta agagattcca gccttttcag 1680
cagttcggga gggatgtgag cgactttacc gactctgtca gggatccaaa gaccagcgag 1740
atactggata tctcgccctg cagtttcggt ggcgtgtccg ttattacacc tggcaccaac 1800
gcctcctcag aggtggcggt gctctatcaa gatgtcaact gcactgatgt gtcaactgcc 1860
atccatgccg atcagctgac ccccgcctgg cgcatctaca gtaccgggaa caacgttttt 1920
cagacccagg ccggctgtct aatcggcgca gagcacgttg acacatccta cgaatgtgac 1980
atacctatcg gggcaggcat ttgcgctagc taccataccg tgtcactgtt ggcttccacg 2040
tcacaaaagt caatcgttgc ctacacgatg agtctggggg ctgactcatc tatcgcctac 2100
agcaacaata ccattgcaat tcccacaaac ttcagtatct ccatcacaac agaggtgatg 2160
cccgtttcta tggctaaaac atcagtcgat tgcaatatgt atatatgcgg cgatagtact 2220
gagtgcgcca atctcttgtt acagtacggc tccttttgta cccagctgaa ccgagcactg 2280
tctggaatcg ccgcagaaca ggatcgcaat acccgggaag tcttcgccca ggtgaagcag 2340
atgtacaaaa cgcccactct caagtatttc ggcggattca acttttctca gattttgcct 2400
gacccgctca agccaacaaa acgatctttt atcgaagacc ttctgtttaa caaggtcaca 2460
ctggcggatg ctgggttcat gaaacagtac ggtgaatgcc tgggggacat caatgccaga 2520
gatctgatct gcgcccagaa attcaatggc ttaacagtcc tcccacctct cttgaccgac 2580
gatatgatcg ctgcgtacac cgctgctctg gtatcgggca ccgcgactgc tggctggacc 2640
tttggtgccg gagccgcact ccagatccca ttcgccatgc agatggccta ccgcttcaac 2700
ggaatcgggg tcacccagaa cgtgctgtat gagaaccaga aacagatcgc caatcagttc 2760
aataaggcaa ttagtcagat tcaggagagt cttaccacta ccagcaccgc cctgggcaag 2820
ctgcaagatg ttgtgaacca gaatgcgcag gcattaaaca ctctggttaa acagctgagc 2880
tcaaattttg gtgcaatctc ttcagttctg aacgatatcc tgagtcggct ggatccgcca 2940
gaggctgaag tgcaaattga tcgtttgatc accgggaggc tacaatctct gcagacgtac 3000
gtgacccagc agctcatccg ggcagccgaa attcgcgcat cagccaacct cgctgcaact 3060
aagatgtctg agtgcgtgct gggccagagt aagagggtgg acttttgtgg taagggatac 3120
cacctcatgt cctttccgca agcggctccc cacggcgtgg ttttcttaca cgttacctat 3180
gtgccatccc aagaacgcaa tttcaccacc gctccagcta tctgtcatga gggcaaagca 3240
tatttcccca gggaaggagt atttgtgttt aatggcacgt cctggtttat aacccaacgt 3300
aactttttct ccccacagat tatcacaacc gacaacacat tcgtgtctgg gaattgtgac 3360
gtcgtgatcg ggatcattaa caataccgtt tacgatccct tgcagcccga gcttgactcc 3420
tttaaagagg aactagacaa atactttaag aatcacacct caccggacgt agatttggga 3480
gacatctctg gaattaatgc ctctgtggtg aatatccaga aggagatcga ccgcctgaat 3540
gaagtcgcca agaacctcaa cgagtccctg atagatctgc aagaactggg caaatatgaa 3600
cagtacatca aatggccgtg gtaccaaata ctgtcaattt attcaacagt ggcgagttcc 3660
ctagcactgg caatcatgat ggctggtcta tctttatgga tgtgctccaa tggatcgtta 3720
caatgcagaa tttgcattta a 3741
<210> 90
<211> 3732
<212> DNA
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 H5iCT-DNA
<400> 90
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtccgatct ggatcggtgc actacatttg acgatgtgca ggcacctaat 120
tatactcagc acacctcttc catgcggggc gtgtactacc ccgacgagat ttttagaagt 180
gacacactgt acctgaccca agaccttttt ctcccatttt atagcaatgt cacgggattc 240
cacactatca atcacacatt cggaaaccct gttatcccct ttaaagacgg tatctacttt 300
gctgctactg agaaatcgaa tgttgttcgc ggttgggtgt tcggctcaac catgaacaac 360
aagagtcagt cagtaataat tataaacaac tcaaccaatg tcgtcatcag ggcttgcaac 420
ttcgagctct gcgataaccc cttctttgcg gtgtccaaac cgatgggcac tcagacccat 480
accatgattt ttgacaatgc ctttaattgt actttcgaat acatcagcga tgccttctcg 540
ctggatgtgt ccgagaagag cggtaacttc aagcatttgc gggagttcgt tttcaaaaac 600
aaagacgggt ttttgtatgt ctacaaaggc tatcagccca ttgatgtggt cagggatctg 660
cccagtggtt tcaacacact gaagcccatc ttcaagttgc cactcggcat caacatcact 720
aatttccgcg ccatcctaac tgctttttcg ccagcgcagg atatttgggg gacatccgcc 780
gcagcttact tcgtgggata tctgaagccc accactttta tgctaaagta cgacgagaat 840
ggcaccatca ccgatgccgt ggactgctca cagaatcctc tcgcagagct caagtgttca 900
gtgaagtcat ttgagatcga caaagggatc taccaaacat ctaactttcg cgtcgtgcct 960
tccggtgacg tagtccgttt cccaaatatc actaacttgt gcccttttgg tgaagtattc 1020
aacgcaacca aattccccag tgtgtatgcg tgggagcgca aaaagatcag taactgtgtg 1080
gctgactata gtgttctgta caatagcacc ttcttcagca ccttcaagtg ttatggagtg 1140
agcgctacaa aactgaacga tctttgtttc tcaaacgtgt acgccgattc atttgtcgtt 1200
aaaggtgacg atgtgaggca gatcgctcca ggccagacag gtgtgattgc tgactataat 1260
tacaaactgc cagacgactt catggggtgc gtgctagctt ggaatacaag aaacattgac 1320
gccacctcca cgggaaatta caattacaag tatcgttacc ttcgccatgg aaagttgaga 1380
cccttcgagc gtgatataag taacgtgccc tttagtccag atggaaaacc ctgcacaccc 1440
cctgctctca attgctattg gcctctcaat gactacggct tttacacaac tactggcatc 1500
ggataccagc cttaccgggt cgtggtgctc agttttgagt tgcttaacgc acccgccacc 1560
gtgtgtggtc ctaaactttc tactgacctg attaaaaacc aatgcgtcaa cttcaatttt 1620
aacgggctga ccggcaccgg tgtcctgacc cctagctcta agagattcca gccttttcag 1680
cagttcggga gggatgtgag cgactttacc gactctgtca gggatccaaa gaccagcgag 1740
atactggata tctcgccctg cagtttcggt ggcgtgtccg ttattacacc tggcaccaac 1800
gcctcctcag aggtggcggt gctctatcaa gatgtcaact gcactgatgt gtcaactgcc 1860
atccatgccg atcagctgac ccccgcctgg cgcatctaca gtaccgggaa caacgttttt 1920
cagacccagg ccggctgtct aatcggcgca gagcacgttg acacatccta cgaatgtgac 1980
atacctatcg gggcaggcat ttgcgctagc taccataccg tgtcactgtt ggcttccacg 2040
tcacaaaagt caatcgttgc ctacacgatg agtctggggg ctgactcatc tatcgcctac 2100
agcaacaata ccattgcaat tcccacaaac ttcagtatct ccatcacaac agaggtgatg 2160
cccgtttcta tggctaaaac atcagtcgat tgcaatatgt atatatgcgg cgatagtact 2220
gagtgcgcca atctcttgtt acagtacggc tccttttgta cccagctgaa ccgagcactg 2280
tctggaatcg ccgcagaaca ggatcgcaat acccgggaag tcttcgccca ggtgaagcag 2340
atgtacaaaa cgcccactct caagtatttc ggcggattca acttttctca gattttgcct 2400
gacccgctca agccaacaaa acgatctttt atcgaagacc ttctgtttaa caaggtcaca 2460
ctggcggatg ctgggttcat gaaacagtac ggtgaatgcc tgggggacat caatgccaga 2520
gatctgatct gcgcccagaa attcaatggc ttaacagtcc tcccacctct cttgaccgac 2580
gatatgatcg ctgcgtacac cgctgctctg gtatcgggca ccgcgactgc tggctggacc 2640
tttggtgccg gagccgcact ccagatccca ttcgccatgc agatggccta ccgcttcaac 2700
ggaatcgggg tcacccagaa cgtgctgtat gagaaccaga aacagatcgc caatcagttc 2760
aataaggcaa ttagtcagat tcaggagagt cttaccacta ccagcaccgc cctgggcaag 2820
ctgcaagatg ttgtgaacca gaatgcgcag gcattaaaca ctctggttaa acagctgagc 2880
tcaaattttg gtgcaatctc ttcagttctg aacgatatcc tgagtcggct ggatccgcca 2940
gaggctgaag tgcaaattga tcgtttgatc accgggaggc tacaatctct gcagacgtac 3000
gtgacccagc agctcatccg ggcagccgaa attcgcgcat cagccaacct cgctgcaact 3060
aagatgtctg agtgcgtgct gggccagagt aagagggtgg acttttgtgg taagggatac 3120
cacctcatgt cctttccgca agcggctccc cacggcgtgg ttttcttaca cgttacctat 3180
gtgccatccc aagaacgcaa tttcaccacc gctccagcta tctgtcatga gggcaaagca 3240
tatttcccca gggaaggagt atttgtgttt aatggcacgt cctggtttat aacccaacgt 3300
aactttttct ccccacagat tatcacaacc gacaacacat tcgtgtctgg gaattgtgac 3360
gtcgtgatcg ggatcattaa caataccgtt tacgatccct tgcagcccga gcttgactcc 3420
tttaaagagg aactagacaa atactttaag aatcacacct caccggacgt agatttggga 3480
gacatctctg gaattaatgc ctctgtggtg aatatccaga aggagatcga ccgcctgaat 3540
gaagtcgcca agaacctcaa cgagtccctg atagatctgc aagaactggg caaatatgaa 3600
cagtacatca aatggccgtg gtacgtgtgg ttgggcttta tcgctggact tattgcaatc 3660
gtgatggtga cgattctgct ctctttatgg atgtgctcca atggatcgtt acaatgcaga 3720
atttgcattt aa 3732
<210> 91
<211> 3723
<212> DNA
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 H5iCT(V4)-DNA
<400> 91
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtccgatct ggatcggtgc actacatttg acgatgtgca ggcacctaat 120
tatactcagc acacctcttc catgcggggc gtgtactacc ccgacgagat ttttagaagt 180
gacacactgt acctgaccca agaccttttt ctcccatttt atagcaatgt cacgggattc 240
cacactatca atcacacatt cggaaaccct gttatcccct ttaaagacgg tatctacttt 300
gctgctactg agaaatcgaa tgttgttcgc ggttgggtgt tcggctcaac catgaacaac 360
aagagtcagt cagtaataat tataaacaac tcaaccaatg tcgtcatcag ggcttgcaac 420
ttcgagctct gcgataaccc cttctttgcg gtgtccaaac cgatgggcac tcagacccat 480
accatgattt ttgacaatgc ctttaattgt actttcgaat acatcagcga tgccttctcg 540
ctggatgtgt ccgagaagag cggtaacttc aagcatttgc gggagttcgt tttcaaaaac 600
aaagacgggt ttttgtatgt ctacaaaggc tatcagccca ttgatgtggt cagggatctg 660
cccagtggtt tcaacacact gaagcccatc ttcaagttgc cactcggcat caacatcact 720
aatttccgcg ccatcctaac tgctttttcg ccagcgcagg atatttgggg gacatccgcc 780
gcagcttact tcgtgggata tctgaagccc accactttta tgctaaagta cgacgagaat 840
ggcaccatca ccgatgccgt ggactgctca cagaatcctc tcgcagagct caagtgttca 900
gtgaagtcat ttgagatcga caaagggatc taccaaacat ctaactttcg cgtcgtgcct 960
tccggtgacg tagtccgttt cccaaatatc actaacttgt gcccttttgg tgaagtattc 1020
aacgcaacca aattccccag tgtgtatgcg tgggagcgca aaaagatcag taactgtgtg 1080
gctgactata gtgttctgta caatagcacc ttcttcagca ccttcaagtg ttatggagtg 1140
agcgctacaa aactgaacga tctttgtttc tcaaacgtgt acgccgattc atttgtcgtt 1200
aaaggtgacg atgtgaggca gatcgctcca ggccagacag gtgtgattgc tgactataat 1260
tacaaactgc cagacgactt catggggtgc gtgctagctt ggaatacaag aaacattgac 1320
gccacctcca cgggaaatta caattacaag tatcgttacc ttcgccatgg aaagttgaga 1380
cccttcgagc gtgatataag taacgtgccc tttagtccag atggaaaacc ctgcacaccc 1440
cctgctctca attgctattg gcctctcaat gactacggct tttacacaac tactggcatc 1500
ggataccagc cttaccgggt cgtggtgctc agttttgagt tgcttaacgc acccgccacc 1560
gtgtgtggtc ctaaactttc tactgacctg attaaaaacc aatgcgtcaa cttcaatttt 1620
aacgggctga ccggcaccgg tgtcctgacc cctagctcta agagattcca gccttttcag 1680
cagttcggga gggatgtgag cgactttacc gactctgtca gggatccaaa gaccagcgag 1740
atactggata tctcgccctg cagtttcggt ggcgtgtccg ttattacacc tggcaccaac 1800
gcctcctcag aggtggcggt gctctatcaa gatgtcaact gcactgatgt gtcaactgcc 1860
atccatgccg atcagctgac ccccgcctgg cgcatctaca gtaccgggaa caacgttttt 1920
cagacccagg ccggctgtct aatcggcgca gagcacgttg acacatccta cgaatgtgac 1980
atacctatcg gggcaggcat ttgcgctagc taccataccg tgtcactgtt ggcttccacg 2040
tcacaaaagt caatcgttgc ctacacgatg agtctggggg ctgactcatc tatcgcctac 2100
agcaacaata ccattgcaat tcccacaaac ttcagtatct ccatcacaac agaggtgatg 2160
cccgtttcta tggctaaaac atcagtcgat tgcaatatgt atatatgcgg cgatagtact 2220
gagtgcgcca atctcttgtt acagtacggc tccttttgta cccagctgaa ccgagcactg 2280
tctggaatcg ccgcagaaca ggatcgcaat acccgggaag tcttcgccca ggtgaagcag 2340
atgtacaaaa cgcccactct caagtatttc ggcggattca acttttctca gattttgcct 2400
gacccgctca agccaacaaa acgatctttt atcgaagacc ttctgtttaa caaggtcaca 2460
ctggcggatg ctgggttcat gaaacagtac ggtgaatgcc tgggggacat caatgccaga 2520
gatctgatct gcgcccagaa attcaatggc ttaacagtcc tcccacctct cttgaccgac 2580
gatatgatcg ctgcgtacac cgctgctctg gtatcgggca ccgcgactgc tggctggacc 2640
tttggtgccg gagccgcact ccagatccca ttcgccatgc agatggccta ccgcttcaac 2700
ggaatcgggg tcacccagaa cgtgctgtat gagaaccaga aacagatcgc caatcagttc 2760
aataaggcaa ttagtcagat tcaggagagt cttaccacta ccagcaccgc cctgggcaag 2820
ctgcaagatg ttgtgaacca gaatgcgcag gcattaaaca ctctggttaa acagctgagc 2880
tcaaattttg gtgcaatctc ttcagttctg aacgatatcc tgagtcggct ggatccgcca 2940
gaggctgaag tgcaaattga tcgtttgatc accgggaggc tacaatctct gcagacgtac 3000
gtgacccagc agctcatccg ggcagccgaa attcgcgcat cagccaacct cgctgcaact 3060
aagatgtctg agtgcgtgct gggccagagt aagagggtgg acttttgtgg taagggatac 3120
cacctcatgt cctttccgca agcggctccc cacggcgtgg ttttcttaca cgttacctat 3180
gtgccatccc aagaacgcaa tttcaccacc gctccagcta tctgtcatga gggcaaagca 3240
tatttcccca gggaaggagt atttgtgttt aatggcacgt cctggtttat aacccaacgt 3300
aactttttct ccccacagat tatcacaacc gacaacacat tcgtgtctgg gaattgtgac 3360
gtcgtgatcg ggatcattaa caataccgtt tacgatccct tgcagcccga gcttgactcc 3420
tttaaagagg aactagacaa atactttaag aatcacacct caccggacgt agatttggga 3480
gacatctctg gaattaatgc ctctgtggtg aatatccaga aggagatcga ccgcctgaat 3540
gaagtcgcca agaacctcaa cgagtccctg atagatctgc aagaactggg caaatatgaa 3600
cagtacatca aatggccgtg gtacgtgtgg ttgggcttta tcgctggact tattgcaatc 3660
gtgatggtga cgattctgct ctgctgctcc aatggatcgt tacaatgcag aatttgcatt 3720
taa 3723
<210> 92
<211> 3732
<212> DNA
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 H1cCT-DNA
<400> 92
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtccgatct ggatcggtgc actacatttg acgatgtgca ggcacctaat 120
tatactcagc acacctcttc catgcggggc gtgtactacc ccgacgagat ttttagaagt 180
gacacactgt acctgaccca agaccttttt ctcccatttt atagcaatgt cacgggattc 240
cacactatca atcacacatt cggaaaccct gttatcccct ttaaagacgg tatctacttt 300
gctgctactg agaaatcgaa tgttgttcgc ggttgggtgt tcggctcaac catgaacaac 360
aagagtcagt cagtaataat tataaacaac tcaaccaatg tcgtcatcag ggcttgcaac 420
ttcgagctct gcgataaccc cttctttgcg gtgtccaaac cgatgggcac tcagacccat 480
accatgattt ttgacaatgc ctttaattgt actttcgaat acatcagcga tgccttctcg 540
ctggatgtgt ccgagaagag cggtaacttc aagcatttgc gggagttcgt tttcaaaaac 600
aaagacgggt ttttgtatgt ctacaaaggc tatcagccca ttgatgtggt cagggatctg 660
cccagtggtt tcaacacact gaagcccatc ttcaagttgc cactcggcat caacatcact 720
aatttccgcg ccatcctaac tgctttttcg ccagcgcagg atatttgggg gacatccgcc 780
gcagcttact tcgtgggata tctgaagccc accactttta tgctaaagta cgacgagaat 840
ggcaccatca ccgatgccgt ggactgctca cagaatcctc tcgcagagct caagtgttca 900
gtgaagtcat ttgagatcga caaagggatc taccaaacat ctaactttcg cgtcgtgcct 960
tccggtgacg tagtccgttt cccaaatatc actaacttgt gcccttttgg tgaagtattc 1020
aacgcaacca aattccccag tgtgtatgcg tgggagcgca aaaagatcag taactgtgtg 1080
gctgactata gtgttctgta caatagcacc ttcttcagca ccttcaagtg ttatggagtg 1140
agcgctacaa aactgaacga tctttgtttc tcaaacgtgt acgccgattc atttgtcgtt 1200
aaaggtgacg atgtgaggca gatcgctcca ggccagacag gtgtgattgc tgactataat 1260
tacaaactgc cagacgactt catggggtgc gtgctagctt ggaatacaag aaacattgac 1320
gccacctcca cgggaaatta caattacaag tatcgttacc ttcgccatgg aaagttgaga 1380
cccttcgagc gtgatataag taacgtgccc tttagtccag atggaaaacc ctgcacaccc 1440
cctgctctca attgctattg gcctctcaat gactacggct tttacacaac tactggcatc 1500
ggataccagc cttaccgggt cgtggtgctc agttttgagt tgcttaacgc acccgccacc 1560
gtgtgtggtc ctaaactttc tactgacctg attaaaaacc aatgcgtcaa cttcaatttt 1620
aacgggctga ccggcaccgg tgtcctgacc cctagctcta agagattcca gccttttcag 1680
cagttcggga gggatgtgag cgactttacc gactctgtca gggatccaaa gaccagcgag 1740
atactggata tctcgccctg cagtttcggt ggcgtgtccg ttattacacc tggcaccaac 1800
gcctcctcag aggtggcggt gctctatcaa gatgtcaact gcactgatgt gtcaactgcc 1860
atccatgccg atcagctgac ccccgcctgg cgcatctaca gtaccgggaa caacgttttt 1920
cagacccagg ccggctgtct aatcggcgca gagcacgttg acacatccta cgaatgtgac 1980
atacctatcg gggcaggcat ttgcgctagc taccataccg tgtcactgtt ggcttccacg 2040
tcacaaaagt caatcgttgc ctacacgatg agtctggggg ctgactcatc tatcgcctac 2100
agcaacaata ccattgcaat tcccacaaac ttcagtatct ccatcacaac agaggtgatg 2160
cccgtttcta tggctaaaac atcagtcgat tgcaatatgt atatatgcgg cgatagtact 2220
gagtgcgcca atctcttgtt acagtacggc tccttttgta cccagctgaa ccgagcactg 2280
tctggaatcg ccgcagaaca ggatcgcaat acccgggaag tcttcgccca ggtgaagcag 2340
atgtacaaaa cgcccactct caagtatttc ggcggattca acttttctca gattttgcct 2400
gacccgctca agccaacaaa acgatctttt atcgaagacc ttctgtttaa caaggtcaca 2460
ctggcggatg ctgggttcat gaaacagtac ggtgaatgcc tgggggacat caatgccaga 2520
gatctgatct gcgcccagaa attcaatggc ttaacagtcc tcccacctct cttgaccgac 2580
gatatgatcg ctgcgtacac cgctgctctg gtatcgggca ccgcgactgc tggctggacc 2640
tttggtgccg gagccgcact ccagatccca ttcgccatgc agatggccta ccgcttcaac 2700
ggaatcgggg tcacccagaa cgtgctgtat gagaaccaga aacagatcgc caatcagttc 2760
aataaggcaa ttagtcagat tcaggagagt cttaccacta ccagcaccgc cctgggcaag 2820
ctgcaagatg ttgtgaacca gaatgcgcag gcattaaaca ctctggttaa acagctgagc 2880
tcaaattttg gtgcaatctc ttcagttctg aacgatatcc tgagtcggct ggatccgcca 2940
gaggctgaag tgcaaattga tcgtttgatc accgggaggc tacaatctct gcagacgtac 3000
gtgacccagc agctcatccg ggcagccgaa attcgcgcat cagccaacct cgctgcaact 3060
aagatgtctg agtgcgtgct gggccagagt aagagggtgg acttttgtgg taagggatac 3120
cacctcatgt cctttccgca agcggctccc cacggcgtgg ttttcttaca cgttacctat 3180
gtgccatccc aagaacgcaa tttcaccacc gctccagcta tctgtcatga gggcaaagca 3240
tatttcccca gggaaggagt atttgtgttt aatggcacgt cctggtttat aacccaacgt 3300
aactttttct ccccacagat tatcacaacc gacaacacat tcgtgtctgg gaattgtgac 3360
gtcgtgatcg ggatcattaa caataccgtt tacgatccct tgcagcccga gcttgactcc 3420
tttaaagagg aactagacaa atactttaag aatcacacct caccggacgt agatttggga 3480
gacatctctg gaattaatgc ctctgtggtg aatatccaga aggagatcga ccgcctgaat 3540
gaagtcgcca agaacctcaa cgagtccctg atagatctgc aagaactggg caaatatgaa 3600
cagtacatca aatggccgtg gtacgtgtgg ttgggcttta tcgctggact tattgcaatc 3660
gtgatggtga cgattctgct cagcttctgg atgtgctcta atgggtctct acagtgtaga 3720
atatgtattt aa 3732
<210> 93
<211> 1266
<212> PRT
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 wtTMCT-AA
<400> 93
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Ser Asp Leu Asp Arg Cys Thr Thr
20 25 30
Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln His Thr Ser Ser Met
35 40 45
Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg Ser Asp Thr Leu Tyr
50 55 60
Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser Asn Val Thr Gly Phe
65 70 75 80
His Thr Ile Asn His Thr Phe Gly Asn Pro Val Ile Pro Phe Lys Asp
85 90 95
Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn Val Val Arg Gly Trp
100 105 110
Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln Ser Val Ile Ile Ile
115 120 125
Asn Asn Ser Thr Asn Val Val Ile Arg Ala Cys Asn Phe Glu Leu Cys
130 135 140
Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met Gly Thr Gln Thr His
145 150 155 160
Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr Phe Glu Tyr Ile Ser
165 170 175
Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser Gly Asn Phe Lys His
180 185 190
Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly Phe Leu Tyr Val Tyr
195 200 205
Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp Leu Pro Ser Gly Phe
210 215 220
Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu Gly Ile Asn Ile Thr
225 230 235 240
Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro Ala Gln Asp Ile Trp
245 250 255
Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr Leu Lys Pro Thr Thr
260 265 270
Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile Thr Asp Ala Val Asp
275 280 285
Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys Ser Val Lys Ser Phe
290 295 300
Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg Val Val Pro
305 310 315 320
Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe
325 330 335
Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser Val Tyr Ala Trp Glu
340 345 350
Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn
355 360 365
Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser Ala Thr Lys
370 375 380
Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala Asp Ser Phe Val Val
385 390 395 400
Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly Gln Thr Gly Val Ile
405 410 415
Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Met Gly Cys Val Leu
420 425 430
Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser Thr Gly Asn Tyr Asn
435 440 445
Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu Arg Pro Phe Glu Arg
450 455 460
Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly Lys Pro Cys Thr Pro
465 470 475 480
Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp Tyr Gly Phe Tyr Thr
485 490 495
Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe
500 505 510
Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly Pro Lys Leu Ser Thr
515 520 525
Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn Phe Asn Gly Leu Thr
530 535 540
Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg Phe Gln Pro Phe Gln
545 550 555 560
Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp Ser Val Arg Asp Pro
565 570 575
Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys Ser Phe Gly Gly Val
580 585 590
Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser Glu Val Ala Val Leu
595 600 605
Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr Ala Ile His Ala Asp
610 615 620
Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr Gly Asn Asn Val Phe
625 630 635 640
Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu His Val Asp Thr Ser
645 650 655
Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr His
660 665 670
Thr Val Ser Leu Leu Ala Ser Thr Ser Gln Lys Ser Ile Val Ala Tyr
675 680 685
Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala Tyr Ser Asn Asn Thr
690 695 700
Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile Thr Thr Glu Val Met
705 710 715 720
Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys Asn Met Tyr Ile Cys
725 730 735
Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu Leu Gln Tyr Gly Ser Phe
740 745 750
Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile Ala Ala Glu Gln Asp
755 760 765
Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys Gln Met Tyr Lys Thr
770 775 780
Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
785 790 795 800
Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
805 810 815
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Met Lys Gln Tyr Gly Glu
820 825 830
Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
835 840 845
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Asp Met Ile Ala
850 855 860
Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala Thr Ala Gly Trp Thr
865 870 875 880
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
885 890 895
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
900 905 910
Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala Ile Ser Gln Ile Gln
915 920 925
Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly Lys Leu Gln Asp Val
930 935 940
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
945 950 955 960
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
965 970 975
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
980 985 990
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
995 1000 1005
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1010 1015 1020
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1025 1030 1035 1040
His Leu Met Ser Phe Pro Gln Ala Ala Pro His Gly Val Val Phe Leu
1045 1050 1055
His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala Pro
1060 1065 1070
Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe
1075 1080 1085
Val Phe Asn Gly Thr Ser Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser
1090 1095 1100
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1105 1110 1115 1120
Val Val Ile Gly Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1125 1130 1135
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1140 1145 1150
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1155 1160 1165
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1170 1175 1180
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1185 1190 1195 1200
Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly
1205 1210 1215
Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys Met Thr Ser
1220 1225 1230
Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gly Ser Cys Cys Lys
1235 1240 1245
Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys Gly Val Lys Leu His
1250 1255 1260
Tyr Thr
1265
<210> 94
<211> 1246
<212> PRT
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 H5iTMCT-AA
<400> 94
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Ser Asp Leu Asp Arg Cys Thr Thr
20 25 30
Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln His Thr Ser Ser Met
35 40 45
Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg Ser Asp Thr Leu Tyr
50 55 60
Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser Asn Val Thr Gly Phe
65 70 75 80
His Thr Ile Asn His Thr Phe Gly Asn Pro Val Ile Pro Phe Lys Asp
85 90 95
Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn Val Val Arg Gly Trp
100 105 110
Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln Ser Val Ile Ile Ile
115 120 125
Asn Asn Ser Thr Asn Val Val Ile Arg Ala Cys Asn Phe Glu Leu Cys
130 135 140
Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met Gly Thr Gln Thr His
145 150 155 160
Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr Phe Glu Tyr Ile Ser
165 170 175
Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser Gly Asn Phe Lys His
180 185 190
Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly Phe Leu Tyr Val Tyr
195 200 205
Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp Leu Pro Ser Gly Phe
210 215 220
Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu Gly Ile Asn Ile Thr
225 230 235 240
Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro Ala Gln Asp Ile Trp
245 250 255
Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr Leu Lys Pro Thr Thr
260 265 270
Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile Thr Asp Ala Val Asp
275 280 285
Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys Ser Val Lys Ser Phe
290 295 300
Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg Val Val Pro
305 310 315 320
Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe
325 330 335
Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser Val Tyr Ala Trp Glu
340 345 350
Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn
355 360 365
Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser Ala Thr Lys
370 375 380
Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala Asp Ser Phe Val Val
385 390 395 400
Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly Gln Thr Gly Val Ile
405 410 415
Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Met Gly Cys Val Leu
420 425 430
Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser Thr Gly Asn Tyr Asn
435 440 445
Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu Arg Pro Phe Glu Arg
450 455 460
Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly Lys Pro Cys Thr Pro
465 470 475 480
Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp Tyr Gly Phe Tyr Thr
485 490 495
Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe
500 505 510
Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly Pro Lys Leu Ser Thr
515 520 525
Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn Phe Asn Gly Leu Thr
530 535 540
Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg Phe Gln Pro Phe Gln
545 550 555 560
Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp Ser Val Arg Asp Pro
565 570 575
Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys Ser Phe Gly Gly Val
580 585 590
Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser Glu Val Ala Val Leu
595 600 605
Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr Ala Ile His Ala Asp
610 615 620
Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr Gly Asn Asn Val Phe
625 630 635 640
Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu His Val Asp Thr Ser
645 650 655
Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr His
660 665 670
Thr Val Ser Leu Leu Ala Ser Thr Ser Gln Lys Ser Ile Val Ala Tyr
675 680 685
Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala Tyr Ser Asn Asn Thr
690 695 700
Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile Thr Thr Glu Val Met
705 710 715 720
Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys Asn Met Tyr Ile Cys
725 730 735
Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu Leu Gln Tyr Gly Ser Phe
740 745 750
Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile Ala Ala Glu Gln Asp
755 760 765
Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys Gln Met Tyr Lys Thr
770 775 780
Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
785 790 795 800
Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
805 810 815
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Met Lys Gln Tyr Gly Glu
820 825 830
Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
835 840 845
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Asp Met Ile Ala
850 855 860
Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala Thr Ala Gly Trp Thr
865 870 875 880
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
885 890 895
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
900 905 910
Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala Ile Ser Gln Ile Gln
915 920 925
Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly Lys Leu Gln Asp Val
930 935 940
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
945 950 955 960
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
965 970 975
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
980 985 990
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
995 1000 1005
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1010 1015 1020
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1025 1030 1035 1040
His Leu Met Ser Phe Pro Gln Ala Ala Pro His Gly Val Val Phe Leu
1045 1050 1055
His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala Pro
1060 1065 1070
Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe
1075 1080 1085
Val Phe Asn Gly Thr Ser Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser
1090 1095 1100
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1105 1110 1115 1120
Val Val Ile Gly Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1125 1130 1135
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1140 1145 1150
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1155 1160 1165
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1170 1175 1180
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1185 1190 1195 1200
Gln Tyr Ile Lys Trp Pro Trp Tyr Gln Ile Leu Ser Ile Tyr Ser Thr
1205 1210 1215
Val Ala Ser Ser Leu Ala Leu Ala Ile Met Met Ala Gly Leu Ser Leu
1220 1225 1230
Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1235 1240 1245
<210> 95
<211> 1243
<212> PRT
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 H5iCT-AA
<400> 95
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Ser Asp Leu Asp Arg Cys Thr Thr
20 25 30
Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln His Thr Ser Ser Met
35 40 45
Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg Ser Asp Thr Leu Tyr
50 55 60
Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser Asn Val Thr Gly Phe
65 70 75 80
His Thr Ile Asn His Thr Phe Gly Asn Pro Val Ile Pro Phe Lys Asp
85 90 95
Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn Val Val Arg Gly Trp
100 105 110
Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln Ser Val Ile Ile Ile
115 120 125
Asn Asn Ser Thr Asn Val Val Ile Arg Ala Cys Asn Phe Glu Leu Cys
130 135 140
Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met Gly Thr Gln Thr His
145 150 155 160
Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr Phe Glu Tyr Ile Ser
165 170 175
Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser Gly Asn Phe Lys His
180 185 190
Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly Phe Leu Tyr Val Tyr
195 200 205
Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp Leu Pro Ser Gly Phe
210 215 220
Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu Gly Ile Asn Ile Thr
225 230 235 240
Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro Ala Gln Asp Ile Trp
245 250 255
Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr Leu Lys Pro Thr Thr
260 265 270
Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile Thr Asp Ala Val Asp
275 280 285
Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys Ser Val Lys Ser Phe
290 295 300
Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg Val Val Pro
305 310 315 320
Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe
325 330 335
Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser Val Tyr Ala Trp Glu
340 345 350
Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn
355 360 365
Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser Ala Thr Lys
370 375 380
Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala Asp Ser Phe Val Val
385 390 395 400
Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly Gln Thr Gly Val Ile
405 410 415
Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Met Gly Cys Val Leu
420 425 430
Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser Thr Gly Asn Tyr Asn
435 440 445
Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu Arg Pro Phe Glu Arg
450 455 460
Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly Lys Pro Cys Thr Pro
465 470 475 480
Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp Tyr Gly Phe Tyr Thr
485 490 495
Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe
500 505 510
Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly Pro Lys Leu Ser Thr
515 520 525
Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn Phe Asn Gly Leu Thr
530 535 540
Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg Phe Gln Pro Phe Gln
545 550 555 560
Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp Ser Val Arg Asp Pro
565 570 575
Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys Ser Phe Gly Gly Val
580 585 590
Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser Glu Val Ala Val Leu
595 600 605
Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr Ala Ile His Ala Asp
610 615 620
Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr Gly Asn Asn Val Phe
625 630 635 640
Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu His Val Asp Thr Ser
645 650 655
Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr His
660 665 670
Thr Val Ser Leu Leu Ala Ser Thr Ser Gln Lys Ser Ile Val Ala Tyr
675 680 685
Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala Tyr Ser Asn Asn Thr
690 695 700
Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile Thr Thr Glu Val Met
705 710 715 720
Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys Asn Met Tyr Ile Cys
725 730 735
Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu Leu Gln Tyr Gly Ser Phe
740 745 750
Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile Ala Ala Glu Gln Asp
755 760 765
Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys Gln Met Tyr Lys Thr
770 775 780
Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
785 790 795 800
Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
805 810 815
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Met Lys Gln Tyr Gly Glu
820 825 830
Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
835 840 845
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Asp Met Ile Ala
850 855 860
Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala Thr Ala Gly Trp Thr
865 870 875 880
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
885 890 895
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
900 905 910
Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala Ile Ser Gln Ile Gln
915 920 925
Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly Lys Leu Gln Asp Val
930 935 940
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
945 950 955 960
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
965 970 975
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
980 985 990
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
995 1000 1005
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1010 1015 1020
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1025 1030 1035 1040
His Leu Met Ser Phe Pro Gln Ala Ala Pro His Gly Val Val Phe Leu
1045 1050 1055
His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala Pro
1060 1065 1070
Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe
1075 1080 1085
Val Phe Asn Gly Thr Ser Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser
1090 1095 1100
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1105 1110 1115 1120
Val Val Ile Gly Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1125 1130 1135
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1140 1145 1150
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1155 1160 1165
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1170 1175 1180
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1185 1190 1195 1200
Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly
1205 1210 1215
Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Ser Leu Trp Met Cys
1220 1225 1230
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1235 1240
<210> 96
<211> 1240
<212> PRT
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 H5iCT(V4)-AA
<400> 96
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Ser Asp Leu Asp Arg Cys Thr Thr
20 25 30
Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln His Thr Ser Ser Met
35 40 45
Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg Ser Asp Thr Leu Tyr
50 55 60
Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser Asn Val Thr Gly Phe
65 70 75 80
His Thr Ile Asn His Thr Phe Gly Asn Pro Val Ile Pro Phe Lys Asp
85 90 95
Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn Val Val Arg Gly Trp
100 105 110
Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln Ser Val Ile Ile Ile
115 120 125
Asn Asn Ser Thr Asn Val Val Ile Arg Ala Cys Asn Phe Glu Leu Cys
130 135 140
Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met Gly Thr Gln Thr His
145 150 155 160
Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr Phe Glu Tyr Ile Ser
165 170 175
Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser Gly Asn Phe Lys His
180 185 190
Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly Phe Leu Tyr Val Tyr
195 200 205
Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp Leu Pro Ser Gly Phe
210 215 220
Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu Gly Ile Asn Ile Thr
225 230 235 240
Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro Ala Gln Asp Ile Trp
245 250 255
Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr Leu Lys Pro Thr Thr
260 265 270
Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile Thr Asp Ala Val Asp
275 280 285
Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys Ser Val Lys Ser Phe
290 295 300
Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg Val Val Pro
305 310 315 320
Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe
325 330 335
Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser Val Tyr Ala Trp Glu
340 345 350
Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn
355 360 365
Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser Ala Thr Lys
370 375 380
Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala Asp Ser Phe Val Val
385 390 395 400
Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly Gln Thr Gly Val Ile
405 410 415
Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Met Gly Cys Val Leu
420 425 430
Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser Thr Gly Asn Tyr Asn
435 440 445
Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu Arg Pro Phe Glu Arg
450 455 460
Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly Lys Pro Cys Thr Pro
465 470 475 480
Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp Tyr Gly Phe Tyr Thr
485 490 495
Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe
500 505 510
Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly Pro Lys Leu Ser Thr
515 520 525
Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn Phe Asn Gly Leu Thr
530 535 540
Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg Phe Gln Pro Phe Gln
545 550 555 560
Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp Ser Val Arg Asp Pro
565 570 575
Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys Ser Phe Gly Gly Val
580 585 590
Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser Glu Val Ala Val Leu
595 600 605
Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr Ala Ile His Ala Asp
610 615 620
Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr Gly Asn Asn Val Phe
625 630 635 640
Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu His Val Asp Thr Ser
645 650 655
Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr His
660 665 670
Thr Val Ser Leu Leu Ala Ser Thr Ser Gln Lys Ser Ile Val Ala Tyr
675 680 685
Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala Tyr Ser Asn Asn Thr
690 695 700
Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile Thr Thr Glu Val Met
705 710 715 720
Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys Asn Met Tyr Ile Cys
725 730 735
Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu Leu Gln Tyr Gly Ser Phe
740 745 750
Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile Ala Ala Glu Gln Asp
755 760 765
Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys Gln Met Tyr Lys Thr
770 775 780
Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
785 790 795 800
Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
805 810 815
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Met Lys Gln Tyr Gly Glu
820 825 830
Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
835 840 845
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Asp Met Ile Ala
850 855 860
Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala Thr Ala Gly Trp Thr
865 870 875 880
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
885 890 895
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
900 905 910
Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala Ile Ser Gln Ile Gln
915 920 925
Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly Lys Leu Gln Asp Val
930 935 940
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
945 950 955 960
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
965 970 975
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
980 985 990
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
995 1000 1005
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1010 1015 1020
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1025 1030 1035 1040
His Leu Met Ser Phe Pro Gln Ala Ala Pro His Gly Val Val Phe Leu
1045 1050 1055
His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala Pro
1060 1065 1070
Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe
1075 1080 1085
Val Phe Asn Gly Thr Ser Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser
1090 1095 1100
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1105 1110 1115 1120
Val Val Ile Gly Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1125 1130 1135
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1140 1145 1150
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1155 1160 1165
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1170 1175 1180
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1185 1190 1195 1200
Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly
1205 1210 1215
Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cys Ser Asn Gly
1220 1225 1230
Ser Leu Gln Cys Arg Ile Cys Ile
1235 1240
<210> 97
<211> 1243
<212> PRT
<213> artificial sequence
<220>
<223> PDI-SARS-COV-1 H1cCT-AA
<400> 97
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Ser Asp Leu Asp Arg Cys Thr Thr
20 25 30
Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln His Thr Ser Ser Met
35 40 45
Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg Ser Asp Thr Leu Tyr
50 55 60
Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser Asn Val Thr Gly Phe
65 70 75 80
His Thr Ile Asn His Thr Phe Gly Asn Pro Val Ile Pro Phe Lys Asp
85 90 95
Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn Val Val Arg Gly Trp
100 105 110
Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln Ser Val Ile Ile Ile
115 120 125
Asn Asn Ser Thr Asn Val Val Ile Arg Ala Cys Asn Phe Glu Leu Cys
130 135 140
Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met Gly Thr Gln Thr His
145 150 155 160
Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr Phe Glu Tyr Ile Ser
165 170 175
Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser Gly Asn Phe Lys His
180 185 190
Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly Phe Leu Tyr Val Tyr
195 200 205
Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp Leu Pro Ser Gly Phe
210 215 220
Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu Gly Ile Asn Ile Thr
225 230 235 240
Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro Ala Gln Asp Ile Trp
245 250 255
Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr Leu Lys Pro Thr Thr
260 265 270
Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile Thr Asp Ala Val Asp
275 280 285
Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys Ser Val Lys Ser Phe
290 295 300
Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn Phe Arg Val Val Pro
305 310 315 320
Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr Asn Leu Cys Pro Phe
325 330 335
Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser Val Tyr Ala Trp Glu
340 345 350
Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr Ser Val Leu Tyr Asn
355 360 365
Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly Val Ser Ala Thr Lys
370 375 380
Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala Asp Ser Phe Val Val
385 390 395 400
Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly Gln Thr Gly Val Ile
405 410 415
Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe Met Gly Cys Val Leu
420 425 430
Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser Thr Gly Asn Tyr Asn
435 440 445
Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu Arg Pro Phe Glu Arg
450 455 460
Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly Lys Pro Cys Thr Pro
465 470 475 480
Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp Tyr Gly Phe Tyr Thr
485 490 495
Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val Val Val Leu Ser Phe
500 505 510
Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly Pro Lys Leu Ser Thr
515 520 525
Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn Phe Asn Gly Leu Thr
530 535 540
Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg Phe Gln Pro Phe Gln
545 550 555 560
Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp Ser Val Arg Asp Pro
565 570 575
Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys Ser Phe Gly Gly Val
580 585 590
Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser Glu Val Ala Val Leu
595 600 605
Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr Ala Ile His Ala Asp
610 615 620
Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr Gly Asn Asn Val Phe
625 630 635 640
Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu His Val Asp Thr Ser
645 650 655
Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile Cys Ala Ser Tyr His
660 665 670
Thr Val Ser Leu Leu Ala Ser Thr Ser Gln Lys Ser Ile Val Ala Tyr
675 680 685
Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala Tyr Ser Asn Asn Thr
690 695 700
Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile Thr Thr Glu Val Met
705 710 715 720
Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys Asn Met Tyr Ile Cys
725 730 735
Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu Leu Gln Tyr Gly Ser Phe
740 745 750
Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile Ala Ala Glu Gln Asp
755 760 765
Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys Gln Met Tyr Lys Thr
770 775 780
Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe Ser Gln Ile Leu Pro
785 790 795 800
Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile Glu Asp Leu Leu Phe
805 810 815
Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Met Lys Gln Tyr Gly Glu
820 825 830
Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile Cys Ala Gln Lys Phe
835 840 845
Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr Asp Asp Met Ile Ala
850 855 860
Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala Thr Ala Gly Trp Thr
865 870 875 880
Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe Ala Met Gln Met Ala
885 890 895
Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn Val Leu Tyr Glu Asn
900 905 910
Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala Ile Ser Gln Ile Gln
915 920 925
Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly Lys Leu Gln Asp Val
930 935 940
Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu Val Lys Gln Leu Ser
945 950 955 960
Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn Asp Ile Leu Ser Arg
965 970 975
Leu Asp Pro Pro Glu Ala Glu Val Gln Ile Asp Arg Leu Ile Thr Gly
980 985 990
Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln Gln Leu Ile Arg Ala
995 1000 1005
Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala Thr Lys Met Ser Glu
1010 1015 1020
Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr
1025 1030 1035 1040
His Leu Met Ser Phe Pro Gln Ala Ala Pro His Gly Val Val Phe Leu
1045 1050 1055
His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala Pro
1060 1065 1070
Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly Val Phe
1075 1080 1085
Val Phe Asn Gly Thr Ser Trp Phe Ile Thr Gln Arg Asn Phe Phe Ser
1090 1095 1100
Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser Gly Asn Cys Asp
1105 1110 1115 1120
Val Val Ile Gly Ile Ile Asn Asn Thr Val Tyr Asp Pro Leu Gln Pro
1125 1130 1135
Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys Tyr Phe Lys Asn His
1140 1145 1150
Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser Gly Ile Asn Ala Ser
1155 1160 1165
Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu Asn Glu Val Ala Lys
1170 1175 1180
Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu Leu Gly Lys Tyr Glu
1185 1190 1195 1200
Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly
1205 1210 1215
Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Ser Phe Trp Met Cys
1220 1225 1230
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1235 1240
<210> 98
<211> 60
<212> DNA
<213> artificial sequence
<220>
<223> IF(AvB+wtCT-MERS).r
<400> 98
acgacacgac taaggccttc agtgaacgtg gaccttgtga ggctcaaggt catactcctc 60
<210> 99
<211> 49
<212> DNA
<213> artificial sequence
<220>
<223> IF(H1cCT-wtTM).r
<400> 99
acgacacgac taaggccttc aaatacatat tctacactgt agagaccca 49
<210> 100
<211> 48
<212> DNA
<213> artificial sequence
<220>
<223> IF(H5ITMCT).r
<400> 100
acgacacgac taaggccttc aaatgcaaat tctgcattgt aacgatcc 48
<210> 101
<211> 4083
<212> DNA
<213> artificial sequence
<220>
<223> PDI-MERS-wtTMCT-DNA
<400> 101
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtatgtcga tgtgggtccc gatagtgtta agtccgcctg catcgaagtg 120
gacattcagc agaccttctt cgataagact tggcctcggc caattgatgt gtccaaggcc 180
gacggcatta tctaccccca aggtcggaca tattccaaca taactatcac ctatcagggg 240
ctattccctt atcagggcga ccatggggac atgtacgttt acagcgctgg tcacgctaca 300
gggacgaccc cccagaagct cttcgtggcg aactatagtc aggacgtgaa acagtttgcc 360
aacggttttg tagtgcgcat cggggcagcc gctaactcca ctggtactgt tattatcagc 420
ccttccacga gtgccacaat tcgaaagatc tatccggcct tcatgctagg atcctctgtg 480
ggcaatttta gcgacggtaa gatgggtcgg ttcttcaacc acacgcttgt gctgcttccc 540
gatgggtgcg gtactttgct gagggccttt tactgtatcc tagagccccg atccggcaac 600
cactgccccg ccgggaactc gtatacttcc tttgccactt atcatactcc agccacggat 660
tgtagcgatg ggaactacaa taggaacgcc agtttgaatt cctttaaaga gtacttcaac 720
ttgcggaatt gtaccttcat gtatacatat aacattactg aggacgaaat tctcgaatgg 780
ttcggaatca ctcaaacagc ccagggagtg cacctcttta gttctcgcta tgtggactta 840
tatggaggca atatgtttca attcgccacc ttacccgtct acgatacgat caagtattac 900
tcgatcatac cccactccat taggtccatt cagagcgatc gcaaggcatg ggccgcattc 960
tatgtgtata agctccagcc cctgaccttc ctcttggatt tctccgtgga cggctacatc 1020
agaagggcta tcgattgcgg gttcaacgac ctcagccagc tgcattgttc ttatgagagc 1080
tttgacgtgg aaagcggagt ttactcagtc tcttcctttg aggctaaacc ttcaggtagc 1140
gtcgtagagc aagcagaggg tgtggagtgc gatttctcac cactgctcag cggaacccca 1200
ccccaggtct acaactttaa gcggctcgtg ttcacaaact gtaactataa cttgactaag 1260
ttgctgtcac tcttttccgt gaatgatttt acatgctccc aaatcagccc agccgctatt 1320
gcgtctaatt gctattcctc attgatcctg gattacttca gttaccccct ctctatgaag 1380
agcgatctct cggttagtag cgctgggcct atttcccagt ttaactacaa acaatccttt 1440
tccaatccaa catgcctgat cttagctact gtaccccaca acctgactac tattacgaag 1500
ccactcaagt actcatacat taataagtgc agccgattcc tcagtgatga tcgcaccgaa 1560
gtgccgcagc ttgtaaacgc gaaccagtac tccccatgcg tctctattgt gccttctaca 1620
gtgtgggaag acggcgatta ttatagaaag cagctgtcgc cactggaagg tggcgggtgg 1680
ctagttgcca gtgggtccac agttgccatg accgagcaac ttcagatggg gtttggcata 1740
acagtgcagt atggtaccga tacgaacagc gtgtgtccaa aattggaatt tgctaacgac 1800
accaagatcg cctcccagtt gggaaattgt gttgaatatt ccctgtacgg agtgtcaggc 1860
cggggggtgt tccaaaattg caccgccgtg ggagtgaggc agcaaagatt cgtgtacgac 1920
gcataccaga atctagtcgg atactattct gacgatggaa actactactg tctgcgcgct 1980
tgcgtctcag tgcccgtgag tgtcatatat gataaggaga ccaagactca cgctactctc 2040
tttggttctg tcgcgtgcga acacatttcc tctacaatgt cccagtatag tcgctccact 2100
cggtctatgt taaagcgcag agacagtacc tacggccctc tacagacacc tgtggggtgc 2160
gttctcggcc ttgtcaattc tagcctgttt gtggaggatt gtaagctgcc ccttggtcaa 2220
agcttatgcg cactgcccga tacgcccagc acacttacac cagcttcagt ggggtccgtc 2280
cccggggaaa tgagattggc ctcgatcgct ttcaaccacc ccatacaggt ggatcagctc 2340
aactcgtcat acttcaagct aagcatccct actaatttct cctttggtgt gactcaggag 2400
tacattcaga ccacaattca aaaggtgacc gttgactgca agcagtatgt gtgcaacggg 2460
ttccagaaat gtgaacagct gctccgggag tatggccagt tctgttctaa aatcaaccag 2520
gccctccacg gagcaaacct taggcaggac gattctgtca gaaacctctt tgccagcgtc 2580
aagagttctc agagttcccc tattatacct ggcttcggcg gggatttcaa cctgacacta 2640
cttgaacctg taagcatatc aaccggaagt cgcagtgccc gttccgccat cgaggatctg 2700
ctcttcgaca aagtaactat tgcagatccc ggatacatgc aggggtatga cgactgcatg 2760
cagcagggtc cagcctctgc aagggatctg atatgcgcac agtatgtcgc tgggtacaaa 2820
gtgttgcctc ctctcatgga cgtgaacatg gaagcggcct atacctcctc acttctaggc 2880
tccatagcgg gcgtgggatg gaccgcaggg ctttcaagct tcgccgcaat tccctttgct 2940
caatctatct tctacaggct taatggcgtt ggaatcaccc agcaggtgtt aagcgaaaac 3000
cagaaattga ttgccaataa gtttaaccaa gctttggggg ccatgcagac aggctttaca 3060
accacaaacg aggctttcca taaagtacag gatgcggtaa acaataacgc acaagccctg 3120
tcaaagctgg cttcagagct ctcaaataca tttggcgcta tatccgcgtc tatcggcgat 3180
atcatacaac ggttggaccc acccgaacag gacgcacaga ttgatcgttt gatcaacggg 3240
aggcttacca ccttaaacgc ttttgtggcc cagcaactgg tgcggtctga gagcgccgcc 3300
ttgagcgctc agctggcaaa ggataaagtg aatgaatgcg tgaaagctca atcaaagaga 3360
agtgggtttt gtgggcaggg tactcatatt gtttcctttg tggtgaacgc cccaaatgga 3420
ctctacttta tgcatgttgg atactacccg agcaaccaca tcgaggtcgt ttccgcctat 3480
gggctttgtg acgcagcaaa ccctactaac tgtatcgcgc cagttaatgg ctactttatt 3540
aaaacaaata acacacgcat tgtggatgaa tggagttaca cagggtccag cttctacgct 3600
ccagagccta tcacctctct gaacacaaag tatgtggcac ctcaggtcac atatcagaac 3660
atctcgacaa acctgccccc cccactcttg ggcaactcca cagggatcga cttccaggac 3720
gagcttgacg aattcttcaa gaacgtgtcc accagtatcc ctaattttgg ttcgctgacc 3780
caaattaaca caaccctgct cgatctgaca tatgaaatgc tttcactaca gcaggtggtc 3840
aaagcgttga acgagtcgta tatcgacctg aaagagttag ggaattacac atactataac 3900
aaatggccct ggtatatttg gttaggattc attgccgggc tggtggccct tgccttgtgc 3960
gtatttttca tcttgtgctg taccggttgc ggtacgaatt gcatgggaaa actgaaatgt 4020
aatcggtgct gcgatcgcta tgaggagtat gaccttgagc ctcacaaggt ccacgttcac 4080
tga 4083
<210> 102
<211> 4032
<212> DNA
<213> artificial sequence
<220>
<223> PDI-MERS-H5iTMCT-DNA
<400> 102
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtatgtcga tgtgggtccc gatagtgtta agtccgcctg catcgaagtg 120
gacattcagc agaccttctt cgataagact tggcctcggc caattgatgt gtccaaggcc 180
gacggcatta tctaccccca aggtcggaca tattccaaca taactatcac ctatcagggg 240
ctattccctt atcagggcga ccatggggac atgtacgttt acagcgctgg tcacgctaca 300
gggacgaccc cccagaagct cttcgtggcg aactatagtc aggacgtgaa acagtttgcc 360
aacggttttg tagtgcgcat cggggcagcc gctaactcca ctggtactgt tattatcagc 420
ccttccacga gtgccacaat tcgaaagatc tatccggcct tcatgctagg atcctctgtg 480
ggcaatttta gcgacggtaa gatgggtcgg ttcttcaacc acacgcttgt gctgcttccc 540
gatgggtgcg gtactttgct gagggccttt tactgtatcc tagagccccg atccggcaac 600
cactgccccg ccgggaactc gtatacttcc tttgccactt atcatactcc agccacggat 660
tgtagcgatg ggaactacaa taggaacgcc agtttgaatt cctttaaaga gtacttcaac 720
ttgcggaatt gtaccttcat gtatacatat aacattactg aggacgaaat tctcgaatgg 780
ttcggaatca ctcaaacagc ccagggagtg cacctcttta gttctcgcta tgtggactta 840
tatggaggca atatgtttca attcgccacc ttacccgtct acgatacgat caagtattac 900
tcgatcatac cccactccat taggtccatt cagagcgatc gcaaggcatg ggccgcattc 960
tatgtgtata agctccagcc cctgaccttc ctcttggatt tctccgtgga cggctacatc 1020
agaagggcta tcgattgcgg gttcaacgac ctcagccagc tgcattgttc ttatgagagc 1080
tttgacgtgg aaagcggagt ttactcagtc tcttcctttg aggctaaacc ttcaggtagc 1140
gtcgtagagc aagcagaggg tgtggagtgc gatttctcac cactgctcag cggaacccca 1200
ccccaggtct acaactttaa gcggctcgtg ttcacaaact gtaactataa cttgactaag 1260
ttgctgtcac tcttttccgt gaatgatttt acatgctccc aaatcagccc agccgctatt 1320
gcgtctaatt gctattcctc attgatcctg gattacttca gttaccccct ctctatgaag 1380
agcgatctct cggttagtag cgctgggcct atttcccagt ttaactacaa acaatccttt 1440
tccaatccaa catgcctgat cttagctact gtaccccaca acctgactac tattacgaag 1500
ccactcaagt actcatacat taataagtgc agccgattcc tcagtgatga tcgcaccgaa 1560
gtgccgcagc ttgtaaacgc gaaccagtac tccccatgcg tctctattgt gccttctaca 1620
gtgtgggaag acggcgatta ttatagaaag cagctgtcgc cactggaagg tggcgggtgg 1680
ctagttgcca gtgggtccac agttgccatg accgagcaac ttcagatggg gtttggcata 1740
acagtgcagt atggtaccga tacgaacagc gtgtgtccaa aattggaatt tgctaacgac 1800
accaagatcg cctcccagtt gggaaattgt gttgaatatt ccctgtacgg agtgtcaggc 1860
cggggggtgt tccaaaattg caccgccgtg ggagtgaggc agcaaagatt cgtgtacgac 1920
gcataccaga atctagtcgg atactattct gacgatggaa actactactg tctgcgcgct 1980
tgcgtctcag tgcccgtgag tgtcatatat gataaggaga ccaagactca cgctactctc 2040
tttggttctg tcgcgtgcga acacatttcc tctacaatgt cccagtatag tcgctccact 2100
cggtctatgt taaagcgcag agacagtacc tacggccctc tacagacacc tgtggggtgc 2160
gttctcggcc ttgtcaattc tagcctgttt gtggaggatt gtaagctgcc ccttggtcaa 2220
agcttatgcg cactgcccga tacgcccagc acacttacac cagcttcagt ggggtccgtc 2280
cccggggaaa tgagattggc ctcgatcgct ttcaaccacc ccatacaggt ggatcagctc 2340
aactcgtcat acttcaagct aagcatccct actaatttct cctttggtgt gactcaggag 2400
tacattcaga ccacaattca aaaggtgacc gttgactgca agcagtatgt gtgcaacggg 2460
ttccagaaat gtgaacagct gctccgggag tatggccagt tctgttctaa aatcaaccag 2520
gccctccacg gagcaaacct taggcaggac gattctgtca gaaacctctt tgccagcgtc 2580
aagagttctc agagttcccc tattatacct ggcttcggcg gggatttcaa cctgacacta 2640
cttgaacctg taagcatatc aaccggaagt cgcagtgccc gttccgccat cgaggatctg 2700
ctcttcgaca aagtaactat tgcagatccc ggatacatgc aggggtatga cgactgcatg 2760
cagcagggtc cagcctctgc aagggatctg atatgcgcac agtatgtcgc tgggtacaaa 2820
gtgttgcctc ctctcatgga cgtgaacatg gaagcggcct atacctcctc acttctaggc 2880
tccatagcgg gcgtgggatg gaccgcaggg ctttcaagct tcgccgcaat tccctttgct 2940
caatctatct tctacaggct taatggcgtt ggaatcaccc agcaggtgtt aagcgaaaac 3000
cagaaattga ttgccaataa gtttaaccaa gctttggggg ccatgcagac aggctttaca 3060
accacaaacg aggctttcca taaagtacag gatgcggtaa acaataacgc acaagccctg 3120
tcaaagctgg cttcagagct ctcaaataca tttggcgcta tatccgcgtc tatcggcgat 3180
atcatacaac ggttggaccc acccgaacag gacgcacaga ttgatcgttt gatcaacggg 3240
aggcttacca ccttaaacgc ttttgtggcc cagcaactgg tgcggtctga gagcgccgcc 3300
ttgagcgctc agctggcaaa ggataaagtg aatgaatgcg tgaaagctca atcaaagaga 3360
agtgggtttt gtgggcaggg tactcatatt gtttcctttg tggtgaacgc cccaaatgga 3420
ctctacttta tgcatgttgg atactacccg agcaaccaca tcgaggtcgt ttccgcctat 3480
gggctttgtg acgcagcaaa ccctactaac tgtatcgcgc cagttaatgg ctactttatt 3540
aaaacaaata acacacgcat tgtggatgaa tggagttaca cagggtccag cttctacgct 3600
ccagagccta tcacctctct gaacacaaag tatgtggcac ctcaggtcac atatcagaac 3660
atctcgacaa acctgccccc cccactcttg ggcaactcca cagggatcga cttccaggac 3720
gagcttgacg aattcttcaa gaacgtgtcc accagtatcc ctaattttgg ttcgctgacc 3780
caaattaaca caaccctgct cgatctgaca tatgaaatgc tttcactaca gcaggtggtc 3840
aaagcgttga acgagtcgta tatcgacctg aaagagttag ggaattacac atactataac 3900
aaatggccct ggtatcaaat actgtcaatt tattcaacag tggcgagttc cctagcactg 3960
gcaatcatga tggctggtct atctttatgg atgtgctcca atggatcgtt acaatgcaga 4020
atttgcattt ga 4032
<210> 103
<211> 4026
<212> DNA
<213> artificial sequence
<220>
<223> PDI-MERS-H5iCT-DNA
<400> 103
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtatgtcga tgtgggtccc gatagtgtta agtccgcctg catcgaagtg 120
gacattcagc agaccttctt cgataagact tggcctcggc caattgatgt gtccaaggcc 180
gacggcatta tctaccccca aggtcggaca tattccaaca taactatcac ctatcagggg 240
ctattccctt atcagggcga ccatggggac atgtacgttt acagcgctgg tcacgctaca 300
gggacgaccc cccagaagct cttcgtggcg aactatagtc aggacgtgaa acagtttgcc 360
aacggttttg tagtgcgcat cggggcagcc gctaactcca ctggtactgt tattatcagc 420
ccttccacga gtgccacaat tcgaaagatc tatccggcct tcatgctagg atcctctgtg 480
ggcaatttta gcgacggtaa gatgggtcgg ttcttcaacc acacgcttgt gctgcttccc 540
gatgggtgcg gtactttgct gagggccttt tactgtatcc tagagccccg atccggcaac 600
cactgccccg ccgggaactc gtatacttcc tttgccactt atcatactcc agccacggat 660
tgtagcgatg ggaactacaa taggaacgcc agtttgaatt cctttaaaga gtacttcaac 720
ttgcggaatt gtaccttcat gtatacatat aacattactg aggacgaaat tctcgaatgg 780
ttcggaatca ctcaaacagc ccagggagtg cacctcttta gttctcgcta tgtggactta 840
tatggaggca atatgtttca attcgccacc ttacccgtct acgatacgat caagtattac 900
tcgatcatac cccactccat taggtccatt cagagcgatc gcaaggcatg ggccgcattc 960
tatgtgtata agctccagcc cctgaccttc ctcttggatt tctccgtgga cggctacatc 1020
agaagggcta tcgattgcgg gttcaacgac ctcagccagc tgcattgttc ttatgagagc 1080
tttgacgtgg aaagcggagt ttactcagtc tcttcctttg aggctaaacc ttcaggtagc 1140
gtcgtagagc aagcagaggg tgtggagtgc gatttctcac cactgctcag cggaacccca 1200
ccccaggtct acaactttaa gcggctcgtg ttcacaaact gtaactataa cttgactaag 1260
ttgctgtcac tcttttccgt gaatgatttt acatgctccc aaatcagccc agccgctatt 1320
gcgtctaatt gctattcctc attgatcctg gattacttca gttaccccct ctctatgaag 1380
agcgatctct cggttagtag cgctgggcct atttcccagt ttaactacaa acaatccttt 1440
tccaatccaa catgcctgat cttagctact gtaccccaca acctgactac tattacgaag 1500
ccactcaagt actcatacat taataagtgc agccgattcc tcagtgatga tcgcaccgaa 1560
gtgccgcagc ttgtaaacgc gaaccagtac tccccatgcg tctctattgt gccttctaca 1620
gtgtgggaag acggcgatta ttatagaaag cagctgtcgc cactggaagg tggcgggtgg 1680
ctagttgcca gtgggtccac agttgccatg accgagcaac ttcagatggg gtttggcata 1740
acagtgcagt atggtaccga tacgaacagc gtgtgtccaa aattggaatt tgctaacgac 1800
accaagatcg cctcccagtt gggaaattgt gttgaatatt ccctgtacgg agtgtcaggc 1860
cggggggtgt tccaaaattg caccgccgtg ggagtgaggc agcaaagatt cgtgtacgac 1920
gcataccaga atctagtcgg atactattct gacgatggaa actactactg tctgcgcgct 1980
tgcgtctcag tgcccgtgag tgtcatatat gataaggaga ccaagactca cgctactctc 2040
tttggttctg tcgcgtgcga acacatttcc tctacaatgt cccagtatag tcgctccact 2100
cggtctatgt taaagcgcag agacagtacc tacggccctc tacagacacc tgtggggtgc 2160
gttctcggcc ttgtcaattc tagcctgttt gtggaggatt gtaagctgcc ccttggtcaa 2220
agcttatgcg cactgcccga tacgcccagc acacttacac cagcttcagt ggggtccgtc 2280
cccggggaaa tgagattggc ctcgatcgct ttcaaccacc ccatacaggt ggatcagctc 2340
aactcgtcat acttcaagct aagcatccct actaatttct cctttggtgt gactcaggag 2400
tacattcaga ccacaattca aaaggtgacc gttgactgca agcagtatgt gtgcaacggg 2460
ttccagaaat gtgaacagct gctccgggag tatggccagt tctgttctaa aatcaaccag 2520
gccctccacg gagcaaacct taggcaggac gattctgtca gaaacctctt tgccagcgtc 2580
aagagttctc agagttcccc tattatacct ggcttcggcg gggatttcaa cctgacacta 2640
cttgaacctg taagcatatc aaccggaagt cgcagtgccc gttccgccat cgaggatctg 2700
ctcttcgaca aagtaactat tgcagatccc ggatacatgc aggggtatga cgactgcatg 2760
cagcagggtc cagcctctgc aagggatctg atatgcgcac agtatgtcgc tgggtacaaa 2820
gtgttgcctc ctctcatgga cgtgaacatg gaagcggcct atacctcctc acttctaggc 2880
tccatagcgg gcgtgggatg gaccgcaggg ctttcaagct tcgccgcaat tccctttgct 2940
caatctatct tctacaggct taatggcgtt ggaatcaccc agcaggtgtt aagcgaaaac 3000
cagaaattga ttgccaataa gtttaaccaa gctttggggg ccatgcagac aggctttaca 3060
accacaaacg aggctttcca taaagtacag gatgcggtaa acaataacgc acaagccctg 3120
tcaaagctgg cttcagagct ctcaaataca tttggcgcta tatccgcgtc tatcggcgat 3180
atcatacaac ggttggaccc acccgaacag gacgcacaga ttgatcgttt gatcaacggg 3240
aggcttacca ccttaaacgc ttttgtggcc cagcaactgg tgcggtctga gagcgccgcc 3300
ttgagcgctc agctggcaaa ggataaagtg aatgaatgcg tgaaagctca atcaaagaga 3360
agtgggtttt gtgggcaggg tactcatatt gtttcctttg tggtgaacgc cccaaatgga 3420
ctctacttta tgcatgttgg atactacccg agcaaccaca tcgaggtcgt ttccgcctat 3480
gggctttgtg acgcagcaaa ccctactaac tgtatcgcgc cagttaatgg ctactttatt 3540
aaaacaaata acacacgcat tgtggatgaa tggagttaca cagggtccag cttctacgct 3600
ccagagccta tcacctctct gaacacaaag tatgtggcac ctcaggtcac atatcagaac 3660
atctcgacaa acctgccccc cccactcttg ggcaactcca cagggatcga cttccaggac 3720
gagcttgacg aattcttcaa gaacgtgtcc accagtatcc ctaattttgg ttcgctgacc 3780
caaattaaca caaccctgct cgatctgaca tatgaaatgc tttcactaca gcaggtggtc 3840
aaagcgttga acgagtcgta tatcgacctg aaagagttag ggaattacac atactataac 3900
aaatggccct ggtatatttg gttaggattc attgccgggc tggtggccct tgccttgtgc 3960
gtatttttca tcttgtcttt atggatgtgc tccaatggat cgttacaatg cagaatttgc 4020
atttga 4026
<210> 104
<211> 4017
<212> DNA
<213> artificial sequence
<220>
<223> PDI-MERS-H5iCT(V4)-DNA
<400> 104
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtatgtcga tgtgggtccc gatagtgtta agtccgcctg catcgaagtg 120
gacattcagc agaccttctt cgataagact tggcctcggc caattgatgt gtccaaggcc 180
gacggcatta tctaccccca aggtcggaca tattccaaca taactatcac ctatcagggg 240
ctattccctt atcagggcga ccatggggac atgtacgttt acagcgctgg tcacgctaca 300
gggacgaccc cccagaagct cttcgtggcg aactatagtc aggacgtgaa acagtttgcc 360
aacggttttg tagtgcgcat cggggcagcc gctaactcca ctggtactgt tattatcagc 420
ccttccacga gtgccacaat tcgaaagatc tatccggcct tcatgctagg atcctctgtg 480
ggcaatttta gcgacggtaa gatgggtcgg ttcttcaacc acacgcttgt gctgcttccc 540
gatgggtgcg gtactttgct gagggccttt tactgtatcc tagagccccg atccggcaac 600
cactgccccg ccgggaactc gtatacttcc tttgccactt atcatactcc agccacggat 660
tgtagcgatg ggaactacaa taggaacgcc agtttgaatt cctttaaaga gtacttcaac 720
ttgcggaatt gtaccttcat gtatacatat aacattactg aggacgaaat tctcgaatgg 780
ttcggaatca ctcaaacagc ccagggagtg cacctcttta gttctcgcta tgtggactta 840
tatggaggca atatgtttca attcgccacc ttacccgtct acgatacgat caagtattac 900
tcgatcatac cccactccat taggtccatt cagagcgatc gcaaggcatg ggccgcattc 960
tatgtgtata agctccagcc cctgaccttc ctcttggatt tctccgtgga cggctacatc 1020
agaagggcta tcgattgcgg gttcaacgac ctcagccagc tgcattgttc ttatgagagc 1080
tttgacgtgg aaagcggagt ttactcagtc tcttcctttg aggctaaacc ttcaggtagc 1140
gtcgtagagc aagcagaggg tgtggagtgc gatttctcac cactgctcag cggaacccca 1200
ccccaggtct acaactttaa gcggctcgtg ttcacaaact gtaactataa cttgactaag 1260
ttgctgtcac tcttttccgt gaatgatttt acatgctccc aaatcagccc agccgctatt 1320
gcgtctaatt gctattcctc attgatcctg gattacttca gttaccccct ctctatgaag 1380
agcgatctct cggttagtag cgctgggcct atttcccagt ttaactacaa acaatccttt 1440
tccaatccaa catgcctgat cttagctact gtaccccaca acctgactac tattacgaag 1500
ccactcaagt actcatacat taataagtgc agccgattcc tcagtgatga tcgcaccgaa 1560
gtgccgcagc ttgtaaacgc gaaccagtac tccccatgcg tctctattgt gccttctaca 1620
gtgtgggaag acggcgatta ttatagaaag cagctgtcgc cactggaagg tggcgggtgg 1680
ctagttgcca gtgggtccac agttgccatg accgagcaac ttcagatggg gtttggcata 1740
acagtgcagt atggtaccga tacgaacagc gtgtgtccaa aattggaatt tgctaacgac 1800
accaagatcg cctcccagtt gggaaattgt gttgaatatt ccctgtacgg agtgtcaggc 1860
cggggggtgt tccaaaattg caccgccgtg ggagtgaggc agcaaagatt cgtgtacgac 1920
gcataccaga atctagtcgg atactattct gacgatggaa actactactg tctgcgcgct 1980
tgcgtctcag tgcccgtgag tgtcatatat gataaggaga ccaagactca cgctactctc 2040
tttggttctg tcgcgtgcga acacatttcc tctacaatgt cccagtatag tcgctccact 2100
cggtctatgt taaagcgcag agacagtacc tacggccctc tacagacacc tgtggggtgc 2160
gttctcggcc ttgtcaattc tagcctgttt gtggaggatt gtaagctgcc ccttggtcaa 2220
agcttatgcg cactgcccga tacgcccagc acacttacac cagcttcagt ggggtccgtc 2280
cccggggaaa tgagattggc ctcgatcgct ttcaaccacc ccatacaggt ggatcagctc 2340
aactcgtcat acttcaagct aagcatccct actaatttct cctttggtgt gactcaggag 2400
tacattcaga ccacaattca aaaggtgacc gttgactgca agcagtatgt gtgcaacggg 2460
ttccagaaat gtgaacagct gctccgggag tatggccagt tctgttctaa aatcaaccag 2520
gccctccacg gagcaaacct taggcaggac gattctgtca gaaacctctt tgccagcgtc 2580
aagagttctc agagttcccc tattatacct ggcttcggcg gggatttcaa cctgacacta 2640
cttgaacctg taagcatatc aaccggaagt cgcagtgccc gttccgccat cgaggatctg 2700
ctcttcgaca aagtaactat tgcagatccc ggatacatgc aggggtatga cgactgcatg 2760
cagcagggtc cagcctctgc aagggatctg atatgcgcac agtatgtcgc tgggtacaaa 2820
gtgttgcctc ctctcatgga cgtgaacatg gaagcggcct atacctcctc acttctaggc 2880
tccatagcgg gcgtgggatg gaccgcaggg ctttcaagct tcgccgcaat tccctttgct 2940
caatctatct tctacaggct taatggcgtt ggaatcaccc agcaggtgtt aagcgaaaac 3000
cagaaattga ttgccaataa gtttaaccaa gctttggggg ccatgcagac aggctttaca 3060
accacaaacg aggctttcca taaagtacag gatgcggtaa acaataacgc acaagccctg 3120
tcaaagctgg cttcagagct ctcaaataca tttggcgcta tatccgcgtc tatcggcgat 3180
atcatacaac ggttggaccc acccgaacag gacgcacaga ttgatcgttt gatcaacggg 3240
aggcttacca ccttaaacgc ttttgtggcc cagcaactgg tgcggtctga gagcgccgcc 3300
ttgagcgctc agctggcaaa ggataaagtg aatgaatgcg tgaaagctca atcaaagaga 3360
agtgggtttt gtgggcaggg tactcatatt gtttcctttg tggtgaacgc cccaaatgga 3420
ctctacttta tgcatgttgg atactacccg agcaaccaca tcgaggtcgt ttccgcctat 3480
gggctttgtg acgcagcaaa ccctactaac tgtatcgcgc cagttaatgg ctactttatt 3540
aaaacaaata acacacgcat tgtggatgaa tggagttaca cagggtccag cttctacgct 3600
ccagagccta tcacctctct gaacacaaag tatgtggcac ctcaggtcac atatcagaac 3660
atctcgacaa acctgccccc cccactcttg ggcaactcca cagggatcga cttccaggac 3720
gagcttgacg aattcttcaa gaacgtgtcc accagtatcc ctaattttgg ttcgctgacc 3780
caaattaaca caaccctgct cgatctgaca tatgaaatgc tttcactaca gcaggtggtc 3840
aaagcgttga acgagtcgta tatcgacctg aaagagttag ggaattacac atactataac 3900
aaatggccct ggtatatttg gttaggattc attgccgggc tggtggccct tgccttgtgc 3960
gtatttttca tcttgtgctg ctccaatgga tcgttacaat gcagaatttg catttga 4017
<210> 105
<211> 4026
<212> DNA
<213> artificial sequence
<220>
<223> PDI-MERS-H1cCT-DNA
<400> 105
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgtatgtcga tgtgggtccc gatagtgtta agtccgcctg catcgaagtg 120
gacattcagc agaccttctt cgataagact tggcctcggc caattgatgt gtccaaggcc 180
gacggcatta tctaccccca aggtcggaca tattccaaca taactatcac ctatcagggg 240
ctattccctt atcagggcga ccatggggac atgtacgttt acagcgctgg tcacgctaca 300
gggacgaccc cccagaagct cttcgtggcg aactatagtc aggacgtgaa acagtttgcc 360
aacggttttg tagtgcgcat cggggcagcc gctaactcca ctggtactgt tattatcagc 420
ccttccacga gtgccacaat tcgaaagatc tatccggcct tcatgctagg atcctctgtg 480
ggcaatttta gcgacggtaa gatgggtcgg ttcttcaacc acacgcttgt gctgcttccc 540
gatgggtgcg gtactttgct gagggccttt tactgtatcc tagagccccg atccggcaac 600
cactgccccg ccgggaactc gtatacttcc tttgccactt atcatactcc agccacggat 660
tgtagcgatg ggaactacaa taggaacgcc agtttgaatt cctttaaaga gtacttcaac 720
ttgcggaatt gtaccttcat gtatacatat aacattactg aggacgaaat tctcgaatgg 780
ttcggaatca ctcaaacagc ccagggagtg cacctcttta gttctcgcta tgtggactta 840
tatggaggca atatgtttca attcgccacc ttacccgtct acgatacgat caagtattac 900
tcgatcatac cccactccat taggtccatt cagagcgatc gcaaggcatg ggccgcattc 960
tatgtgtata agctccagcc cctgaccttc ctcttggatt tctccgtgga cggctacatc 1020
agaagggcta tcgattgcgg gttcaacgac ctcagccagc tgcattgttc ttatgagagc 1080
tttgacgtgg aaagcggagt ttactcagtc tcttcctttg aggctaaacc ttcaggtagc 1140
gtcgtagagc aagcagaggg tgtggagtgc gatttctcac cactgctcag cggaacccca 1200
ccccaggtct acaactttaa gcggctcgtg ttcacaaact gtaactataa cttgactaag 1260
ttgctgtcac tcttttccgt gaatgatttt acatgctccc aaatcagccc agccgctatt 1320
gcgtctaatt gctattcctc attgatcctg gattacttca gttaccccct ctctatgaag 1380
agcgatctct cggttagtag cgctgggcct atttcccagt ttaactacaa acaatccttt 1440
tccaatccaa catgcctgat cttagctact gtaccccaca acctgactac tattacgaag 1500
ccactcaagt actcatacat taataagtgc agccgattcc tcagtgatga tcgcaccgaa 1560
gtgccgcagc ttgtaaacgc gaaccagtac tccccatgcg tctctattgt gccttctaca 1620
gtgtgggaag acggcgatta ttatagaaag cagctgtcgc cactggaagg tggcgggtgg 1680
ctagttgcca gtgggtccac agttgccatg accgagcaac ttcagatggg gtttggcata 1740
acagtgcagt atggtaccga tacgaacagc gtgtgtccaa aattggaatt tgctaacgac 1800
accaagatcg cctcccagtt gggaaattgt gttgaatatt ccctgtacgg agtgtcaggc 1860
cggggggtgt tccaaaattg caccgccgtg ggagtgaggc agcaaagatt cgtgtacgac 1920
gcataccaga atctagtcgg atactattct gacgatggaa actactactg tctgcgcgct 1980
tgcgtctcag tgcccgtgag tgtcatatat gataaggaga ccaagactca cgctactctc 2040
tttggttctg tcgcgtgcga acacatttcc tctacaatgt cccagtatag tcgctccact 2100
cggtctatgt taaagcgcag agacagtacc tacggccctc tacagacacc tgtggggtgc 2160
gttctcggcc ttgtcaattc tagcctgttt gtggaggatt gtaagctgcc ccttggtcaa 2220
agcttatgcg cactgcccga tacgcccagc acacttacac cagcttcagt ggggtccgtc 2280
cccggggaaa tgagattggc ctcgatcgct ttcaaccacc ccatacaggt ggatcagctc 2340
aactcgtcat acttcaagct aagcatccct actaatttct cctttggtgt gactcaggag 2400
tacattcaga ccacaattca aaaggtgacc gttgactgca agcagtatgt gtgcaacggg 2460
ttccagaaat gtgaacagct gctccgggag tatggccagt tctgttctaa aatcaaccag 2520
gccctccacg gagcaaacct taggcaggac gattctgtca gaaacctctt tgccagcgtc 2580
aagagttctc agagttcccc tattatacct ggcttcggcg gggatttcaa cctgacacta 2640
cttgaacctg taagcatatc aaccggaagt cgcagtgccc gttccgccat cgaggatctg 2700
ctcttcgaca aagtaactat tgcagatccc ggatacatgc aggggtatga cgactgcatg 2760
cagcagggtc cagcctctgc aagggatctg atatgcgcac agtatgtcgc tgggtacaaa 2820
gtgttgcctc ctctcatgga cgtgaacatg gaagcggcct atacctcctc acttctaggc 2880
tccatagcgg gcgtgggatg gaccgcaggg ctttcaagct tcgccgcaat tccctttgct 2940
caatctatct tctacaggct taatggcgtt ggaatcaccc agcaggtgtt aagcgaaaac 3000
cagaaattga ttgccaataa gtttaaccaa gctttggggg ccatgcagac aggctttaca 3060
accacaaacg aggctttcca taaagtacag gatgcggtaa acaataacgc acaagccctg 3120
tcaaagctgg cttcagagct ctcaaataca tttggcgcta tatccgcgtc tatcggcgat 3180
atcatacaac ggttggaccc acccgaacag gacgcacaga ttgatcgttt gatcaacggg 3240
aggcttacca ccttaaacgc ttttgtggcc cagcaactgg tgcggtctga gagcgccgcc 3300
ttgagcgctc agctggcaaa ggataaagtg aatgaatgcg tgaaagctca atcaaagaga 3360
agtgggtttt gtgggcaggg tactcatatt gtttcctttg tggtgaacgc cccaaatgga 3420
ctctacttta tgcatgttgg atactacccg agcaaccaca tcgaggtcgt ttccgcctat 3480
gggctttgtg acgcagcaaa ccctactaac tgtatcgcgc cagttaatgg ctactttatt 3540
aaaacaaata acacacgcat tgtggatgaa tggagttaca cagggtccag cttctacgct 3600
ccagagccta tcacctctct gaacacaaag tatgtggcac ctcaggtcac atatcagaac 3660
atctcgacaa acctgccccc cccactcttg ggcaactcca cagggatcga cttccaggac 3720
gagcttgacg aattcttcaa gaacgtgtcc accagtatcc ctaattttgg ttcgctgacc 3780
caaattaaca caaccctgct cgatctgaca tatgaaatgc tttcactaca gcaggtggtc 3840
aaagcgttga acgagtcgta tatcgacctg aaagagttag ggaattacac atactataac 3900
aaatggccct ggtatatttg gttaggattc attgccgggc tggtggccct tgccttgtgc 3960
gtatttttca tcttgagctt ctggatgtgc tctaatgggt ctctacagtg tagaatatgt 4020
atttga 4026
<210> 106
<211> 1360
<212> PRT
<213> artificial sequence
<220>
<223> PDI-MERS-wtTMCT-AA
<400> 106
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Tyr Val Asp Val Gly Pro Asp Ser
20 25 30
Val Lys Ser Ala Cys Ile Glu Val Asp Ile Gln Gln Thr Phe Phe Asp
35 40 45
Lys Thr Trp Pro Arg Pro Ile Asp Val Ser Lys Ala Asp Gly Ile Ile
50 55 60
Tyr Pro Gln Gly Arg Thr Tyr Ser Asn Ile Thr Ile Thr Tyr Gln Gly
65 70 75 80
Leu Phe Pro Tyr Gln Gly Asp His Gly Asp Met Tyr Val Tyr Ser Ala
85 90 95
Gly His Ala Thr Gly Thr Thr Pro Gln Lys Leu Phe Val Ala Asn Tyr
100 105 110
Ser Gln Asp Val Lys Gln Phe Ala Asn Gly Phe Val Val Arg Ile Gly
115 120 125
Ala Ala Ala Asn Ser Thr Gly Thr Val Ile Ile Ser Pro Ser Thr Ser
130 135 140
Ala Thr Ile Arg Lys Ile Tyr Pro Ala Phe Met Leu Gly Ser Ser Val
145 150 155 160
Gly Asn Phe Ser Asp Gly Lys Met Gly Arg Phe Phe Asn His Thr Leu
165 170 175
Val Leu Leu Pro Asp Gly Cys Gly Thr Leu Leu Arg Ala Phe Tyr Cys
180 185 190
Ile Leu Glu Pro Arg Ser Gly Asn His Cys Pro Ala Gly Asn Ser Tyr
195 200 205
Thr Ser Phe Ala Thr Tyr His Thr Pro Ala Thr Asp Cys Ser Asp Gly
210 215 220
Asn Tyr Asn Arg Asn Ala Ser Leu Asn Ser Phe Lys Glu Tyr Phe Asn
225 230 235 240
Leu Arg Asn Cys Thr Phe Met Tyr Thr Tyr Asn Ile Thr Glu Asp Glu
245 250 255
Ile Leu Glu Trp Phe Gly Ile Thr Gln Thr Ala Gln Gly Val His Leu
260 265 270
Phe Ser Ser Arg Tyr Val Asp Leu Tyr Gly Gly Asn Met Phe Gln Phe
275 280 285
Ala Thr Leu Pro Val Tyr Asp Thr Ile Lys Tyr Tyr Ser Ile Ile Pro
290 295 300
His Ser Ile Arg Ser Ile Gln Ser Asp Arg Lys Ala Trp Ala Ala Phe
305 310 315 320
Tyr Val Tyr Lys Leu Gln Pro Leu Thr Phe Leu Leu Asp Phe Ser Val
325 330 335
Asp Gly Tyr Ile Arg Arg Ala Ile Asp Cys Gly Phe Asn Asp Leu Ser
340 345 350
Gln Leu His Cys Ser Tyr Glu Ser Phe Asp Val Glu Ser Gly Val Tyr
355 360 365
Ser Val Ser Ser Phe Glu Ala Lys Pro Ser Gly Ser Val Val Glu Gln
370 375 380
Ala Glu Gly Val Glu Cys Asp Phe Ser Pro Leu Leu Ser Gly Thr Pro
385 390 395 400
Pro Gln Val Tyr Asn Phe Lys Arg Leu Val Phe Thr Asn Cys Asn Tyr
405 410 415
Asn Leu Thr Lys Leu Leu Ser Leu Phe Ser Val Asn Asp Phe Thr Cys
420 425 430
Ser Gln Ile Ser Pro Ala Ala Ile Ala Ser Asn Cys Tyr Ser Ser Leu
435 440 445
Ile Leu Asp Tyr Phe Ser Tyr Pro Leu Ser Met Lys Ser Asp Leu Ser
450 455 460
Val Ser Ser Ala Gly Pro Ile Ser Gln Phe Asn Tyr Lys Gln Ser Phe
465 470 475 480
Ser Asn Pro Thr Cys Leu Ile Leu Ala Thr Val Pro His Asn Leu Thr
485 490 495
Thr Ile Thr Lys Pro Leu Lys Tyr Ser Tyr Ile Asn Lys Cys Ser Arg
500 505 510
Phe Leu Ser Asp Asp Arg Thr Glu Val Pro Gln Leu Val Asn Ala Asn
515 520 525
Gln Tyr Ser Pro Cys Val Ser Ile Val Pro Ser Thr Val Trp Glu Asp
530 535 540
Gly Asp Tyr Tyr Arg Lys Gln Leu Ser Pro Leu Glu Gly Gly Gly Trp
545 550 555 560
Leu Val Ala Ser Gly Ser Thr Val Ala Met Thr Glu Gln Leu Gln Met
565 570 575
Gly Phe Gly Ile Thr Val Gln Tyr Gly Thr Asp Thr Asn Ser Val Cys
580 585 590
Pro Lys Leu Glu Phe Ala Asn Asp Thr Lys Ile Ala Ser Gln Leu Gly
595 600 605
Asn Cys Val Glu Tyr Ser Leu Tyr Gly Val Ser Gly Arg Gly Val Phe
610 615 620
Gln Asn Cys Thr Ala Val Gly Val Arg Gln Gln Arg Phe Val Tyr Asp
625 630 635 640
Ala Tyr Gln Asn Leu Val Gly Tyr Tyr Ser Asp Asp Gly Asn Tyr Tyr
645 650 655
Cys Leu Arg Ala Cys Val Ser Val Pro Val Ser Val Ile Tyr Asp Lys
660 665 670
Glu Thr Lys Thr His Ala Thr Leu Phe Gly Ser Val Ala Cys Glu His
675 680 685
Ile Ser Ser Thr Met Ser Gln Tyr Ser Arg Ser Thr Arg Ser Met Leu
690 695 700
Lys Arg Arg Asp Ser Thr Tyr Gly Pro Leu Gln Thr Pro Val Gly Cys
705 710 715 720
Val Leu Gly Leu Val Asn Ser Ser Leu Phe Val Glu Asp Cys Lys Leu
725 730 735
Pro Leu Gly Gln Ser Leu Cys Ala Leu Pro Asp Thr Pro Ser Thr Leu
740 745 750
Thr Pro Ala Ser Val Gly Ser Val Pro Gly Glu Met Arg Leu Ala Ser
755 760 765
Ile Ala Phe Asn His Pro Ile Gln Val Asp Gln Leu Asn Ser Ser Tyr
770 775 780
Phe Lys Leu Ser Ile Pro Thr Asn Phe Ser Phe Gly Val Thr Gln Glu
785 790 795 800
Tyr Ile Gln Thr Thr Ile Gln Lys Val Thr Val Asp Cys Lys Gln Tyr
805 810 815
Val Cys Asn Gly Phe Gln Lys Cys Glu Gln Leu Leu Arg Glu Tyr Gly
820 825 830
Gln Phe Cys Ser Lys Ile Asn Gln Ala Leu His Gly Ala Asn Leu Arg
835 840 845
Gln Asp Asp Ser Val Arg Asn Leu Phe Ala Ser Val Lys Ser Ser Gln
850 855 860
Ser Ser Pro Ile Ile Pro Gly Phe Gly Gly Asp Phe Asn Leu Thr Leu
865 870 875 880
Leu Glu Pro Val Ser Ile Ser Thr Gly Ser Arg Ser Ala Arg Ser Ala
885 890 895
Ile Glu Asp Leu Leu Phe Asp Lys Val Thr Ile Ala Asp Pro Gly Tyr
900 905 910
Met Gln Gly Tyr Asp Asp Cys Met Gln Gln Gly Pro Ala Ser Ala Arg
915 920 925
Asp Leu Ile Cys Ala Gln Tyr Val Ala Gly Tyr Lys Val Leu Pro Pro
930 935 940
Leu Met Asp Val Asn Met Glu Ala Ala Tyr Thr Ser Ser Leu Leu Gly
945 950 955 960
Ser Ile Ala Gly Val Gly Trp Thr Ala Gly Leu Ser Ser Phe Ala Ala
965 970 975
Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg Leu Asn Gly Val Gly Ile
980 985 990
Thr Gln Gln Val Leu Ser Glu Asn Gln Lys Leu Ile Ala Asn Lys Phe
995 1000 1005
Asn Gln Ala Leu Gly Ala Met Gln Thr Gly Phe Thr Thr Thr Asn Glu
1010 1015 1020
Ala Phe His Lys Val Gln Asp Ala Val Asn Asn Asn Ala Gln Ala Leu
1025 1030 1035 1040
Ser Lys Leu Ala Ser Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala
1045 1050 1055
Ser Ile Gly Asp Ile Ile Gln Arg Leu Asp Pro Pro Glu Gln Asp Ala
1060 1065 1070
Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Thr Leu Asn Ala Phe
1075 1080 1085
Val Ala Gln Gln Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala Gln
1090 1095 1100
Leu Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg
1105 1110 1115 1120
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe Val Val Asn
1125 1130 1135
Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr Tyr Pro Ser Asn
1140 1145 1150
His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys Asp Ala Ala Asn Pro
1155 1160 1165
Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile Lys Thr Asn Asn
1170 1175 1180
Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly Ser Ser Phe Tyr Ala
1185 1190 1195 1200
Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys Tyr Val Ala Pro Gln Val
1205 1210 1215
Thr Tyr Gln Asn Ile Ser Thr Asn Leu Pro Pro Pro Leu Leu Gly Asn
1220 1225 1230
Ser Thr Gly Ile Asp Phe Gln Asp Glu Leu Asp Glu Phe Phe Lys Asn
1235 1240 1245
Val Ser Thr Ser Ile Pro Asn Phe Gly Ser Leu Thr Gln Ile Asn Thr
1250 1255 1260
Thr Leu Leu Asp Leu Thr Tyr Glu Met Leu Ser Leu Gln Gln Val Val
1265 1270 1275 1280
Lys Ala Leu Asn Glu Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr
1285 1290 1295
Thr Tyr Tyr Asn Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala
1300 1305 1310
Gly Leu Val Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys Thr
1315 1320 1325
Gly Cys Gly Thr Asn Cys Met Gly Lys Leu Lys Cys Asn Arg Cys Cys
1330 1335 1340
Asp Arg Tyr Glu Glu Tyr Asp Leu Glu Pro His Lys Val His Val His
1345 1350 1355 1360
<210> 107
<211> 1343
<212> PRT
<213> artificial sequence
<220>
<223> PDI-MERS-H5iTMCT-AA
<400> 107
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Tyr Val Asp Val Gly Pro Asp Ser
20 25 30
Val Lys Ser Ala Cys Ile Glu Val Asp Ile Gln Gln Thr Phe Phe Asp
35 40 45
Lys Thr Trp Pro Arg Pro Ile Asp Val Ser Lys Ala Asp Gly Ile Ile
50 55 60
Tyr Pro Gln Gly Arg Thr Tyr Ser Asn Ile Thr Ile Thr Tyr Gln Gly
65 70 75 80
Leu Phe Pro Tyr Gln Gly Asp His Gly Asp Met Tyr Val Tyr Ser Ala
85 90 95
Gly His Ala Thr Gly Thr Thr Pro Gln Lys Leu Phe Val Ala Asn Tyr
100 105 110
Ser Gln Asp Val Lys Gln Phe Ala Asn Gly Phe Val Val Arg Ile Gly
115 120 125
Ala Ala Ala Asn Ser Thr Gly Thr Val Ile Ile Ser Pro Ser Thr Ser
130 135 140
Ala Thr Ile Arg Lys Ile Tyr Pro Ala Phe Met Leu Gly Ser Ser Val
145 150 155 160
Gly Asn Phe Ser Asp Gly Lys Met Gly Arg Phe Phe Asn His Thr Leu
165 170 175
Val Leu Leu Pro Asp Gly Cys Gly Thr Leu Leu Arg Ala Phe Tyr Cys
180 185 190
Ile Leu Glu Pro Arg Ser Gly Asn His Cys Pro Ala Gly Asn Ser Tyr
195 200 205
Thr Ser Phe Ala Thr Tyr His Thr Pro Ala Thr Asp Cys Ser Asp Gly
210 215 220
Asn Tyr Asn Arg Asn Ala Ser Leu Asn Ser Phe Lys Glu Tyr Phe Asn
225 230 235 240
Leu Arg Asn Cys Thr Phe Met Tyr Thr Tyr Asn Ile Thr Glu Asp Glu
245 250 255
Ile Leu Glu Trp Phe Gly Ile Thr Gln Thr Ala Gln Gly Val His Leu
260 265 270
Phe Ser Ser Arg Tyr Val Asp Leu Tyr Gly Gly Asn Met Phe Gln Phe
275 280 285
Ala Thr Leu Pro Val Tyr Asp Thr Ile Lys Tyr Tyr Ser Ile Ile Pro
290 295 300
His Ser Ile Arg Ser Ile Gln Ser Asp Arg Lys Ala Trp Ala Ala Phe
305 310 315 320
Tyr Val Tyr Lys Leu Gln Pro Leu Thr Phe Leu Leu Asp Phe Ser Val
325 330 335
Asp Gly Tyr Ile Arg Arg Ala Ile Asp Cys Gly Phe Asn Asp Leu Ser
340 345 350
Gln Leu His Cys Ser Tyr Glu Ser Phe Asp Val Glu Ser Gly Val Tyr
355 360 365
Ser Val Ser Ser Phe Glu Ala Lys Pro Ser Gly Ser Val Val Glu Gln
370 375 380
Ala Glu Gly Val Glu Cys Asp Phe Ser Pro Leu Leu Ser Gly Thr Pro
385 390 395 400
Pro Gln Val Tyr Asn Phe Lys Arg Leu Val Phe Thr Asn Cys Asn Tyr
405 410 415
Asn Leu Thr Lys Leu Leu Ser Leu Phe Ser Val Asn Asp Phe Thr Cys
420 425 430
Ser Gln Ile Ser Pro Ala Ala Ile Ala Ser Asn Cys Tyr Ser Ser Leu
435 440 445
Ile Leu Asp Tyr Phe Ser Tyr Pro Leu Ser Met Lys Ser Asp Leu Ser
450 455 460
Val Ser Ser Ala Gly Pro Ile Ser Gln Phe Asn Tyr Lys Gln Ser Phe
465 470 475 480
Ser Asn Pro Thr Cys Leu Ile Leu Ala Thr Val Pro His Asn Leu Thr
485 490 495
Thr Ile Thr Lys Pro Leu Lys Tyr Ser Tyr Ile Asn Lys Cys Ser Arg
500 505 510
Phe Leu Ser Asp Asp Arg Thr Glu Val Pro Gln Leu Val Asn Ala Asn
515 520 525
Gln Tyr Ser Pro Cys Val Ser Ile Val Pro Ser Thr Val Trp Glu Asp
530 535 540
Gly Asp Tyr Tyr Arg Lys Gln Leu Ser Pro Leu Glu Gly Gly Gly Trp
545 550 555 560
Leu Val Ala Ser Gly Ser Thr Val Ala Met Thr Glu Gln Leu Gln Met
565 570 575
Gly Phe Gly Ile Thr Val Gln Tyr Gly Thr Asp Thr Asn Ser Val Cys
580 585 590
Pro Lys Leu Glu Phe Ala Asn Asp Thr Lys Ile Ala Ser Gln Leu Gly
595 600 605
Asn Cys Val Glu Tyr Ser Leu Tyr Gly Val Ser Gly Arg Gly Val Phe
610 615 620
Gln Asn Cys Thr Ala Val Gly Val Arg Gln Gln Arg Phe Val Tyr Asp
625 630 635 640
Ala Tyr Gln Asn Leu Val Gly Tyr Tyr Ser Asp Asp Gly Asn Tyr Tyr
645 650 655
Cys Leu Arg Ala Cys Val Ser Val Pro Val Ser Val Ile Tyr Asp Lys
660 665 670
Glu Thr Lys Thr His Ala Thr Leu Phe Gly Ser Val Ala Cys Glu His
675 680 685
Ile Ser Ser Thr Met Ser Gln Tyr Ser Arg Ser Thr Arg Ser Met Leu
690 695 700
Lys Arg Arg Asp Ser Thr Tyr Gly Pro Leu Gln Thr Pro Val Gly Cys
705 710 715 720
Val Leu Gly Leu Val Asn Ser Ser Leu Phe Val Glu Asp Cys Lys Leu
725 730 735
Pro Leu Gly Gln Ser Leu Cys Ala Leu Pro Asp Thr Pro Ser Thr Leu
740 745 750
Thr Pro Ala Ser Val Gly Ser Val Pro Gly Glu Met Arg Leu Ala Ser
755 760 765
Ile Ala Phe Asn His Pro Ile Gln Val Asp Gln Leu Asn Ser Ser Tyr
770 775 780
Phe Lys Leu Ser Ile Pro Thr Asn Phe Ser Phe Gly Val Thr Gln Glu
785 790 795 800
Tyr Ile Gln Thr Thr Ile Gln Lys Val Thr Val Asp Cys Lys Gln Tyr
805 810 815
Val Cys Asn Gly Phe Gln Lys Cys Glu Gln Leu Leu Arg Glu Tyr Gly
820 825 830
Gln Phe Cys Ser Lys Ile Asn Gln Ala Leu His Gly Ala Asn Leu Arg
835 840 845
Gln Asp Asp Ser Val Arg Asn Leu Phe Ala Ser Val Lys Ser Ser Gln
850 855 860
Ser Ser Pro Ile Ile Pro Gly Phe Gly Gly Asp Phe Asn Leu Thr Leu
865 870 875 880
Leu Glu Pro Val Ser Ile Ser Thr Gly Ser Arg Ser Ala Arg Ser Ala
885 890 895
Ile Glu Asp Leu Leu Phe Asp Lys Val Thr Ile Ala Asp Pro Gly Tyr
900 905 910
Met Gln Gly Tyr Asp Asp Cys Met Gln Gln Gly Pro Ala Ser Ala Arg
915 920 925
Asp Leu Ile Cys Ala Gln Tyr Val Ala Gly Tyr Lys Val Leu Pro Pro
930 935 940
Leu Met Asp Val Asn Met Glu Ala Ala Tyr Thr Ser Ser Leu Leu Gly
945 950 955 960
Ser Ile Ala Gly Val Gly Trp Thr Ala Gly Leu Ser Ser Phe Ala Ala
965 970 975
Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg Leu Asn Gly Val Gly Ile
980 985 990
Thr Gln Gln Val Leu Ser Glu Asn Gln Lys Leu Ile Ala Asn Lys Phe
995 1000 1005
Asn Gln Ala Leu Gly Ala Met Gln Thr Gly Phe Thr Thr Thr Asn Glu
1010 1015 1020
Ala Phe His Lys Val Gln Asp Ala Val Asn Asn Asn Ala Gln Ala Leu
1025 1030 1035 1040
Ser Lys Leu Ala Ser Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala
1045 1050 1055
Ser Ile Gly Asp Ile Ile Gln Arg Leu Asp Pro Pro Glu Gln Asp Ala
1060 1065 1070
Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Thr Leu Asn Ala Phe
1075 1080 1085
Val Ala Gln Gln Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala Gln
1090 1095 1100
Leu Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg
1105 1110 1115 1120
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe Val Val Asn
1125 1130 1135
Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr Tyr Pro Ser Asn
1140 1145 1150
His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys Asp Ala Ala Asn Pro
1155 1160 1165
Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile Lys Thr Asn Asn
1170 1175 1180
Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly Ser Ser Phe Tyr Ala
1185 1190 1195 1200
Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys Tyr Val Ala Pro Gln Val
1205 1210 1215
Thr Tyr Gln Asn Ile Ser Thr Asn Leu Pro Pro Pro Leu Leu Gly Asn
1220 1225 1230
Ser Thr Gly Ile Asp Phe Gln Asp Glu Leu Asp Glu Phe Phe Lys Asn
1235 1240 1245
Val Ser Thr Ser Ile Pro Asn Phe Gly Ser Leu Thr Gln Ile Asn Thr
1250 1255 1260
Thr Leu Leu Asp Leu Thr Tyr Glu Met Leu Ser Leu Gln Gln Val Val
1265 1270 1275 1280
Lys Ala Leu Asn Glu Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr
1285 1290 1295
Thr Tyr Tyr Asn Lys Trp Pro Trp Tyr Gln Ile Leu Ser Ile Tyr Ser
1300 1305 1310
Thr Val Ala Ser Ser Leu Ala Leu Ala Ile Met Met Ala Gly Leu Ser
1315 1320 1325
Leu Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1330 1335 1340
<210> 108
<211> 1341
<212> PRT
<213> artificial sequence
<220>
<223> PDI-MERS-H5iCT-AA
<400> 108
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Tyr Val Asp Val Gly Pro Asp Ser
20 25 30
Val Lys Ser Ala Cys Ile Glu Val Asp Ile Gln Gln Thr Phe Phe Asp
35 40 45
Lys Thr Trp Pro Arg Pro Ile Asp Val Ser Lys Ala Asp Gly Ile Ile
50 55 60
Tyr Pro Gln Gly Arg Thr Tyr Ser Asn Ile Thr Ile Thr Tyr Gln Gly
65 70 75 80
Leu Phe Pro Tyr Gln Gly Asp His Gly Asp Met Tyr Val Tyr Ser Ala
85 90 95
Gly His Ala Thr Gly Thr Thr Pro Gln Lys Leu Phe Val Ala Asn Tyr
100 105 110
Ser Gln Asp Val Lys Gln Phe Ala Asn Gly Phe Val Val Arg Ile Gly
115 120 125
Ala Ala Ala Asn Ser Thr Gly Thr Val Ile Ile Ser Pro Ser Thr Ser
130 135 140
Ala Thr Ile Arg Lys Ile Tyr Pro Ala Phe Met Leu Gly Ser Ser Val
145 150 155 160
Gly Asn Phe Ser Asp Gly Lys Met Gly Arg Phe Phe Asn His Thr Leu
165 170 175
Val Leu Leu Pro Asp Gly Cys Gly Thr Leu Leu Arg Ala Phe Tyr Cys
180 185 190
Ile Leu Glu Pro Arg Ser Gly Asn His Cys Pro Ala Gly Asn Ser Tyr
195 200 205
Thr Ser Phe Ala Thr Tyr His Thr Pro Ala Thr Asp Cys Ser Asp Gly
210 215 220
Asn Tyr Asn Arg Asn Ala Ser Leu Asn Ser Phe Lys Glu Tyr Phe Asn
225 230 235 240
Leu Arg Asn Cys Thr Phe Met Tyr Thr Tyr Asn Ile Thr Glu Asp Glu
245 250 255
Ile Leu Glu Trp Phe Gly Ile Thr Gln Thr Ala Gln Gly Val His Leu
260 265 270
Phe Ser Ser Arg Tyr Val Asp Leu Tyr Gly Gly Asn Met Phe Gln Phe
275 280 285
Ala Thr Leu Pro Val Tyr Asp Thr Ile Lys Tyr Tyr Ser Ile Ile Pro
290 295 300
His Ser Ile Arg Ser Ile Gln Ser Asp Arg Lys Ala Trp Ala Ala Phe
305 310 315 320
Tyr Val Tyr Lys Leu Gln Pro Leu Thr Phe Leu Leu Asp Phe Ser Val
325 330 335
Asp Gly Tyr Ile Arg Arg Ala Ile Asp Cys Gly Phe Asn Asp Leu Ser
340 345 350
Gln Leu His Cys Ser Tyr Glu Ser Phe Asp Val Glu Ser Gly Val Tyr
355 360 365
Ser Val Ser Ser Phe Glu Ala Lys Pro Ser Gly Ser Val Val Glu Gln
370 375 380
Ala Glu Gly Val Glu Cys Asp Phe Ser Pro Leu Leu Ser Gly Thr Pro
385 390 395 400
Pro Gln Val Tyr Asn Phe Lys Arg Leu Val Phe Thr Asn Cys Asn Tyr
405 410 415
Asn Leu Thr Lys Leu Leu Ser Leu Phe Ser Val Asn Asp Phe Thr Cys
420 425 430
Ser Gln Ile Ser Pro Ala Ala Ile Ala Ser Asn Cys Tyr Ser Ser Leu
435 440 445
Ile Leu Asp Tyr Phe Ser Tyr Pro Leu Ser Met Lys Ser Asp Leu Ser
450 455 460
Val Ser Ser Ala Gly Pro Ile Ser Gln Phe Asn Tyr Lys Gln Ser Phe
465 470 475 480
Ser Asn Pro Thr Cys Leu Ile Leu Ala Thr Val Pro His Asn Leu Thr
485 490 495
Thr Ile Thr Lys Pro Leu Lys Tyr Ser Tyr Ile Asn Lys Cys Ser Arg
500 505 510
Phe Leu Ser Asp Asp Arg Thr Glu Val Pro Gln Leu Val Asn Ala Asn
515 520 525
Gln Tyr Ser Pro Cys Val Ser Ile Val Pro Ser Thr Val Trp Glu Asp
530 535 540
Gly Asp Tyr Tyr Arg Lys Gln Leu Ser Pro Leu Glu Gly Gly Gly Trp
545 550 555 560
Leu Val Ala Ser Gly Ser Thr Val Ala Met Thr Glu Gln Leu Gln Met
565 570 575
Gly Phe Gly Ile Thr Val Gln Tyr Gly Thr Asp Thr Asn Ser Val Cys
580 585 590
Pro Lys Leu Glu Phe Ala Asn Asp Thr Lys Ile Ala Ser Gln Leu Gly
595 600 605
Asn Cys Val Glu Tyr Ser Leu Tyr Gly Val Ser Gly Arg Gly Val Phe
610 615 620
Gln Asn Cys Thr Ala Val Gly Val Arg Gln Gln Arg Phe Val Tyr Asp
625 630 635 640
Ala Tyr Gln Asn Leu Val Gly Tyr Tyr Ser Asp Asp Gly Asn Tyr Tyr
645 650 655
Cys Leu Arg Ala Cys Val Ser Val Pro Val Ser Val Ile Tyr Asp Lys
660 665 670
Glu Thr Lys Thr His Ala Thr Leu Phe Gly Ser Val Ala Cys Glu His
675 680 685
Ile Ser Ser Thr Met Ser Gln Tyr Ser Arg Ser Thr Arg Ser Met Leu
690 695 700
Lys Arg Arg Asp Ser Thr Tyr Gly Pro Leu Gln Thr Pro Val Gly Cys
705 710 715 720
Val Leu Gly Leu Val Asn Ser Ser Leu Phe Val Glu Asp Cys Lys Leu
725 730 735
Pro Leu Gly Gln Ser Leu Cys Ala Leu Pro Asp Thr Pro Ser Thr Leu
740 745 750
Thr Pro Ala Ser Val Gly Ser Val Pro Gly Glu Met Arg Leu Ala Ser
755 760 765
Ile Ala Phe Asn His Pro Ile Gln Val Asp Gln Leu Asn Ser Ser Tyr
770 775 780
Phe Lys Leu Ser Ile Pro Thr Asn Phe Ser Phe Gly Val Thr Gln Glu
785 790 795 800
Tyr Ile Gln Thr Thr Ile Gln Lys Val Thr Val Asp Cys Lys Gln Tyr
805 810 815
Val Cys Asn Gly Phe Gln Lys Cys Glu Gln Leu Leu Arg Glu Tyr Gly
820 825 830
Gln Phe Cys Ser Lys Ile Asn Gln Ala Leu His Gly Ala Asn Leu Arg
835 840 845
Gln Asp Asp Ser Val Arg Asn Leu Phe Ala Ser Val Lys Ser Ser Gln
850 855 860
Ser Ser Pro Ile Ile Pro Gly Phe Gly Gly Asp Phe Asn Leu Thr Leu
865 870 875 880
Leu Glu Pro Val Ser Ile Ser Thr Gly Ser Arg Ser Ala Arg Ser Ala
885 890 895
Ile Glu Asp Leu Leu Phe Asp Lys Val Thr Ile Ala Asp Pro Gly Tyr
900 905 910
Met Gln Gly Tyr Asp Asp Cys Met Gln Gln Gly Pro Ala Ser Ala Arg
915 920 925
Asp Leu Ile Cys Ala Gln Tyr Val Ala Gly Tyr Lys Val Leu Pro Pro
930 935 940
Leu Met Asp Val Asn Met Glu Ala Ala Tyr Thr Ser Ser Leu Leu Gly
945 950 955 960
Ser Ile Ala Gly Val Gly Trp Thr Ala Gly Leu Ser Ser Phe Ala Ala
965 970 975
Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg Leu Asn Gly Val Gly Ile
980 985 990
Thr Gln Gln Val Leu Ser Glu Asn Gln Lys Leu Ile Ala Asn Lys Phe
995 1000 1005
Asn Gln Ala Leu Gly Ala Met Gln Thr Gly Phe Thr Thr Thr Asn Glu
1010 1015 1020
Ala Phe His Lys Val Gln Asp Ala Val Asn Asn Asn Ala Gln Ala Leu
1025 1030 1035 1040
Ser Lys Leu Ala Ser Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala
1045 1050 1055
Ser Ile Gly Asp Ile Ile Gln Arg Leu Asp Pro Pro Glu Gln Asp Ala
1060 1065 1070
Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Thr Leu Asn Ala Phe
1075 1080 1085
Val Ala Gln Gln Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala Gln
1090 1095 1100
Leu Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg
1105 1110 1115 1120
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe Val Val Asn
1125 1130 1135
Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr Tyr Pro Ser Asn
1140 1145 1150
His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys Asp Ala Ala Asn Pro
1155 1160 1165
Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile Lys Thr Asn Asn
1170 1175 1180
Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly Ser Ser Phe Tyr Ala
1185 1190 1195 1200
Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys Tyr Val Ala Pro Gln Val
1205 1210 1215
Thr Tyr Gln Asn Ile Ser Thr Asn Leu Pro Pro Pro Leu Leu Gly Asn
1220 1225 1230
Ser Thr Gly Ile Asp Phe Gln Asp Glu Leu Asp Glu Phe Phe Lys Asn
1235 1240 1245
Val Ser Thr Ser Ile Pro Asn Phe Gly Ser Leu Thr Gln Ile Asn Thr
1250 1255 1260
Thr Leu Leu Asp Leu Thr Tyr Glu Met Leu Ser Leu Gln Gln Val Val
1265 1270 1275 1280
Lys Ala Leu Asn Glu Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr
1285 1290 1295
Thr Tyr Tyr Asn Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala
1300 1305 1310
Gly Leu Val Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Ser Leu Trp
1315 1320 1325
Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1330 1335 1340
<210> 109
<211> 1338
<212> PRT
<213> artificial sequence
<220>
<223> PDI-MERS-H5iCT(V4)-AA
<400> 109
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Tyr Val Asp Val Gly Pro Asp Ser
20 25 30
Val Lys Ser Ala Cys Ile Glu Val Asp Ile Gln Gln Thr Phe Phe Asp
35 40 45
Lys Thr Trp Pro Arg Pro Ile Asp Val Ser Lys Ala Asp Gly Ile Ile
50 55 60
Tyr Pro Gln Gly Arg Thr Tyr Ser Asn Ile Thr Ile Thr Tyr Gln Gly
65 70 75 80
Leu Phe Pro Tyr Gln Gly Asp His Gly Asp Met Tyr Val Tyr Ser Ala
85 90 95
Gly His Ala Thr Gly Thr Thr Pro Gln Lys Leu Phe Val Ala Asn Tyr
100 105 110
Ser Gln Asp Val Lys Gln Phe Ala Asn Gly Phe Val Val Arg Ile Gly
115 120 125
Ala Ala Ala Asn Ser Thr Gly Thr Val Ile Ile Ser Pro Ser Thr Ser
130 135 140
Ala Thr Ile Arg Lys Ile Tyr Pro Ala Phe Met Leu Gly Ser Ser Val
145 150 155 160
Gly Asn Phe Ser Asp Gly Lys Met Gly Arg Phe Phe Asn His Thr Leu
165 170 175
Val Leu Leu Pro Asp Gly Cys Gly Thr Leu Leu Arg Ala Phe Tyr Cys
180 185 190
Ile Leu Glu Pro Arg Ser Gly Asn His Cys Pro Ala Gly Asn Ser Tyr
195 200 205
Thr Ser Phe Ala Thr Tyr His Thr Pro Ala Thr Asp Cys Ser Asp Gly
210 215 220
Asn Tyr Asn Arg Asn Ala Ser Leu Asn Ser Phe Lys Glu Tyr Phe Asn
225 230 235 240
Leu Arg Asn Cys Thr Phe Met Tyr Thr Tyr Asn Ile Thr Glu Asp Glu
245 250 255
Ile Leu Glu Trp Phe Gly Ile Thr Gln Thr Ala Gln Gly Val His Leu
260 265 270
Phe Ser Ser Arg Tyr Val Asp Leu Tyr Gly Gly Asn Met Phe Gln Phe
275 280 285
Ala Thr Leu Pro Val Tyr Asp Thr Ile Lys Tyr Tyr Ser Ile Ile Pro
290 295 300
His Ser Ile Arg Ser Ile Gln Ser Asp Arg Lys Ala Trp Ala Ala Phe
305 310 315 320
Tyr Val Tyr Lys Leu Gln Pro Leu Thr Phe Leu Leu Asp Phe Ser Val
325 330 335
Asp Gly Tyr Ile Arg Arg Ala Ile Asp Cys Gly Phe Asn Asp Leu Ser
340 345 350
Gln Leu His Cys Ser Tyr Glu Ser Phe Asp Val Glu Ser Gly Val Tyr
355 360 365
Ser Val Ser Ser Phe Glu Ala Lys Pro Ser Gly Ser Val Val Glu Gln
370 375 380
Ala Glu Gly Val Glu Cys Asp Phe Ser Pro Leu Leu Ser Gly Thr Pro
385 390 395 400
Pro Gln Val Tyr Asn Phe Lys Arg Leu Val Phe Thr Asn Cys Asn Tyr
405 410 415
Asn Leu Thr Lys Leu Leu Ser Leu Phe Ser Val Asn Asp Phe Thr Cys
420 425 430
Ser Gln Ile Ser Pro Ala Ala Ile Ala Ser Asn Cys Tyr Ser Ser Leu
435 440 445
Ile Leu Asp Tyr Phe Ser Tyr Pro Leu Ser Met Lys Ser Asp Leu Ser
450 455 460
Val Ser Ser Ala Gly Pro Ile Ser Gln Phe Asn Tyr Lys Gln Ser Phe
465 470 475 480
Ser Asn Pro Thr Cys Leu Ile Leu Ala Thr Val Pro His Asn Leu Thr
485 490 495
Thr Ile Thr Lys Pro Leu Lys Tyr Ser Tyr Ile Asn Lys Cys Ser Arg
500 505 510
Phe Leu Ser Asp Asp Arg Thr Glu Val Pro Gln Leu Val Asn Ala Asn
515 520 525
Gln Tyr Ser Pro Cys Val Ser Ile Val Pro Ser Thr Val Trp Glu Asp
530 535 540
Gly Asp Tyr Tyr Arg Lys Gln Leu Ser Pro Leu Glu Gly Gly Gly Trp
545 550 555 560
Leu Val Ala Ser Gly Ser Thr Val Ala Met Thr Glu Gln Leu Gln Met
565 570 575
Gly Phe Gly Ile Thr Val Gln Tyr Gly Thr Asp Thr Asn Ser Val Cys
580 585 590
Pro Lys Leu Glu Phe Ala Asn Asp Thr Lys Ile Ala Ser Gln Leu Gly
595 600 605
Asn Cys Val Glu Tyr Ser Leu Tyr Gly Val Ser Gly Arg Gly Val Phe
610 615 620
Gln Asn Cys Thr Ala Val Gly Val Arg Gln Gln Arg Phe Val Tyr Asp
625 630 635 640
Ala Tyr Gln Asn Leu Val Gly Tyr Tyr Ser Asp Asp Gly Asn Tyr Tyr
645 650 655
Cys Leu Arg Ala Cys Val Ser Val Pro Val Ser Val Ile Tyr Asp Lys
660 665 670
Glu Thr Lys Thr His Ala Thr Leu Phe Gly Ser Val Ala Cys Glu His
675 680 685
Ile Ser Ser Thr Met Ser Gln Tyr Ser Arg Ser Thr Arg Ser Met Leu
690 695 700
Lys Arg Arg Asp Ser Thr Tyr Gly Pro Leu Gln Thr Pro Val Gly Cys
705 710 715 720
Val Leu Gly Leu Val Asn Ser Ser Leu Phe Val Glu Asp Cys Lys Leu
725 730 735
Pro Leu Gly Gln Ser Leu Cys Ala Leu Pro Asp Thr Pro Ser Thr Leu
740 745 750
Thr Pro Ala Ser Val Gly Ser Val Pro Gly Glu Met Arg Leu Ala Ser
755 760 765
Ile Ala Phe Asn His Pro Ile Gln Val Asp Gln Leu Asn Ser Ser Tyr
770 775 780
Phe Lys Leu Ser Ile Pro Thr Asn Phe Ser Phe Gly Val Thr Gln Glu
785 790 795 800
Tyr Ile Gln Thr Thr Ile Gln Lys Val Thr Val Asp Cys Lys Gln Tyr
805 810 815
Val Cys Asn Gly Phe Gln Lys Cys Glu Gln Leu Leu Arg Glu Tyr Gly
820 825 830
Gln Phe Cys Ser Lys Ile Asn Gln Ala Leu His Gly Ala Asn Leu Arg
835 840 845
Gln Asp Asp Ser Val Arg Asn Leu Phe Ala Ser Val Lys Ser Ser Gln
850 855 860
Ser Ser Pro Ile Ile Pro Gly Phe Gly Gly Asp Phe Asn Leu Thr Leu
865 870 875 880
Leu Glu Pro Val Ser Ile Ser Thr Gly Ser Arg Ser Ala Arg Ser Ala
885 890 895
Ile Glu Asp Leu Leu Phe Asp Lys Val Thr Ile Ala Asp Pro Gly Tyr
900 905 910
Met Gln Gly Tyr Asp Asp Cys Met Gln Gln Gly Pro Ala Ser Ala Arg
915 920 925
Asp Leu Ile Cys Ala Gln Tyr Val Ala Gly Tyr Lys Val Leu Pro Pro
930 935 940
Leu Met Asp Val Asn Met Glu Ala Ala Tyr Thr Ser Ser Leu Leu Gly
945 950 955 960
Ser Ile Ala Gly Val Gly Trp Thr Ala Gly Leu Ser Ser Phe Ala Ala
965 970 975
Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg Leu Asn Gly Val Gly Ile
980 985 990
Thr Gln Gln Val Leu Ser Glu Asn Gln Lys Leu Ile Ala Asn Lys Phe
995 1000 1005
Asn Gln Ala Leu Gly Ala Met Gln Thr Gly Phe Thr Thr Thr Asn Glu
1010 1015 1020
Ala Phe His Lys Val Gln Asp Ala Val Asn Asn Asn Ala Gln Ala Leu
1025 1030 1035 1040
Ser Lys Leu Ala Ser Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala
1045 1050 1055
Ser Ile Gly Asp Ile Ile Gln Arg Leu Asp Pro Pro Glu Gln Asp Ala
1060 1065 1070
Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Thr Leu Asn Ala Phe
1075 1080 1085
Val Ala Gln Gln Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala Gln
1090 1095 1100
Leu Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg
1105 1110 1115 1120
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe Val Val Asn
1125 1130 1135
Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr Tyr Pro Ser Asn
1140 1145 1150
His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys Asp Ala Ala Asn Pro
1155 1160 1165
Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile Lys Thr Asn Asn
1170 1175 1180
Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly Ser Ser Phe Tyr Ala
1185 1190 1195 1200
Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys Tyr Val Ala Pro Gln Val
1205 1210 1215
Thr Tyr Gln Asn Ile Ser Thr Asn Leu Pro Pro Pro Leu Leu Gly Asn
1220 1225 1230
Ser Thr Gly Ile Asp Phe Gln Asp Glu Leu Asp Glu Phe Phe Lys Asn
1235 1240 1245
Val Ser Thr Ser Ile Pro Asn Phe Gly Ser Leu Thr Gln Ile Asn Thr
1250 1255 1260
Thr Leu Leu Asp Leu Thr Tyr Glu Met Leu Ser Leu Gln Gln Val Val
1265 1270 1275 1280
Lys Ala Leu Asn Glu Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr
1285 1290 1295
Thr Tyr Tyr Asn Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala
1300 1305 1310
Gly Leu Val Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Cys Cys Ser
1315 1320 1325
Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1330 1335
<210> 110
<211> 1341
<212> PRT
<213> artificial sequence
<220>
<223> PDI-MERS-H1cCT-AA
<400> 110
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Tyr Val Asp Val Gly Pro Asp Ser
20 25 30
Val Lys Ser Ala Cys Ile Glu Val Asp Ile Gln Gln Thr Phe Phe Asp
35 40 45
Lys Thr Trp Pro Arg Pro Ile Asp Val Ser Lys Ala Asp Gly Ile Ile
50 55 60
Tyr Pro Gln Gly Arg Thr Tyr Ser Asn Ile Thr Ile Thr Tyr Gln Gly
65 70 75 80
Leu Phe Pro Tyr Gln Gly Asp His Gly Asp Met Tyr Val Tyr Ser Ala
85 90 95
Gly His Ala Thr Gly Thr Thr Pro Gln Lys Leu Phe Val Ala Asn Tyr
100 105 110
Ser Gln Asp Val Lys Gln Phe Ala Asn Gly Phe Val Val Arg Ile Gly
115 120 125
Ala Ala Ala Asn Ser Thr Gly Thr Val Ile Ile Ser Pro Ser Thr Ser
130 135 140
Ala Thr Ile Arg Lys Ile Tyr Pro Ala Phe Met Leu Gly Ser Ser Val
145 150 155 160
Gly Asn Phe Ser Asp Gly Lys Met Gly Arg Phe Phe Asn His Thr Leu
165 170 175
Val Leu Leu Pro Asp Gly Cys Gly Thr Leu Leu Arg Ala Phe Tyr Cys
180 185 190
Ile Leu Glu Pro Arg Ser Gly Asn His Cys Pro Ala Gly Asn Ser Tyr
195 200 205
Thr Ser Phe Ala Thr Tyr His Thr Pro Ala Thr Asp Cys Ser Asp Gly
210 215 220
Asn Tyr Asn Arg Asn Ala Ser Leu Asn Ser Phe Lys Glu Tyr Phe Asn
225 230 235 240
Leu Arg Asn Cys Thr Phe Met Tyr Thr Tyr Asn Ile Thr Glu Asp Glu
245 250 255
Ile Leu Glu Trp Phe Gly Ile Thr Gln Thr Ala Gln Gly Val His Leu
260 265 270
Phe Ser Ser Arg Tyr Val Asp Leu Tyr Gly Gly Asn Met Phe Gln Phe
275 280 285
Ala Thr Leu Pro Val Tyr Asp Thr Ile Lys Tyr Tyr Ser Ile Ile Pro
290 295 300
His Ser Ile Arg Ser Ile Gln Ser Asp Arg Lys Ala Trp Ala Ala Phe
305 310 315 320
Tyr Val Tyr Lys Leu Gln Pro Leu Thr Phe Leu Leu Asp Phe Ser Val
325 330 335
Asp Gly Tyr Ile Arg Arg Ala Ile Asp Cys Gly Phe Asn Asp Leu Ser
340 345 350
Gln Leu His Cys Ser Tyr Glu Ser Phe Asp Val Glu Ser Gly Val Tyr
355 360 365
Ser Val Ser Ser Phe Glu Ala Lys Pro Ser Gly Ser Val Val Glu Gln
370 375 380
Ala Glu Gly Val Glu Cys Asp Phe Ser Pro Leu Leu Ser Gly Thr Pro
385 390 395 400
Pro Gln Val Tyr Asn Phe Lys Arg Leu Val Phe Thr Asn Cys Asn Tyr
405 410 415
Asn Leu Thr Lys Leu Leu Ser Leu Phe Ser Val Asn Asp Phe Thr Cys
420 425 430
Ser Gln Ile Ser Pro Ala Ala Ile Ala Ser Asn Cys Tyr Ser Ser Leu
435 440 445
Ile Leu Asp Tyr Phe Ser Tyr Pro Leu Ser Met Lys Ser Asp Leu Ser
450 455 460
Val Ser Ser Ala Gly Pro Ile Ser Gln Phe Asn Tyr Lys Gln Ser Phe
465 470 475 480
Ser Asn Pro Thr Cys Leu Ile Leu Ala Thr Val Pro His Asn Leu Thr
485 490 495
Thr Ile Thr Lys Pro Leu Lys Tyr Ser Tyr Ile Asn Lys Cys Ser Arg
500 505 510
Phe Leu Ser Asp Asp Arg Thr Glu Val Pro Gln Leu Val Asn Ala Asn
515 520 525
Gln Tyr Ser Pro Cys Val Ser Ile Val Pro Ser Thr Val Trp Glu Asp
530 535 540
Gly Asp Tyr Tyr Arg Lys Gln Leu Ser Pro Leu Glu Gly Gly Gly Trp
545 550 555 560
Leu Val Ala Ser Gly Ser Thr Val Ala Met Thr Glu Gln Leu Gln Met
565 570 575
Gly Phe Gly Ile Thr Val Gln Tyr Gly Thr Asp Thr Asn Ser Val Cys
580 585 590
Pro Lys Leu Glu Phe Ala Asn Asp Thr Lys Ile Ala Ser Gln Leu Gly
595 600 605
Asn Cys Val Glu Tyr Ser Leu Tyr Gly Val Ser Gly Arg Gly Val Phe
610 615 620
Gln Asn Cys Thr Ala Val Gly Val Arg Gln Gln Arg Phe Val Tyr Asp
625 630 635 640
Ala Tyr Gln Asn Leu Val Gly Tyr Tyr Ser Asp Asp Gly Asn Tyr Tyr
645 650 655
Cys Leu Arg Ala Cys Val Ser Val Pro Val Ser Val Ile Tyr Asp Lys
660 665 670
Glu Thr Lys Thr His Ala Thr Leu Phe Gly Ser Val Ala Cys Glu His
675 680 685
Ile Ser Ser Thr Met Ser Gln Tyr Ser Arg Ser Thr Arg Ser Met Leu
690 695 700
Lys Arg Arg Asp Ser Thr Tyr Gly Pro Leu Gln Thr Pro Val Gly Cys
705 710 715 720
Val Leu Gly Leu Val Asn Ser Ser Leu Phe Val Glu Asp Cys Lys Leu
725 730 735
Pro Leu Gly Gln Ser Leu Cys Ala Leu Pro Asp Thr Pro Ser Thr Leu
740 745 750
Thr Pro Ala Ser Val Gly Ser Val Pro Gly Glu Met Arg Leu Ala Ser
755 760 765
Ile Ala Phe Asn His Pro Ile Gln Val Asp Gln Leu Asn Ser Ser Tyr
770 775 780
Phe Lys Leu Ser Ile Pro Thr Asn Phe Ser Phe Gly Val Thr Gln Glu
785 790 795 800
Tyr Ile Gln Thr Thr Ile Gln Lys Val Thr Val Asp Cys Lys Gln Tyr
805 810 815
Val Cys Asn Gly Phe Gln Lys Cys Glu Gln Leu Leu Arg Glu Tyr Gly
820 825 830
Gln Phe Cys Ser Lys Ile Asn Gln Ala Leu His Gly Ala Asn Leu Arg
835 840 845
Gln Asp Asp Ser Val Arg Asn Leu Phe Ala Ser Val Lys Ser Ser Gln
850 855 860
Ser Ser Pro Ile Ile Pro Gly Phe Gly Gly Asp Phe Asn Leu Thr Leu
865 870 875 880
Leu Glu Pro Val Ser Ile Ser Thr Gly Ser Arg Ser Ala Arg Ser Ala
885 890 895
Ile Glu Asp Leu Leu Phe Asp Lys Val Thr Ile Ala Asp Pro Gly Tyr
900 905 910
Met Gln Gly Tyr Asp Asp Cys Met Gln Gln Gly Pro Ala Ser Ala Arg
915 920 925
Asp Leu Ile Cys Ala Gln Tyr Val Ala Gly Tyr Lys Val Leu Pro Pro
930 935 940
Leu Met Asp Val Asn Met Glu Ala Ala Tyr Thr Ser Ser Leu Leu Gly
945 950 955 960
Ser Ile Ala Gly Val Gly Trp Thr Ala Gly Leu Ser Ser Phe Ala Ala
965 970 975
Ile Pro Phe Ala Gln Ser Ile Phe Tyr Arg Leu Asn Gly Val Gly Ile
980 985 990
Thr Gln Gln Val Leu Ser Glu Asn Gln Lys Leu Ile Ala Asn Lys Phe
995 1000 1005
Asn Gln Ala Leu Gly Ala Met Gln Thr Gly Phe Thr Thr Thr Asn Glu
1010 1015 1020
Ala Phe His Lys Val Gln Asp Ala Val Asn Asn Asn Ala Gln Ala Leu
1025 1030 1035 1040
Ser Lys Leu Ala Ser Glu Leu Ser Asn Thr Phe Gly Ala Ile Ser Ala
1045 1050 1055
Ser Ile Gly Asp Ile Ile Gln Arg Leu Asp Pro Pro Glu Gln Asp Ala
1060 1065 1070
Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Thr Leu Asn Ala Phe
1075 1080 1085
Val Ala Gln Gln Leu Val Arg Ser Glu Ser Ala Ala Leu Ser Ala Gln
1090 1095 1100
Leu Ala Lys Asp Lys Val Asn Glu Cys Val Lys Ala Gln Ser Lys Arg
1105 1110 1115 1120
Ser Gly Phe Cys Gly Gln Gly Thr His Ile Val Ser Phe Val Val Asn
1125 1130 1135
Ala Pro Asn Gly Leu Tyr Phe Met His Val Gly Tyr Tyr Pro Ser Asn
1140 1145 1150
His Ile Glu Val Val Ser Ala Tyr Gly Leu Cys Asp Ala Ala Asn Pro
1155 1160 1165
Thr Asn Cys Ile Ala Pro Val Asn Gly Tyr Phe Ile Lys Thr Asn Asn
1170 1175 1180
Thr Arg Ile Val Asp Glu Trp Ser Tyr Thr Gly Ser Ser Phe Tyr Ala
1185 1190 1195 1200
Pro Glu Pro Ile Thr Ser Leu Asn Thr Lys Tyr Val Ala Pro Gln Val
1205 1210 1215
Thr Tyr Gln Asn Ile Ser Thr Asn Leu Pro Pro Pro Leu Leu Gly Asn
1220 1225 1230
Ser Thr Gly Ile Asp Phe Gln Asp Glu Leu Asp Glu Phe Phe Lys Asn
1235 1240 1245
Val Ser Thr Ser Ile Pro Asn Phe Gly Ser Leu Thr Gln Ile Asn Thr
1250 1255 1260
Thr Leu Leu Asp Leu Thr Tyr Glu Met Leu Ser Leu Gln Gln Val Val
1265 1270 1275 1280
Lys Ala Leu Asn Glu Ser Tyr Ile Asp Leu Lys Glu Leu Gly Asn Tyr
1285 1290 1295
Thr Tyr Tyr Asn Lys Trp Pro Trp Tyr Ile Trp Leu Gly Phe Ile Ala
1300 1305 1310
Gly Leu Val Ala Leu Ala Leu Cys Val Phe Phe Ile Leu Ser Phe Trp
1315 1320 1325
Met Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1330 1335 1340
<210> 111
<211> 4364
<212> DNA
<213> artificial sequence
<220>
<223> cloning vector 7147 from left to right T-DNA
<400> 111
tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 60
gacgttttta atgtactgaa ttaacgccga atcccgggct ggtatattta tatgttgtca 120
aataactcaa aaaccataaa agtttaagtt agcaagtgtg tacattttta cttgaacaaa 180
aatattcacc tactactgtt ataaatcatt attaaacatt agagtaaaga aatatggatg 240
ataagaacaa gagtagtgat attttgacaa caattttgtt gcaacatttg agaaaatttt 300
gttgttctct cttttcattg gtcaaaaaca atagagagag aaaaaggaag agggagaata 360
aaaacataat gtgagtatga gagagaaagt tgtacaaaag ttgtaccaaa atagttgtac 420
aaatatcatt gaggaatttg acaaaagcta cacaaataag ggttaattgc tgtaaataaa 480
taaggatgac gcattagaga gatgtaccat tagagaattt ttggcaagtc attaaaaaga 540
aagaataaat tatttttaaa attaaaagtt gagtcatttg attaaacatg tgattattta 600
atgaattgat gaaagagttg gattaaagtt gtattagtaa ttagaatttg gtgtcaaatt 660
taatttgaca tttgatcttt tcctatatat tgccccatag agtcagttaa ctcattttta 720
tatttcatag atcaaataag agaaataacg gtatattaat ccctccaaaa aaaaaaaacg 780
gtatatttac taaaaaatct aagccacgta ggaggataac aggatccccg taggaggata 840
acatccaatc caaccaatca caacaatcct gatgagataa cccactttaa gcccacgcat 900
ctgtggcaca tctacattat ctaaatcaca cattcttcca cacatctgag ccacacaaaa 960
accaatccac atctttatca cccattctat aaaaaatcac actttgtgag tctacacttt 1020
gattcccttc aaacacatac aaagagaaga gactaattaa ttaattaatc atcttgagag 1080
aaaatggaac gagctataca aggaaacgac gctagggaac aagctaacag tgaacgttgg 1140
gatggaggat caggaggtac cacttctccc ttcaaacttc ctgacgaaag tccgagttgg 1200
actgagtggc ggctacataa cgatgagacg aattcgaatc aagataatcc ccttggtttc 1260
aaggaaagct ggggtttcgg gaaagttgta tttaagagat atctcagata cgacaggacg 1320
gaagcttcac tgcacagagt ccttggatct tggacgggag attcggttaa ctatgcagca 1380
tctcgatttt tcggtttcga ccagatcgga tgtacctata gtattcggtt tcgaggagtt 1440
agtatcaccg tttctggagg gtcgcgaact cttcagcatc tctgtgagat ggcaattcgg 1500
tctaagcaag aactgctaca gcttgcccca atcgaagtgg aaagtaatgt atcaagagga 1560
tgccctgaag gtactcaaac cttcgaaaaa gaaagcgagt aagttaaaat gcttcttcgt 1620
ctcctattta taatatggtt tgttattgtt aattttgttc ttgtagaaga gcttaattaa 1680
tcgttgttgt tatgaaatac tatttgtatg agatgaactg gtgtaatgta attcatttac 1740
ataagtggag tcagaatcag aatgtttcct ccataactaa ctagacatga agacctgccg 1800
cgtacaattg tcttatattt gaacaactaa aattgaacat cttttgccac aactttataa 1860
gtggttaata tagctcaaat atatggtcaa gttcaataga ttaataatgg aaatatcagt 1920
tatcgaaatt cattaacaat caacttaacg ttattaacta ctaattttat atcatcccct 1980
ttgataaatg atagtacacc aattaggaag gagcatgctc gcctaggaga ttgtcgtttc 2040
ccgccttcag tttgcaagct gctctagccg tgtagccaat acgcaaaccg cctctccccg 2100
cgcgttggga attactagcg cgtgtcgaca agcttgcatg ccggtcaaca tggtggagca 2160
cgacacactt gtctactcca aaaatatcaa agatacagtc tcagaagacc aaagggcaat 2220
tgagactttt caacaaaggg taatatccgg aaacctcctc ggattccatt gcccagctat 2280
ctgtcacttt attgtgaaga tagtggaaaa ggaaggtggc tcctacaaat gccatcattg 2340
cgataaagga aaggccatcg ttgaagatgc ctctgccgac agtggtccca aagatggacc 2400
cccacccacg aggagcatcg tggaaaaaga agacgttcca accacgtctt caaagcaagt 2460
ggattgatgt gataacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga 2520
tacagtctca gaagaccaaa gggcaattga gacttttcaa caaagggtaa tatccggaaa 2580
cctcctcgga ttccattgcc cagctatctg tcactttatt gtgaagatag tggaaaagga 2640
aggtggctcc tacaaatgcc atcattgcga taaaggaaag gccatcgttg aagatgcctc 2700
tgccgacagt ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga 2760
cgttccaacc acgtcttcaa agcaagtgga ttgatgtgat atctccactg acgtaaggga 2820
tgacgcacaa tcccactatc cttcgcaaga cccttcctct atataaggaa gttcatttca 2880
tttggagagg cactccattt gaatctatca aaccaaaaca cattgagacg tcacgtactc 2940
ctcagccaaa acgacacccc catctgtcta tccactggcc cctggatctg ctgcccaaac 3000
taactccatg gtgaccctgg gatgcctggt caagggctat ttccctgagc cagtgacagt 3060
gacctggaac tctggatccc tgtccagcgg tgtgcacacc ttcccagctg tcctgcagtc 3120
tgacctctac actctgagca gctcagtgac tgtcccctcc agcacctggc ccagcgagac 3180
cgtcacctgc aacgttgccc acccggccag cagcaccaag gtggacaaga aaattgtgcc 3240
cagggattgt ggttgtaagc cttgcatatg tacagtccca gaagtatcat ctgtcttcat 3300
cttcccccca aagcccaagg atgtgctcac cattactctg actcctaagg tcacgtgtgt 3360
tgtggtagac atcagcaagg atgatcccga ggtccagttc agctggtttg tagatgatgt 3420
ggaggtgcac acagctcaga cgcaaccccg ggaggagcag ttcaacagca ctttccgctc 3480
agtcagtgaa cttcccatca tgcaccagga ctggctcaat ggcaaggaga cgtccagatt 3540
ttggcgatct attcaactgt cgccagttca ttggtactgg tagtctccct gggggcaatc 3600
agtttctgga tgtgctctaa tgggtctcta cagtgtagaa tatgtattta aaggccttag 3660
tcgtgtcgtt tttcaaataa tataatcctt ttagggtttt agttagttta aattttctgt 3720
tgctcctgtt tagcaggtcg tgccttcagc aagcacacaa aaacagagtg tttattttaa 3780
gttgtttgtt tagtgattca aaaaaaaaat cgttcaaaca tttggcaata aagtttctta 3840
agattgaatc ctgttgccgg tcttgcgatg attatcatat aatttctgtt gaattacgtt 3900
aagcatgtaa taattaacat gtaatgcatg acgttattta tgagatgggt ttttatgatt 3960
agagtcccgc aattatacat ttaatacgcg atagaaaaca aaatatagcg cgcaaactag 4020
gataaattat cgcgcgcggt gtcatctatg ttactagatc tctagagtct caagcttggc 4080
gcgcccacgt gactagtggc actggccgtc gttttacaac gtcgtgactg ggaaaaccct 4140
ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc 4200
gaagaggccc gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatgctag 4260
agcagcttga gcttggatca gattgtcgtt tcccgccttc agtttaaact atcagtgttt 4320
gacaggatat attggcgggt aaacctaaga gaaaagagcg ttta 4364
<210> 112
<211> 1255
<212> PRT
<213> SARS-CoV-1
<400> 112
Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly Ser Asp Leu
1 5 10 15
Asp Arg Cys Thr Thr Phe Asp Asp Val Gln Ala Pro Asn Tyr Thr Gln
20 25 30
His Thr Ser Ser Met Arg Gly Val Tyr Tyr Pro Asp Glu Ile Phe Arg
35 40 45
Ser Asp Thr Leu Tyr Leu Thr Gln Asp Leu Phe Leu Pro Phe Tyr Ser
50 55 60
Asn Val Thr Gly Phe His Thr Ile Asn His Thr Phe Gly Asn Pro Val
65 70 75 80
Ile Pro Phe Lys Asp Gly Ile Tyr Phe Ala Ala Thr Glu Lys Ser Asn
85 90 95
Val Val Arg Gly Trp Val Phe Gly Ser Thr Met Asn Asn Lys Ser Gln
100 105 110
Ser Val Ile Ile Ile Asn Asn Ser Thr Asn Val Val Ile Arg Ala Cys
115 120 125
Asn Phe Glu Leu Cys Asp Asn Pro Phe Phe Ala Val Ser Lys Pro Met
130 135 140
Gly Thr Gln Thr His Thr Met Ile Phe Asp Asn Ala Phe Asn Cys Thr
145 150 155 160
Phe Glu Tyr Ile Ser Asp Ala Phe Ser Leu Asp Val Ser Glu Lys Ser
165 170 175
Gly Asn Phe Lys His Leu Arg Glu Phe Val Phe Lys Asn Lys Asp Gly
180 185 190
Phe Leu Tyr Val Tyr Lys Gly Tyr Gln Pro Ile Asp Val Val Arg Asp
195 200 205
Leu Pro Ser Gly Phe Asn Thr Leu Lys Pro Ile Phe Lys Leu Pro Leu
210 215 220
Gly Ile Asn Ile Thr Asn Phe Arg Ala Ile Leu Thr Ala Phe Ser Pro
225 230 235 240
Ala Gln Asp Ile Trp Gly Thr Ser Ala Ala Ala Tyr Phe Val Gly Tyr
245 250 255
Leu Lys Pro Thr Thr Phe Met Leu Lys Tyr Asp Glu Asn Gly Thr Ile
260 265 270
Thr Asp Ala Val Asp Cys Ser Gln Asn Pro Leu Ala Glu Leu Lys Cys
275 280 285
Ser Val Lys Ser Phe Glu Ile Asp Lys Gly Ile Tyr Gln Thr Ser Asn
290 295 300
Phe Arg Val Val Pro Ser Gly Asp Val Val Arg Phe Pro Asn Ile Thr
305 310 315 320
Asn Leu Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Lys Phe Pro Ser
325 330 335
Val Tyr Ala Trp Glu Arg Lys Lys Ile Ser Asn Cys Val Ala Asp Tyr
340 345 350
Ser Val Leu Tyr Asn Ser Thr Phe Phe Ser Thr Phe Lys Cys Tyr Gly
355 360 365
Val Ser Ala Thr Lys Leu Asn Asp Leu Cys Phe Ser Asn Val Tyr Ala
370 375 380
Asp Ser Phe Val Val Lys Gly Asp Asp Val Arg Gln Ile Ala Pro Gly
385 390 395 400
Gln Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe
405 410 415
Met Gly Cys Val Leu Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser
420 425 430
Thr Gly Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu
435 440 445
Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly
450 455 460
Lys Pro Cys Thr Pro Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp
465 470 475 480
Tyr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val
485 490 495
Val Val Leu Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly
500 505 510
Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn
515 520 525
Phe Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg
530 535 540
Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp
545 550 555 560
Ser Val Arg Asp Pro Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys
565 570 575
Ser Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn Ala Ser Ser
580 585 590
Glu Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Asp Val Ser Thr
595 600 605
Ala Ile His Ala Asp Gln Leu Thr Pro Ala Trp Arg Ile Tyr Ser Thr
610 615 620
Gly Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu
625 630 635 640
His Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile
645 650 655
Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys
660 665 670
Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala
675 680 685
Tyr Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile
690 695 700
Thr Thr Glu Val Met Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys
705 710 715 720
Asn Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu Leu
725 730 735
Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile
740 745 750
Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys
755 760 765
Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe
770 775 780
Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile
785 790 795 800
Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala Gly Phe Met
805 810 815
Lys Gln Tyr Gly Glu Cys Leu Gly Asp Ile Asn Ala Arg Asp Leu Ile
820 825 830
Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro Leu Leu Thr
835 840 845
Asp Asp Met Ile Ala Ala Tyr Thr Ala Ala Leu Val Ser Gly Thr Ala
850 855 860
Thr Ala Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln Ile Pro Phe
865 870 875 880
Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val Thr Gln Asn
885 890 895
Val Leu Tyr Glu Asn Gln Lys Gln Ile Ala Asn Gln Phe Asn Lys Ala
900 905 910
Ile Ser Gln Ile Gln Glu Ser Leu Thr Thr Thr Ser Thr Ala Leu Gly
915 920 925
Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu Asn Thr Leu
930 935 940
Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser Val Leu Asn
945 950 955 960
Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val Gln Ile Asp
965 970 975
Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr Val Thr Gln
980 985 990
Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn Leu Ala Ala
995 1000 1005
Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg Val Asp Phe
1010 1015 1020
Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ala Ala Pro His
1025 1030 1035 1040
Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn
1045 1050 1055
Phe Thr Thr Ala Pro Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro
1060 1065 1070
Arg Glu Gly Val Phe Val Phe Asn Gly Thr Ser Trp Phe Ile Thr Gln
1075 1080 1085
Arg Asn Phe Phe Ser Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val
1090 1095 1100
Ser Gly Asn Cys Asp Val Val Ile Gly Ile Ile Asn Asn Thr Val Tyr
1105 1110 1115 1120
Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp Lys
1125 1130 1135
Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp Ile Ser
1140 1145 1150
Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile Asp Arg Leu
1155 1160 1165
Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp Leu Gln Glu
1170 1175 1180
Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr Val Trp Leu
1185 1190 1195 1200
Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu
1205 1210 1215
Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys
1220 1225 1230
Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Lys
1235 1240 1245
Gly Val Lys Leu His Tyr Thr
1250 1255
<210> 113
<211> 1353
<212> PRT
<213> MERS
<400> 113
Met Ile His Ser Val Phe Leu Leu Met Phe Leu Leu Thr Pro Thr Glu
1 5 10 15
Ser Tyr Val Asp Val Gly Pro Asp Ser Val Lys Ser Ala Cys Ile Glu
20 25 30
Val Asp Ile Gln Gln Thr Phe Phe Asp Lys Thr Trp Pro Arg Pro Ile
35 40 45
Asp Val Ser Lys Ala Asp Gly Ile Ile Tyr Pro Gln Gly Arg Thr Tyr
50 55 60
Ser Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr Gln Gly Asp
65 70 75 80
His Gly Asp Met Tyr Val Tyr Ser Ala Gly His Ala Thr Gly Thr Thr
85 90 95
Pro Gln Lys Leu Phe Val Ala Asn Tyr Ser Gln Asp Val Lys Gln Phe
100 105 110
Ala Asn Gly Phe Val Val Arg Ile Gly Ala Ala Ala Asn Ser Thr Gly
115 120 125
Thr Val Ile Ile Ser Pro Ser Thr Ser Ala Thr Ile Arg Lys Ile Tyr
130 135 140
Pro Ala Phe Met Leu Gly Ser Ser Val Gly Asn Phe Ser Asp Gly Lys
145 150 155 160
Met Gly Arg Phe Phe Asn His Thr Leu Val Leu Leu Pro Asp Gly Cys
165 170 175
Gly Thr Leu Leu Arg Ala Phe Tyr Cys Ile Leu Glu Pro Arg Ser Gly
180 185 190
Asn His Cys Pro Ala Gly Asn Ser Tyr Thr Ser Phe Ala Thr Tyr His
195 200 205
Thr Pro Ala Thr Asp Cys Ser Asp Gly Asn Tyr Asn Arg Asn Ala Ser
210 215 220
Leu Asn Ser Phe Lys Glu Tyr Phe Asn Leu Arg Asn Cys Thr Phe Met
225 230 235 240
Tyr Thr Tyr Asn Ile Thr Glu Asp Glu Ile Leu Glu Trp Phe Gly Ile
245 250 255
Thr Gln Thr Ala Gln Gly Val His Leu Phe Ser Ser Arg Tyr Val Asp
260 265 270
Leu Tyr Gly Gly Asn Met Phe Gln Phe Ala Thr Leu Pro Val Tyr Asp
275 280 285
Thr Ile Lys Tyr Tyr Ser Ile Ile Pro His Ser Ile Arg Ser Ile Gln
290 295 300
Ser Asp Arg Lys Ala Trp Ala Ala Phe Tyr Val Tyr Lys Leu Gln Pro
305 310 315 320
Leu Thr Phe Leu Leu Asp Phe Ser Val Asp Gly Tyr Ile Arg Arg Ala
325 330 335
Ile Asp Cys Gly Phe Asn Asp Leu Ser Gln Leu His Cys Ser Tyr Glu
340 345 350
Ser Phe Asp Val Glu Ser Gly Val Tyr Ser Val Ser Ser Phe Glu Ala
355 360 365
Lys Pro Ser Gly Ser Val Val Glu Gln Ala Glu Gly Val Glu Cys Asp
370 375 380
Phe Ser Pro Leu Leu Ser Gly Thr Pro Pro Gln Val Tyr Asn Phe Lys
385 390 395 400
Arg Leu Val Phe Thr Asn Cys Asn Tyr Asn Leu Thr Lys Leu Leu Ser
405 410 415
Leu Phe Ser Val Asn Asp Phe Thr Cys Ser Gln Ile Ser Pro Ala Ala
420 425 430
Ile Ala Ser Asn Cys Tyr Ser Ser Leu Ile Leu Asp Tyr Phe Ser Tyr
435 440 445
Pro Leu Ser Met Lys Ser Asp Leu Ser Val Ser Ser Ala Gly Pro Ile
450 455 460
Ser Gln Phe Asn Tyr Lys Gln Ser Phe Ser Asn Pro Thr Cys Leu Ile
465 470 475 480
Leu Ala Thr Val Pro His Asn Leu Thr Thr Ile Thr Lys Pro Leu Lys
485 490 495
Tyr Ser Tyr Ile Asn Lys Cys Ser Arg Phe Leu Ser Asp Asp Arg Thr
500 505 510
Glu Val Pro Gln Leu Val Asn Ala Asn Gln Tyr Ser Pro Cys Val Ser
515 520 525
Ile Val Pro Ser Thr Val Trp Glu Asp Gly Asp Tyr Tyr Arg Lys Gln
530 535 540
Leu Ser Pro Leu Glu Gly Gly Gly Trp Leu Val Ala Ser Gly Ser Thr
545 550 555 560
Val Ala Met Thr Glu Gln Leu Gln Met Gly Phe Gly Ile Thr Val Gln
565 570 575
Tyr Gly Thr Asp Thr Asn Ser Val Cys Pro Lys Leu Glu Phe Ala Asn
580 585 590
Asp Thr Lys Ile Ala Ser Gln Leu Gly Asn Cys Val Glu Tyr Ser Leu
595 600 605
Tyr Gly Val Ser Gly Arg Gly Val Phe Gln Asn Cys Thr Ala Val Gly
610 615 620
Val Arg Gln Gln Arg Phe Val Tyr Asp Ala Tyr Gln Asn Leu Val Gly
625 630 635 640
Tyr Tyr Ser Asp Asp Gly Asn Tyr Tyr Cys Leu Arg Ala Cys Val Ser
645 650 655
Val Pro Val Ser Val Ile Tyr Asp Lys Glu Thr Lys Thr His Ala Thr
660 665 670
Leu Phe Gly Ser Val Ala Cys Glu His Ile Ser Ser Thr Met Ser Gln
675 680 685
Tyr Ser Arg Ser Thr Arg Ser Met Leu Lys Arg Arg Asp Ser Thr Tyr
690 695 700
Gly Pro Leu Gln Thr Pro Val Gly Cys Val Leu Gly Leu Val Asn Ser
705 710 715 720
Ser Leu Phe Val Glu Asp Cys Lys Leu Pro Leu Gly Gln Ser Leu Cys
725 730 735
Ala Leu Pro Asp Thr Pro Ser Thr Leu Thr Pro Arg Ser Val Arg Ser
740 745 750
Val Pro Gly Glu Met Arg Leu Ala Ser Ile Ala Phe Asn His Pro Ile
755 760 765
Gln Val Asp Gln Leu Asn Ser Ser Tyr Phe Lys Leu Ser Ile Pro Thr
770 775 780
Asn Phe Ser Phe Gly Val Thr Gln Glu Tyr Ile Gln Thr Thr Ile Gln
785 790 795 800
Lys Val Thr Val Asp Cys Lys Gln Tyr Val Cys Asn Gly Phe Gln Lys
805 810 815
Cys Glu Gln Leu Leu Arg Glu Tyr Gly Gln Phe Cys Ser Lys Ile Asn
820 825 830
Gln Ala Leu His Gly Ala Asn Leu Arg Gln Asp Asp Ser Val Arg Asn
835 840 845
Leu Phe Ala Ser Val Lys Ser Ser Gln Ser Ser Pro Ile Ile Pro Gly
850 855 860
Phe Gly Gly Asp Phe Asn Leu Thr Leu Leu Glu Pro Val Ser Ile Ser
865 870 875 880
Thr Gly Ser Arg Ser Ala Arg Ser Ala Ile Glu Asp Leu Leu Phe Asp
885 890 895
Lys Val Thr Ile Ala Asp Pro Gly Tyr Met Gln Gly Tyr Asp Asp Cys
900 905 910
Met Gln Gln Gly Pro Ala Ser Ala Arg Asp Leu Ile Cys Ala Gln Tyr
915 920 925
Val Ala Gly Tyr Lys Val Leu Pro Pro Leu Met Asp Val Asn Met Glu
930 935 940
Ala Ala Tyr Thr Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp
945 950 955 960
Thr Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile
965 970 975
Phe Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln Val Leu Ser Glu
980 985 990
Asn Gln Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Ala Met
995 1000 1005
Gln Thr Gly Phe Thr Thr Thr Asn Glu Ala Phe His Lys Val Gln Asp
1010 1015 1020
Ala Val Asn Asn Asn Ala Gln Ala Leu Ser Lys Leu Ala Ser Glu Leu
1025 1030 1035 1040
Ser Asn Thr Phe Gly Ala Ile Ser Ala Ser Ile Gly Asp Ile Ile Gln
1045 1050 1055
Arg Leu Asp Val Leu Glu Gln Asp Ala Gln Ile Asp Arg Leu Ile Asn
1060 1065 1070
Gly Arg Leu Thr Thr Leu Asn Ala Phe Val Ala Gln Gln Leu Val Arg
1075 1080 1085
Ser Glu Ser Ala Ala Leu Ser Ala Gln Leu Ala Lys Asp Lys Val Asn
1090 1095 1100
Glu Cys Val Lys Ala Gln Ser Lys Arg Ser Gly Phe Cys Gly Gln Gly
1105 1110 1115 1120
Thr His Ile Val Ser Phe Val Val Asn Ala Pro Asn Gly Leu Tyr Phe
1125 1130 1135
Met His Val Gly Tyr Tyr Pro Ser Asn His Ile Glu Val Val Ser Ala
1140 1145 1150
Tyr Gly Leu Cys Asp Ala Ala Asn Pro Thr Asn Cys Ile Ala Pro Val
1155 1160 1165
Asn Gly Tyr Phe Ile Lys Thr Asn Asn Thr Arg Ile Val Asp Glu Trp
1170 1175 1180
Ser Tyr Thr Gly Ser Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser Leu
1185 1190 1195 1200
Asn Thr Lys Tyr Val Ala Pro Gln Val Thr Tyr Gln Asn Ile Ser Thr
1205 1210 1215
Asn Leu Pro Pro Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe Gln
1220 1225 1230
Asp Glu Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser Ile Pro Asn
1235 1240 1245
Phe Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu Leu Asp Leu Thr Tyr
1250 1255 1260
Glu Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu Asn Glu Ser Tyr
1265 1270 1275 1280
Ile Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr Tyr Asn Lys Trp Pro
1285 1290 1295
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val Ala Leu Ala Leu
1300 1305 1310
Cys Val Phe Phe Ile Leu Cys Cys Thr Gly Cys Gly Thr Asn Cys Met
1315 1320 1325
Gly Lys Leu Lys Cys Asn Arg Cys Cys Asp Arg Tyr Glu Glu Tyr Asp
1330 1335 1340
Leu Glu Pro His Lys Val His Val His
1345 1350
<210> 114
<211> 1242
<212> PRT
<213> SARS-CoV-1
<400> 114
Ser Asp Leu Asp Arg Cys Thr Thr Phe Asp Asp Val Gln Ala Pro Asn
1 5 10 15
Tyr Thr Gln His Thr Ser Ser Met Arg Gly Val Tyr Tyr Pro Asp Glu
20 25 30
Ile Phe Arg Ser Asp Thr Leu Tyr Leu Thr Gln Asp Leu Phe Leu Pro
35 40 45
Phe Tyr Ser Asn Val Thr Gly Phe His Thr Ile Asn His Thr Phe Gly
50 55 60
Asn Pro Val Ile Pro Phe Lys Asp Gly Ile Tyr Phe Ala Ala Thr Glu
65 70 75 80
Lys Ser Asn Val Val Arg Gly Trp Val Phe Gly Ser Thr Met Asn Asn
85 90 95
Lys Ser Gln Ser Val Ile Ile Ile Asn Asn Ser Thr Asn Val Val Ile
100 105 110
Arg Ala Cys Asn Phe Glu Leu Cys Asp Asn Pro Phe Phe Ala Val Ser
115 120 125
Lys Pro Met Gly Thr Gln Thr His Thr Met Ile Phe Asp Asn Ala Phe
130 135 140
Asn Cys Thr Phe Glu Tyr Ile Ser Asp Ala Phe Ser Leu Asp Val Ser
145 150 155 160
Glu Lys Ser Gly Asn Phe Lys His Leu Arg Glu Phe Val Phe Lys Asn
165 170 175
Lys Asp Gly Phe Leu Tyr Val Tyr Lys Gly Tyr Gln Pro Ile Asp Val
180 185 190
Val Arg Asp Leu Pro Ser Gly Phe Asn Thr Leu Lys Pro Ile Phe Lys
195 200 205
Leu Pro Leu Gly Ile Asn Ile Thr Asn Phe Arg Ala Ile Leu Thr Ala
210 215 220
Phe Ser Pro Ala Gln Asp Ile Trp Gly Thr Ser Ala Ala Ala Tyr Phe
225 230 235 240
Val Gly Tyr Leu Lys Pro Thr Thr Phe Met Leu Lys Tyr Asp Glu Asn
245 250 255
Gly Thr Ile Thr Asp Ala Val Asp Cys Ser Gln Asn Pro Leu Ala Glu
260 265 270
Leu Lys Cys Ser Val Lys Ser Phe Glu Ile Asp Lys Gly Ile Tyr Gln
275 280 285
Thr Ser Asn Phe Arg Val Val Pro Ser Gly Asp Val Val Arg Phe Pro
290 295 300
Asn Ile Thr Asn Leu Cys Pro Phe Gly Glu Val Phe Asn Ala Thr Lys
305 310 315 320
Phe Pro Ser Val Tyr Ala Trp Glu Arg Lys Lys Ile Ser Asn Cys Val
325 330 335
Ala Asp Tyr Ser Val Leu Tyr Asn Ser Thr Phe Phe Ser Thr Phe Lys
340 345 350
Cys Tyr Gly Val Ser Ala Thr Lys Leu Asn Asp Leu Cys Phe Ser Asn
355 360 365
Val Tyr Ala Asp Ser Phe Val Val Lys Gly Asp Asp Val Arg Gln Ile
370 375 380
Ala Pro Gly Gln Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu Pro
385 390 395 400
Asp Asp Phe Met Gly Cys Val Leu Ala Trp Asn Thr Arg Asn Ile Asp
405 410 415
Ala Thr Ser Thr Gly Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu Arg His
420 425 430
Gly Lys Leu Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro Phe Ser
435 440 445
Pro Asp Gly Lys Pro Cys Thr Pro Pro Ala Leu Asn Cys Tyr Trp Pro
450 455 460
Leu Asn Asp Tyr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr Gln Pro
465 470 475 480
Tyr Arg Val Val Val Leu Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr
485 490 495
Val Cys Gly Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln Cys Val
500 505 510
Asn Phe Asn Phe Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Pro Ser
515 520 525
Ser Lys Arg Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Val Ser Asp
530 535 540
Phe Thr Asp Ser Val Arg Asp Pro Lys Thr Ser Glu Ile Leu Asp Ile
545 550 555 560
Ser Pro Cys Ser Phe Gly Gly Val Ser Val Ile Thr Pro Gly Thr Asn
565 570 575
Ala Ser Ser Glu Val Ala Val Leu Tyr Gln Asp Val Asn Cys Thr Asp
580 585 590
Val Ser Thr Ala Ile His Ala Asp Gln Leu Thr Pro Ala Trp Arg Ile
595 600 605
Tyr Ser Thr Gly Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile
610 615 620
Gly Ala Glu His Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly
625 630 635 640
Ala Gly Ile Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr
645 650 655
Ser Gln Lys Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser
660 665 670
Ser Ile Ala Tyr Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser
675 680 685
Ile Ser Ile Thr Thr Glu Val Met Pro Val Ser Met Ala Lys Thr Ser
690 695 700
Val Asp Cys Asn Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ala Asn
705 710 715 720
Leu Leu Leu Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu
725 730 735
Ser Gly Ile Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala
740 745 750
Gln Val Lys Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly
755 760 765
Phe Asn Phe Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg
770 775 780
Ser Phe Ile Glu Asp Leu Leu Phe Asn Lys Val Thr Leu Ala Asp Ala
785 790 795 800
Gly Phe Met Lys Gln Tyr Gly Glu Cys Leu Gly Asp Ile Asn Ala Arg
805 810 815
Asp Leu Ile Cys Ala Gln Lys Phe Asn Gly Leu Thr Val Leu Pro Pro
820 825 830
Leu Leu Thr Asp Asp Met Ile Ala Ala Tyr Thr Ala Ala Leu Val Ser
835 840 845
Gly Thr Ala Thr Ala Gly Trp Thr Phe Gly Ala Gly Ala Ala Leu Gln
850 855 860
Ile Pro Phe Ala Met Gln Met Ala Tyr Arg Phe Asn Gly Ile Gly Val
865 870 875 880
Thr Gln Asn Val Leu Tyr Glu Asn Gln Lys Gln Ile Ala Asn Gln Phe
885 890 895
Asn Lys Ala Ile Ser Gln Ile Gln Glu Ser Leu Thr Thr Thr Ser Thr
900 905 910
Ala Leu Gly Lys Leu Gln Asp Val Val Asn Gln Asn Ala Gln Ala Leu
915 920 925
Asn Thr Leu Val Lys Gln Leu Ser Ser Asn Phe Gly Ala Ile Ser Ser
930 935 940
Val Leu Asn Asp Ile Leu Ser Arg Leu Asp Lys Val Glu Ala Glu Val
945 950 955 960
Gln Ile Asp Arg Leu Ile Thr Gly Arg Leu Gln Ser Leu Gln Thr Tyr
965 970 975
Val Thr Gln Gln Leu Ile Arg Ala Ala Glu Ile Arg Ala Ser Ala Asn
980 985 990
Leu Ala Ala Thr Lys Met Ser Glu Cys Val Leu Gly Gln Ser Lys Arg
995 1000 1005
Val Asp Phe Cys Gly Lys Gly Tyr His Leu Met Ser Phe Pro Gln Ala
1010 1015 1020
Ala Pro His Gly Val Val Phe Leu His Val Thr Tyr Val Pro Ser Gln
1025 1030 1035 1040
Glu Arg Asn Phe Thr Thr Ala Pro Ala Ile Cys His Glu Gly Lys Ala
1045 1050 1055
Tyr Phe Pro Arg Glu Gly Val Phe Val Phe Asn Gly Thr Ser Trp Phe
1060 1065 1070
Ile Thr Gln Arg Asn Phe Phe Ser Pro Gln Ile Ile Thr Thr Asp Asn
1075 1080 1085
Thr Phe Val Ser Gly Asn Cys Asp Val Val Ile Gly Ile Ile Asn Asn
1090 1095 1100
Thr Val Tyr Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu
1105 1110 1115 1120
Leu Asp Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly
1125 1130 1135
Asp Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile
1140 1145 1150
Asp Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile Asp
1155 1160 1165
Leu Gln Glu Leu Gly Lys Tyr Glu Gln Tyr Ile Lys Trp Pro Trp Tyr
1170 1175 1180
Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met Val Thr
1185 1190 1195 1200
Ile Leu Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala
1205 1210 1215
Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro
1220 1225 1230
Val Leu Lys Gly Val Lys Leu His Tyr Thr
1235 1240
<210> 115
<211> 1336
<212> PRT
<213> MERS
<400> 115
Tyr Val Asp Val Gly Pro Asp Ser Val Lys Ser Ala Cys Ile Glu Val
1 5 10 15
Asp Ile Gln Gln Thr Phe Phe Asp Lys Thr Trp Pro Arg Pro Ile Asp
20 25 30
Val Ser Lys Ala Asp Gly Ile Ile Tyr Pro Gln Gly Arg Thr Tyr Ser
35 40 45
Asn Ile Thr Ile Thr Tyr Gln Gly Leu Phe Pro Tyr Gln Gly Asp His
50 55 60
Gly Asp Met Tyr Val Tyr Ser Ala Gly His Ala Thr Gly Thr Thr Pro
65 70 75 80
Gln Lys Leu Phe Val Ala Asn Tyr Ser Gln Asp Val Lys Gln Phe Ala
85 90 95
Asn Gly Phe Val Val Arg Ile Gly Ala Ala Ala Asn Ser Thr Gly Thr
100 105 110
Val Ile Ile Ser Pro Ser Thr Ser Ala Thr Ile Arg Lys Ile Tyr Pro
115 120 125
Ala Phe Met Leu Gly Ser Ser Val Gly Asn Phe Ser Asp Gly Lys Met
130 135 140
Gly Arg Phe Phe Asn His Thr Leu Val Leu Leu Pro Asp Gly Cys Gly
145 150 155 160
Thr Leu Leu Arg Ala Phe Tyr Cys Ile Leu Glu Pro Arg Ser Gly Asn
165 170 175
His Cys Pro Ala Gly Asn Ser Tyr Thr Ser Phe Ala Thr Tyr His Thr
180 185 190
Pro Ala Thr Asp Cys Ser Asp Gly Asn Tyr Asn Arg Asn Ala Ser Leu
195 200 205
Asn Ser Phe Lys Glu Tyr Phe Asn Leu Arg Asn Cys Thr Phe Met Tyr
210 215 220
Thr Tyr Asn Ile Thr Glu Asp Glu Ile Leu Glu Trp Phe Gly Ile Thr
225 230 235 240
Gln Thr Ala Gln Gly Val His Leu Phe Ser Ser Arg Tyr Val Asp Leu
245 250 255
Tyr Gly Gly Asn Met Phe Gln Phe Ala Thr Leu Pro Val Tyr Asp Thr
260 265 270
Ile Lys Tyr Tyr Ser Ile Ile Pro His Ser Ile Arg Ser Ile Gln Ser
275 280 285
Asp Arg Lys Ala Trp Ala Ala Phe Tyr Val Tyr Lys Leu Gln Pro Leu
290 295 300
Thr Phe Leu Leu Asp Phe Ser Val Asp Gly Tyr Ile Arg Arg Ala Ile
305 310 315 320
Asp Cys Gly Phe Asn Asp Leu Ser Gln Leu His Cys Ser Tyr Glu Ser
325 330 335
Phe Asp Val Glu Ser Gly Val Tyr Ser Val Ser Ser Phe Glu Ala Lys
340 345 350
Pro Ser Gly Ser Val Val Glu Gln Ala Glu Gly Val Glu Cys Asp Phe
355 360 365
Ser Pro Leu Leu Ser Gly Thr Pro Pro Gln Val Tyr Asn Phe Lys Arg
370 375 380
Leu Val Phe Thr Asn Cys Asn Tyr Asn Leu Thr Lys Leu Leu Ser Leu
385 390 395 400
Phe Ser Val Asn Asp Phe Thr Cys Ser Gln Ile Ser Pro Ala Ala Ile
405 410 415
Ala Ser Asn Cys Tyr Ser Ser Leu Ile Leu Asp Tyr Phe Ser Tyr Pro
420 425 430
Leu Ser Met Lys Ser Asp Leu Ser Val Ser Ser Ala Gly Pro Ile Ser
435 440 445
Gln Phe Asn Tyr Lys Gln Ser Phe Ser Asn Pro Thr Cys Leu Ile Leu
450 455 460
Ala Thr Val Pro His Asn Leu Thr Thr Ile Thr Lys Pro Leu Lys Tyr
465 470 475 480
Ser Tyr Ile Asn Lys Cys Ser Arg Phe Leu Ser Asp Asp Arg Thr Glu
485 490 495
Val Pro Gln Leu Val Asn Ala Asn Gln Tyr Ser Pro Cys Val Ser Ile
500 505 510
Val Pro Ser Thr Val Trp Glu Asp Gly Asp Tyr Tyr Arg Lys Gln Leu
515 520 525
Ser Pro Leu Glu Gly Gly Gly Trp Leu Val Ala Ser Gly Ser Thr Val
530 535 540
Ala Met Thr Glu Gln Leu Gln Met Gly Phe Gly Ile Thr Val Gln Tyr
545 550 555 560
Gly Thr Asp Thr Asn Ser Val Cys Pro Lys Leu Glu Phe Ala Asn Asp
565 570 575
Thr Lys Ile Ala Ser Gln Leu Gly Asn Cys Val Glu Tyr Ser Leu Tyr
580 585 590
Gly Val Ser Gly Arg Gly Val Phe Gln Asn Cys Thr Ala Val Gly Val
595 600 605
Arg Gln Gln Arg Phe Val Tyr Asp Ala Tyr Gln Asn Leu Val Gly Tyr
610 615 620
Tyr Ser Asp Asp Gly Asn Tyr Tyr Cys Leu Arg Ala Cys Val Ser Val
625 630 635 640
Pro Val Ser Val Ile Tyr Asp Lys Glu Thr Lys Thr His Ala Thr Leu
645 650 655
Phe Gly Ser Val Ala Cys Glu His Ile Ser Ser Thr Met Ser Gln Tyr
660 665 670
Ser Arg Ser Thr Arg Ser Met Leu Lys Arg Arg Asp Ser Thr Tyr Gly
675 680 685
Pro Leu Gln Thr Pro Val Gly Cys Val Leu Gly Leu Val Asn Ser Ser
690 695 700
Leu Phe Val Glu Asp Cys Lys Leu Pro Leu Gly Gln Ser Leu Cys Ala
705 710 715 720
Leu Pro Asp Thr Pro Ser Thr Leu Thr Pro Arg Ser Val Arg Ser Val
725 730 735
Pro Gly Glu Met Arg Leu Ala Ser Ile Ala Phe Asn His Pro Ile Gln
740 745 750
Val Asp Gln Leu Asn Ser Ser Tyr Phe Lys Leu Ser Ile Pro Thr Asn
755 760 765
Phe Ser Phe Gly Val Thr Gln Glu Tyr Ile Gln Thr Thr Ile Gln Lys
770 775 780
Val Thr Val Asp Cys Lys Gln Tyr Val Cys Asn Gly Phe Gln Lys Cys
785 790 795 800
Glu Gln Leu Leu Arg Glu Tyr Gly Gln Phe Cys Ser Lys Ile Asn Gln
805 810 815
Ala Leu His Gly Ala Asn Leu Arg Gln Asp Asp Ser Val Arg Asn Leu
820 825 830
Phe Ala Ser Val Lys Ser Ser Gln Ser Ser Pro Ile Ile Pro Gly Phe
835 840 845
Gly Gly Asp Phe Asn Leu Thr Leu Leu Glu Pro Val Ser Ile Ser Thr
850 855 860
Gly Ser Arg Ser Ala Arg Ser Ala Ile Glu Asp Leu Leu Phe Asp Lys
865 870 875 880
Val Thr Ile Ala Asp Pro Gly Tyr Met Gln Gly Tyr Asp Asp Cys Met
885 890 895
Gln Gln Gly Pro Ala Ser Ala Arg Asp Leu Ile Cys Ala Gln Tyr Val
900 905 910
Ala Gly Tyr Lys Val Leu Pro Pro Leu Met Asp Val Asn Met Glu Ala
915 920 925
Ala Tyr Thr Ser Ser Leu Leu Gly Ser Ile Ala Gly Val Gly Trp Thr
930 935 940
Ala Gly Leu Ser Ser Phe Ala Ala Ile Pro Phe Ala Gln Ser Ile Phe
945 950 955 960
Tyr Arg Leu Asn Gly Val Gly Ile Thr Gln Gln Val Leu Ser Glu Asn
965 970 975
Gln Lys Leu Ile Ala Asn Lys Phe Asn Gln Ala Leu Gly Ala Met Gln
980 985 990
Thr Gly Phe Thr Thr Thr Asn Glu Ala Phe His Lys Val Gln Asp Ala
995 1000 1005
Val Asn Asn Asn Ala Gln Ala Leu Ser Lys Leu Ala Ser Glu Leu Ser
1010 1015 1020
Asn Thr Phe Gly Ala Ile Ser Ala Ser Ile Gly Asp Ile Ile Gln Arg
1025 1030 1035 1040
Leu Asp Val Leu Glu Gln Asp Ala Gln Ile Asp Arg Leu Ile Asn Gly
1045 1050 1055
Arg Leu Thr Thr Leu Asn Ala Phe Val Ala Gln Gln Leu Val Arg Ser
1060 1065 1070
Glu Ser Ala Ala Leu Ser Ala Gln Leu Ala Lys Asp Lys Val Asn Glu
1075 1080 1085
Cys Val Lys Ala Gln Ser Lys Arg Ser Gly Phe Cys Gly Gln Gly Thr
1090 1095 1100
His Ile Val Ser Phe Val Val Asn Ala Pro Asn Gly Leu Tyr Phe Met
1105 1110 1115 1120
His Val Gly Tyr Tyr Pro Ser Asn His Ile Glu Val Val Ser Ala Tyr
1125 1130 1135
Gly Leu Cys Asp Ala Ala Asn Pro Thr Asn Cys Ile Ala Pro Val Asn
1140 1145 1150
Gly Tyr Phe Ile Lys Thr Asn Asn Thr Arg Ile Val Asp Glu Trp Ser
1155 1160 1165
Tyr Thr Gly Ser Ser Phe Tyr Ala Pro Glu Pro Ile Thr Ser Leu Asn
1170 1175 1180
Thr Lys Tyr Val Ala Pro Gln Val Thr Tyr Gln Asn Ile Ser Thr Asn
1185 1190 1195 1200
Leu Pro Pro Pro Leu Leu Gly Asn Ser Thr Gly Ile Asp Phe Gln Asp
1205 1210 1215
Glu Leu Asp Glu Phe Phe Lys Asn Val Ser Thr Ser Ile Pro Asn Phe
1220 1225 1230
Gly Ser Leu Thr Gln Ile Asn Thr Thr Leu Leu Asp Leu Thr Tyr Glu
1235 1240 1245
Met Leu Ser Leu Gln Gln Val Val Lys Ala Leu Asn Glu Ser Tyr Ile
1250 1255 1260
Asp Leu Lys Glu Leu Gly Asn Tyr Thr Tyr Tyr Asn Lys Trp Pro Trp
1265 1270 1275 1280
Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val Ala Leu Ala Leu Cys
1285 1290 1295
Val Phe Phe Ile Leu Cys Cys Thr Gly Cys Gly Thr Asn Cys Met Gly
1300 1305 1310
Lys Leu Lys Cys Asn Arg Cys Cys Asp Arg Tyr Glu Glu Tyr Asp Leu
1315 1320 1325
Glu Pro His Lys Val His Val His
1330 1335
<210> 116
<211> 60
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-SARS-COV-1 wtTMCT-AA
<400> 116
Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Leu Leu Cys Cys Met Thr Ser Cys Cys Ser Cys Leu Lys
20 25 30
Gly Ala Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser
35 40 45
Glu Pro Val Leu Lys Gly Val Lys Leu His Tyr Thr
50 55 60
<210> 117
<211> 40
<212> PRT
<213> artificial sequence
<220>
<223> YQILSIYSTVASSLALAIMMAGLSLWMCSNGSLQCRICI
<400> 117
Trp Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
1 5 10 15
Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
20 25 30
Ser Leu Gln Cys Arg Ile Cys Ile
35 40
<210> 118
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-SARS-COV-1H 5iCT-AA
<400> 118
Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Leu Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln
20 25 30
Cys Arg Ile Cys Ile
35
<210> 119
<211> 34
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-SARS-COV-1H 5iCT (V4) -AA
<400> 119
Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Leu Leu Cys Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile
20 25 30
Cys Ile
<210> 120
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-SARS-COV-1H 1cCT-AA
<400> 120
Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Leu Leu Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln
20 25 30
Cys Arg Ile Cys Ile
35
<210> 121
<211> 57
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-MERS-wtTMCT-AA
<400> 121
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val Ala Leu Ala Leu
1 5 10 15
Cys Val Phe Phe Ile Leu Cys Cys Thr Gly Cys Gly Thr Asn Cys Met
20 25 30
Gly Lys Leu Lys Cys Asn Arg Cys Cys Asp Arg Tyr Glu Glu Tyr Asp
35 40 45
Leu Glu Pro His Lys Val His Val His
50 55
<210> 122
<211> 40
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-MERS-H5iTMCT-AA
<400> 122
Trp Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
1 5 10 15
Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
20 25 30
Ser Leu Gln Cys Arg Ile Cys Ile
35 40
<210> 123
<211> 38
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-MERS-H5iCT-AA
<400> 123
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val Ala Leu Ala Leu
1 5 10 15
Cys Val Phe Phe Ile Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu
20 25 30
Gln Cys Arg Ile Cys Ile
35
<210> 124
<211> 35
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-MERS-H5iCT (V4) -AA
<400> 124
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val Ala Leu Ala Leu
1 5 10 15
Cys Val Phe Phe Ile Leu Cys Cys Ser Asn Gly Ser Leu Gln Cys Arg
20 25 30
Ile Cys Ile
35
<210> 125
<211> 38
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-MERS-H1cCT-AA
<400> 125
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val Ala Leu Ala Leu
1 5 10 15
Cys Val Phe Phe Ile Leu Ser Phe Trp Met Cys Ser Asn Gly Ser Leu
20 25 30
Gln Cys Arg Ile Cys Ile
35
<210> 126
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-S-protein+H2 Cal
<400> 126
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Leu Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln
20 25 30
Cys Arg Ile Cys Ile
35
<210> 127
<211> 36
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-S-protein+H2 Minn
<400> 127
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Leu Met Trp Ala Cys Gln Lys Gly Asn Ile Arg Cys
20 25 30
Asn Ile Cys Ile
35
<210> 128
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-S-protein+H2HK
<400> 128
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Leu Gly Leu Trp Met Cys Ser Asn Gly Ser Met Gln
20 25 30
Cys Arg Ile Cys Ile
35
<210> 129
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-S-protein +H27 Guangdong
<400> 129
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Leu Val Phe Ile Cys Val Lys Asn Gly Asn Met Arg
20 25 30
Cys Thr Ile Cys Ile
35
<210> 130
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-S-protein+H2HK
<400> 130
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Leu Leu Phe Trp Ala Met Ser Asn Gly Ser Cys Arg
20 25 30
Cys Asn Ile Cys Ile
35
<210> 131
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-S-protein+B/Wash
<400> 131
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Met Leu Val Val Tyr Met Val Ser Arg Asp Asn Val Ser
20 25 30
Cys Ser Ile Cys Leu
35
<210> 132
<211> 22
<212> PRT
<213> artificial sequence
<220>
<223> consensus sequence of TM Domain of coronavirus S-protein
<220>
<221> misc_feature
<222> (3)..(3)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (12)..(12)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (14)..(16)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> MISC_FEATURE
<222> (17)..(17)
<223> Xaa may or may not be present
<220>
<221> misc_feature
<222> (19)..(21)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (3)..(3)
<223> The 'Xaa' at location 3 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (12)..(12)
<223> The 'Xaa' at location 12 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (14)..(14)
<223> The 'Xaa' at location 14 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (15)..(15)
<223> The 'Xaa' at location 15 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (16)..(16)
<223> The 'Xaa' at location 16 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (17)..(17)
<223> The 'Xaa' at location 17 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (19)..(19)
<223> The 'Xaa' at location 19 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (20)..(20)
<223> The 'Xaa' at location 20 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (21)..(21)
<223> The 'Xaa' at location 21 stands for Gln, Arg, Pro, or Leu.
<400> 132
Trp Tyr Xaa Trp Leu Gly Phe Ile Ala Gly Leu Xaa Ala Xaa Xaa Xaa
1 5 10 15
Xaa Val Xaa Xaa Xaa Leu
20
<210> 133
<211> 22
<212> PRT
<213> artificial sequence
<220>
<223> consensus sequence of TM Domain of coronavirus S-protein
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa may be Ile or Val
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Xaa may be Val or Ile
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Xaa may be Leu or Ile
<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> Xaa may be Ala or Val
<220>
<221> MISC_FEATURE
<222> (16)..(16)
<223> Xaa may be Leu or Met
<220>
<221> MISC_FEATURE
<222> (17)..(17)
<223> Xaa may be Cys or absent
<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> Xaa may be Phe or Thr
<220>
<221> MISC_FEATURE
<222> (20)..(20)
<223> Xaa may be Phe or Ile
<220>
<221> misc_feature
<222> (21)..(21)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (3)..(3)
<223> The 'Xaa' at location 3 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (12)..(12)
<223> The 'Xaa' at location 12 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (14)..(14)
<223> The 'Xaa' at location 14 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (15)..(15)
<223> The 'Xaa' at location 15 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (16)..(16)
<223> The 'Xaa' at location 16 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (17)..(17)
<223> The 'Xaa' at location 17 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (19)..(19)
<223> The 'Xaa' at location 19 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (20)..(20)
<223> The 'Xaa' at location 20 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (21)..(21)
<223> The 'Xaa' at location 21 stands for Gln, Arg, Pro, or Leu.
<400> 133
Trp Tyr Xaa Trp Leu Gly Phe Ile Ala Gly Leu Xaa Ala Xaa Xaa Xaa
1 5 10 15
Xaa Val Xaa Xaa Xaa Leu
20
<210> 134
<211> 33
<212> PRT
<213> artificial sequence
<220>
<223> modified SARS-CoV-1S protein, TM/CT region having intermediate peptide sequence
<220>
<221> MISC_FEATURE
<222> (21)..(21)
<223> X may be any combination of 0 to 10 amino acids.
<220>
<221> misc_feature
<222> (27)..(28)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (30)..(30)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (21)..(21)
<223> The 'Xaa' at location 21 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (27)..(27)
<223> The 'Xaa' at location 27 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (28)..(28)
<223> The 'Xaa' at location 28 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (30)..(30)
<223> The 'Xaa' at location 30 stands for Gln, Arg, Pro, or Leu.
<400> 134
Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val Met
1 5 10 15
Val Thr Ile Leu Xaa Cys Ser Asn Gly Ser Xaa Xaa Cys Xaa Ile Cys
20 25 30
Ile
<210> 135
<211> 35
<212> PRT
<213> artificial sequence
<220>
<223> modified MERS S protein, TM/CT region with intermediate peptide sequence
<220>
<221> MISC_FEATURE
<222> (23)..(23)
<223> X may be any combination of 0 to 10 amino acids
<220>
<221> misc_feature
<222> (29)..(30)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (32)..(32)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (23)..(23)
<223> The 'Xaa' at location 23 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (29)..(29)
<223> The 'Xaa' at location 29 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (30)..(30)
<223> The 'Xaa' at location 30 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (32)..(32)
<223> The 'Xaa' at location 32 stands for Gln, Arg, Pro, or Leu.
<400> 135
Trp Tyr Ile Trp Leu Gly Phe Ile Ala Gly Leu Val Ala Leu Ala Leu
1 5 10 15
Cys Val Phe Phe Ile Leu Xaa Cys Ser Asn Gly Ser Xaa Xaa Cys Xaa
20 25 30
Ile Cys Ile
35
<210> 136
<211> 49
<212> DNA
<213> artificial sequence
<220>
<223> IF(AvB+wtCT-OC43).r
<400> 136
acgacacgac taaggccttc agtcgtcatg cgaggtctta atgacaagc 49
<210> 137
<211> 4113
<212> DNA
<213> artificial sequence
<220>
<223> PDI-OC43-wtTMCT-DNA
<400> 137
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgatcgg cgatctgaat tgtaccctgg atccccgcct gaaagggagc 120
tttaacaacc gagatacagg acccccgtct atatccatag atacagtgga tgttacgaac 180
gggctcggca cctactatgt gctagaccga gtttatttga acaccacctt attcctcaat 240
ggatactacc caacttcagg tagtacttac agaaacatgg cgctgaaggg tacggatctg 300
ctgagcaccc tatggtttaa acctcccttc ctctcggact ttattaatgg catcttcgct 360
aaggtgaaaa acacgaaggt tttcaaagat ggagtgatgt attcagagtt ccctgcgatc 420
accattggaa gtaccttcgt gaatacttcc tatagcgtgg tggttcaacc acggacaatc 480
aactccaccc aggacggcgt caacaagctc cagggattgc tggaggtgtc agtctgtcaa 540
tataacatgt gtgagtaccc acacactatc tgtcacccta atctaggcaa ccactttaag 600
gaactgtggc actacgatac gggggtggta agttgcttat ataagagaaa tttcacctat 660
gatgttaatg caacgtacct gtactttcac ttctatcaag aaggaggaac tttctacgca 720
tatttcacag ataccggctt tgtgacgaaa ttcttattca acgtttacct cggaatggca 780
ttaagccatt attacgtgat gcctctcact tgcatcagac gccctaagga tggtttttct 840
ctggagtact gggtcactcc cctgacacca cggcagtacc tgcttgcttt taaccaggac 900
ggtatcattt ttaatgccgt cgattgtatg agcgatttta tgagcgagat aaagtgcaag 960
acccaatcta ttgctccgcc cacgggggtg tacgaactga atggttacac cgtccagccc 1020
gttgccgatg tatatagacg gaaaccagac ctgcccaatt gcaacatcga agcttggtta 1080
aacgataagt cagtgccctc ccccctcaat tgggagagga agactttctc caactgtaat 1140
ttcaacatgt caagcctgat gtctttcatt caagccgatt cgttcacttg taataatata 1200
gatgcagcaa agatctatgg tatgtgcttc agttccatca caatagataa gtttgcaata 1260
ccaaaccgtc gcaaggtgga ccttcagctc ggcaacctgg gctatctgca gtccagcaat 1320
tatagaatag acaccaccgc cacatcatgt cagctgtact ataacctccc agcagcgaac 1380
gtcagtgtta gtaggttcaa tccttctacc tggaataaaa ggtttggatt catcgaagat 1440
agtgtgttcg tacctcagcc aacaggagtg ttcaccaatc acagcgtggt ctacgcccaa 1500
cattgcttca aggcacccaa aaatttctgc ccatgtagca gttgctcctg cccgggtaag 1560
aacaatggga tcggcacctg cccagcaggc accaattcac ttacatgcga taatctgtgt 1620
acactggatc ctattacact taaggcccct gatacctaca aatgccccca gagcaagagc 1680
ctggtcggta tcggagaaca ctgttccgga cttgcagtaa aaagcgacta ttgtggaaat 1740
aactcttgca cttgtcagcc acaagccttc ctcggttggt ccgctgactc ttgtttacaa 1800
ggggataagt gtaacatctt cgcaaatttc atcttacacg atgtgaataa cggcttaaca 1860
tgcagcacag atctccagaa ggcaaacaca gagatcgaat taggagtctg cgttaattac 1920
gatctctacg ggatctctgg ccagggcatc ttcgtggagg ttaatgctac ctactacaat 1980
agttggcaaa atctgctcta cgatagcaat ggcaacctct atggattcag agactatatt 2040
actaacagga cgttcatgat tcactcgtgc tattccgggc gggtgtcagc agcttatcac 2100
gcaaattctt cagagccagc tctgctattc cgaaacataa aatgtaatta cgtgttcaat 2160
aattcactga ctcggcagct gcagccgatt aattacagct tcgacagcta ccttggttgc 2220
gttgttaacg cctacaactc cactgccata tcagttcaga cctgcgacct tactgtgggc 2280
tctggctatt gtgtcgatta ttcaaagaac ggggggagcg ggtccgcaat aacaactggc 2340
tataggttca ccaattttga gcctttcacc gtgaatagtg tcaacgatag cctggagcct 2400
gtcggaggtc tttatgagat acaaatcccc tccgagttca caattggcaa catggaagag 2460
ttcatccaga cgagttcccc aaaggtgacg atcgattgcg cggctttcgt ctgcggcgac 2520
tacgccgcat gcaagttaca actcgttgag tatggaagtt tttgcgataa tataaacgca 2580
attctgactg aagtgaacga actgctggac accactcagt tgcaggtggc aaattcgctc 2640
atgaacggcg tgacactgtc aaccaaactg aaggacggtg tcaatttcaa tgtggatgac 2700
attaacttca gccccgtact gggctgtttg ggtagtgagt gttctaaggc tagcagccgc 2760
tccgccattg aggacttgtt gtttgataaa gttaagctga gtgacgttgg atttgttgag 2820
gcgtataata actgtaccgg tggtgcagag ataagggatc tgatctgtgt ccagagttat 2880
aaggggatta aggttctccc cccgctactc tcggagaatc agatatcagg atacaccctg 2940
gccgctacct cagcctcgct gtttccccct tggaccgctg ccgccggtgt cccattttat 3000
ttgaatgtgc agtatcggat caacggtctg ggagtgacaa tggacgtgct gtctcagaac 3060
cagaaactga tcgccaatgc attcaacaat gctctgcacg ccatccagca agggtttgac 3120
gctacaaatt ctgccctcgt aaaaatccag gccgtggtga atgctaacgc cgaagccctt 3180
aataatctgc tccagcagct ttctaaccgc tttggagcta tttctgcctc actgcaggaa 3240
attctatcca gactggatcc ccctgaggca gaagcccaaa tcgaccgtct cataaacggc 3300
agactcactg ctcttaacgc ctacgttagt caacaattga gcgattcgac cttggtgaaa 3360
ttcagcgcag ctcaggctat ggagaaggtg aacgagtgcg tgaagtcaca gagctccaga 3420
atcaatttct gtggcaatgg gaaccatatc atctccttgg ttcagaatgc tccctacggc 3480
ctgtatttca tccacttcaa ctacgtgccc acgaagtacg ttacagccaa agtgtccccc 3540
ggactgtgca tcgctggtaa caggggcatt gcaccaaaat ccggctactt cgtcaatgtc 3600
aacaacacat ggatgtatac tgggagtggt tattattacc ctgaacctat aacagagaac 3660
aatgtagtag tcatgtccac atgcgccgtc aattatacta aggcccccta tgttatgctc 3720
aacacttcaa ttcccaatct cccggatttc aaagaagagc tggatcagtg gtttaagaat 3780
cagacatccg tggcccctga cttaagcttg gattatatca atgtgacttt tttagactta 3840
caggtcgaga tgaaccgact ccaggaagct ataaaagtac tgaaccactc ctatatcaat 3900
ctgaaagata tcggtacata cgaatattac gtaaaatggc cttggtatgt gtggctacta 3960
atttgccttg cgggcgtggc tatgctggtc ctgctgttct tcatttgctg ctgtactggg 4020
tgcggtactt cctgcttcaa aaagtgcggt ggttgctgcg acgactacac tgggtaccag 4080
gagcttgtca ttaagacctc gcatgacgac tga 4113
<210> 138
<211> 4065
<212> DNA
<213> artificial sequence
<220>
<223> PDI-OC43-H5iTMCT-DNA
<400> 138
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgatcgg cgatctgaat tgtaccctgg atccccgcct gaaagggagc 120
tttaacaacc gagatacagg acccccgtct atatccatag atacagtgga tgttacgaac 180
gggctcggca cctactatgt gctagaccga gtttatttga acaccacctt attcctcaat 240
ggatactacc caacttcagg tagtacttac agaaacatgg cgctgaaggg tacggatctg 300
ctgagcaccc tatggtttaa acctcccttc ctctcggact ttattaatgg catcttcgct 360
aaggtgaaaa acacgaaggt tttcaaagat ggagtgatgt attcagagtt ccctgcgatc 420
accattggaa gtaccttcgt gaatacttcc tatagcgtgg tggttcaacc acggacaatc 480
aactccaccc aggacggcgt caacaagctc cagggattgc tggaggtgtc agtctgtcaa 540
tataacatgt gtgagtaccc acacactatc tgtcacccta atctaggcaa ccactttaag 600
gaactgtggc actacgatac gggggtggta agttgcttat ataagagaaa tttcacctat 660
gatgttaatg caacgtacct gtactttcac ttctatcaag aaggaggaac tttctacgca 720
tatttcacag ataccggctt tgtgacgaaa ttcttattca acgtttacct cggaatggca 780
ttaagccatt attacgtgat gcctctcact tgcatcagac gccctaagga tggtttttct 840
ctggagtact gggtcactcc cctgacacca cggcagtacc tgcttgcttt taaccaggac 900
ggtatcattt ttaatgccgt cgattgtatg agcgatttta tgagcgagat aaagtgcaag 960
acccaatcta ttgctccgcc cacgggggtg tacgaactga atggttacac cgtccagccc 1020
gttgccgatg tatatagacg gaaaccagac ctgcccaatt gcaacatcga agcttggtta 1080
aacgataagt cagtgccctc ccccctcaat tgggagagga agactttctc caactgtaat 1140
ttcaacatgt caagcctgat gtctttcatt caagccgatt cgttcacttg taataatata 1200
gatgcagcaa agatctatgg tatgtgcttc agttccatca caatagataa gtttgcaata 1260
ccaaaccgtc gcaaggtgga ccttcagctc ggcaacctgg gctatctgca gtccagcaat 1320
tatagaatag acaccaccgc cacatcatgt cagctgtact ataacctccc agcagcgaac 1380
gtcagtgtta gtaggttcaa tccttctacc tggaataaaa ggtttggatt catcgaagat 1440
agtgtgttcg tacctcagcc aacaggagtg ttcaccaatc acagcgtggt ctacgcccaa 1500
cattgcttca aggcacccaa aaatttctgc ccatgtagca gttgctcctg cccgggtaag 1560
aacaatggga tcggcacctg cccagcaggc accaattcac ttacatgcga taatctgtgt 1620
acactggatc ctattacact taaggcccct gatacctaca aatgccccca gagcaagagc 1680
ctggtcggta tcggagaaca ctgttccgga cttgcagtaa aaagcgacta ttgtggaaat 1740
aactcttgca cttgtcagcc acaagccttc ctcggttggt ccgctgactc ttgtttacaa 1800
ggggataagt gtaacatctt cgcaaatttc atcttacacg atgtgaataa cggcttaaca 1860
tgcagcacag atctccagaa ggcaaacaca gagatcgaat taggagtctg cgttaattac 1920
gatctctacg ggatctctgg ccagggcatc ttcgtggagg ttaatgctac ctactacaat 1980
agttggcaaa atctgctcta cgatagcaat ggcaacctct atggattcag agactatatt 2040
actaacagga cgttcatgat tcactcgtgc tattccgggc gggtgtcagc agcttatcac 2100
gcaaattctt cagagccagc tctgctattc cgaaacataa aatgtaatta cgtgttcaat 2160
aattcactga ctcggcagct gcagccgatt aattacagct tcgacagcta ccttggttgc 2220
gttgttaacg cctacaactc cactgccata tcagttcaga cctgcgacct tactgtgggc 2280
tctggctatt gtgtcgatta ttcaaagaac ggggggagcg ggtccgcaat aacaactggc 2340
tataggttca ccaattttga gcctttcacc gtgaatagtg tcaacgatag cctggagcct 2400
gtcggaggtc tttatgagat acaaatcccc tccgagttca caattggcaa catggaagag 2460
ttcatccaga cgagttcccc aaaggtgacg atcgattgcg cggctttcgt ctgcggcgac 2520
tacgccgcat gcaagttaca actcgttgag tatggaagtt tttgcgataa tataaacgca 2580
attctgactg aagtgaacga actgctggac accactcagt tgcaggtggc aaattcgctc 2640
atgaacggcg tgacactgtc aaccaaactg aaggacggtg tcaatttcaa tgtggatgac 2700
attaacttca gccccgtact gggctgtttg ggtagtgagt gttctaaggc tagcagccgc 2760
tccgccattg aggacttgtt gtttgataaa gttaagctga gtgacgttgg atttgttgag 2820
gcgtataata actgtaccgg tggtgcagag ataagggatc tgatctgtgt ccagagttat 2880
aaggggatta aggttctccc cccgctactc tcggagaatc agatatcagg atacaccctg 2940
gccgctacct cagcctcgct gtttccccct tggaccgctg ccgccggtgt cccattttat 3000
ttgaatgtgc agtatcggat caacggtctg ggagtgacaa tggacgtgct gtctcagaac 3060
cagaaactga tcgccaatgc attcaacaat gctctgcacg ccatccagca agggtttgac 3120
gctacaaatt ctgccctcgt aaaaatccag gccgtggtga atgctaacgc cgaagccctt 3180
aataatctgc tccagcagct ttctaaccgc tttggagcta tttctgcctc actgcaggaa 3240
attctatcca gactggatcc ccctgaggca gaagcccaaa tcgaccgtct cataaacggc 3300
agactcactg ctcttaacgc ctacgttagt caacaattga gcgattcgac cttggtgaaa 3360
ttcagcgcag ctcaggctat ggagaaggtg aacgagtgcg tgaagtcaca gagctccaga 3420
atcaatttct gtggcaatgg gaaccatatc atctccttgg ttcagaatgc tccctacggc 3480
ctgtatttca tccacttcaa ctacgtgccc acgaagtacg ttacagccaa agtgtccccc 3540
ggactgtgca tcgctggtaa caggggcatt gcaccaaaat ccggctactt cgtcaatgtc 3600
aacaacacat ggatgtatac tgggagtggt tattattacc ctgaacctat aacagagaac 3660
aatgtagtag tcatgtccac atgcgccgtc aattatacta aggcccccta tgttatgctc 3720
aacacttcaa ttcccaatct cccggatttc aaagaagagc tggatcagtg gtttaagaat 3780
cagacatccg tggcccctga cttaagcttg gattatatca atgtgacttt tttagactta 3840
caggtcgaga tgaaccgact ccaggaagct ataaaagtac tgaaccactc ctatatcaat 3900
ctgaaagata tcggtacata cgaatattac gtaaaatggc cttggtatca aatactgtca 3960
atttattcaa cagtggcgag ttccctagca ctggcaatca tgatggctgg tctatcttta 4020
tggatgtgct ccaatggatc gttacaatgc agaatttgca tttga 4065
<210> 139
<211> 4056
<212> DNA
<213> artificial sequence
<220>
<223> PDI-OC43-H5iCT-DNA
<400> 139
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgatcgg cgatctgaat tgtaccctgg atccccgcct gaaagggagc 120
tttaacaacc gagatacagg acccccgtct atatccatag atacagtgga tgttacgaac 180
gggctcggca cctactatgt gctagaccga gtttatttga acaccacctt attcctcaat 240
ggatactacc caacttcagg tagtacttac agaaacatgg cgctgaaggg tacggatctg 300
ctgagcaccc tatggtttaa acctcccttc ctctcggact ttattaatgg catcttcgct 360
aaggtgaaaa acacgaaggt tttcaaagat ggagtgatgt attcagagtt ccctgcgatc 420
accattggaa gtaccttcgt gaatacttcc tatagcgtgg tggttcaacc acggacaatc 480
aactccaccc aggacggcgt caacaagctc cagggattgc tggaggtgtc agtctgtcaa 540
tataacatgt gtgagtaccc acacactatc tgtcacccta atctaggcaa ccactttaag 600
gaactgtggc actacgatac gggggtggta agttgcttat ataagagaaa tttcacctat 660
gatgttaatg caacgtacct gtactttcac ttctatcaag aaggaggaac tttctacgca 720
tatttcacag ataccggctt tgtgacgaaa ttcttattca acgtttacct cggaatggca 780
ttaagccatt attacgtgat gcctctcact tgcatcagac gccctaagga tggtttttct 840
ctggagtact gggtcactcc cctgacacca cggcagtacc tgcttgcttt taaccaggac 900
ggtatcattt ttaatgccgt cgattgtatg agcgatttta tgagcgagat aaagtgcaag 960
acccaatcta ttgctccgcc cacgggggtg tacgaactga atggttacac cgtccagccc 1020
gttgccgatg tatatagacg gaaaccagac ctgcccaatt gcaacatcga agcttggtta 1080
aacgataagt cagtgccctc ccccctcaat tgggagagga agactttctc caactgtaat 1140
ttcaacatgt caagcctgat gtctttcatt caagccgatt cgttcacttg taataatata 1200
gatgcagcaa agatctatgg tatgtgcttc agttccatca caatagataa gtttgcaata 1260
ccaaaccgtc gcaaggtgga ccttcagctc ggcaacctgg gctatctgca gtccagcaat 1320
tatagaatag acaccaccgc cacatcatgt cagctgtact ataacctccc agcagcgaac 1380
gtcagtgtta gtaggttcaa tccttctacc tggaataaaa ggtttggatt catcgaagat 1440
agtgtgttcg tacctcagcc aacaggagtg ttcaccaatc acagcgtggt ctacgcccaa 1500
cattgcttca aggcacccaa aaatttctgc ccatgtagca gttgctcctg cccgggtaag 1560
aacaatggga tcggcacctg cccagcaggc accaattcac ttacatgcga taatctgtgt 1620
acactggatc ctattacact taaggcccct gatacctaca aatgccccca gagcaagagc 1680
ctggtcggta tcggagaaca ctgttccgga cttgcagtaa aaagcgacta ttgtggaaat 1740
aactcttgca cttgtcagcc acaagccttc ctcggttggt ccgctgactc ttgtttacaa 1800
ggggataagt gtaacatctt cgcaaatttc atcttacacg atgtgaataa cggcttaaca 1860
tgcagcacag atctccagaa ggcaaacaca gagatcgaat taggagtctg cgttaattac 1920
gatctctacg ggatctctgg ccagggcatc ttcgtggagg ttaatgctac ctactacaat 1980
agttggcaaa atctgctcta cgatagcaat ggcaacctct atggattcag agactatatt 2040
actaacagga cgttcatgat tcactcgtgc tattccgggc gggtgtcagc agcttatcac 2100
gcaaattctt cagagccagc tctgctattc cgaaacataa aatgtaatta cgtgttcaat 2160
aattcactga ctcggcagct gcagccgatt aattacagct tcgacagcta ccttggttgc 2220
gttgttaacg cctacaactc cactgccata tcagttcaga cctgcgacct tactgtgggc 2280
tctggctatt gtgtcgatta ttcaaagaac ggggggagcg ggtccgcaat aacaactggc 2340
tataggttca ccaattttga gcctttcacc gtgaatagtg tcaacgatag cctggagcct 2400
gtcggaggtc tttatgagat acaaatcccc tccgagttca caattggcaa catggaagag 2460
ttcatccaga cgagttcccc aaaggtgacg atcgattgcg cggctttcgt ctgcggcgac 2520
tacgccgcat gcaagttaca actcgttgag tatggaagtt tttgcgataa tataaacgca 2580
attctgactg aagtgaacga actgctggac accactcagt tgcaggtggc aaattcgctc 2640
atgaacggcg tgacactgtc aaccaaactg aaggacggtg tcaatttcaa tgtggatgac 2700
attaacttca gccccgtact gggctgtttg ggtagtgagt gttctaaggc tagcagccgc 2760
tccgccattg aggacttgtt gtttgataaa gttaagctga gtgacgttgg atttgttgag 2820
gcgtataata actgtaccgg tggtgcagag ataagggatc tgatctgtgt ccagagttat 2880
aaggggatta aggttctccc cccgctactc tcggagaatc agatatcagg atacaccctg 2940
gccgctacct cagcctcgct gtttccccct tggaccgctg ccgccggtgt cccattttat 3000
ttgaatgtgc agtatcggat caacggtctg ggagtgacaa tggacgtgct gtctcagaac 3060
cagaaactga tcgccaatgc attcaacaat gctctgcacg ccatccagca agggtttgac 3120
gctacaaatt ctgccctcgt aaaaatccag gccgtggtga atgctaacgc cgaagccctt 3180
aataatctgc tccagcagct ttctaaccgc tttggagcta tttctgcctc actgcaggaa 3240
attctatcca gactggatcc ccctgaggca gaagcccaaa tcgaccgtct cataaacggc 3300
agactcactg ctcttaacgc ctacgttagt caacaattga gcgattcgac cttggtgaaa 3360
ttcagcgcag ctcaggctat ggagaaggtg aacgagtgcg tgaagtcaca gagctccaga 3420
atcaatttct gtggcaatgg gaaccatatc atctccttgg ttcagaatgc tccctacggc 3480
ctgtatttca tccacttcaa ctacgtgccc acgaagtacg ttacagccaa agtgtccccc 3540
ggactgtgca tcgctggtaa caggggcatt gcaccaaaat ccggctactt cgtcaatgtc 3600
aacaacacat ggatgtatac tgggagtggt tattattacc ctgaacctat aacagagaac 3660
aatgtagtag tcatgtccac atgcgccgtc aattatacta aggcccccta tgttatgctc 3720
aacacttcaa ttcccaatct cccggatttc aaagaagagc tggatcagtg gtttaagaat 3780
cagacatccg tggcccctga cttaagcttg gattatatca atgtgacttt tttagactta 3840
caggtcgaga tgaaccgact ccaggaagct ataaaagtac tgaaccactc ctatatcaat 3900
ctgaaagata tcggtacata cgaatattac gtaaaatggc cttggtatgt gtggctacta 3960
atttgccttg cgggcgtggc tatgctggtc ctgctgttct tcatttcttt atggatgtgc 4020
tccaatggat cgttacaatg cagaatttgc atttga 4056
<210> 140
<211> 4047
<212> DNA
<213> artificial sequence
<220>
<223> PDI-OC43-H5iCT(V4)-DNA
<400> 140
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgatcgg cgatctgaat tgtaccctgg atccccgcct gaaagggagc 120
tttaacaacc gagatacagg acccccgtct atatccatag atacagtgga tgttacgaac 180
gggctcggca cctactatgt gctagaccga gtttatttga acaccacctt attcctcaat 240
ggatactacc caacttcagg tagtacttac agaaacatgg cgctgaaggg tacggatctg 300
ctgagcaccc tatggtttaa acctcccttc ctctcggact ttattaatgg catcttcgct 360
aaggtgaaaa acacgaaggt tttcaaagat ggagtgatgt attcagagtt ccctgcgatc 420
accattggaa gtaccttcgt gaatacttcc tatagcgtgg tggttcaacc acggacaatc 480
aactccaccc aggacggcgt caacaagctc cagggattgc tggaggtgtc agtctgtcaa 540
tataacatgt gtgagtaccc acacactatc tgtcacccta atctaggcaa ccactttaag 600
gaactgtggc actacgatac gggggtggta agttgcttat ataagagaaa tttcacctat 660
gatgttaatg caacgtacct gtactttcac ttctatcaag aaggaggaac tttctacgca 720
tatttcacag ataccggctt tgtgacgaaa ttcttattca acgtttacct cggaatggca 780
ttaagccatt attacgtgat gcctctcact tgcatcagac gccctaagga tggtttttct 840
ctggagtact gggtcactcc cctgacacca cggcagtacc tgcttgcttt taaccaggac 900
ggtatcattt ttaatgccgt cgattgtatg agcgatttta tgagcgagat aaagtgcaag 960
acccaatcta ttgctccgcc cacgggggtg tacgaactga atggttacac cgtccagccc 1020
gttgccgatg tatatagacg gaaaccagac ctgcccaatt gcaacatcga agcttggtta 1080
aacgataagt cagtgccctc ccccctcaat tgggagagga agactttctc caactgtaat 1140
ttcaacatgt caagcctgat gtctttcatt caagccgatt cgttcacttg taataatata 1200
gatgcagcaa agatctatgg tatgtgcttc agttccatca caatagataa gtttgcaata 1260
ccaaaccgtc gcaaggtgga ccttcagctc ggcaacctgg gctatctgca gtccagcaat 1320
tatagaatag acaccaccgc cacatcatgt cagctgtact ataacctccc agcagcgaac 1380
gtcagtgtta gtaggttcaa tccttctacc tggaataaaa ggtttggatt catcgaagat 1440
agtgtgttcg tacctcagcc aacaggagtg ttcaccaatc acagcgtggt ctacgcccaa 1500
cattgcttca aggcacccaa aaatttctgc ccatgtagca gttgctcctg cccgggtaag 1560
aacaatggga tcggcacctg cccagcaggc accaattcac ttacatgcga taatctgtgt 1620
acactggatc ctattacact taaggcccct gatacctaca aatgccccca gagcaagagc 1680
ctggtcggta tcggagaaca ctgttccgga cttgcagtaa aaagcgacta ttgtggaaat 1740
aactcttgca cttgtcagcc acaagccttc ctcggttggt ccgctgactc ttgtttacaa 1800
ggggataagt gtaacatctt cgcaaatttc atcttacacg atgtgaataa cggcttaaca 1860
tgcagcacag atctccagaa ggcaaacaca gagatcgaat taggagtctg cgttaattac 1920
gatctctacg ggatctctgg ccagggcatc ttcgtggagg ttaatgctac ctactacaat 1980
agttggcaaa atctgctcta cgatagcaat ggcaacctct atggattcag agactatatt 2040
actaacagga cgttcatgat tcactcgtgc tattccgggc gggtgtcagc agcttatcac 2100
gcaaattctt cagagccagc tctgctattc cgaaacataa aatgtaatta cgtgttcaat 2160
aattcactga ctcggcagct gcagccgatt aattacagct tcgacagcta ccttggttgc 2220
gttgttaacg cctacaactc cactgccata tcagttcaga cctgcgacct tactgtgggc 2280
tctggctatt gtgtcgatta ttcaaagaac ggggggagcg ggtccgcaat aacaactggc 2340
tataggttca ccaattttga gcctttcacc gtgaatagtg tcaacgatag cctggagcct 2400
gtcggaggtc tttatgagat acaaatcccc tccgagttca caattggcaa catggaagag 2460
ttcatccaga cgagttcccc aaaggtgacg atcgattgcg cggctttcgt ctgcggcgac 2520
tacgccgcat gcaagttaca actcgttgag tatggaagtt tttgcgataa tataaacgca 2580
attctgactg aagtgaacga actgctggac accactcagt tgcaggtggc aaattcgctc 2640
atgaacggcg tgacactgtc aaccaaactg aaggacggtg tcaatttcaa tgtggatgac 2700
attaacttca gccccgtact gggctgtttg ggtagtgagt gttctaaggc tagcagccgc 2760
tccgccattg aggacttgtt gtttgataaa gttaagctga gtgacgttgg atttgttgag 2820
gcgtataata actgtaccgg tggtgcagag ataagggatc tgatctgtgt ccagagttat 2880
aaggggatta aggttctccc cccgctactc tcggagaatc agatatcagg atacaccctg 2940
gccgctacct cagcctcgct gtttccccct tggaccgctg ccgccggtgt cccattttat 3000
ttgaatgtgc agtatcggat caacggtctg ggagtgacaa tggacgtgct gtctcagaac 3060
cagaaactga tcgccaatgc attcaacaat gctctgcacg ccatccagca agggtttgac 3120
gctacaaatt ctgccctcgt aaaaatccag gccgtggtga atgctaacgc cgaagccctt 3180
aataatctgc tccagcagct ttctaaccgc tttggagcta tttctgcctc actgcaggaa 3240
attctatcca gactggatcc ccctgaggca gaagcccaaa tcgaccgtct cataaacggc 3300
agactcactg ctcttaacgc ctacgttagt caacaattga gcgattcgac cttggtgaaa 3360
ttcagcgcag ctcaggctat ggagaaggtg aacgagtgcg tgaagtcaca gagctccaga 3420
atcaatttct gtggcaatgg gaaccatatc atctccttgg ttcagaatgc tccctacggc 3480
ctgtatttca tccacttcaa ctacgtgccc acgaagtacg ttacagccaa agtgtccccc 3540
ggactgtgca tcgctggtaa caggggcatt gcaccaaaat ccggctactt cgtcaatgtc 3600
aacaacacat ggatgtatac tgggagtggt tattattacc ctgaacctat aacagagaac 3660
aatgtagtag tcatgtccac atgcgccgtc aattatacta aggcccccta tgttatgctc 3720
aacacttcaa ttcccaatct cccggatttc aaagaagagc tggatcagtg gtttaagaat 3780
cagacatccg tggcccctga cttaagcttg gattatatca atgtgacttt tttagactta 3840
caggtcgaga tgaaccgact ccaggaagct ataaaagtac tgaaccactc ctatatcaat 3900
ctgaaagata tcggtacata cgaatattac gtaaaatggc cttggtatgt gtggctacta 3960
atttgccttg cgggcgtggc tatgctggtc ctgctgttct tcatttgctg ctccaatgga 4020
tcgttacaat gcagaatttg catttga 4047
<210> 141
<211> 4056
<212> DNA
<213> artificial sequence
<220>
<223> PDI-OC43-H1cCT-DNA
<400> 141
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cggtgatcgg cgatctgaat tgtaccctgg atccccgcct gaaagggagc 120
tttaacaacc gagatacagg acccccgtct atatccatag atacagtgga tgttacgaac 180
gggctcggca cctactatgt gctagaccga gtttatttga acaccacctt attcctcaat 240
ggatactacc caacttcagg tagtacttac agaaacatgg cgctgaaggg tacggatctg 300
ctgagcaccc tatggtttaa acctcccttc ctctcggact ttattaatgg catcttcgct 360
aaggtgaaaa acacgaaggt tttcaaagat ggagtgatgt attcagagtt ccctgcgatc 420
accattggaa gtaccttcgt gaatacttcc tatagcgtgg tggttcaacc acggacaatc 480
aactccaccc aggacggcgt caacaagctc cagggattgc tggaggtgtc agtctgtcaa 540
tataacatgt gtgagtaccc acacactatc tgtcacccta atctaggcaa ccactttaag 600
gaactgtggc actacgatac gggggtggta agttgcttat ataagagaaa tttcacctat 660
gatgttaatg caacgtacct gtactttcac ttctatcaag aaggaggaac tttctacgca 720
tatttcacag ataccggctt tgtgacgaaa ttcttattca acgtttacct cggaatggca 780
ttaagccatt attacgtgat gcctctcact tgcatcagac gccctaagga tggtttttct 840
ctggagtact gggtcactcc cctgacacca cggcagtacc tgcttgcttt taaccaggac 900
ggtatcattt ttaatgccgt cgattgtatg agcgatttta tgagcgagat aaagtgcaag 960
acccaatcta ttgctccgcc cacgggggtg tacgaactga atggttacac cgtccagccc 1020
gttgccgatg tatatagacg gaaaccagac ctgcccaatt gcaacatcga agcttggtta 1080
aacgataagt cagtgccctc ccccctcaat tgggagagga agactttctc caactgtaat 1140
ttcaacatgt caagcctgat gtctttcatt caagccgatt cgttcacttg taataatata 1200
gatgcagcaa agatctatgg tatgtgcttc agttccatca caatagataa gtttgcaata 1260
ccaaaccgtc gcaaggtgga ccttcagctc ggcaacctgg gctatctgca gtccagcaat 1320
tatagaatag acaccaccgc cacatcatgt cagctgtact ataacctccc agcagcgaac 1380
gtcagtgtta gtaggttcaa tccttctacc tggaataaaa ggtttggatt catcgaagat 1440
agtgtgttcg tacctcagcc aacaggagtg ttcaccaatc acagcgtggt ctacgcccaa 1500
cattgcttca aggcacccaa aaatttctgc ccatgtagca gttgctcctg cccgggtaag 1560
aacaatggga tcggcacctg cccagcaggc accaattcac ttacatgcga taatctgtgt 1620
acactggatc ctattacact taaggcccct gatacctaca aatgccccca gagcaagagc 1680
ctggtcggta tcggagaaca ctgttccgga cttgcagtaa aaagcgacta ttgtggaaat 1740
aactcttgca cttgtcagcc acaagccttc ctcggttggt ccgctgactc ttgtttacaa 1800
ggggataagt gtaacatctt cgcaaatttc atcttacacg atgtgaataa cggcttaaca 1860
tgcagcacag atctccagaa ggcaaacaca gagatcgaat taggagtctg cgttaattac 1920
gatctctacg ggatctctgg ccagggcatc ttcgtggagg ttaatgctac ctactacaat 1980
agttggcaaa atctgctcta cgatagcaat ggcaacctct atggattcag agactatatt 2040
actaacagga cgttcatgat tcactcgtgc tattccgggc gggtgtcagc agcttatcac 2100
gcaaattctt cagagccagc tctgctattc cgaaacataa aatgtaatta cgtgttcaat 2160
aattcactga ctcggcagct gcagccgatt aattacagct tcgacagcta ccttggttgc 2220
gttgttaacg cctacaactc cactgccata tcagttcaga cctgcgacct tactgtgggc 2280
tctggctatt gtgtcgatta ttcaaagaac ggggggagcg ggtccgcaat aacaactggc 2340
tataggttca ccaattttga gcctttcacc gtgaatagtg tcaacgatag cctggagcct 2400
gtcggaggtc tttatgagat acaaatcccc tccgagttca caattggcaa catggaagag 2460
ttcatccaga cgagttcccc aaaggtgacg atcgattgcg cggctttcgt ctgcggcgac 2520
tacgccgcat gcaagttaca actcgttgag tatggaagtt tttgcgataa tataaacgca 2580
attctgactg aagtgaacga actgctggac accactcagt tgcaggtggc aaattcgctc 2640
atgaacggcg tgacactgtc aaccaaactg aaggacggtg tcaatttcaa tgtggatgac 2700
attaacttca gccccgtact gggctgtttg ggtagtgagt gttctaaggc tagcagccgc 2760
tccgccattg aggacttgtt gtttgataaa gttaagctga gtgacgttgg atttgttgag 2820
gcgtataata actgtaccgg tggtgcagag ataagggatc tgatctgtgt ccagagttat 2880
aaggggatta aggttctccc cccgctactc tcggagaatc agatatcagg atacaccctg 2940
gccgctacct cagcctcgct gtttccccct tggaccgctg ccgccggtgt cccattttat 3000
ttgaatgtgc agtatcggat caacggtctg ggagtgacaa tggacgtgct gtctcagaac 3060
cagaaactga tcgccaatgc attcaacaat gctctgcacg ccatccagca agggtttgac 3120
gctacaaatt ctgccctcgt aaaaatccag gccgtggtga atgctaacgc cgaagccctt 3180
aataatctgc tccagcagct ttctaaccgc tttggagcta tttctgcctc actgcaggaa 3240
attctatcca gactggatcc ccctgaggca gaagcccaaa tcgaccgtct cataaacggc 3300
agactcactg ctcttaacgc ctacgttagt caacaattga gcgattcgac cttggtgaaa 3360
ttcagcgcag ctcaggctat ggagaaggtg aacgagtgcg tgaagtcaca gagctccaga 3420
atcaatttct gtggcaatgg gaaccatatc atctccttgg ttcagaatgc tccctacggc 3480
ctgtatttca tccacttcaa ctacgtgccc acgaagtacg ttacagccaa agtgtccccc 3540
ggactgtgca tcgctggtaa caggggcatt gcaccaaaat ccggctactt cgtcaatgtc 3600
aacaacacat ggatgtatac tgggagtggt tattattacc ctgaacctat aacagagaac 3660
aatgtagtag tcatgtccac atgcgccgtc aattatacta aggcccccta tgttatgctc 3720
aacacttcaa ttcccaatct cccggatttc aaagaagagc tggatcagtg gtttaagaat 3780
cagacatccg tggcccctga cttaagcttg gattatatca atgtgacttt tttagactta 3840
caggtcgaga tgaaccgact ccaggaagct ataaaagtac tgaaccactc ctatatcaat 3900
ctgaaagata tcggtacata cgaatattac gtaaaatggc cttggtatgt gtggctacta 3960
atttgccttg cgggcgtggc tatgctggtc ctgctgttct tcattagctt ctggatgtgc 4020
tctaatgggt ctctacagtg tagaatatgt atttga 4056
<210> 142
<211> 1370
<212> PRT
<213> artificial sequence
<220>
<223> PDI-OC43-wtTMCT-AA
<400> 142
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Ile Gly Asp Leu Asn Cys Thr
20 25 30
Leu Asp Pro Arg Leu Lys Gly Ser Phe Asn Asn Arg Asp Thr Gly Pro
35 40 45
Pro Ser Ile Ser Ile Asp Thr Val Asp Val Thr Asn Gly Leu Gly Thr
50 55 60
Tyr Tyr Val Leu Asp Arg Val Tyr Leu Asn Thr Thr Leu Phe Leu Asn
65 70 75 80
Gly Tyr Tyr Pro Thr Ser Gly Ser Thr Tyr Arg Asn Met Ala Leu Lys
85 90 95
Gly Thr Asp Leu Leu Ser Thr Leu Trp Phe Lys Pro Pro Phe Leu Ser
100 105 110
Asp Phe Ile Asn Gly Ile Phe Ala Lys Val Lys Asn Thr Lys Val Phe
115 120 125
Lys Asp Gly Val Met Tyr Ser Glu Phe Pro Ala Ile Thr Ile Gly Ser
130 135 140
Thr Phe Val Asn Thr Ser Tyr Ser Val Val Val Gln Pro Arg Thr Ile
145 150 155 160
Asn Ser Thr Gln Asp Gly Val Asn Lys Leu Gln Gly Leu Leu Glu Val
165 170 175
Ser Val Cys Gln Tyr Asn Met Cys Glu Tyr Pro His Thr Ile Cys His
180 185 190
Pro Asn Leu Gly Asn His Phe Lys Glu Leu Trp His Tyr Asp Thr Gly
195 200 205
Val Val Ser Cys Leu Tyr Lys Arg Asn Phe Thr Tyr Asp Val Asn Ala
210 215 220
Thr Tyr Leu Tyr Phe His Phe Tyr Gln Glu Gly Gly Thr Phe Tyr Ala
225 230 235 240
Tyr Phe Thr Asp Thr Gly Phe Val Thr Lys Phe Leu Phe Asn Val Tyr
245 250 255
Leu Gly Met Ala Leu Ser His Tyr Tyr Val Met Pro Leu Thr Cys Ile
260 265 270
Arg Arg Pro Lys Asp Gly Phe Ser Leu Glu Tyr Trp Val Thr Pro Leu
275 280 285
Thr Pro Arg Gln Tyr Leu Leu Ala Phe Asn Gln Asp Gly Ile Ile Phe
290 295 300
Asn Ala Val Asp Cys Met Ser Asp Phe Met Ser Glu Ile Lys Cys Lys
305 310 315 320
Thr Gln Ser Ile Ala Pro Pro Thr Gly Val Tyr Glu Leu Asn Gly Tyr
325 330 335
Thr Val Gln Pro Val Ala Asp Val Tyr Arg Arg Lys Pro Asp Leu Pro
340 345 350
Asn Cys Asn Ile Glu Ala Trp Leu Asn Asp Lys Ser Val Pro Ser Pro
355 360 365
Leu Asn Trp Glu Arg Lys Thr Phe Ser Asn Cys Asn Phe Asn Met Ser
370 375 380
Ser Leu Met Ser Phe Ile Gln Ala Asp Ser Phe Thr Cys Asn Asn Ile
385 390 395 400
Asp Ala Ala Lys Ile Tyr Gly Met Cys Phe Ser Ser Ile Thr Ile Asp
405 410 415
Lys Phe Ala Ile Pro Asn Arg Arg Lys Val Asp Leu Gln Leu Gly Asn
420 425 430
Leu Gly Tyr Leu Gln Ser Ser Asn Tyr Arg Ile Asp Thr Thr Ala Thr
435 440 445
Ser Cys Gln Leu Tyr Tyr Asn Leu Pro Ala Ala Asn Val Ser Val Ser
450 455 460
Arg Phe Asn Pro Ser Thr Trp Asn Lys Arg Phe Gly Phe Ile Glu Asp
465 470 475 480
Ser Val Phe Val Pro Gln Pro Thr Gly Val Phe Thr Asn His Ser Val
485 490 495
Val Tyr Ala Gln His Cys Phe Lys Ala Pro Lys Asn Phe Cys Pro Cys
500 505 510
Ser Ser Cys Ser Cys Pro Gly Lys Asn Asn Gly Ile Gly Thr Cys Pro
515 520 525
Ala Gly Thr Asn Ser Leu Thr Cys Asp Asn Leu Cys Thr Leu Asp Pro
530 535 540
Ile Thr Leu Lys Ala Pro Asp Thr Tyr Lys Cys Pro Gln Ser Lys Ser
545 550 555 560
Leu Val Gly Ile Gly Glu His Cys Ser Gly Leu Ala Val Lys Ser Asp
565 570 575
Tyr Cys Gly Asn Asn Ser Cys Thr Cys Gln Pro Gln Ala Phe Leu Gly
580 585 590
Trp Ser Ala Asp Ser Cys Leu Gln Gly Asp Lys Cys Asn Ile Phe Ala
595 600 605
Asn Phe Ile Leu His Asp Val Asn Asn Gly Leu Thr Cys Ser Thr Asp
610 615 620
Leu Gln Lys Ala Asn Thr Glu Ile Glu Leu Gly Val Cys Val Asn Tyr
625 630 635 640
Asp Leu Tyr Gly Ile Ser Gly Gln Gly Ile Phe Val Glu Val Asn Ala
645 650 655
Thr Tyr Tyr Asn Ser Trp Gln Asn Leu Leu Tyr Asp Ser Asn Gly Asn
660 665 670
Leu Tyr Gly Phe Arg Asp Tyr Ile Thr Asn Arg Thr Phe Met Ile His
675 680 685
Ser Cys Tyr Ser Gly Arg Val Ser Ala Ala Tyr His Ala Asn Ser Ser
690 695 700
Glu Pro Ala Leu Leu Phe Arg Asn Ile Lys Cys Asn Tyr Val Phe Asn
705 710 715 720
Asn Ser Leu Thr Arg Gln Leu Gln Pro Ile Asn Tyr Ser Phe Asp Ser
725 730 735
Tyr Leu Gly Cys Val Val Asn Ala Tyr Asn Ser Thr Ala Ile Ser Val
740 745 750
Gln Thr Cys Asp Leu Thr Val Gly Ser Gly Tyr Cys Val Asp Tyr Ser
755 760 765
Lys Asn Gly Gly Ser Gly Ser Ala Ile Thr Thr Gly Tyr Arg Phe Thr
770 775 780
Asn Phe Glu Pro Phe Thr Val Asn Ser Val Asn Asp Ser Leu Glu Pro
785 790 795 800
Val Gly Gly Leu Tyr Glu Ile Gln Ile Pro Ser Glu Phe Thr Ile Gly
805 810 815
Asn Met Glu Glu Phe Ile Gln Thr Ser Ser Pro Lys Val Thr Ile Asp
820 825 830
Cys Ala Ala Phe Val Cys Gly Asp Tyr Ala Ala Cys Lys Leu Gln Leu
835 840 845
Val Glu Tyr Gly Ser Phe Cys Asp Asn Ile Asn Ala Ile Leu Thr Glu
850 855 860
Val Asn Glu Leu Leu Asp Thr Thr Gln Leu Gln Val Ala Asn Ser Leu
865 870 875 880
Met Asn Gly Val Thr Leu Ser Thr Lys Leu Lys Asp Gly Val Asn Phe
885 890 895
Asn Val Asp Asp Ile Asn Phe Ser Pro Val Leu Gly Cys Leu Gly Ser
900 905 910
Glu Cys Ser Lys Ala Ser Ser Arg Ser Ala Ile Glu Asp Leu Leu Phe
915 920 925
Asp Lys Val Lys Leu Ser Asp Val Gly Phe Val Glu Ala Tyr Asn Asn
930 935 940
Cys Thr Gly Gly Ala Glu Ile Arg Asp Leu Ile Cys Val Gln Ser Tyr
945 950 955 960
Lys Gly Ile Lys Val Leu Pro Pro Leu Leu Ser Glu Asn Gln Ile Ser
965 970 975
Gly Tyr Thr Leu Ala Ala Thr Ser Ala Ser Leu Phe Pro Pro Trp Thr
980 985 990
Ala Ala Ala Gly Val Pro Phe Tyr Leu Asn Val Gln Tyr Arg Ile Asn
995 1000 1005
Gly Leu Gly Val Thr Met Asp Val Leu Ser Gln Asn Gln Lys Leu Ile
1010 1015 1020
Ala Asn Ala Phe Asn Asn Ala Leu His Ala Ile Gln Gln Gly Phe Asp
1025 1030 1035 1040
Ala Thr Asn Ser Ala Leu Val Lys Ile Gln Ala Val Val Asn Ala Asn
1045 1050 1055
Ala Glu Ala Leu Asn Asn Leu Leu Gln Gln Leu Ser Asn Arg Phe Gly
1060 1065 1070
Ala Ile Ser Ala Ser Leu Gln Glu Ile Leu Ser Arg Leu Asp Pro Pro
1075 1080 1085
Glu Ala Glu Ala Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Ala
1090 1095 1100
Leu Asn Ala Tyr Val Ser Gln Gln Leu Ser Asp Ser Thr Leu Val Lys
1105 1110 1115 1120
Phe Ser Ala Ala Gln Ala Met Glu Lys Val Asn Glu Cys Val Lys Ser
1125 1130 1135
Gln Ser Ser Arg Ile Asn Phe Cys Gly Asn Gly Asn His Ile Ile Ser
1140 1145 1150
Leu Val Gln Asn Ala Pro Tyr Gly Leu Tyr Phe Ile His Phe Asn Tyr
1155 1160 1165
Val Pro Thr Lys Tyr Val Thr Ala Lys Val Ser Pro Gly Leu Cys Ile
1170 1175 1180
Ala Gly Asn Arg Gly Ile Ala Pro Lys Ser Gly Tyr Phe Val Asn Val
1185 1190 1195 1200
Asn Asn Thr Trp Met Tyr Thr Gly Ser Gly Tyr Tyr Tyr Pro Glu Pro
1205 1210 1215
Ile Thr Glu Asn Asn Val Val Val Met Ser Thr Cys Ala Val Asn Tyr
1220 1225 1230
Thr Lys Ala Pro Tyr Val Met Leu Asn Thr Ser Ile Pro Asn Leu Pro
1235 1240 1245
Asp Phe Lys Glu Glu Leu Asp Gln Trp Phe Lys Asn Gln Thr Ser Val
1250 1255 1260
Ala Pro Asp Leu Ser Leu Asp Tyr Ile Asn Val Thr Phe Leu Asp Leu
1265 1270 1275 1280
Gln Val Glu Met Asn Arg Leu Gln Glu Ala Ile Lys Val Leu Asn His
1285 1290 1295
Ser Tyr Ile Asn Leu Lys Asp Ile Gly Thr Tyr Glu Tyr Tyr Val Lys
1300 1305 1310
Trp Pro Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly Val Ala Met
1315 1320 1325
Leu Val Leu Leu Phe Phe Ile Cys Cys Cys Thr Gly Cys Gly Thr Ser
1330 1335 1340
Cys Phe Lys Lys Cys Gly Gly Cys Cys Asp Asp Tyr Thr Gly Tyr Gln
1345 1350 1355 1360
Glu Leu Val Ile Lys Thr Ser His Asp Asp
1365 1370
<210> 143
<211> 1354
<212> PRT
<213> artificial sequence
<220>
<223> PDI-OC43-H5iTMCT-AA
<400> 143
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Ile Gly Asp Leu Asn Cys Thr
20 25 30
Leu Asp Pro Arg Leu Lys Gly Ser Phe Asn Asn Arg Asp Thr Gly Pro
35 40 45
Pro Ser Ile Ser Ile Asp Thr Val Asp Val Thr Asn Gly Leu Gly Thr
50 55 60
Tyr Tyr Val Leu Asp Arg Val Tyr Leu Asn Thr Thr Leu Phe Leu Asn
65 70 75 80
Gly Tyr Tyr Pro Thr Ser Gly Ser Thr Tyr Arg Asn Met Ala Leu Lys
85 90 95
Gly Thr Asp Leu Leu Ser Thr Leu Trp Phe Lys Pro Pro Phe Leu Ser
100 105 110
Asp Phe Ile Asn Gly Ile Phe Ala Lys Val Lys Asn Thr Lys Val Phe
115 120 125
Lys Asp Gly Val Met Tyr Ser Glu Phe Pro Ala Ile Thr Ile Gly Ser
130 135 140
Thr Phe Val Asn Thr Ser Tyr Ser Val Val Val Gln Pro Arg Thr Ile
145 150 155 160
Asn Ser Thr Gln Asp Gly Val Asn Lys Leu Gln Gly Leu Leu Glu Val
165 170 175
Ser Val Cys Gln Tyr Asn Met Cys Glu Tyr Pro His Thr Ile Cys His
180 185 190
Pro Asn Leu Gly Asn His Phe Lys Glu Leu Trp His Tyr Asp Thr Gly
195 200 205
Val Val Ser Cys Leu Tyr Lys Arg Asn Phe Thr Tyr Asp Val Asn Ala
210 215 220
Thr Tyr Leu Tyr Phe His Phe Tyr Gln Glu Gly Gly Thr Phe Tyr Ala
225 230 235 240
Tyr Phe Thr Asp Thr Gly Phe Val Thr Lys Phe Leu Phe Asn Val Tyr
245 250 255
Leu Gly Met Ala Leu Ser His Tyr Tyr Val Met Pro Leu Thr Cys Ile
260 265 270
Arg Arg Pro Lys Asp Gly Phe Ser Leu Glu Tyr Trp Val Thr Pro Leu
275 280 285
Thr Pro Arg Gln Tyr Leu Leu Ala Phe Asn Gln Asp Gly Ile Ile Phe
290 295 300
Asn Ala Val Asp Cys Met Ser Asp Phe Met Ser Glu Ile Lys Cys Lys
305 310 315 320
Thr Gln Ser Ile Ala Pro Pro Thr Gly Val Tyr Glu Leu Asn Gly Tyr
325 330 335
Thr Val Gln Pro Val Ala Asp Val Tyr Arg Arg Lys Pro Asp Leu Pro
340 345 350
Asn Cys Asn Ile Glu Ala Trp Leu Asn Asp Lys Ser Val Pro Ser Pro
355 360 365
Leu Asn Trp Glu Arg Lys Thr Phe Ser Asn Cys Asn Phe Asn Met Ser
370 375 380
Ser Leu Met Ser Phe Ile Gln Ala Asp Ser Phe Thr Cys Asn Asn Ile
385 390 395 400
Asp Ala Ala Lys Ile Tyr Gly Met Cys Phe Ser Ser Ile Thr Ile Asp
405 410 415
Lys Phe Ala Ile Pro Asn Arg Arg Lys Val Asp Leu Gln Leu Gly Asn
420 425 430
Leu Gly Tyr Leu Gln Ser Ser Asn Tyr Arg Ile Asp Thr Thr Ala Thr
435 440 445
Ser Cys Gln Leu Tyr Tyr Asn Leu Pro Ala Ala Asn Val Ser Val Ser
450 455 460
Arg Phe Asn Pro Ser Thr Trp Asn Lys Arg Phe Gly Phe Ile Glu Asp
465 470 475 480
Ser Val Phe Val Pro Gln Pro Thr Gly Val Phe Thr Asn His Ser Val
485 490 495
Val Tyr Ala Gln His Cys Phe Lys Ala Pro Lys Asn Phe Cys Pro Cys
500 505 510
Ser Ser Cys Ser Cys Pro Gly Lys Asn Asn Gly Ile Gly Thr Cys Pro
515 520 525
Ala Gly Thr Asn Ser Leu Thr Cys Asp Asn Leu Cys Thr Leu Asp Pro
530 535 540
Ile Thr Leu Lys Ala Pro Asp Thr Tyr Lys Cys Pro Gln Ser Lys Ser
545 550 555 560
Leu Val Gly Ile Gly Glu His Cys Ser Gly Leu Ala Val Lys Ser Asp
565 570 575
Tyr Cys Gly Asn Asn Ser Cys Thr Cys Gln Pro Gln Ala Phe Leu Gly
580 585 590
Trp Ser Ala Asp Ser Cys Leu Gln Gly Asp Lys Cys Asn Ile Phe Ala
595 600 605
Asn Phe Ile Leu His Asp Val Asn Asn Gly Leu Thr Cys Ser Thr Asp
610 615 620
Leu Gln Lys Ala Asn Thr Glu Ile Glu Leu Gly Val Cys Val Asn Tyr
625 630 635 640
Asp Leu Tyr Gly Ile Ser Gly Gln Gly Ile Phe Val Glu Val Asn Ala
645 650 655
Thr Tyr Tyr Asn Ser Trp Gln Asn Leu Leu Tyr Asp Ser Asn Gly Asn
660 665 670
Leu Tyr Gly Phe Arg Asp Tyr Ile Thr Asn Arg Thr Phe Met Ile His
675 680 685
Ser Cys Tyr Ser Gly Arg Val Ser Ala Ala Tyr His Ala Asn Ser Ser
690 695 700
Glu Pro Ala Leu Leu Phe Arg Asn Ile Lys Cys Asn Tyr Val Phe Asn
705 710 715 720
Asn Ser Leu Thr Arg Gln Leu Gln Pro Ile Asn Tyr Ser Phe Asp Ser
725 730 735
Tyr Leu Gly Cys Val Val Asn Ala Tyr Asn Ser Thr Ala Ile Ser Val
740 745 750
Gln Thr Cys Asp Leu Thr Val Gly Ser Gly Tyr Cys Val Asp Tyr Ser
755 760 765
Lys Asn Gly Gly Ser Gly Ser Ala Ile Thr Thr Gly Tyr Arg Phe Thr
770 775 780
Asn Phe Glu Pro Phe Thr Val Asn Ser Val Asn Asp Ser Leu Glu Pro
785 790 795 800
Val Gly Gly Leu Tyr Glu Ile Gln Ile Pro Ser Glu Phe Thr Ile Gly
805 810 815
Asn Met Glu Glu Phe Ile Gln Thr Ser Ser Pro Lys Val Thr Ile Asp
820 825 830
Cys Ala Ala Phe Val Cys Gly Asp Tyr Ala Ala Cys Lys Leu Gln Leu
835 840 845
Val Glu Tyr Gly Ser Phe Cys Asp Asn Ile Asn Ala Ile Leu Thr Glu
850 855 860
Val Asn Glu Leu Leu Asp Thr Thr Gln Leu Gln Val Ala Asn Ser Leu
865 870 875 880
Met Asn Gly Val Thr Leu Ser Thr Lys Leu Lys Asp Gly Val Asn Phe
885 890 895
Asn Val Asp Asp Ile Asn Phe Ser Pro Val Leu Gly Cys Leu Gly Ser
900 905 910
Glu Cys Ser Lys Ala Ser Ser Arg Ser Ala Ile Glu Asp Leu Leu Phe
915 920 925
Asp Lys Val Lys Leu Ser Asp Val Gly Phe Val Glu Ala Tyr Asn Asn
930 935 940
Cys Thr Gly Gly Ala Glu Ile Arg Asp Leu Ile Cys Val Gln Ser Tyr
945 950 955 960
Lys Gly Ile Lys Val Leu Pro Pro Leu Leu Ser Glu Asn Gln Ile Ser
965 970 975
Gly Tyr Thr Leu Ala Ala Thr Ser Ala Ser Leu Phe Pro Pro Trp Thr
980 985 990
Ala Ala Ala Gly Val Pro Phe Tyr Leu Asn Val Gln Tyr Arg Ile Asn
995 1000 1005
Gly Leu Gly Val Thr Met Asp Val Leu Ser Gln Asn Gln Lys Leu Ile
1010 1015 1020
Ala Asn Ala Phe Asn Asn Ala Leu His Ala Ile Gln Gln Gly Phe Asp
1025 1030 1035 1040
Ala Thr Asn Ser Ala Leu Val Lys Ile Gln Ala Val Val Asn Ala Asn
1045 1050 1055
Ala Glu Ala Leu Asn Asn Leu Leu Gln Gln Leu Ser Asn Arg Phe Gly
1060 1065 1070
Ala Ile Ser Ala Ser Leu Gln Glu Ile Leu Ser Arg Leu Asp Pro Pro
1075 1080 1085
Glu Ala Glu Ala Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Ala
1090 1095 1100
Leu Asn Ala Tyr Val Ser Gln Gln Leu Ser Asp Ser Thr Leu Val Lys
1105 1110 1115 1120
Phe Ser Ala Ala Gln Ala Met Glu Lys Val Asn Glu Cys Val Lys Ser
1125 1130 1135
Gln Ser Ser Arg Ile Asn Phe Cys Gly Asn Gly Asn His Ile Ile Ser
1140 1145 1150
Leu Val Gln Asn Ala Pro Tyr Gly Leu Tyr Phe Ile His Phe Asn Tyr
1155 1160 1165
Val Pro Thr Lys Tyr Val Thr Ala Lys Val Ser Pro Gly Leu Cys Ile
1170 1175 1180
Ala Gly Asn Arg Gly Ile Ala Pro Lys Ser Gly Tyr Phe Val Asn Val
1185 1190 1195 1200
Asn Asn Thr Trp Met Tyr Thr Gly Ser Gly Tyr Tyr Tyr Pro Glu Pro
1205 1210 1215
Ile Thr Glu Asn Asn Val Val Val Met Ser Thr Cys Ala Val Asn Tyr
1220 1225 1230
Thr Lys Ala Pro Tyr Val Met Leu Asn Thr Ser Ile Pro Asn Leu Pro
1235 1240 1245
Asp Phe Lys Glu Glu Leu Asp Gln Trp Phe Lys Asn Gln Thr Ser Val
1250 1255 1260
Ala Pro Asp Leu Ser Leu Asp Tyr Ile Asn Val Thr Phe Leu Asp Leu
1265 1270 1275 1280
Gln Val Glu Met Asn Arg Leu Gln Glu Ala Ile Lys Val Leu Asn His
1285 1290 1295
Ser Tyr Ile Asn Leu Lys Asp Ile Gly Thr Tyr Glu Tyr Tyr Val Lys
1300 1305 1310
Trp Pro Trp Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser
1315 1320 1325
Leu Ala Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser
1330 1335 1340
Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1345 1350
<210> 144
<211> 1351
<212> PRT
<213> artificial sequence
<220>
<223> PDI-OC43-H5iCT-AA
<400> 144
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Ile Gly Asp Leu Asn Cys Thr
20 25 30
Leu Asp Pro Arg Leu Lys Gly Ser Phe Asn Asn Arg Asp Thr Gly Pro
35 40 45
Pro Ser Ile Ser Ile Asp Thr Val Asp Val Thr Asn Gly Leu Gly Thr
50 55 60
Tyr Tyr Val Leu Asp Arg Val Tyr Leu Asn Thr Thr Leu Phe Leu Asn
65 70 75 80
Gly Tyr Tyr Pro Thr Ser Gly Ser Thr Tyr Arg Asn Met Ala Leu Lys
85 90 95
Gly Thr Asp Leu Leu Ser Thr Leu Trp Phe Lys Pro Pro Phe Leu Ser
100 105 110
Asp Phe Ile Asn Gly Ile Phe Ala Lys Val Lys Asn Thr Lys Val Phe
115 120 125
Lys Asp Gly Val Met Tyr Ser Glu Phe Pro Ala Ile Thr Ile Gly Ser
130 135 140
Thr Phe Val Asn Thr Ser Tyr Ser Val Val Val Gln Pro Arg Thr Ile
145 150 155 160
Asn Ser Thr Gln Asp Gly Val Asn Lys Leu Gln Gly Leu Leu Glu Val
165 170 175
Ser Val Cys Gln Tyr Asn Met Cys Glu Tyr Pro His Thr Ile Cys His
180 185 190
Pro Asn Leu Gly Asn His Phe Lys Glu Leu Trp His Tyr Asp Thr Gly
195 200 205
Val Val Ser Cys Leu Tyr Lys Arg Asn Phe Thr Tyr Asp Val Asn Ala
210 215 220
Thr Tyr Leu Tyr Phe His Phe Tyr Gln Glu Gly Gly Thr Phe Tyr Ala
225 230 235 240
Tyr Phe Thr Asp Thr Gly Phe Val Thr Lys Phe Leu Phe Asn Val Tyr
245 250 255
Leu Gly Met Ala Leu Ser His Tyr Tyr Val Met Pro Leu Thr Cys Ile
260 265 270
Arg Arg Pro Lys Asp Gly Phe Ser Leu Glu Tyr Trp Val Thr Pro Leu
275 280 285
Thr Pro Arg Gln Tyr Leu Leu Ala Phe Asn Gln Asp Gly Ile Ile Phe
290 295 300
Asn Ala Val Asp Cys Met Ser Asp Phe Met Ser Glu Ile Lys Cys Lys
305 310 315 320
Thr Gln Ser Ile Ala Pro Pro Thr Gly Val Tyr Glu Leu Asn Gly Tyr
325 330 335
Thr Val Gln Pro Val Ala Asp Val Tyr Arg Arg Lys Pro Asp Leu Pro
340 345 350
Asn Cys Asn Ile Glu Ala Trp Leu Asn Asp Lys Ser Val Pro Ser Pro
355 360 365
Leu Asn Trp Glu Arg Lys Thr Phe Ser Asn Cys Asn Phe Asn Met Ser
370 375 380
Ser Leu Met Ser Phe Ile Gln Ala Asp Ser Phe Thr Cys Asn Asn Ile
385 390 395 400
Asp Ala Ala Lys Ile Tyr Gly Met Cys Phe Ser Ser Ile Thr Ile Asp
405 410 415
Lys Phe Ala Ile Pro Asn Arg Arg Lys Val Asp Leu Gln Leu Gly Asn
420 425 430
Leu Gly Tyr Leu Gln Ser Ser Asn Tyr Arg Ile Asp Thr Thr Ala Thr
435 440 445
Ser Cys Gln Leu Tyr Tyr Asn Leu Pro Ala Ala Asn Val Ser Val Ser
450 455 460
Arg Phe Asn Pro Ser Thr Trp Asn Lys Arg Phe Gly Phe Ile Glu Asp
465 470 475 480
Ser Val Phe Val Pro Gln Pro Thr Gly Val Phe Thr Asn His Ser Val
485 490 495
Val Tyr Ala Gln His Cys Phe Lys Ala Pro Lys Asn Phe Cys Pro Cys
500 505 510
Ser Ser Cys Ser Cys Pro Gly Lys Asn Asn Gly Ile Gly Thr Cys Pro
515 520 525
Ala Gly Thr Asn Ser Leu Thr Cys Asp Asn Leu Cys Thr Leu Asp Pro
530 535 540
Ile Thr Leu Lys Ala Pro Asp Thr Tyr Lys Cys Pro Gln Ser Lys Ser
545 550 555 560
Leu Val Gly Ile Gly Glu His Cys Ser Gly Leu Ala Val Lys Ser Asp
565 570 575
Tyr Cys Gly Asn Asn Ser Cys Thr Cys Gln Pro Gln Ala Phe Leu Gly
580 585 590
Trp Ser Ala Asp Ser Cys Leu Gln Gly Asp Lys Cys Asn Ile Phe Ala
595 600 605
Asn Phe Ile Leu His Asp Val Asn Asn Gly Leu Thr Cys Ser Thr Asp
610 615 620
Leu Gln Lys Ala Asn Thr Glu Ile Glu Leu Gly Val Cys Val Asn Tyr
625 630 635 640
Asp Leu Tyr Gly Ile Ser Gly Gln Gly Ile Phe Val Glu Val Asn Ala
645 650 655
Thr Tyr Tyr Asn Ser Trp Gln Asn Leu Leu Tyr Asp Ser Asn Gly Asn
660 665 670
Leu Tyr Gly Phe Arg Asp Tyr Ile Thr Asn Arg Thr Phe Met Ile His
675 680 685
Ser Cys Tyr Ser Gly Arg Val Ser Ala Ala Tyr His Ala Asn Ser Ser
690 695 700
Glu Pro Ala Leu Leu Phe Arg Asn Ile Lys Cys Asn Tyr Val Phe Asn
705 710 715 720
Asn Ser Leu Thr Arg Gln Leu Gln Pro Ile Asn Tyr Ser Phe Asp Ser
725 730 735
Tyr Leu Gly Cys Val Val Asn Ala Tyr Asn Ser Thr Ala Ile Ser Val
740 745 750
Gln Thr Cys Asp Leu Thr Val Gly Ser Gly Tyr Cys Val Asp Tyr Ser
755 760 765
Lys Asn Gly Gly Ser Gly Ser Ala Ile Thr Thr Gly Tyr Arg Phe Thr
770 775 780
Asn Phe Glu Pro Phe Thr Val Asn Ser Val Asn Asp Ser Leu Glu Pro
785 790 795 800
Val Gly Gly Leu Tyr Glu Ile Gln Ile Pro Ser Glu Phe Thr Ile Gly
805 810 815
Asn Met Glu Glu Phe Ile Gln Thr Ser Ser Pro Lys Val Thr Ile Asp
820 825 830
Cys Ala Ala Phe Val Cys Gly Asp Tyr Ala Ala Cys Lys Leu Gln Leu
835 840 845
Val Glu Tyr Gly Ser Phe Cys Asp Asn Ile Asn Ala Ile Leu Thr Glu
850 855 860
Val Asn Glu Leu Leu Asp Thr Thr Gln Leu Gln Val Ala Asn Ser Leu
865 870 875 880
Met Asn Gly Val Thr Leu Ser Thr Lys Leu Lys Asp Gly Val Asn Phe
885 890 895
Asn Val Asp Asp Ile Asn Phe Ser Pro Val Leu Gly Cys Leu Gly Ser
900 905 910
Glu Cys Ser Lys Ala Ser Ser Arg Ser Ala Ile Glu Asp Leu Leu Phe
915 920 925
Asp Lys Val Lys Leu Ser Asp Val Gly Phe Val Glu Ala Tyr Asn Asn
930 935 940
Cys Thr Gly Gly Ala Glu Ile Arg Asp Leu Ile Cys Val Gln Ser Tyr
945 950 955 960
Lys Gly Ile Lys Val Leu Pro Pro Leu Leu Ser Glu Asn Gln Ile Ser
965 970 975
Gly Tyr Thr Leu Ala Ala Thr Ser Ala Ser Leu Phe Pro Pro Trp Thr
980 985 990
Ala Ala Ala Gly Val Pro Phe Tyr Leu Asn Val Gln Tyr Arg Ile Asn
995 1000 1005
Gly Leu Gly Val Thr Met Asp Val Leu Ser Gln Asn Gln Lys Leu Ile
1010 1015 1020
Ala Asn Ala Phe Asn Asn Ala Leu His Ala Ile Gln Gln Gly Phe Asp
1025 1030 1035 1040
Ala Thr Asn Ser Ala Leu Val Lys Ile Gln Ala Val Val Asn Ala Asn
1045 1050 1055
Ala Glu Ala Leu Asn Asn Leu Leu Gln Gln Leu Ser Asn Arg Phe Gly
1060 1065 1070
Ala Ile Ser Ala Ser Leu Gln Glu Ile Leu Ser Arg Leu Asp Pro Pro
1075 1080 1085
Glu Ala Glu Ala Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Ala
1090 1095 1100
Leu Asn Ala Tyr Val Ser Gln Gln Leu Ser Asp Ser Thr Leu Val Lys
1105 1110 1115 1120
Phe Ser Ala Ala Gln Ala Met Glu Lys Val Asn Glu Cys Val Lys Ser
1125 1130 1135
Gln Ser Ser Arg Ile Asn Phe Cys Gly Asn Gly Asn His Ile Ile Ser
1140 1145 1150
Leu Val Gln Asn Ala Pro Tyr Gly Leu Tyr Phe Ile His Phe Asn Tyr
1155 1160 1165
Val Pro Thr Lys Tyr Val Thr Ala Lys Val Ser Pro Gly Leu Cys Ile
1170 1175 1180
Ala Gly Asn Arg Gly Ile Ala Pro Lys Ser Gly Tyr Phe Val Asn Val
1185 1190 1195 1200
Asn Asn Thr Trp Met Tyr Thr Gly Ser Gly Tyr Tyr Tyr Pro Glu Pro
1205 1210 1215
Ile Thr Glu Asn Asn Val Val Val Met Ser Thr Cys Ala Val Asn Tyr
1220 1225 1230
Thr Lys Ala Pro Tyr Val Met Leu Asn Thr Ser Ile Pro Asn Leu Pro
1235 1240 1245
Asp Phe Lys Glu Glu Leu Asp Gln Trp Phe Lys Asn Gln Thr Ser Val
1250 1255 1260
Ala Pro Asp Leu Ser Leu Asp Tyr Ile Asn Val Thr Phe Leu Asp Leu
1265 1270 1275 1280
Gln Val Glu Met Asn Arg Leu Gln Glu Ala Ile Lys Val Leu Asn His
1285 1290 1295
Ser Tyr Ile Asn Leu Lys Asp Ile Gly Thr Tyr Glu Tyr Tyr Val Lys
1300 1305 1310
Trp Pro Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly Val Ala Met
1315 1320 1325
Leu Val Leu Leu Phe Phe Ile Ser Leu Trp Met Cys Ser Asn Gly Ser
1330 1335 1340
Leu Gln Cys Arg Ile Cys Ile
1345 1350
<210> 145
<211> 1348
<212> PRT
<213> artificial sequence
<220>
<223> PDI-OC43-H5iCT(V4)-AA
<400> 145
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Ile Gly Asp Leu Asn Cys Thr
20 25 30
Leu Asp Pro Arg Leu Lys Gly Ser Phe Asn Asn Arg Asp Thr Gly Pro
35 40 45
Pro Ser Ile Ser Ile Asp Thr Val Asp Val Thr Asn Gly Leu Gly Thr
50 55 60
Tyr Tyr Val Leu Asp Arg Val Tyr Leu Asn Thr Thr Leu Phe Leu Asn
65 70 75 80
Gly Tyr Tyr Pro Thr Ser Gly Ser Thr Tyr Arg Asn Met Ala Leu Lys
85 90 95
Gly Thr Asp Leu Leu Ser Thr Leu Trp Phe Lys Pro Pro Phe Leu Ser
100 105 110
Asp Phe Ile Asn Gly Ile Phe Ala Lys Val Lys Asn Thr Lys Val Phe
115 120 125
Lys Asp Gly Val Met Tyr Ser Glu Phe Pro Ala Ile Thr Ile Gly Ser
130 135 140
Thr Phe Val Asn Thr Ser Tyr Ser Val Val Val Gln Pro Arg Thr Ile
145 150 155 160
Asn Ser Thr Gln Asp Gly Val Asn Lys Leu Gln Gly Leu Leu Glu Val
165 170 175
Ser Val Cys Gln Tyr Asn Met Cys Glu Tyr Pro His Thr Ile Cys His
180 185 190
Pro Asn Leu Gly Asn His Phe Lys Glu Leu Trp His Tyr Asp Thr Gly
195 200 205
Val Val Ser Cys Leu Tyr Lys Arg Asn Phe Thr Tyr Asp Val Asn Ala
210 215 220
Thr Tyr Leu Tyr Phe His Phe Tyr Gln Glu Gly Gly Thr Phe Tyr Ala
225 230 235 240
Tyr Phe Thr Asp Thr Gly Phe Val Thr Lys Phe Leu Phe Asn Val Tyr
245 250 255
Leu Gly Met Ala Leu Ser His Tyr Tyr Val Met Pro Leu Thr Cys Ile
260 265 270
Arg Arg Pro Lys Asp Gly Phe Ser Leu Glu Tyr Trp Val Thr Pro Leu
275 280 285
Thr Pro Arg Gln Tyr Leu Leu Ala Phe Asn Gln Asp Gly Ile Ile Phe
290 295 300
Asn Ala Val Asp Cys Met Ser Asp Phe Met Ser Glu Ile Lys Cys Lys
305 310 315 320
Thr Gln Ser Ile Ala Pro Pro Thr Gly Val Tyr Glu Leu Asn Gly Tyr
325 330 335
Thr Val Gln Pro Val Ala Asp Val Tyr Arg Arg Lys Pro Asp Leu Pro
340 345 350
Asn Cys Asn Ile Glu Ala Trp Leu Asn Asp Lys Ser Val Pro Ser Pro
355 360 365
Leu Asn Trp Glu Arg Lys Thr Phe Ser Asn Cys Asn Phe Asn Met Ser
370 375 380
Ser Leu Met Ser Phe Ile Gln Ala Asp Ser Phe Thr Cys Asn Asn Ile
385 390 395 400
Asp Ala Ala Lys Ile Tyr Gly Met Cys Phe Ser Ser Ile Thr Ile Asp
405 410 415
Lys Phe Ala Ile Pro Asn Arg Arg Lys Val Asp Leu Gln Leu Gly Asn
420 425 430
Leu Gly Tyr Leu Gln Ser Ser Asn Tyr Arg Ile Asp Thr Thr Ala Thr
435 440 445
Ser Cys Gln Leu Tyr Tyr Asn Leu Pro Ala Ala Asn Val Ser Val Ser
450 455 460
Arg Phe Asn Pro Ser Thr Trp Asn Lys Arg Phe Gly Phe Ile Glu Asp
465 470 475 480
Ser Val Phe Val Pro Gln Pro Thr Gly Val Phe Thr Asn His Ser Val
485 490 495
Val Tyr Ala Gln His Cys Phe Lys Ala Pro Lys Asn Phe Cys Pro Cys
500 505 510
Ser Ser Cys Ser Cys Pro Gly Lys Asn Asn Gly Ile Gly Thr Cys Pro
515 520 525
Ala Gly Thr Asn Ser Leu Thr Cys Asp Asn Leu Cys Thr Leu Asp Pro
530 535 540
Ile Thr Leu Lys Ala Pro Asp Thr Tyr Lys Cys Pro Gln Ser Lys Ser
545 550 555 560
Leu Val Gly Ile Gly Glu His Cys Ser Gly Leu Ala Val Lys Ser Asp
565 570 575
Tyr Cys Gly Asn Asn Ser Cys Thr Cys Gln Pro Gln Ala Phe Leu Gly
580 585 590
Trp Ser Ala Asp Ser Cys Leu Gln Gly Asp Lys Cys Asn Ile Phe Ala
595 600 605
Asn Phe Ile Leu His Asp Val Asn Asn Gly Leu Thr Cys Ser Thr Asp
610 615 620
Leu Gln Lys Ala Asn Thr Glu Ile Glu Leu Gly Val Cys Val Asn Tyr
625 630 635 640
Asp Leu Tyr Gly Ile Ser Gly Gln Gly Ile Phe Val Glu Val Asn Ala
645 650 655
Thr Tyr Tyr Asn Ser Trp Gln Asn Leu Leu Tyr Asp Ser Asn Gly Asn
660 665 670
Leu Tyr Gly Phe Arg Asp Tyr Ile Thr Asn Arg Thr Phe Met Ile His
675 680 685
Ser Cys Tyr Ser Gly Arg Val Ser Ala Ala Tyr His Ala Asn Ser Ser
690 695 700
Glu Pro Ala Leu Leu Phe Arg Asn Ile Lys Cys Asn Tyr Val Phe Asn
705 710 715 720
Asn Ser Leu Thr Arg Gln Leu Gln Pro Ile Asn Tyr Ser Phe Asp Ser
725 730 735
Tyr Leu Gly Cys Val Val Asn Ala Tyr Asn Ser Thr Ala Ile Ser Val
740 745 750
Gln Thr Cys Asp Leu Thr Val Gly Ser Gly Tyr Cys Val Asp Tyr Ser
755 760 765
Lys Asn Gly Gly Ser Gly Ser Ala Ile Thr Thr Gly Tyr Arg Phe Thr
770 775 780
Asn Phe Glu Pro Phe Thr Val Asn Ser Val Asn Asp Ser Leu Glu Pro
785 790 795 800
Val Gly Gly Leu Tyr Glu Ile Gln Ile Pro Ser Glu Phe Thr Ile Gly
805 810 815
Asn Met Glu Glu Phe Ile Gln Thr Ser Ser Pro Lys Val Thr Ile Asp
820 825 830
Cys Ala Ala Phe Val Cys Gly Asp Tyr Ala Ala Cys Lys Leu Gln Leu
835 840 845
Val Glu Tyr Gly Ser Phe Cys Asp Asn Ile Asn Ala Ile Leu Thr Glu
850 855 860
Val Asn Glu Leu Leu Asp Thr Thr Gln Leu Gln Val Ala Asn Ser Leu
865 870 875 880
Met Asn Gly Val Thr Leu Ser Thr Lys Leu Lys Asp Gly Val Asn Phe
885 890 895
Asn Val Asp Asp Ile Asn Phe Ser Pro Val Leu Gly Cys Leu Gly Ser
900 905 910
Glu Cys Ser Lys Ala Ser Ser Arg Ser Ala Ile Glu Asp Leu Leu Phe
915 920 925
Asp Lys Val Lys Leu Ser Asp Val Gly Phe Val Glu Ala Tyr Asn Asn
930 935 940
Cys Thr Gly Gly Ala Glu Ile Arg Asp Leu Ile Cys Val Gln Ser Tyr
945 950 955 960
Lys Gly Ile Lys Val Leu Pro Pro Leu Leu Ser Glu Asn Gln Ile Ser
965 970 975
Gly Tyr Thr Leu Ala Ala Thr Ser Ala Ser Leu Phe Pro Pro Trp Thr
980 985 990
Ala Ala Ala Gly Val Pro Phe Tyr Leu Asn Val Gln Tyr Arg Ile Asn
995 1000 1005
Gly Leu Gly Val Thr Met Asp Val Leu Ser Gln Asn Gln Lys Leu Ile
1010 1015 1020
Ala Asn Ala Phe Asn Asn Ala Leu His Ala Ile Gln Gln Gly Phe Asp
1025 1030 1035 1040
Ala Thr Asn Ser Ala Leu Val Lys Ile Gln Ala Val Val Asn Ala Asn
1045 1050 1055
Ala Glu Ala Leu Asn Asn Leu Leu Gln Gln Leu Ser Asn Arg Phe Gly
1060 1065 1070
Ala Ile Ser Ala Ser Leu Gln Glu Ile Leu Ser Arg Leu Asp Pro Pro
1075 1080 1085
Glu Ala Glu Ala Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Ala
1090 1095 1100
Leu Asn Ala Tyr Val Ser Gln Gln Leu Ser Asp Ser Thr Leu Val Lys
1105 1110 1115 1120
Phe Ser Ala Ala Gln Ala Met Glu Lys Val Asn Glu Cys Val Lys Ser
1125 1130 1135
Gln Ser Ser Arg Ile Asn Phe Cys Gly Asn Gly Asn His Ile Ile Ser
1140 1145 1150
Leu Val Gln Asn Ala Pro Tyr Gly Leu Tyr Phe Ile His Phe Asn Tyr
1155 1160 1165
Val Pro Thr Lys Tyr Val Thr Ala Lys Val Ser Pro Gly Leu Cys Ile
1170 1175 1180
Ala Gly Asn Arg Gly Ile Ala Pro Lys Ser Gly Tyr Phe Val Asn Val
1185 1190 1195 1200
Asn Asn Thr Trp Met Tyr Thr Gly Ser Gly Tyr Tyr Tyr Pro Glu Pro
1205 1210 1215
Ile Thr Glu Asn Asn Val Val Val Met Ser Thr Cys Ala Val Asn Tyr
1220 1225 1230
Thr Lys Ala Pro Tyr Val Met Leu Asn Thr Ser Ile Pro Asn Leu Pro
1235 1240 1245
Asp Phe Lys Glu Glu Leu Asp Gln Trp Phe Lys Asn Gln Thr Ser Val
1250 1255 1260
Ala Pro Asp Leu Ser Leu Asp Tyr Ile Asn Val Thr Phe Leu Asp Leu
1265 1270 1275 1280
Gln Val Glu Met Asn Arg Leu Gln Glu Ala Ile Lys Val Leu Asn His
1285 1290 1295
Ser Tyr Ile Asn Leu Lys Asp Ile Gly Thr Tyr Glu Tyr Tyr Val Lys
1300 1305 1310
Trp Pro Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly Val Ala Met
1315 1320 1325
Leu Val Leu Leu Phe Phe Ile Cys Cys Ser Asn Gly Ser Leu Gln Cys
1330 1335 1340
Arg Ile Cys Ile
1345
<210> 146
<211> 1351
<212> PRT
<213> artificial sequence
<220>
<223> PDI-OC43-H1cCT-AA
<400> 146
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Val Ile Gly Asp Leu Asn Cys Thr
20 25 30
Leu Asp Pro Arg Leu Lys Gly Ser Phe Asn Asn Arg Asp Thr Gly Pro
35 40 45
Pro Ser Ile Ser Ile Asp Thr Val Asp Val Thr Asn Gly Leu Gly Thr
50 55 60
Tyr Tyr Val Leu Asp Arg Val Tyr Leu Asn Thr Thr Leu Phe Leu Asn
65 70 75 80
Gly Tyr Tyr Pro Thr Ser Gly Ser Thr Tyr Arg Asn Met Ala Leu Lys
85 90 95
Gly Thr Asp Leu Leu Ser Thr Leu Trp Phe Lys Pro Pro Phe Leu Ser
100 105 110
Asp Phe Ile Asn Gly Ile Phe Ala Lys Val Lys Asn Thr Lys Val Phe
115 120 125
Lys Asp Gly Val Met Tyr Ser Glu Phe Pro Ala Ile Thr Ile Gly Ser
130 135 140
Thr Phe Val Asn Thr Ser Tyr Ser Val Val Val Gln Pro Arg Thr Ile
145 150 155 160
Asn Ser Thr Gln Asp Gly Val Asn Lys Leu Gln Gly Leu Leu Glu Val
165 170 175
Ser Val Cys Gln Tyr Asn Met Cys Glu Tyr Pro His Thr Ile Cys His
180 185 190
Pro Asn Leu Gly Asn His Phe Lys Glu Leu Trp His Tyr Asp Thr Gly
195 200 205
Val Val Ser Cys Leu Tyr Lys Arg Asn Phe Thr Tyr Asp Val Asn Ala
210 215 220
Thr Tyr Leu Tyr Phe His Phe Tyr Gln Glu Gly Gly Thr Phe Tyr Ala
225 230 235 240
Tyr Phe Thr Asp Thr Gly Phe Val Thr Lys Phe Leu Phe Asn Val Tyr
245 250 255
Leu Gly Met Ala Leu Ser His Tyr Tyr Val Met Pro Leu Thr Cys Ile
260 265 270
Arg Arg Pro Lys Asp Gly Phe Ser Leu Glu Tyr Trp Val Thr Pro Leu
275 280 285
Thr Pro Arg Gln Tyr Leu Leu Ala Phe Asn Gln Asp Gly Ile Ile Phe
290 295 300
Asn Ala Val Asp Cys Met Ser Asp Phe Met Ser Glu Ile Lys Cys Lys
305 310 315 320
Thr Gln Ser Ile Ala Pro Pro Thr Gly Val Tyr Glu Leu Asn Gly Tyr
325 330 335
Thr Val Gln Pro Val Ala Asp Val Tyr Arg Arg Lys Pro Asp Leu Pro
340 345 350
Asn Cys Asn Ile Glu Ala Trp Leu Asn Asp Lys Ser Val Pro Ser Pro
355 360 365
Leu Asn Trp Glu Arg Lys Thr Phe Ser Asn Cys Asn Phe Asn Met Ser
370 375 380
Ser Leu Met Ser Phe Ile Gln Ala Asp Ser Phe Thr Cys Asn Asn Ile
385 390 395 400
Asp Ala Ala Lys Ile Tyr Gly Met Cys Phe Ser Ser Ile Thr Ile Asp
405 410 415
Lys Phe Ala Ile Pro Asn Arg Arg Lys Val Asp Leu Gln Leu Gly Asn
420 425 430
Leu Gly Tyr Leu Gln Ser Ser Asn Tyr Arg Ile Asp Thr Thr Ala Thr
435 440 445
Ser Cys Gln Leu Tyr Tyr Asn Leu Pro Ala Ala Asn Val Ser Val Ser
450 455 460
Arg Phe Asn Pro Ser Thr Trp Asn Lys Arg Phe Gly Phe Ile Glu Asp
465 470 475 480
Ser Val Phe Val Pro Gln Pro Thr Gly Val Phe Thr Asn His Ser Val
485 490 495
Val Tyr Ala Gln His Cys Phe Lys Ala Pro Lys Asn Phe Cys Pro Cys
500 505 510
Ser Ser Cys Ser Cys Pro Gly Lys Asn Asn Gly Ile Gly Thr Cys Pro
515 520 525
Ala Gly Thr Asn Ser Leu Thr Cys Asp Asn Leu Cys Thr Leu Asp Pro
530 535 540
Ile Thr Leu Lys Ala Pro Asp Thr Tyr Lys Cys Pro Gln Ser Lys Ser
545 550 555 560
Leu Val Gly Ile Gly Glu His Cys Ser Gly Leu Ala Val Lys Ser Asp
565 570 575
Tyr Cys Gly Asn Asn Ser Cys Thr Cys Gln Pro Gln Ala Phe Leu Gly
580 585 590
Trp Ser Ala Asp Ser Cys Leu Gln Gly Asp Lys Cys Asn Ile Phe Ala
595 600 605
Asn Phe Ile Leu His Asp Val Asn Asn Gly Leu Thr Cys Ser Thr Asp
610 615 620
Leu Gln Lys Ala Asn Thr Glu Ile Glu Leu Gly Val Cys Val Asn Tyr
625 630 635 640
Asp Leu Tyr Gly Ile Ser Gly Gln Gly Ile Phe Val Glu Val Asn Ala
645 650 655
Thr Tyr Tyr Asn Ser Trp Gln Asn Leu Leu Tyr Asp Ser Asn Gly Asn
660 665 670
Leu Tyr Gly Phe Arg Asp Tyr Ile Thr Asn Arg Thr Phe Met Ile His
675 680 685
Ser Cys Tyr Ser Gly Arg Val Ser Ala Ala Tyr His Ala Asn Ser Ser
690 695 700
Glu Pro Ala Leu Leu Phe Arg Asn Ile Lys Cys Asn Tyr Val Phe Asn
705 710 715 720
Asn Ser Leu Thr Arg Gln Leu Gln Pro Ile Asn Tyr Ser Phe Asp Ser
725 730 735
Tyr Leu Gly Cys Val Val Asn Ala Tyr Asn Ser Thr Ala Ile Ser Val
740 745 750
Gln Thr Cys Asp Leu Thr Val Gly Ser Gly Tyr Cys Val Asp Tyr Ser
755 760 765
Lys Asn Gly Gly Ser Gly Ser Ala Ile Thr Thr Gly Tyr Arg Phe Thr
770 775 780
Asn Phe Glu Pro Phe Thr Val Asn Ser Val Asn Asp Ser Leu Glu Pro
785 790 795 800
Val Gly Gly Leu Tyr Glu Ile Gln Ile Pro Ser Glu Phe Thr Ile Gly
805 810 815
Asn Met Glu Glu Phe Ile Gln Thr Ser Ser Pro Lys Val Thr Ile Asp
820 825 830
Cys Ala Ala Phe Val Cys Gly Asp Tyr Ala Ala Cys Lys Leu Gln Leu
835 840 845
Val Glu Tyr Gly Ser Phe Cys Asp Asn Ile Asn Ala Ile Leu Thr Glu
850 855 860
Val Asn Glu Leu Leu Asp Thr Thr Gln Leu Gln Val Ala Asn Ser Leu
865 870 875 880
Met Asn Gly Val Thr Leu Ser Thr Lys Leu Lys Asp Gly Val Asn Phe
885 890 895
Asn Val Asp Asp Ile Asn Phe Ser Pro Val Leu Gly Cys Leu Gly Ser
900 905 910
Glu Cys Ser Lys Ala Ser Ser Arg Ser Ala Ile Glu Asp Leu Leu Phe
915 920 925
Asp Lys Val Lys Leu Ser Asp Val Gly Phe Val Glu Ala Tyr Asn Asn
930 935 940
Cys Thr Gly Gly Ala Glu Ile Arg Asp Leu Ile Cys Val Gln Ser Tyr
945 950 955 960
Lys Gly Ile Lys Val Leu Pro Pro Leu Leu Ser Glu Asn Gln Ile Ser
965 970 975
Gly Tyr Thr Leu Ala Ala Thr Ser Ala Ser Leu Phe Pro Pro Trp Thr
980 985 990
Ala Ala Ala Gly Val Pro Phe Tyr Leu Asn Val Gln Tyr Arg Ile Asn
995 1000 1005
Gly Leu Gly Val Thr Met Asp Val Leu Ser Gln Asn Gln Lys Leu Ile
1010 1015 1020
Ala Asn Ala Phe Asn Asn Ala Leu His Ala Ile Gln Gln Gly Phe Asp
1025 1030 1035 1040
Ala Thr Asn Ser Ala Leu Val Lys Ile Gln Ala Val Val Asn Ala Asn
1045 1050 1055
Ala Glu Ala Leu Asn Asn Leu Leu Gln Gln Leu Ser Asn Arg Phe Gly
1060 1065 1070
Ala Ile Ser Ala Ser Leu Gln Glu Ile Leu Ser Arg Leu Asp Pro Pro
1075 1080 1085
Glu Ala Glu Ala Gln Ile Asp Arg Leu Ile Asn Gly Arg Leu Thr Ala
1090 1095 1100
Leu Asn Ala Tyr Val Ser Gln Gln Leu Ser Asp Ser Thr Leu Val Lys
1105 1110 1115 1120
Phe Ser Ala Ala Gln Ala Met Glu Lys Val Asn Glu Cys Val Lys Ser
1125 1130 1135
Gln Ser Ser Arg Ile Asn Phe Cys Gly Asn Gly Asn His Ile Ile Ser
1140 1145 1150
Leu Val Gln Asn Ala Pro Tyr Gly Leu Tyr Phe Ile His Phe Asn Tyr
1155 1160 1165
Val Pro Thr Lys Tyr Val Thr Ala Lys Val Ser Pro Gly Leu Cys Ile
1170 1175 1180
Ala Gly Asn Arg Gly Ile Ala Pro Lys Ser Gly Tyr Phe Val Asn Val
1185 1190 1195 1200
Asn Asn Thr Trp Met Tyr Thr Gly Ser Gly Tyr Tyr Tyr Pro Glu Pro
1205 1210 1215
Ile Thr Glu Asn Asn Val Val Val Met Ser Thr Cys Ala Val Asn Tyr
1220 1225 1230
Thr Lys Ala Pro Tyr Val Met Leu Asn Thr Ser Ile Pro Asn Leu Pro
1235 1240 1245
Asp Phe Lys Glu Glu Leu Asp Gln Trp Phe Lys Asn Gln Thr Ser Val
1250 1255 1260
Ala Pro Asp Leu Ser Leu Asp Tyr Ile Asn Val Thr Phe Leu Asp Leu
1265 1270 1275 1280
Gln Val Glu Met Asn Arg Leu Gln Glu Ala Ile Lys Val Leu Asn His
1285 1290 1295
Ser Tyr Ile Asn Leu Lys Asp Ile Gly Thr Tyr Glu Tyr Tyr Val Lys
1300 1305 1310
Trp Pro Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly Val Ala Met
1315 1320 1325
Leu Val Leu Leu Phe Phe Ile Ser Phe Trp Met Cys Ser Asn Gly Ser
1330 1335 1340
Leu Gln Cys Arg Ile Cys Ile
1345 1350
<210> 147
<211> 48
<212> DNA
<213> artificial sequence
<220>
<223> IF(CoV229EwtCT).r
<400> 147
acgacacgac taaggccttc actgtatgtg gatcttttcg acatcgta 48
<210> 148
<211> 3546
<212> DNA
<213> artificial sequence
<220>
<223> PDI-229E -wtTMCT-DNA
<400> 148
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgcaaacgac taatgggctg aacaccagtt acagcgtctg taacggctgc 120
gtcggatata gcgagaacgt gttcgcagtg gaaagtgggg ggtacattcc ttccgacttc 180
gctttcaata actggtttct cctgactaac acaagctccg tcgtggatgg cgtggtcagg 240
tcctttcagc ctcttctcct gaattgcctg tggtctgtgt ccgggttaag attcactaca 300
ggcttcgtat acttcaacgg gacgggccgg ggggattgca agggcttctc ctccgacgtg 360
ctgtcagatg tgatccgtta caatctgaac ttcgaagaga acttacggcg ggggacaatc 420
ctgttcaaaa catcatatgg cgtagtcgta ttttactgca ccaataatac cctggtgagt 480
ggggacgccc atattccctt cggaacagtg ctgggtaact tttactgttt tgtcaacact 540
acgatcggaa acgaaaccac tagcgccttt gtcggagctc tgccaaaaac agttagggag 600
ttcgtgatct ctcggaccgg tcacttctat atcaacggct accgttattt tactttgggc 660
aacgtcgaag ccgtcaattt taatgtgaca actgcagaga caactgactt ttgcactgtg 720
gctctcgcca gttatgccga tgtgctggtg aatgtaagtc aaacgtcaat tgccaacatc 780
atctattgta actcagtaat caaccggctc cgctgtgacc aactctcatt cgacgtcccc 840
gacggattct attccacgag cccgattcag agcgtggaac tgccagtttc catcgtatcc 900
ctcccagttt accacaagca cacttttatc gttctctacg tagattttaa accccagtca 960
ggaggaggga aatgcttcaa ctgctacccg gctggcgtga acatcacctt ggccaatttt 1020
aatgaaacta aagggcccct ttgcgtggat acgtcacact ttaccacaaa gtatgttgca 1080
gtctatgcta acgtcggcag gtggtcagcg tccattaaca caggcaattg cccgttctct 1140
ttcgggaaag tgaacaactt cgtgaagttt ggaagtgtgt gcttcagttt gaaagacatt 1200
ccgggcggct gcgccatgcc tattgtggct aattgggctt attccaagta ctacaccatt 1260
ggctctctct acgttagctg gagcgacggt gacggtataa cgggcgtacc acaaccggtg 1320
gaaggggtca gctctttcat gaatgtcact ctggacaagt gtaccaaata taatatatac 1380
gatgtgagtg gagtgggcgt tatacgcgtg tctaacgaca cctttctaaa cggcataacc 1440
tacacaagca cgtcaggcaa tctgttaggt tttaaagacg tcactaaagg cactatatat 1500
agcatcaccc catgcaaccc acctgatcaa ttagtcgtat atcagcaagc tgttgtgggt 1560
gctatgctgt cagaaaactt caccagctac gggttctcca atgtggtgga actgcccaaa 1620
ttcttttacg ctagcaatgg cacatataac tgtactgacg ccgtcttgac ttacagttca 1680
ttcggagtgt gcgcggacgg cagcattatc gccgtgcagc cggccaatgt cagctatgat 1740
tccgtttccg ccatcgtgac agccaacttg tcgattccct ctaactggac aacgtctgtc 1800
caagtcgaat atctgcagat cacctcaacc cccatagtag tcgattgctc aacctacgtc 1860
tgcaacggta atgtcagatg tgtcgagctg ctcaagcagt acacctccgc ctgtaagact 1920
attgaggatg cattaagaaa tagtgcaaga ttggaaagcg ccgatgtgtc ggaaatgcta 1980
accttcgata agaaggcatt cacactggcg aacgtaagct ctttcggcga ttacaacctg 2040
tcttcggtaa tccctagctt gcccacatcc ggctctcggg tggcggggcg gagcgctatc 2100
gaggacattt tattctcgaa actggttaca tctgggctcg gaactgtgga cgccgattac 2160
aagaagtgca ccaagggcct aagcatcgcc gacctcgcct gtgctcagta ctacaacgga 2220
attatggtgc tgccaggtgt cgctgacgca gagcggatgg ctatgtatac cggcagtctc 2280
attggcggga ttgcgttggg cggcctgacg tccgctgtct ccatcccttt ctctctggct 2340
atacaagccc gactgaatta tgtggccctg cagactgatg tcctgcaaga aaatcagaag 2400
attcttgccg ccagcttcaa caaggccatg actaatattg tggatgcgtt taccggagtg 2460
aatgacgcca tcacccaaac gtcccaagcc ctgcagacag tcgccacggc gttaaacaaa 2520
atccaggatg tagtgaatca gcaagggaac agcttgaatc acctgacgtc ccagttaaga 2580
cagaactttc aggcaatcag tagctcaatc caggctatct acgatcgatt agatcctcct 2640
caggcagatc agcaggtgga tcggctcatc accggccgcc tcgcggcatt gaatgttttc 2700
gtaagtcata ccttgaccaa gtacacggag gtgagggcca gtcgccagct ggctcagcaa 2760
aaagtgaatg agtgtgtgaa atcacagagc aaacggtacg ggttttgtgg aaatgggacg 2820
cacatcttta gcatcgttaa tgctgccccc gaagggttag tcttcctgca cactgtgctc 2880
cttcctaccc agtataaaga tgtcgaagca tggtctgggc tctgtgtcga tggaactaac 2940
ggttatgtcc ttcgacagcc aaacctcgct ctctataaag aagggaatta ctataggatc 3000
acctcaagaa tcatgttcga gcccaggata ccaacaatgg ccgattttgt gcagattgaa 3060
aattgtaacg tgacctttgt gaatatcagt cgatccgagc ttcaaacgat tgttcctgag 3120
tacatcgacg tgaataaaac tctacaagag ctgtcctata aactgcctaa ttataccgtg 3180
cctgaccttg tagtcgagca atacaaccag actattctga acctgacatc ggaaatctct 3240
acattggaga ataaaagcgc cgagctcaat tacacagtgc agaagctgca gaccctgatc 3300
gacaatatta acagcactct tgtggactta aagtggctga accgtgtgga gacttacatc 3360
aagtggccct ggtgggtgtg gctctgtatt tccgtggtcc ttatatttgt tgtaagtatg 3420
ctgctcctgt gctgttgctc aaccgggtgc tgcggttttt tctcctgttt cgcctcatcc 3480
atccgtggct gttgtgagag cactaaactg ccatattacg atgtcgaaaa gatccacata 3540
cagtga 3546
<210> 149
<211> 3492
<212> DNA
<213> artificial sequence
<220>
<223> PDI-229E -H5iTMCT-DNA
<400> 149
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgcaaacgac taatgggctg aacaccagtt acagcgtctg taacggctgc 120
gtcggatata gcgagaacgt gttcgcagtg gaaagtgggg ggtacattcc ttccgacttc 180
gctttcaata actggtttct cctgactaac acaagctccg tcgtggatgg cgtggtcagg 240
tcctttcagc ctcttctcct gaattgcctg tggtctgtgt ccgggttaag attcactaca 300
ggcttcgtat acttcaacgg gacgggccgg ggggattgca agggcttctc ctccgacgtg 360
ctgtcagatg tgatccgtta caatctgaac ttcgaagaga acttacggcg ggggacaatc 420
ctgttcaaaa catcatatgg cgtagtcgta ttttactgca ccaataatac cctggtgagt 480
ggggacgccc atattccctt cggaacagtg ctgggtaact tttactgttt tgtcaacact 540
acgatcggaa acgaaaccac tagcgccttt gtcggagctc tgccaaaaac agttagggag 600
ttcgtgatct ctcggaccgg tcacttctat atcaacggct accgttattt tactttgggc 660
aacgtcgaag ccgtcaattt taatgtgaca actgcagaga caactgactt ttgcactgtg 720
gctctcgcca gttatgccga tgtgctggtg aatgtaagtc aaacgtcaat tgccaacatc 780
atctattgta actcagtaat caaccggctc cgctgtgacc aactctcatt cgacgtcccc 840
gacggattct attccacgag cccgattcag agcgtggaac tgccagtttc catcgtatcc 900
ctcccagttt accacaagca cacttttatc gttctctacg tagattttaa accccagtca 960
ggaggaggga aatgcttcaa ctgctacccg gctggcgtga acatcacctt ggccaatttt 1020
aatgaaacta aagggcccct ttgcgtggat acgtcacact ttaccacaaa gtatgttgca 1080
gtctatgcta acgtcggcag gtggtcagcg tccattaaca caggcaattg cccgttctct 1140
ttcgggaaag tgaacaactt cgtgaagttt ggaagtgtgt gcttcagttt gaaagacatt 1200
ccgggcggct gcgccatgcc tattgtggct aattgggctt attccaagta ctacaccatt 1260
ggctctctct acgttagctg gagcgacggt gacggtataa cgggcgtacc acaaccggtg 1320
gaaggggtca gctctttcat gaatgtcact ctggacaagt gtaccaaata taatatatac 1380
gatgtgagtg gagtgggcgt tatacgcgtg tctaacgaca cctttctaaa cggcataacc 1440
tacacaagca cgtcaggcaa tctgttaggt tttaaagacg tcactaaagg cactatatat 1500
agcatcaccc catgcaaccc acctgatcaa ttagtcgtat atcagcaagc tgttgtgggt 1560
gctatgctgt cagaaaactt caccagctac gggttctcca atgtggtgga actgcccaaa 1620
ttcttttacg ctagcaatgg cacatataac tgtactgacg ccgtcttgac ttacagttca 1680
ttcggagtgt gcgcggacgg cagcattatc gccgtgcagc cggccaatgt cagctatgat 1740
tccgtttccg ccatcgtgac agccaacttg tcgattccct ctaactggac aacgtctgtc 1800
caagtcgaat atctgcagat cacctcaacc cccatagtag tcgattgctc aacctacgtc 1860
tgcaacggta atgtcagatg tgtcgagctg ctcaagcagt acacctccgc ctgtaagact 1920
attgaggatg cattaagaaa tagtgcaaga ttggaaagcg ccgatgtgtc ggaaatgcta 1980
accttcgata agaaggcatt cacactggcg aacgtaagct ctttcggcga ttacaacctg 2040
tcttcggtaa tccctagctt gcccacatcc ggctctcggg tggcggggcg gagcgctatc 2100
gaggacattt tattctcgaa actggttaca tctgggctcg gaactgtgga cgccgattac 2160
aagaagtgca ccaagggcct aagcatcgcc gacctcgcct gtgctcagta ctacaacgga 2220
attatggtgc tgccaggtgt cgctgacgca gagcggatgg ctatgtatac cggcagtctc 2280
attggcggga ttgcgttggg cggcctgacg tccgctgtct ccatcccttt ctctctggct 2340
atacaagccc gactgaatta tgtggccctg cagactgatg tcctgcaaga aaatcagaag 2400
attcttgccg ccagcttcaa caaggccatg actaatattg tggatgcgtt taccggagtg 2460
aatgacgcca tcacccaaac gtcccaagcc ctgcagacag tcgccacggc gttaaacaaa 2520
atccaggatg tagtgaatca gcaagggaac agcttgaatc acctgacgtc ccagttaaga 2580
cagaactttc aggcaatcag tagctcaatc caggctatct acgatcgatt agatcctcct 2640
caggcagatc agcaggtgga tcggctcatc accggccgcc tcgcggcatt gaatgttttc 2700
gtaagtcata ccttgaccaa gtacacggag gtgagggcca gtcgccagct ggctcagcaa 2760
aaagtgaatg agtgtgtgaa atcacagagc aaacggtacg ggttttgtgg aaatgggacg 2820
cacatcttta gcatcgttaa tgctgccccc gaagggttag tcttcctgca cactgtgctc 2880
cttcctaccc agtataaaga tgtcgaagca tggtctgggc tctgtgtcga tggaactaac 2940
ggttatgtcc ttcgacagcc aaacctcgct ctctataaag aagggaatta ctataggatc 3000
acctcaagaa tcatgttcga gcccaggata ccaacaatgg ccgattttgt gcagattgaa 3060
aattgtaacg tgacctttgt gaatatcagt cgatccgagc ttcaaacgat tgttcctgag 3120
tacatcgacg tgaataaaac tctacaagag ctgtcctata aactgcctaa ttataccgtg 3180
cctgaccttg tagtcgagca atacaaccag actattctga acctgacatc ggaaatctct 3240
acattggaga ataaaagcgc cgagctcaat tacacagtgc agaagctgca gaccctgatc 3300
gacaatatta acagcactct tgtggactta aagtggctga accgtgtgga gacttacatc 3360
aagtggccct ggtggcaaat actgtcaatt tattcaacag tggcgagttc cctagcactg 3420
gcaatcatga tggctggtct atctttatgg atgtgctcca atggatcgtt acaatgcaga 3480
atttgcattt ga 3492
<210> 150
<211> 3480
<212> DNA
<213> artificial sequence
<220>
<223> PDI-229E -H5iCT-DNA
<400> 150
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgcaaacgac taatgggctg aacaccagtt acagcgtctg taacggctgc 120
gtcggatata gcgagaacgt gttcgcagtg gaaagtgggg ggtacattcc ttccgacttc 180
gctttcaata actggtttct cctgactaac acaagctccg tcgtggatgg cgtggtcagg 240
tcctttcagc ctcttctcct gaattgcctg tggtctgtgt ccgggttaag attcactaca 300
ggcttcgtat acttcaacgg gacgggccgg ggggattgca agggcttctc ctccgacgtg 360
ctgtcagatg tgatccgtta caatctgaac ttcgaagaga acttacggcg ggggacaatc 420
ctgttcaaaa catcatatgg cgtagtcgta ttttactgca ccaataatac cctggtgagt 480
ggggacgccc atattccctt cggaacagtg ctgggtaact tttactgttt tgtcaacact 540
acgatcggaa acgaaaccac tagcgccttt gtcggagctc tgccaaaaac agttagggag 600
ttcgtgatct ctcggaccgg tcacttctat atcaacggct accgttattt tactttgggc 660
aacgtcgaag ccgtcaattt taatgtgaca actgcagaga caactgactt ttgcactgtg 720
gctctcgcca gttatgccga tgtgctggtg aatgtaagtc aaacgtcaat tgccaacatc 780
atctattgta actcagtaat caaccggctc cgctgtgacc aactctcatt cgacgtcccc 840
gacggattct attccacgag cccgattcag agcgtggaac tgccagtttc catcgtatcc 900
ctcccagttt accacaagca cacttttatc gttctctacg tagattttaa accccagtca 960
ggaggaggga aatgcttcaa ctgctacccg gctggcgtga acatcacctt ggccaatttt 1020
aatgaaacta aagggcccct ttgcgtggat acgtcacact ttaccacaaa gtatgttgca 1080
gtctatgcta acgtcggcag gtggtcagcg tccattaaca caggcaattg cccgttctct 1140
ttcgggaaag tgaacaactt cgtgaagttt ggaagtgtgt gcttcagttt gaaagacatt 1200
ccgggcggct gcgccatgcc tattgtggct aattgggctt attccaagta ctacaccatt 1260
ggctctctct acgttagctg gagcgacggt gacggtataa cgggcgtacc acaaccggtg 1320
gaaggggtca gctctttcat gaatgtcact ctggacaagt gtaccaaata taatatatac 1380
gatgtgagtg gagtgggcgt tatacgcgtg tctaacgaca cctttctaaa cggcataacc 1440
tacacaagca cgtcaggcaa tctgttaggt tttaaagacg tcactaaagg cactatatat 1500
agcatcaccc catgcaaccc acctgatcaa ttagtcgtat atcagcaagc tgttgtgggt 1560
gctatgctgt cagaaaactt caccagctac gggttctcca atgtggtgga actgcccaaa 1620
ttcttttacg ctagcaatgg cacatataac tgtactgacg ccgtcttgac ttacagttca 1680
ttcggagtgt gcgcggacgg cagcattatc gccgtgcagc cggccaatgt cagctatgat 1740
tccgtttccg ccatcgtgac agccaacttg tcgattccct ctaactggac aacgtctgtc 1800
caagtcgaat atctgcagat cacctcaacc cccatagtag tcgattgctc aacctacgtc 1860
tgcaacggta atgtcagatg tgtcgagctg ctcaagcagt acacctccgc ctgtaagact 1920
attgaggatg cattaagaaa tagtgcaaga ttggaaagcg ccgatgtgtc ggaaatgcta 1980
accttcgata agaaggcatt cacactggcg aacgtaagct ctttcggcga ttacaacctg 2040
tcttcggtaa tccctagctt gcccacatcc ggctctcggg tggcggggcg gagcgctatc 2100
gaggacattt tattctcgaa actggttaca tctgggctcg gaactgtgga cgccgattac 2160
aagaagtgca ccaagggcct aagcatcgcc gacctcgcct gtgctcagta ctacaacgga 2220
attatggtgc tgccaggtgt cgctgacgca gagcggatgg ctatgtatac cggcagtctc 2280
attggcggga ttgcgttggg cggcctgacg tccgctgtct ccatcccttt ctctctggct 2340
atacaagccc gactgaatta tgtggccctg cagactgatg tcctgcaaga aaatcagaag 2400
attcttgccg ccagcttcaa caaggccatg actaatattg tggatgcgtt taccggagtg 2460
aatgacgcca tcacccaaac gtcccaagcc ctgcagacag tcgccacggc gttaaacaaa 2520
atccaggatg tagtgaatca gcaagggaac agcttgaatc acctgacgtc ccagttaaga 2580
cagaactttc aggcaatcag tagctcaatc caggctatct acgatcgatt agatcctcct 2640
caggcagatc agcaggtgga tcggctcatc accggccgcc tcgcggcatt gaatgttttc 2700
gtaagtcata ccttgaccaa gtacacggag gtgagggcca gtcgccagct ggctcagcaa 2760
aaagtgaatg agtgtgtgaa atcacagagc aaacggtacg ggttttgtgg aaatgggacg 2820
cacatcttta gcatcgttaa tgctgccccc gaagggttag tcttcctgca cactgtgctc 2880
cttcctaccc agtataaaga tgtcgaagca tggtctgggc tctgtgtcga tggaactaac 2940
ggttatgtcc ttcgacagcc aaacctcgct ctctataaag aagggaatta ctataggatc 3000
acctcaagaa tcatgttcga gcccaggata ccaacaatgg ccgattttgt gcagattgaa 3060
aattgtaacg tgacctttgt gaatatcagt cgatccgagc ttcaaacgat tgttcctgag 3120
tacatcgacg tgaataaaac tctacaagag ctgtcctata aactgcctaa ttataccgtg 3180
cctgaccttg tagtcgagca atacaaccag actattctga acctgacatc ggaaatctct 3240
acattggaga ataaaagcgc cgagctcaat tacacagtgc agaagctgca gaccctgatc 3300
gacaatatta acagcactct tgtggactta aagtggctga accgtgtgga gacttacatc 3360
aagtggccct ggtgggtgtg gctctgtatt tccgtggtcc ttatatttgt tgtaagtatg 3420
ctgctcctgt ctttatggat gtgctccaat ggatcgttac aatgcagaat ttgcatttga 3480
<210> 151
<211> 3471
<212> DNA
<213> artificial sequence
<220>
<223> PDI-229E -H5iCT(V4)-DNA
<400> 151
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgcaaacgac taatgggctg aacaccagtt acagcgtctg taacggctgc 120
gtcggatata gcgagaacgt gttcgcagtg gaaagtgggg ggtacattcc ttccgacttc 180
gctttcaata actggtttct cctgactaac acaagctccg tcgtggatgg cgtggtcagg 240
tcctttcagc ctcttctcct gaattgcctg tggtctgtgt ccgggttaag attcactaca 300
ggcttcgtat acttcaacgg gacgggccgg ggggattgca agggcttctc ctccgacgtg 360
ctgtcagatg tgatccgtta caatctgaac ttcgaagaga acttacggcg ggggacaatc 420
ctgttcaaaa catcatatgg cgtagtcgta ttttactgca ccaataatac cctggtgagt 480
ggggacgccc atattccctt cggaacagtg ctgggtaact tttactgttt tgtcaacact 540
acgatcggaa acgaaaccac tagcgccttt gtcggagctc tgccaaaaac agttagggag 600
ttcgtgatct ctcggaccgg tcacttctat atcaacggct accgttattt tactttgggc 660
aacgtcgaag ccgtcaattt taatgtgaca actgcagaga caactgactt ttgcactgtg 720
gctctcgcca gttatgccga tgtgctggtg aatgtaagtc aaacgtcaat tgccaacatc 780
atctattgta actcagtaat caaccggctc cgctgtgacc aactctcatt cgacgtcccc 840
gacggattct attccacgag cccgattcag agcgtggaac tgccagtttc catcgtatcc 900
ctcccagttt accacaagca cacttttatc gttctctacg tagattttaa accccagtca 960
ggaggaggga aatgcttcaa ctgctacccg gctggcgtga acatcacctt ggccaatttt 1020
aatgaaacta aagggcccct ttgcgtggat acgtcacact ttaccacaaa gtatgttgca 1080
gtctatgcta acgtcggcag gtggtcagcg tccattaaca caggcaattg cccgttctct 1140
ttcgggaaag tgaacaactt cgtgaagttt ggaagtgtgt gcttcagttt gaaagacatt 1200
ccgggcggct gcgccatgcc tattgtggct aattgggctt attccaagta ctacaccatt 1260
ggctctctct acgttagctg gagcgacggt gacggtataa cgggcgtacc acaaccggtg 1320
gaaggggtca gctctttcat gaatgtcact ctggacaagt gtaccaaata taatatatac 1380
gatgtgagtg gagtgggcgt tatacgcgtg tctaacgaca cctttctaaa cggcataacc 1440
tacacaagca cgtcaggcaa tctgttaggt tttaaagacg tcactaaagg cactatatat 1500
agcatcaccc catgcaaccc acctgatcaa ttagtcgtat atcagcaagc tgttgtgggt 1560
gctatgctgt cagaaaactt caccagctac gggttctcca atgtggtgga actgcccaaa 1620
ttcttttacg ctagcaatgg cacatataac tgtactgacg ccgtcttgac ttacagttca 1680
ttcggagtgt gcgcggacgg cagcattatc gccgtgcagc cggccaatgt cagctatgat 1740
tccgtttccg ccatcgtgac agccaacttg tcgattccct ctaactggac aacgtctgtc 1800
caagtcgaat atctgcagat cacctcaacc cccatagtag tcgattgctc aacctacgtc 1860
tgcaacggta atgtcagatg tgtcgagctg ctcaagcagt acacctccgc ctgtaagact 1920
attgaggatg cattaagaaa tagtgcaaga ttggaaagcg ccgatgtgtc ggaaatgcta 1980
accttcgata agaaggcatt cacactggcg aacgtaagct ctttcggcga ttacaacctg 2040
tcttcggtaa tccctagctt gcccacatcc ggctctcggg tggcggggcg gagcgctatc 2100
gaggacattt tattctcgaa actggttaca tctgggctcg gaactgtgga cgccgattac 2160
aagaagtgca ccaagggcct aagcatcgcc gacctcgcct gtgctcagta ctacaacgga 2220
attatggtgc tgccaggtgt cgctgacgca gagcggatgg ctatgtatac cggcagtctc 2280
attggcggga ttgcgttggg cggcctgacg tccgctgtct ccatcccttt ctctctggct 2340
atacaagccc gactgaatta tgtggccctg cagactgatg tcctgcaaga aaatcagaag 2400
attcttgccg ccagcttcaa caaggccatg actaatattg tggatgcgtt taccggagtg 2460
aatgacgcca tcacccaaac gtcccaagcc ctgcagacag tcgccacggc gttaaacaaa 2520
atccaggatg tagtgaatca gcaagggaac agcttgaatc acctgacgtc ccagttaaga 2580
cagaactttc aggcaatcag tagctcaatc caggctatct acgatcgatt agatcctcct 2640
caggcagatc agcaggtgga tcggctcatc accggccgcc tcgcggcatt gaatgttttc 2700
gtaagtcata ccttgaccaa gtacacggag gtgagggcca gtcgccagct ggctcagcaa 2760
aaagtgaatg agtgtgtgaa atcacagagc aaacggtacg ggttttgtgg aaatgggacg 2820
cacatcttta gcatcgttaa tgctgccccc gaagggttag tcttcctgca cactgtgctc 2880
cttcctaccc agtataaaga tgtcgaagca tggtctgggc tctgtgtcga tggaactaac 2940
ggttatgtcc ttcgacagcc aaacctcgct ctctataaag aagggaatta ctataggatc 3000
acctcaagaa tcatgttcga gcccaggata ccaacaatgg ccgattttgt gcagattgaa 3060
aattgtaacg tgacctttgt gaatatcagt cgatccgagc ttcaaacgat tgttcctgag 3120
tacatcgacg tgaataaaac tctacaagag ctgtcctata aactgcctaa ttataccgtg 3180
cctgaccttg tagtcgagca atacaaccag actattctga acctgacatc ggaaatctct 3240
acattggaga ataaaagcgc cgagctcaat tacacagtgc agaagctgca gaccctgatc 3300
gacaatatta acagcactct tgtggactta aagtggctga accgtgtgga gacttacatc 3360
aagtggccct ggtgggtgtg gctctgtatt tccgtggtcc ttatatttgt tgtaagtatg 3420
ctgctcctgt gctgctccaa tggatcgtta caatgcagaa tttgcatttg a 3471
<210> 152
<211> 3480
<212> DNA
<213> artificial sequence
<220>
<223> PDI-229E -H1cCT-DNA
<400> 152
atggcgaaaa acgttgcgat tttcggctta ttgttttctc ttcttgtgtt ggttccttct 60
cagatcttcg cgcaaacgac taatgggctg aacaccagtt acagcgtctg taacggctgc 120
gtcggatata gcgagaacgt gttcgcagtg gaaagtgggg ggtacattcc ttccgacttc 180
gctttcaata actggtttct cctgactaac acaagctccg tcgtggatgg cgtggtcagg 240
tcctttcagc ctcttctcct gaattgcctg tggtctgtgt ccgggttaag attcactaca 300
ggcttcgtat acttcaacgg gacgggccgg ggggattgca agggcttctc ctccgacgtg 360
ctgtcagatg tgatccgtta caatctgaac ttcgaagaga acttacggcg ggggacaatc 420
ctgttcaaaa catcatatgg cgtagtcgta ttttactgca ccaataatac cctggtgagt 480
ggggacgccc atattccctt cggaacagtg ctgggtaact tttactgttt tgtcaacact 540
acgatcggaa acgaaaccac tagcgccttt gtcggagctc tgccaaaaac agttagggag 600
ttcgtgatct ctcggaccgg tcacttctat atcaacggct accgttattt tactttgggc 660
aacgtcgaag ccgtcaattt taatgtgaca actgcagaga caactgactt ttgcactgtg 720
gctctcgcca gttatgccga tgtgctggtg aatgtaagtc aaacgtcaat tgccaacatc 780
atctattgta actcagtaat caaccggctc cgctgtgacc aactctcatt cgacgtcccc 840
gacggattct attccacgag cccgattcag agcgtggaac tgccagtttc catcgtatcc 900
ctcccagttt accacaagca cacttttatc gttctctacg tagattttaa accccagtca 960
ggaggaggga aatgcttcaa ctgctacccg gctggcgtga acatcacctt ggccaatttt 1020
aatgaaacta aagggcccct ttgcgtggat acgtcacact ttaccacaaa gtatgttgca 1080
gtctatgcta acgtcggcag gtggtcagcg tccattaaca caggcaattg cccgttctct 1140
ttcgggaaag tgaacaactt cgtgaagttt ggaagtgtgt gcttcagttt gaaagacatt 1200
ccgggcggct gcgccatgcc tattgtggct aattgggctt attccaagta ctacaccatt 1260
ggctctctct acgttagctg gagcgacggt gacggtataa cgggcgtacc acaaccggtg 1320
gaaggggtca gctctttcat gaatgtcact ctggacaagt gtaccaaata taatatatac 1380
gatgtgagtg gagtgggcgt tatacgcgtg tctaacgaca cctttctaaa cggcataacc 1440
tacacaagca cgtcaggcaa tctgttaggt tttaaagacg tcactaaagg cactatatat 1500
agcatcaccc catgcaaccc acctgatcaa ttagtcgtat atcagcaagc tgttgtgggt 1560
gctatgctgt cagaaaactt caccagctac gggttctcca atgtggtgga actgcccaaa 1620
ttcttttacg ctagcaatgg cacatataac tgtactgacg ccgtcttgac ttacagttca 1680
ttcggagtgt gcgcggacgg cagcattatc gccgtgcagc cggccaatgt cagctatgat 1740
tccgtttccg ccatcgtgac agccaacttg tcgattccct ctaactggac aacgtctgtc 1800
caagtcgaat atctgcagat cacctcaacc cccatagtag tcgattgctc aacctacgtc 1860
tgcaacggta atgtcagatg tgtcgagctg ctcaagcagt acacctccgc ctgtaagact 1920
attgaggatg cattaagaaa tagtgcaaga ttggaaagcg ccgatgtgtc ggaaatgcta 1980
accttcgata agaaggcatt cacactggcg aacgtaagct ctttcggcga ttacaacctg 2040
tcttcggtaa tccctagctt gcccacatcc ggctctcggg tggcggggcg gagcgctatc 2100
gaggacattt tattctcgaa actggttaca tctgggctcg gaactgtgga cgccgattac 2160
aagaagtgca ccaagggcct aagcatcgcc gacctcgcct gtgctcagta ctacaacgga 2220
attatggtgc tgccaggtgt cgctgacgca gagcggatgg ctatgtatac cggcagtctc 2280
attggcggga ttgcgttggg cggcctgacg tccgctgtct ccatcccttt ctctctggct 2340
atacaagccc gactgaatta tgtggccctg cagactgatg tcctgcaaga aaatcagaag 2400
attcttgccg ccagcttcaa caaggccatg actaatattg tggatgcgtt taccggagtg 2460
aatgacgcca tcacccaaac gtcccaagcc ctgcagacag tcgccacggc gttaaacaaa 2520
atccaggatg tagtgaatca gcaagggaac agcttgaatc acctgacgtc ccagttaaga 2580
cagaactttc aggcaatcag tagctcaatc caggctatct acgatcgatt agatcctcct 2640
caggcagatc agcaggtgga tcggctcatc accggccgcc tcgcggcatt gaatgttttc 2700
gtaagtcata ccttgaccaa gtacacggag gtgagggcca gtcgccagct ggctcagcaa 2760
aaagtgaatg agtgtgtgaa atcacagagc aaacggtacg ggttttgtgg aaatgggacg 2820
cacatcttta gcatcgttaa tgctgccccc gaagggttag tcttcctgca cactgtgctc 2880
cttcctaccc agtataaaga tgtcgaagca tggtctgggc tctgtgtcga tggaactaac 2940
ggttatgtcc ttcgacagcc aaacctcgct ctctataaag aagggaatta ctataggatc 3000
acctcaagaa tcatgttcga gcccaggata ccaacaatgg ccgattttgt gcagattgaa 3060
aattgtaacg tgacctttgt gaatatcagt cgatccgagc ttcaaacgat tgttcctgag 3120
tacatcgacg tgaataaaac tctacaagag ctgtcctata aactgcctaa ttataccgtg 3180
cctgaccttg tagtcgagca atacaaccag actattctga acctgacatc ggaaatctct 3240
acattggaga ataaaagcgc cgagctcaat tacacagtgc agaagctgca gaccctgatc 3300
gacaatatta acagcactct tgtggactta aagtggctga accgtgtgga gacttacatc 3360
aagtggccct ggtgggtgtg gctctgtatt tccgtggtcc ttatatttgt tgtaagtatg 3420
ctgctcctga gcttctggat gtgctctaat gggtctctac agtgtagaat atgtatttga 3480
<210> 153
<211> 1181
<212> PRT
<213> artificial sequence
<220>
<223> PDI-229E -wtTMCT-AA
<400> 153
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Gln Thr Thr Asn Gly Leu Asn Thr
20 25 30
Ser Tyr Ser Val Cys Asn Gly Cys Val Gly Tyr Ser Glu Asn Val Phe
35 40 45
Ala Val Glu Ser Gly Gly Tyr Ile Pro Ser Asp Phe Ala Phe Asn Asn
50 55 60
Trp Phe Leu Leu Thr Asn Thr Ser Ser Val Val Asp Gly Val Val Arg
65 70 75 80
Ser Phe Gln Pro Leu Leu Leu Asn Cys Leu Trp Ser Val Ser Gly Leu
85 90 95
Arg Phe Thr Thr Gly Phe Val Tyr Phe Asn Gly Thr Gly Arg Gly Asp
100 105 110
Cys Lys Gly Phe Ser Ser Asp Val Leu Ser Asp Val Ile Arg Tyr Asn
115 120 125
Leu Asn Phe Glu Glu Asn Leu Arg Arg Gly Thr Ile Leu Phe Lys Thr
130 135 140
Ser Tyr Gly Val Val Val Phe Tyr Cys Thr Asn Asn Thr Leu Val Ser
145 150 155 160
Gly Asp Ala His Ile Pro Phe Gly Thr Val Leu Gly Asn Phe Tyr Cys
165 170 175
Phe Val Asn Thr Thr Ile Gly Asn Glu Thr Thr Ser Ala Phe Val Gly
180 185 190
Ala Leu Pro Lys Thr Val Arg Glu Phe Val Ile Ser Arg Thr Gly His
195 200 205
Phe Tyr Ile Asn Gly Tyr Arg Tyr Phe Thr Leu Gly Asn Val Glu Ala
210 215 220
Val Asn Phe Asn Val Thr Thr Ala Glu Thr Thr Asp Phe Cys Thr Val
225 230 235 240
Ala Leu Ala Ser Tyr Ala Asp Val Leu Val Asn Val Ser Gln Thr Ser
245 250 255
Ile Ala Asn Ile Ile Tyr Cys Asn Ser Val Ile Asn Arg Leu Arg Cys
260 265 270
Asp Gln Leu Ser Phe Asp Val Pro Asp Gly Phe Tyr Ser Thr Ser Pro
275 280 285
Ile Gln Ser Val Glu Leu Pro Val Ser Ile Val Ser Leu Pro Val Tyr
290 295 300
His Lys His Thr Phe Ile Val Leu Tyr Val Asp Phe Lys Pro Gln Ser
305 310 315 320
Gly Gly Gly Lys Cys Phe Asn Cys Tyr Pro Ala Gly Val Asn Ile Thr
325 330 335
Leu Ala Asn Phe Asn Glu Thr Lys Gly Pro Leu Cys Val Asp Thr Ser
340 345 350
His Phe Thr Thr Lys Tyr Val Ala Val Tyr Ala Asn Val Gly Arg Trp
355 360 365
Ser Ala Ser Ile Asn Thr Gly Asn Cys Pro Phe Ser Phe Gly Lys Val
370 375 380
Asn Asn Phe Val Lys Phe Gly Ser Val Cys Phe Ser Leu Lys Asp Ile
385 390 395 400
Pro Gly Gly Cys Ala Met Pro Ile Val Ala Asn Trp Ala Tyr Ser Lys
405 410 415
Tyr Tyr Thr Ile Gly Ser Leu Tyr Val Ser Trp Ser Asp Gly Asp Gly
420 425 430
Ile Thr Gly Val Pro Gln Pro Val Glu Gly Val Ser Ser Phe Met Asn
435 440 445
Val Thr Leu Asp Lys Cys Thr Lys Tyr Asn Ile Tyr Asp Val Ser Gly
450 455 460
Val Gly Val Ile Arg Val Ser Asn Asp Thr Phe Leu Asn Gly Ile Thr
465 470 475 480
Tyr Thr Ser Thr Ser Gly Asn Leu Leu Gly Phe Lys Asp Val Thr Lys
485 490 495
Gly Thr Ile Tyr Ser Ile Thr Pro Cys Asn Pro Pro Asp Gln Leu Val
500 505 510
Val Tyr Gln Gln Ala Val Val Gly Ala Met Leu Ser Glu Asn Phe Thr
515 520 525
Ser Tyr Gly Phe Ser Asn Val Val Glu Leu Pro Lys Phe Phe Tyr Ala
530 535 540
Ser Asn Gly Thr Tyr Asn Cys Thr Asp Ala Val Leu Thr Tyr Ser Ser
545 550 555 560
Phe Gly Val Cys Ala Asp Gly Ser Ile Ile Ala Val Gln Pro Ala Asn
565 570 575
Val Ser Tyr Asp Ser Val Ser Ala Ile Val Thr Ala Asn Leu Ser Ile
580 585 590
Pro Ser Asn Trp Thr Thr Ser Val Gln Val Glu Tyr Leu Gln Ile Thr
595 600 605
Ser Thr Pro Ile Val Val Asp Cys Ser Thr Tyr Val Cys Asn Gly Asn
610 615 620
Val Arg Cys Val Glu Leu Leu Lys Gln Tyr Thr Ser Ala Cys Lys Thr
625 630 635 640
Ile Glu Asp Ala Leu Arg Asn Ser Ala Arg Leu Glu Ser Ala Asp Val
645 650 655
Ser Glu Met Leu Thr Phe Asp Lys Lys Ala Phe Thr Leu Ala Asn Val
660 665 670
Ser Ser Phe Gly Asp Tyr Asn Leu Ser Ser Val Ile Pro Ser Leu Pro
675 680 685
Thr Ser Gly Ser Arg Val Ala Gly Arg Ser Ala Ile Glu Asp Ile Leu
690 695 700
Phe Ser Lys Leu Val Thr Ser Gly Leu Gly Thr Val Asp Ala Asp Tyr
705 710 715 720
Lys Lys Cys Thr Lys Gly Leu Ser Ile Ala Asp Leu Ala Cys Ala Gln
725 730 735
Tyr Tyr Asn Gly Ile Met Val Leu Pro Gly Val Ala Asp Ala Glu Arg
740 745 750
Met Ala Met Tyr Thr Gly Ser Leu Ile Gly Gly Ile Ala Leu Gly Gly
755 760 765
Leu Thr Ser Ala Val Ser Ile Pro Phe Ser Leu Ala Ile Gln Ala Arg
770 775 780
Leu Asn Tyr Val Ala Leu Gln Thr Asp Val Leu Gln Glu Asn Gln Lys
785 790 795 800
Ile Leu Ala Ala Ser Phe Asn Lys Ala Met Thr Asn Ile Val Asp Ala
805 810 815
Phe Thr Gly Val Asn Asp Ala Ile Thr Gln Thr Ser Gln Ala Leu Gln
820 825 830
Thr Val Ala Thr Ala Leu Asn Lys Ile Gln Asp Val Val Asn Gln Gln
835 840 845
Gly Asn Ser Leu Asn His Leu Thr Ser Gln Leu Arg Gln Asn Phe Gln
850 855 860
Ala Ile Ser Ser Ser Ile Gln Ala Ile Tyr Asp Arg Leu Asp Pro Pro
865 870 875 880
Gln Ala Asp Gln Gln Val Asp Arg Leu Ile Thr Gly Arg Leu Ala Ala
885 890 895
Leu Asn Val Phe Val Ser His Thr Leu Thr Lys Tyr Thr Glu Val Arg
900 905 910
Ala Ser Arg Gln Leu Ala Gln Gln Lys Val Asn Glu Cys Val Lys Ser
915 920 925
Gln Ser Lys Arg Tyr Gly Phe Cys Gly Asn Gly Thr His Ile Phe Ser
930 935 940
Ile Val Asn Ala Ala Pro Glu Gly Leu Val Phe Leu His Thr Val Leu
945 950 955 960
Leu Pro Thr Gln Tyr Lys Asp Val Glu Ala Trp Ser Gly Leu Cys Val
965 970 975
Asp Gly Thr Asn Gly Tyr Val Leu Arg Gln Pro Asn Leu Ala Leu Tyr
980 985 990
Lys Glu Gly Asn Tyr Tyr Arg Ile Thr Ser Arg Ile Met Phe Glu Pro
995 1000 1005
Arg Ile Pro Thr Met Ala Asp Phe Val Gln Ile Glu Asn Cys Asn Val
1010 1015 1020
Thr Phe Val Asn Ile Ser Arg Ser Glu Leu Gln Thr Ile Val Pro Glu
1025 1030 1035 1040
Tyr Ile Asp Val Asn Lys Thr Leu Gln Glu Leu Ser Tyr Lys Leu Pro
1045 1050 1055
Asn Tyr Thr Val Pro Asp Leu Val Val Glu Gln Tyr Asn Gln Thr Ile
1060 1065 1070
Leu Asn Leu Thr Ser Glu Ile Ser Thr Leu Glu Asn Lys Ser Ala Glu
1075 1080 1085
Leu Asn Tyr Thr Val Gln Lys Leu Gln Thr Leu Ile Asp Asn Ile Asn
1090 1095 1100
Ser Thr Leu Val Asp Leu Lys Trp Leu Asn Arg Val Glu Thr Tyr Ile
1105 1110 1115 1120
Lys Trp Pro Trp Trp Val Trp Leu Cys Ile Ser Val Val Leu Ile Phe
1125 1130 1135
Val Val Ser Met Leu Leu Leu Cys Cys Cys Ser Thr Gly Cys Cys Gly
1140 1145 1150
Phe Phe Ser Cys Phe Ala Ser Ser Ile Arg Gly Cys Cys Glu Ser Thr
1155 1160 1165
Lys Leu Pro Tyr Tyr Asp Val Glu Lys Ile His Ile Gln
1170 1175 1180
<210> 154
<211> 1163
<212> PRT
<213> artificial sequence
<220>
<223> PDI-229E -H5iTMCT-AA
<400> 154
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Gln Thr Thr Asn Gly Leu Asn Thr
20 25 30
Ser Tyr Ser Val Cys Asn Gly Cys Val Gly Tyr Ser Glu Asn Val Phe
35 40 45
Ala Val Glu Ser Gly Gly Tyr Ile Pro Ser Asp Phe Ala Phe Asn Asn
50 55 60
Trp Phe Leu Leu Thr Asn Thr Ser Ser Val Val Asp Gly Val Val Arg
65 70 75 80
Ser Phe Gln Pro Leu Leu Leu Asn Cys Leu Trp Ser Val Ser Gly Leu
85 90 95
Arg Phe Thr Thr Gly Phe Val Tyr Phe Asn Gly Thr Gly Arg Gly Asp
100 105 110
Cys Lys Gly Phe Ser Ser Asp Val Leu Ser Asp Val Ile Arg Tyr Asn
115 120 125
Leu Asn Phe Glu Glu Asn Leu Arg Arg Gly Thr Ile Leu Phe Lys Thr
130 135 140
Ser Tyr Gly Val Val Val Phe Tyr Cys Thr Asn Asn Thr Leu Val Ser
145 150 155 160
Gly Asp Ala His Ile Pro Phe Gly Thr Val Leu Gly Asn Phe Tyr Cys
165 170 175
Phe Val Asn Thr Thr Ile Gly Asn Glu Thr Thr Ser Ala Phe Val Gly
180 185 190
Ala Leu Pro Lys Thr Val Arg Glu Phe Val Ile Ser Arg Thr Gly His
195 200 205
Phe Tyr Ile Asn Gly Tyr Arg Tyr Phe Thr Leu Gly Asn Val Glu Ala
210 215 220
Val Asn Phe Asn Val Thr Thr Ala Glu Thr Thr Asp Phe Cys Thr Val
225 230 235 240
Ala Leu Ala Ser Tyr Ala Asp Val Leu Val Asn Val Ser Gln Thr Ser
245 250 255
Ile Ala Asn Ile Ile Tyr Cys Asn Ser Val Ile Asn Arg Leu Arg Cys
260 265 270
Asp Gln Leu Ser Phe Asp Val Pro Asp Gly Phe Tyr Ser Thr Ser Pro
275 280 285
Ile Gln Ser Val Glu Leu Pro Val Ser Ile Val Ser Leu Pro Val Tyr
290 295 300
His Lys His Thr Phe Ile Val Leu Tyr Val Asp Phe Lys Pro Gln Ser
305 310 315 320
Gly Gly Gly Lys Cys Phe Asn Cys Tyr Pro Ala Gly Val Asn Ile Thr
325 330 335
Leu Ala Asn Phe Asn Glu Thr Lys Gly Pro Leu Cys Val Asp Thr Ser
340 345 350
His Phe Thr Thr Lys Tyr Val Ala Val Tyr Ala Asn Val Gly Arg Trp
355 360 365
Ser Ala Ser Ile Asn Thr Gly Asn Cys Pro Phe Ser Phe Gly Lys Val
370 375 380
Asn Asn Phe Val Lys Phe Gly Ser Val Cys Phe Ser Leu Lys Asp Ile
385 390 395 400
Pro Gly Gly Cys Ala Met Pro Ile Val Ala Asn Trp Ala Tyr Ser Lys
405 410 415
Tyr Tyr Thr Ile Gly Ser Leu Tyr Val Ser Trp Ser Asp Gly Asp Gly
420 425 430
Ile Thr Gly Val Pro Gln Pro Val Glu Gly Val Ser Ser Phe Met Asn
435 440 445
Val Thr Leu Asp Lys Cys Thr Lys Tyr Asn Ile Tyr Asp Val Ser Gly
450 455 460
Val Gly Val Ile Arg Val Ser Asn Asp Thr Phe Leu Asn Gly Ile Thr
465 470 475 480
Tyr Thr Ser Thr Ser Gly Asn Leu Leu Gly Phe Lys Asp Val Thr Lys
485 490 495
Gly Thr Ile Tyr Ser Ile Thr Pro Cys Asn Pro Pro Asp Gln Leu Val
500 505 510
Val Tyr Gln Gln Ala Val Val Gly Ala Met Leu Ser Glu Asn Phe Thr
515 520 525
Ser Tyr Gly Phe Ser Asn Val Val Glu Leu Pro Lys Phe Phe Tyr Ala
530 535 540
Ser Asn Gly Thr Tyr Asn Cys Thr Asp Ala Val Leu Thr Tyr Ser Ser
545 550 555 560
Phe Gly Val Cys Ala Asp Gly Ser Ile Ile Ala Val Gln Pro Ala Asn
565 570 575
Val Ser Tyr Asp Ser Val Ser Ala Ile Val Thr Ala Asn Leu Ser Ile
580 585 590
Pro Ser Asn Trp Thr Thr Ser Val Gln Val Glu Tyr Leu Gln Ile Thr
595 600 605
Ser Thr Pro Ile Val Val Asp Cys Ser Thr Tyr Val Cys Asn Gly Asn
610 615 620
Val Arg Cys Val Glu Leu Leu Lys Gln Tyr Thr Ser Ala Cys Lys Thr
625 630 635 640
Ile Glu Asp Ala Leu Arg Asn Ser Ala Arg Leu Glu Ser Ala Asp Val
645 650 655
Ser Glu Met Leu Thr Phe Asp Lys Lys Ala Phe Thr Leu Ala Asn Val
660 665 670
Ser Ser Phe Gly Asp Tyr Asn Leu Ser Ser Val Ile Pro Ser Leu Pro
675 680 685
Thr Ser Gly Ser Arg Val Ala Gly Arg Ser Ala Ile Glu Asp Ile Leu
690 695 700
Phe Ser Lys Leu Val Thr Ser Gly Leu Gly Thr Val Asp Ala Asp Tyr
705 710 715 720
Lys Lys Cys Thr Lys Gly Leu Ser Ile Ala Asp Leu Ala Cys Ala Gln
725 730 735
Tyr Tyr Asn Gly Ile Met Val Leu Pro Gly Val Ala Asp Ala Glu Arg
740 745 750
Met Ala Met Tyr Thr Gly Ser Leu Ile Gly Gly Ile Ala Leu Gly Gly
755 760 765
Leu Thr Ser Ala Val Ser Ile Pro Phe Ser Leu Ala Ile Gln Ala Arg
770 775 780
Leu Asn Tyr Val Ala Leu Gln Thr Asp Val Leu Gln Glu Asn Gln Lys
785 790 795 800
Ile Leu Ala Ala Ser Phe Asn Lys Ala Met Thr Asn Ile Val Asp Ala
805 810 815
Phe Thr Gly Val Asn Asp Ala Ile Thr Gln Thr Ser Gln Ala Leu Gln
820 825 830
Thr Val Ala Thr Ala Leu Asn Lys Ile Gln Asp Val Val Asn Gln Gln
835 840 845
Gly Asn Ser Leu Asn His Leu Thr Ser Gln Leu Arg Gln Asn Phe Gln
850 855 860
Ala Ile Ser Ser Ser Ile Gln Ala Ile Tyr Asp Arg Leu Asp Pro Pro
865 870 875 880
Gln Ala Asp Gln Gln Val Asp Arg Leu Ile Thr Gly Arg Leu Ala Ala
885 890 895
Leu Asn Val Phe Val Ser His Thr Leu Thr Lys Tyr Thr Glu Val Arg
900 905 910
Ala Ser Arg Gln Leu Ala Gln Gln Lys Val Asn Glu Cys Val Lys Ser
915 920 925
Gln Ser Lys Arg Tyr Gly Phe Cys Gly Asn Gly Thr His Ile Phe Ser
930 935 940
Ile Val Asn Ala Ala Pro Glu Gly Leu Val Phe Leu His Thr Val Leu
945 950 955 960
Leu Pro Thr Gln Tyr Lys Asp Val Glu Ala Trp Ser Gly Leu Cys Val
965 970 975
Asp Gly Thr Asn Gly Tyr Val Leu Arg Gln Pro Asn Leu Ala Leu Tyr
980 985 990
Lys Glu Gly Asn Tyr Tyr Arg Ile Thr Ser Arg Ile Met Phe Glu Pro
995 1000 1005
Arg Ile Pro Thr Met Ala Asp Phe Val Gln Ile Glu Asn Cys Asn Val
1010 1015 1020
Thr Phe Val Asn Ile Ser Arg Ser Glu Leu Gln Thr Ile Val Pro Glu
1025 1030 1035 1040
Tyr Ile Asp Val Asn Lys Thr Leu Gln Glu Leu Ser Tyr Lys Leu Pro
1045 1050 1055
Asn Tyr Thr Val Pro Asp Leu Val Val Glu Gln Tyr Asn Gln Thr Ile
1060 1065 1070
Leu Asn Leu Thr Ser Glu Ile Ser Thr Leu Glu Asn Lys Ser Ala Glu
1075 1080 1085
Leu Asn Tyr Thr Val Gln Lys Leu Gln Thr Leu Ile Asp Asn Ile Asn
1090 1095 1100
Ser Thr Leu Val Asp Leu Lys Trp Leu Asn Arg Val Glu Thr Tyr Ile
1105 1110 1115 1120
Lys Trp Pro Trp Trp Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser
1125 1130 1135
Ser Leu Ala Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys
1140 1145 1150
Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile
1155 1160
<210> 155
<211> 1159
<212> PRT
<213> artificial sequence
<220>
<223> PDI-229E -H5iCT-AA
<400> 155
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Gln Thr Thr Asn Gly Leu Asn Thr
20 25 30
Ser Tyr Ser Val Cys Asn Gly Cys Val Gly Tyr Ser Glu Asn Val Phe
35 40 45
Ala Val Glu Ser Gly Gly Tyr Ile Pro Ser Asp Phe Ala Phe Asn Asn
50 55 60
Trp Phe Leu Leu Thr Asn Thr Ser Ser Val Val Asp Gly Val Val Arg
65 70 75 80
Ser Phe Gln Pro Leu Leu Leu Asn Cys Leu Trp Ser Val Ser Gly Leu
85 90 95
Arg Phe Thr Thr Gly Phe Val Tyr Phe Asn Gly Thr Gly Arg Gly Asp
100 105 110
Cys Lys Gly Phe Ser Ser Asp Val Leu Ser Asp Val Ile Arg Tyr Asn
115 120 125
Leu Asn Phe Glu Glu Asn Leu Arg Arg Gly Thr Ile Leu Phe Lys Thr
130 135 140
Ser Tyr Gly Val Val Val Phe Tyr Cys Thr Asn Asn Thr Leu Val Ser
145 150 155 160
Gly Asp Ala His Ile Pro Phe Gly Thr Val Leu Gly Asn Phe Tyr Cys
165 170 175
Phe Val Asn Thr Thr Ile Gly Asn Glu Thr Thr Ser Ala Phe Val Gly
180 185 190
Ala Leu Pro Lys Thr Val Arg Glu Phe Val Ile Ser Arg Thr Gly His
195 200 205
Phe Tyr Ile Asn Gly Tyr Arg Tyr Phe Thr Leu Gly Asn Val Glu Ala
210 215 220
Val Asn Phe Asn Val Thr Thr Ala Glu Thr Thr Asp Phe Cys Thr Val
225 230 235 240
Ala Leu Ala Ser Tyr Ala Asp Val Leu Val Asn Val Ser Gln Thr Ser
245 250 255
Ile Ala Asn Ile Ile Tyr Cys Asn Ser Val Ile Asn Arg Leu Arg Cys
260 265 270
Asp Gln Leu Ser Phe Asp Val Pro Asp Gly Phe Tyr Ser Thr Ser Pro
275 280 285
Ile Gln Ser Val Glu Leu Pro Val Ser Ile Val Ser Leu Pro Val Tyr
290 295 300
His Lys His Thr Phe Ile Val Leu Tyr Val Asp Phe Lys Pro Gln Ser
305 310 315 320
Gly Gly Gly Lys Cys Phe Asn Cys Tyr Pro Ala Gly Val Asn Ile Thr
325 330 335
Leu Ala Asn Phe Asn Glu Thr Lys Gly Pro Leu Cys Val Asp Thr Ser
340 345 350
His Phe Thr Thr Lys Tyr Val Ala Val Tyr Ala Asn Val Gly Arg Trp
355 360 365
Ser Ala Ser Ile Asn Thr Gly Asn Cys Pro Phe Ser Phe Gly Lys Val
370 375 380
Asn Asn Phe Val Lys Phe Gly Ser Val Cys Phe Ser Leu Lys Asp Ile
385 390 395 400
Pro Gly Gly Cys Ala Met Pro Ile Val Ala Asn Trp Ala Tyr Ser Lys
405 410 415
Tyr Tyr Thr Ile Gly Ser Leu Tyr Val Ser Trp Ser Asp Gly Asp Gly
420 425 430
Ile Thr Gly Val Pro Gln Pro Val Glu Gly Val Ser Ser Phe Met Asn
435 440 445
Val Thr Leu Asp Lys Cys Thr Lys Tyr Asn Ile Tyr Asp Val Ser Gly
450 455 460
Val Gly Val Ile Arg Val Ser Asn Asp Thr Phe Leu Asn Gly Ile Thr
465 470 475 480
Tyr Thr Ser Thr Ser Gly Asn Leu Leu Gly Phe Lys Asp Val Thr Lys
485 490 495
Gly Thr Ile Tyr Ser Ile Thr Pro Cys Asn Pro Pro Asp Gln Leu Val
500 505 510
Val Tyr Gln Gln Ala Val Val Gly Ala Met Leu Ser Glu Asn Phe Thr
515 520 525
Ser Tyr Gly Phe Ser Asn Val Val Glu Leu Pro Lys Phe Phe Tyr Ala
530 535 540
Ser Asn Gly Thr Tyr Asn Cys Thr Asp Ala Val Leu Thr Tyr Ser Ser
545 550 555 560
Phe Gly Val Cys Ala Asp Gly Ser Ile Ile Ala Val Gln Pro Ala Asn
565 570 575
Val Ser Tyr Asp Ser Val Ser Ala Ile Val Thr Ala Asn Leu Ser Ile
580 585 590
Pro Ser Asn Trp Thr Thr Ser Val Gln Val Glu Tyr Leu Gln Ile Thr
595 600 605
Ser Thr Pro Ile Val Val Asp Cys Ser Thr Tyr Val Cys Asn Gly Asn
610 615 620
Val Arg Cys Val Glu Leu Leu Lys Gln Tyr Thr Ser Ala Cys Lys Thr
625 630 635 640
Ile Glu Asp Ala Leu Arg Asn Ser Ala Arg Leu Glu Ser Ala Asp Val
645 650 655
Ser Glu Met Leu Thr Phe Asp Lys Lys Ala Phe Thr Leu Ala Asn Val
660 665 670
Ser Ser Phe Gly Asp Tyr Asn Leu Ser Ser Val Ile Pro Ser Leu Pro
675 680 685
Thr Ser Gly Ser Arg Val Ala Gly Arg Ser Ala Ile Glu Asp Ile Leu
690 695 700
Phe Ser Lys Leu Val Thr Ser Gly Leu Gly Thr Val Asp Ala Asp Tyr
705 710 715 720
Lys Lys Cys Thr Lys Gly Leu Ser Ile Ala Asp Leu Ala Cys Ala Gln
725 730 735
Tyr Tyr Asn Gly Ile Met Val Leu Pro Gly Val Ala Asp Ala Glu Arg
740 745 750
Met Ala Met Tyr Thr Gly Ser Leu Ile Gly Gly Ile Ala Leu Gly Gly
755 760 765
Leu Thr Ser Ala Val Ser Ile Pro Phe Ser Leu Ala Ile Gln Ala Arg
770 775 780
Leu Asn Tyr Val Ala Leu Gln Thr Asp Val Leu Gln Glu Asn Gln Lys
785 790 795 800
Ile Leu Ala Ala Ser Phe Asn Lys Ala Met Thr Asn Ile Val Asp Ala
805 810 815
Phe Thr Gly Val Asn Asp Ala Ile Thr Gln Thr Ser Gln Ala Leu Gln
820 825 830
Thr Val Ala Thr Ala Leu Asn Lys Ile Gln Asp Val Val Asn Gln Gln
835 840 845
Gly Asn Ser Leu Asn His Leu Thr Ser Gln Leu Arg Gln Asn Phe Gln
850 855 860
Ala Ile Ser Ser Ser Ile Gln Ala Ile Tyr Asp Arg Leu Asp Pro Pro
865 870 875 880
Gln Ala Asp Gln Gln Val Asp Arg Leu Ile Thr Gly Arg Leu Ala Ala
885 890 895
Leu Asn Val Phe Val Ser His Thr Leu Thr Lys Tyr Thr Glu Val Arg
900 905 910
Ala Ser Arg Gln Leu Ala Gln Gln Lys Val Asn Glu Cys Val Lys Ser
915 920 925
Gln Ser Lys Arg Tyr Gly Phe Cys Gly Asn Gly Thr His Ile Phe Ser
930 935 940
Ile Val Asn Ala Ala Pro Glu Gly Leu Val Phe Leu His Thr Val Leu
945 950 955 960
Leu Pro Thr Gln Tyr Lys Asp Val Glu Ala Trp Ser Gly Leu Cys Val
965 970 975
Asp Gly Thr Asn Gly Tyr Val Leu Arg Gln Pro Asn Leu Ala Leu Tyr
980 985 990
Lys Glu Gly Asn Tyr Tyr Arg Ile Thr Ser Arg Ile Met Phe Glu Pro
995 1000 1005
Arg Ile Pro Thr Met Ala Asp Phe Val Gln Ile Glu Asn Cys Asn Val
1010 1015 1020
Thr Phe Val Asn Ile Ser Arg Ser Glu Leu Gln Thr Ile Val Pro Glu
1025 1030 1035 1040
Tyr Ile Asp Val Asn Lys Thr Leu Gln Glu Leu Ser Tyr Lys Leu Pro
1045 1050 1055
Asn Tyr Thr Val Pro Asp Leu Val Val Glu Gln Tyr Asn Gln Thr Ile
1060 1065 1070
Leu Asn Leu Thr Ser Glu Ile Ser Thr Leu Glu Asn Lys Ser Ala Glu
1075 1080 1085
Leu Asn Tyr Thr Val Gln Lys Leu Gln Thr Leu Ile Asp Asn Ile Asn
1090 1095 1100
Ser Thr Leu Val Asp Leu Lys Trp Leu Asn Arg Val Glu Thr Tyr Ile
1105 1110 1115 1120
Lys Trp Pro Trp Trp Val Trp Leu Cys Ile Ser Val Val Leu Ile Phe
1125 1130 1135
Val Val Ser Met Leu Leu Leu Ser Leu Trp Met Cys Ser Asn Gly Ser
1140 1145 1150
Leu Gln Cys Arg Ile Cys Ile
1155
<210> 156
<211> 1156
<212> PRT
<213> artificial sequence
<220>
<223> PDI-229E -H5iCT(V4)-AA
<400> 156
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Gln Thr Thr Asn Gly Leu Asn Thr
20 25 30
Ser Tyr Ser Val Cys Asn Gly Cys Val Gly Tyr Ser Glu Asn Val Phe
35 40 45
Ala Val Glu Ser Gly Gly Tyr Ile Pro Ser Asp Phe Ala Phe Asn Asn
50 55 60
Trp Phe Leu Leu Thr Asn Thr Ser Ser Val Val Asp Gly Val Val Arg
65 70 75 80
Ser Phe Gln Pro Leu Leu Leu Asn Cys Leu Trp Ser Val Ser Gly Leu
85 90 95
Arg Phe Thr Thr Gly Phe Val Tyr Phe Asn Gly Thr Gly Arg Gly Asp
100 105 110
Cys Lys Gly Phe Ser Ser Asp Val Leu Ser Asp Val Ile Arg Tyr Asn
115 120 125
Leu Asn Phe Glu Glu Asn Leu Arg Arg Gly Thr Ile Leu Phe Lys Thr
130 135 140
Ser Tyr Gly Val Val Val Phe Tyr Cys Thr Asn Asn Thr Leu Val Ser
145 150 155 160
Gly Asp Ala His Ile Pro Phe Gly Thr Val Leu Gly Asn Phe Tyr Cys
165 170 175
Phe Val Asn Thr Thr Ile Gly Asn Glu Thr Thr Ser Ala Phe Val Gly
180 185 190
Ala Leu Pro Lys Thr Val Arg Glu Phe Val Ile Ser Arg Thr Gly His
195 200 205
Phe Tyr Ile Asn Gly Tyr Arg Tyr Phe Thr Leu Gly Asn Val Glu Ala
210 215 220
Val Asn Phe Asn Val Thr Thr Ala Glu Thr Thr Asp Phe Cys Thr Val
225 230 235 240
Ala Leu Ala Ser Tyr Ala Asp Val Leu Val Asn Val Ser Gln Thr Ser
245 250 255
Ile Ala Asn Ile Ile Tyr Cys Asn Ser Val Ile Asn Arg Leu Arg Cys
260 265 270
Asp Gln Leu Ser Phe Asp Val Pro Asp Gly Phe Tyr Ser Thr Ser Pro
275 280 285
Ile Gln Ser Val Glu Leu Pro Val Ser Ile Val Ser Leu Pro Val Tyr
290 295 300
His Lys His Thr Phe Ile Val Leu Tyr Val Asp Phe Lys Pro Gln Ser
305 310 315 320
Gly Gly Gly Lys Cys Phe Asn Cys Tyr Pro Ala Gly Val Asn Ile Thr
325 330 335
Leu Ala Asn Phe Asn Glu Thr Lys Gly Pro Leu Cys Val Asp Thr Ser
340 345 350
His Phe Thr Thr Lys Tyr Val Ala Val Tyr Ala Asn Val Gly Arg Trp
355 360 365
Ser Ala Ser Ile Asn Thr Gly Asn Cys Pro Phe Ser Phe Gly Lys Val
370 375 380
Asn Asn Phe Val Lys Phe Gly Ser Val Cys Phe Ser Leu Lys Asp Ile
385 390 395 400
Pro Gly Gly Cys Ala Met Pro Ile Val Ala Asn Trp Ala Tyr Ser Lys
405 410 415
Tyr Tyr Thr Ile Gly Ser Leu Tyr Val Ser Trp Ser Asp Gly Asp Gly
420 425 430
Ile Thr Gly Val Pro Gln Pro Val Glu Gly Val Ser Ser Phe Met Asn
435 440 445
Val Thr Leu Asp Lys Cys Thr Lys Tyr Asn Ile Tyr Asp Val Ser Gly
450 455 460
Val Gly Val Ile Arg Val Ser Asn Asp Thr Phe Leu Asn Gly Ile Thr
465 470 475 480
Tyr Thr Ser Thr Ser Gly Asn Leu Leu Gly Phe Lys Asp Val Thr Lys
485 490 495
Gly Thr Ile Tyr Ser Ile Thr Pro Cys Asn Pro Pro Asp Gln Leu Val
500 505 510
Val Tyr Gln Gln Ala Val Val Gly Ala Met Leu Ser Glu Asn Phe Thr
515 520 525
Ser Tyr Gly Phe Ser Asn Val Val Glu Leu Pro Lys Phe Phe Tyr Ala
530 535 540
Ser Asn Gly Thr Tyr Asn Cys Thr Asp Ala Val Leu Thr Tyr Ser Ser
545 550 555 560
Phe Gly Val Cys Ala Asp Gly Ser Ile Ile Ala Val Gln Pro Ala Asn
565 570 575
Val Ser Tyr Asp Ser Val Ser Ala Ile Val Thr Ala Asn Leu Ser Ile
580 585 590
Pro Ser Asn Trp Thr Thr Ser Val Gln Val Glu Tyr Leu Gln Ile Thr
595 600 605
Ser Thr Pro Ile Val Val Asp Cys Ser Thr Tyr Val Cys Asn Gly Asn
610 615 620
Val Arg Cys Val Glu Leu Leu Lys Gln Tyr Thr Ser Ala Cys Lys Thr
625 630 635 640
Ile Glu Asp Ala Leu Arg Asn Ser Ala Arg Leu Glu Ser Ala Asp Val
645 650 655
Ser Glu Met Leu Thr Phe Asp Lys Lys Ala Phe Thr Leu Ala Asn Val
660 665 670
Ser Ser Phe Gly Asp Tyr Asn Leu Ser Ser Val Ile Pro Ser Leu Pro
675 680 685
Thr Ser Gly Ser Arg Val Ala Gly Arg Ser Ala Ile Glu Asp Ile Leu
690 695 700
Phe Ser Lys Leu Val Thr Ser Gly Leu Gly Thr Val Asp Ala Asp Tyr
705 710 715 720
Lys Lys Cys Thr Lys Gly Leu Ser Ile Ala Asp Leu Ala Cys Ala Gln
725 730 735
Tyr Tyr Asn Gly Ile Met Val Leu Pro Gly Val Ala Asp Ala Glu Arg
740 745 750
Met Ala Met Tyr Thr Gly Ser Leu Ile Gly Gly Ile Ala Leu Gly Gly
755 760 765
Leu Thr Ser Ala Val Ser Ile Pro Phe Ser Leu Ala Ile Gln Ala Arg
770 775 780
Leu Asn Tyr Val Ala Leu Gln Thr Asp Val Leu Gln Glu Asn Gln Lys
785 790 795 800
Ile Leu Ala Ala Ser Phe Asn Lys Ala Met Thr Asn Ile Val Asp Ala
805 810 815
Phe Thr Gly Val Asn Asp Ala Ile Thr Gln Thr Ser Gln Ala Leu Gln
820 825 830
Thr Val Ala Thr Ala Leu Asn Lys Ile Gln Asp Val Val Asn Gln Gln
835 840 845
Gly Asn Ser Leu Asn His Leu Thr Ser Gln Leu Arg Gln Asn Phe Gln
850 855 860
Ala Ile Ser Ser Ser Ile Gln Ala Ile Tyr Asp Arg Leu Asp Pro Pro
865 870 875 880
Gln Ala Asp Gln Gln Val Asp Arg Leu Ile Thr Gly Arg Leu Ala Ala
885 890 895
Leu Asn Val Phe Val Ser His Thr Leu Thr Lys Tyr Thr Glu Val Arg
900 905 910
Ala Ser Arg Gln Leu Ala Gln Gln Lys Val Asn Glu Cys Val Lys Ser
915 920 925
Gln Ser Lys Arg Tyr Gly Phe Cys Gly Asn Gly Thr His Ile Phe Ser
930 935 940
Ile Val Asn Ala Ala Pro Glu Gly Leu Val Phe Leu His Thr Val Leu
945 950 955 960
Leu Pro Thr Gln Tyr Lys Asp Val Glu Ala Trp Ser Gly Leu Cys Val
965 970 975
Asp Gly Thr Asn Gly Tyr Val Leu Arg Gln Pro Asn Leu Ala Leu Tyr
980 985 990
Lys Glu Gly Asn Tyr Tyr Arg Ile Thr Ser Arg Ile Met Phe Glu Pro
995 1000 1005
Arg Ile Pro Thr Met Ala Asp Phe Val Gln Ile Glu Asn Cys Asn Val
1010 1015 1020
Thr Phe Val Asn Ile Ser Arg Ser Glu Leu Gln Thr Ile Val Pro Glu
1025 1030 1035 1040
Tyr Ile Asp Val Asn Lys Thr Leu Gln Glu Leu Ser Tyr Lys Leu Pro
1045 1050 1055
Asn Tyr Thr Val Pro Asp Leu Val Val Glu Gln Tyr Asn Gln Thr Ile
1060 1065 1070
Leu Asn Leu Thr Ser Glu Ile Ser Thr Leu Glu Asn Lys Ser Ala Glu
1075 1080 1085
Leu Asn Tyr Thr Val Gln Lys Leu Gln Thr Leu Ile Asp Asn Ile Asn
1090 1095 1100
Ser Thr Leu Val Asp Leu Lys Trp Leu Asn Arg Val Glu Thr Tyr Ile
1105 1110 1115 1120
Lys Trp Pro Trp Trp Val Trp Leu Cys Ile Ser Val Val Leu Ile Phe
1125 1130 1135
Val Val Ser Met Leu Leu Leu Cys Cys Ser Asn Gly Ser Leu Gln Cys
1140 1145 1150
Arg Ile Cys Ile
1155
<210> 157
<211> 1159
<212> PRT
<213> artificial sequence
<220>
<223> PDI-229E-H1cCT-AA
<400> 157
Met Ala Lys Asn Val Ala Ile Phe Gly Leu Leu Phe Ser Leu Leu Val
1 5 10 15
Leu Val Pro Ser Gln Ile Phe Ala Gln Thr Thr Asn Gly Leu Asn Thr
20 25 30
Ser Tyr Ser Val Cys Asn Gly Cys Val Gly Tyr Ser Glu Asn Val Phe
35 40 45
Ala Val Glu Ser Gly Gly Tyr Ile Pro Ser Asp Phe Ala Phe Asn Asn
50 55 60
Trp Phe Leu Leu Thr Asn Thr Ser Ser Val Val Asp Gly Val Val Arg
65 70 75 80
Ser Phe Gln Pro Leu Leu Leu Asn Cys Leu Trp Ser Val Ser Gly Leu
85 90 95
Arg Phe Thr Thr Gly Phe Val Tyr Phe Asn Gly Thr Gly Arg Gly Asp
100 105 110
Cys Lys Gly Phe Ser Ser Asp Val Leu Ser Asp Val Ile Arg Tyr Asn
115 120 125
Leu Asn Phe Glu Glu Asn Leu Arg Arg Gly Thr Ile Leu Phe Lys Thr
130 135 140
Ser Tyr Gly Val Val Val Phe Tyr Cys Thr Asn Asn Thr Leu Val Ser
145 150 155 160
Gly Asp Ala His Ile Pro Phe Gly Thr Val Leu Gly Asn Phe Tyr Cys
165 170 175
Phe Val Asn Thr Thr Ile Gly Asn Glu Thr Thr Ser Ala Phe Val Gly
180 185 190
Ala Leu Pro Lys Thr Val Arg Glu Phe Val Ile Ser Arg Thr Gly His
195 200 205
Phe Tyr Ile Asn Gly Tyr Arg Tyr Phe Thr Leu Gly Asn Val Glu Ala
210 215 220
Val Asn Phe Asn Val Thr Thr Ala Glu Thr Thr Asp Phe Cys Thr Val
225 230 235 240
Ala Leu Ala Ser Tyr Ala Asp Val Leu Val Asn Val Ser Gln Thr Ser
245 250 255
Ile Ala Asn Ile Ile Tyr Cys Asn Ser Val Ile Asn Arg Leu Arg Cys
260 265 270
Asp Gln Leu Ser Phe Asp Val Pro Asp Gly Phe Tyr Ser Thr Ser Pro
275 280 285
Ile Gln Ser Val Glu Leu Pro Val Ser Ile Val Ser Leu Pro Val Tyr
290 295 300
His Lys His Thr Phe Ile Val Leu Tyr Val Asp Phe Lys Pro Gln Ser
305 310 315 320
Gly Gly Gly Lys Cys Phe Asn Cys Tyr Pro Ala Gly Val Asn Ile Thr
325 330 335
Leu Ala Asn Phe Asn Glu Thr Lys Gly Pro Leu Cys Val Asp Thr Ser
340 345 350
His Phe Thr Thr Lys Tyr Val Ala Val Tyr Ala Asn Val Gly Arg Trp
355 360 365
Ser Ala Ser Ile Asn Thr Gly Asn Cys Pro Phe Ser Phe Gly Lys Val
370 375 380
Asn Asn Phe Val Lys Phe Gly Ser Val Cys Phe Ser Leu Lys Asp Ile
385 390 395 400
Pro Gly Gly Cys Ala Met Pro Ile Val Ala Asn Trp Ala Tyr Ser Lys
405 410 415
Tyr Tyr Thr Ile Gly Ser Leu Tyr Val Ser Trp Ser Asp Gly Asp Gly
420 425 430
Ile Thr Gly Val Pro Gln Pro Val Glu Gly Val Ser Ser Phe Met Asn
435 440 445
Val Thr Leu Asp Lys Cys Thr Lys Tyr Asn Ile Tyr Asp Val Ser Gly
450 455 460
Val Gly Val Ile Arg Val Ser Asn Asp Thr Phe Leu Asn Gly Ile Thr
465 470 475 480
Tyr Thr Ser Thr Ser Gly Asn Leu Leu Gly Phe Lys Asp Val Thr Lys
485 490 495
Gly Thr Ile Tyr Ser Ile Thr Pro Cys Asn Pro Pro Asp Gln Leu Val
500 505 510
Val Tyr Gln Gln Ala Val Val Gly Ala Met Leu Ser Glu Asn Phe Thr
515 520 525
Ser Tyr Gly Phe Ser Asn Val Val Glu Leu Pro Lys Phe Phe Tyr Ala
530 535 540
Ser Asn Gly Thr Tyr Asn Cys Thr Asp Ala Val Leu Thr Tyr Ser Ser
545 550 555 560
Phe Gly Val Cys Ala Asp Gly Ser Ile Ile Ala Val Gln Pro Ala Asn
565 570 575
Val Ser Tyr Asp Ser Val Ser Ala Ile Val Thr Ala Asn Leu Ser Ile
580 585 590
Pro Ser Asn Trp Thr Thr Ser Val Gln Val Glu Tyr Leu Gln Ile Thr
595 600 605
Ser Thr Pro Ile Val Val Asp Cys Ser Thr Tyr Val Cys Asn Gly Asn
610 615 620
Val Arg Cys Val Glu Leu Leu Lys Gln Tyr Thr Ser Ala Cys Lys Thr
625 630 635 640
Ile Glu Asp Ala Leu Arg Asn Ser Ala Arg Leu Glu Ser Ala Asp Val
645 650 655
Ser Glu Met Leu Thr Phe Asp Lys Lys Ala Phe Thr Leu Ala Asn Val
660 665 670
Ser Ser Phe Gly Asp Tyr Asn Leu Ser Ser Val Ile Pro Ser Leu Pro
675 680 685
Thr Ser Gly Ser Arg Val Ala Gly Arg Ser Ala Ile Glu Asp Ile Leu
690 695 700
Phe Ser Lys Leu Val Thr Ser Gly Leu Gly Thr Val Asp Ala Asp Tyr
705 710 715 720
Lys Lys Cys Thr Lys Gly Leu Ser Ile Ala Asp Leu Ala Cys Ala Gln
725 730 735
Tyr Tyr Asn Gly Ile Met Val Leu Pro Gly Val Ala Asp Ala Glu Arg
740 745 750
Met Ala Met Tyr Thr Gly Ser Leu Ile Gly Gly Ile Ala Leu Gly Gly
755 760 765
Leu Thr Ser Ala Val Ser Ile Pro Phe Ser Leu Ala Ile Gln Ala Arg
770 775 780
Leu Asn Tyr Val Ala Leu Gln Thr Asp Val Leu Gln Glu Asn Gln Lys
785 790 795 800
Ile Leu Ala Ala Ser Phe Asn Lys Ala Met Thr Asn Ile Val Asp Ala
805 810 815
Phe Thr Gly Val Asn Asp Ala Ile Thr Gln Thr Ser Gln Ala Leu Gln
820 825 830
Thr Val Ala Thr Ala Leu Asn Lys Ile Gln Asp Val Val Asn Gln Gln
835 840 845
Gly Asn Ser Leu Asn His Leu Thr Ser Gln Leu Arg Gln Asn Phe Gln
850 855 860
Ala Ile Ser Ser Ser Ile Gln Ala Ile Tyr Asp Arg Leu Asp Pro Pro
865 870 875 880
Gln Ala Asp Gln Gln Val Asp Arg Leu Ile Thr Gly Arg Leu Ala Ala
885 890 895
Leu Asn Val Phe Val Ser His Thr Leu Thr Lys Tyr Thr Glu Val Arg
900 905 910
Ala Ser Arg Gln Leu Ala Gln Gln Lys Val Asn Glu Cys Val Lys Ser
915 920 925
Gln Ser Lys Arg Tyr Gly Phe Cys Gly Asn Gly Thr His Ile Phe Ser
930 935 940
Ile Val Asn Ala Ala Pro Glu Gly Leu Val Phe Leu His Thr Val Leu
945 950 955 960
Leu Pro Thr Gln Tyr Lys Asp Val Glu Ala Trp Ser Gly Leu Cys Val
965 970 975
Asp Gly Thr Asn Gly Tyr Val Leu Arg Gln Pro Asn Leu Ala Leu Tyr
980 985 990
Lys Glu Gly Asn Tyr Tyr Arg Ile Thr Ser Arg Ile Met Phe Glu Pro
995 1000 1005
Arg Ile Pro Thr Met Ala Asp Phe Val Gln Ile Glu Asn Cys Asn Val
1010 1015 1020
Thr Phe Val Asn Ile Ser Arg Ser Glu Leu Gln Thr Ile Val Pro Glu
1025 1030 1035 1040
Tyr Ile Asp Val Asn Lys Thr Leu Gln Glu Leu Ser Tyr Lys Leu Pro
1045 1050 1055
Asn Tyr Thr Val Pro Asp Leu Val Val Glu Gln Tyr Asn Gln Thr Ile
1060 1065 1070
Leu Asn Leu Thr Ser Glu Ile Ser Thr Leu Glu Asn Lys Ser Ala Glu
1075 1080 1085
Leu Asn Tyr Thr Val Gln Lys Leu Gln Thr Leu Ile Asp Asn Ile Asn
1090 1095 1100
Ser Thr Leu Val Asp Leu Lys Trp Leu Asn Arg Val Glu Thr Tyr Ile
1105 1110 1115 1120
Lys Trp Pro Trp Trp Val Trp Leu Cys Ile Ser Val Val Leu Ile Phe
1125 1130 1135
Val Val Ser Met Leu Leu Leu Ser Phe Trp Met Cys Ser Asn Gly Ser
1140 1145 1150
Leu Gln Cys Arg Ile Cys Ile
1155
<210> 158
<211> 1360
<212> PRT
<213> OC 43-coronavirus
<400> 158
Met Phe Leu Ile Leu Leu Ile Ser Leu Pro Thr Ala Phe Ala Val Ile
1 5 10 15
Gly Asp Leu Asn Cys Thr Leu Asp Pro Arg Leu Lys Gly Ser Phe Asn
20 25 30
Asn Arg Asp Thr Gly Pro Pro Ser Ile Ser Ile Asp Thr Val Asp Val
35 40 45
Thr Asn Gly Leu Gly Thr Tyr Tyr Val Leu Asp Arg Val Tyr Leu Asn
50 55 60
Thr Thr Leu Phe Leu Asn Gly Tyr Tyr Pro Thr Ser Gly Ser Thr Tyr
65 70 75 80
Arg Asn Met Ala Leu Lys Gly Thr Asp Leu Leu Ser Thr Leu Trp Phe
85 90 95
Lys Pro Pro Phe Leu Ser Asp Phe Ile Asn Gly Ile Phe Ala Lys Val
100 105 110
Lys Asn Thr Lys Val Phe Lys Asp Gly Val Met Tyr Ser Glu Phe Pro
115 120 125
Ala Ile Thr Ile Gly Ser Thr Phe Val Asn Thr Ser Tyr Ser Val Val
130 135 140
Val Gln Pro Arg Thr Ile Asn Ser Thr Gln Asp Gly Val Asn Lys Leu
145 150 155 160
Gln Gly Leu Leu Glu Val Ser Val Cys Gln Tyr Asn Met Cys Glu Tyr
165 170 175
Pro His Thr Ile Cys His Pro Asn Leu Gly Asn His Phe Lys Glu Leu
180 185 190
Trp His Tyr Asp Thr Gly Val Val Ser Cys Leu Tyr Lys Arg Asn Phe
195 200 205
Thr Tyr Asp Val Asn Ala Thr Tyr Leu Tyr Phe His Phe Tyr Gln Glu
210 215 220
Gly Gly Thr Phe Tyr Ala Tyr Phe Thr Asp Thr Gly Phe Val Thr Lys
225 230 235 240
Phe Leu Phe Asn Val Tyr Leu Gly Met Ala Leu Ser His Tyr Tyr Val
245 250 255
Met Pro Leu Thr Cys Ile Arg Arg Pro Lys Asp Gly Phe Ser Leu Glu
260 265 270
Tyr Trp Val Thr Pro Leu Thr Pro Arg Gln Tyr Leu Leu Ala Phe Asn
275 280 285
Gln Asp Gly Ile Ile Phe Asn Ala Val Asp Cys Met Ser Asp Phe Met
290 295 300
Ser Glu Ile Lys Cys Lys Thr Gln Ser Ile Ala Pro Pro Thr Gly Val
305 310 315 320
Tyr Glu Leu Asn Gly Tyr Thr Val Gln Pro Val Ala Asp Val Tyr Arg
325 330 335
Arg Lys Pro Asp Leu Pro Asn Cys Asn Ile Glu Ala Trp Leu Asn Asp
340 345 350
Lys Ser Val Pro Ser Pro Leu Asn Trp Glu Arg Lys Thr Phe Ser Asn
355 360 365
Cys Asn Phe Asn Met Ser Ser Leu Met Ser Phe Ile Gln Ala Asp Ser
370 375 380
Phe Thr Cys Asn Asn Ile Asp Ala Ala Lys Ile Tyr Gly Met Cys Phe
385 390 395 400
Ser Ser Ile Thr Ile Asp Lys Phe Ala Ile Pro Asn Arg Arg Lys Val
405 410 415
Asp Leu Gln Leu Gly Asn Leu Gly Tyr Leu Gln Ser Ser Asn Tyr Arg
420 425 430
Ile Asp Thr Thr Ala Thr Ser Cys Gln Leu Tyr Tyr Asn Leu Pro Ala
435 440 445
Ala Asn Val Ser Val Ser Arg Phe Asn Pro Ser Thr Trp Asn Lys Arg
450 455 460
Phe Gly Phe Ile Glu Asp Ser Val Phe Val Pro Gln Pro Thr Gly Val
465 470 475 480
Phe Thr Asn His Ser Val Val Tyr Ala Gln His Cys Phe Lys Ala Pro
485 490 495
Lys Asn Phe Cys Pro Cys Ser Ser Cys Ser Cys Pro Gly Lys Asn Asn
500 505 510
Gly Ile Gly Thr Cys Pro Ala Gly Thr Asn Ser Leu Thr Cys Asp Asn
515 520 525
Leu Cys Thr Leu Asp Pro Ile Thr Leu Lys Ala Pro Asp Thr Tyr Lys
530 535 540
Cys Pro Gln Ser Lys Ser Leu Val Gly Ile Gly Glu His Cys Ser Gly
545 550 555 560
Leu Ala Val Lys Ser Asp Tyr Cys Gly Asn Asn Ser Cys Thr Cys Gln
565 570 575
Pro Gln Ala Phe Leu Gly Trp Ser Ala Asp Ser Cys Leu Gln Gly Asp
580 585 590
Lys Cys Asn Ile Phe Ala Asn Phe Ile Leu His Asp Val Asn Asn Gly
595 600 605
Leu Thr Cys Ser Thr Asp Leu Gln Lys Ala Asn Thr Glu Ile Glu Leu
610 615 620
Gly Val Cys Val Asn Tyr Asp Leu Tyr Gly Ile Ser Gly Gln Gly Ile
625 630 635 640
Phe Val Glu Val Asn Ala Thr Tyr Tyr Asn Ser Trp Gln Asn Leu Leu
645 650 655
Tyr Asp Ser Asn Gly Asn Leu Tyr Gly Phe Arg Asp Tyr Ile Thr Asn
660 665 670
Arg Thr Phe Met Ile His Ser Cys Tyr Ser Gly Arg Val Ser Ala Ala
675 680 685
Tyr His Ala Asn Ser Ser Glu Pro Ala Leu Leu Phe Arg Asn Ile Lys
690 695 700
Cys Asn Tyr Val Phe Asn Asn Ser Leu Thr Arg Gln Leu Gln Pro Ile
705 710 715 720
Asn Tyr Ser Phe Asp Ser Tyr Leu Gly Cys Val Val Asn Ala Tyr Asn
725 730 735
Ser Thr Ala Ile Ser Val Gln Thr Cys Asp Leu Thr Val Gly Ser Gly
740 745 750
Tyr Cys Val Asp Tyr Ser Lys Asn Arg Arg Ser Arg Arg Ala Ile Thr
755 760 765
Thr Gly Tyr Arg Phe Thr Asn Phe Glu Pro Phe Thr Val Asn Ser Val
770 775 780
Asn Asp Ser Leu Glu Pro Val Gly Gly Leu Tyr Glu Ile Gln Ile Pro
785 790 795 800
Ser Glu Phe Thr Ile Gly Asn Met Glu Glu Phe Ile Gln Thr Ser Ser
805 810 815
Pro Lys Val Thr Ile Asp Cys Ala Ala Phe Val Cys Gly Asp Tyr Ala
820 825 830
Ala Cys Lys Leu Gln Leu Val Glu Tyr Gly Ser Phe Cys Asp Asn Ile
835 840 845
Asn Ala Ile Leu Thr Glu Val Asn Glu Leu Leu Asp Thr Thr Gln Leu
850 855 860
Gln Val Ala Asn Ser Leu Met Asn Gly Val Thr Leu Ser Thr Lys Leu
865 870 875 880
Lys Asp Gly Val Asn Phe Asn Val Asp Asp Ile Asn Phe Ser Pro Val
885 890 895
Leu Gly Cys Leu Gly Ser Glu Cys Ser Lys Ala Ser Ser Arg Ser Ala
900 905 910
Ile Glu Asp Leu Leu Phe Asp Lys Val Lys Leu Ser Asp Val Gly Phe
915 920 925
Val Glu Ala Tyr Asn Asn Cys Thr Gly Gly Ala Glu Ile Arg Asp Leu
930 935 940
Ile Cys Val Gln Ser Tyr Lys Gly Ile Lys Val Leu Pro Pro Leu Leu
945 950 955 960
Ser Glu Asn Gln Ile Ser Gly Tyr Thr Leu Ala Ala Thr Ser Ala Ser
965 970 975
Leu Phe Pro Pro Trp Thr Ala Ala Ala Gly Val Pro Phe Tyr Leu Asn
980 985 990
Val Gln Tyr Arg Ile Asn Gly Leu Gly Val Thr Met Asp Val Leu Ser
995 1000 1005
Gln Asn Gln Lys Leu Ile Ala Asn Ala Phe Asn Asn Ala Leu His Ala
1010 1015 1020
Ile Gln Gln Gly Phe Asp Ala Thr Asn Ser Ala Leu Val Lys Ile Gln
1025 1030 1035 1040
Ala Val Val Asn Ala Asn Ala Glu Ala Leu Asn Asn Leu Leu Gln Gln
1045 1050 1055
Leu Ser Asn Arg Phe Gly Ala Ile Ser Ala Ser Leu Gln Glu Ile Leu
1060 1065 1070
Ser Arg Leu Asp Ala Leu Glu Ala Glu Ala Gln Ile Asp Arg Leu Ile
1075 1080 1085
Asn Gly Arg Leu Thr Ala Leu Asn Ala Tyr Val Ser Gln Gln Leu Ser
1090 1095 1100
Asp Ser Thr Leu Val Lys Phe Ser Ala Ala Gln Ala Met Glu Lys Val
1105 1110 1115 1120
Asn Glu Cys Val Lys Ser Gln Ser Ser Arg Ile Asn Phe Cys Gly Asn
1125 1130 1135
Gly Asn His Ile Ile Ser Leu Val Gln Asn Ala Pro Tyr Gly Leu Tyr
1140 1145 1150
Phe Ile His Phe Asn Tyr Val Pro Thr Lys Tyr Val Thr Ala Lys Val
1155 1160 1165
Ser Pro Gly Leu Cys Ile Ala Gly Asn Arg Gly Ile Ala Pro Lys Ser
1170 1175 1180
Gly Tyr Phe Val Asn Val Asn Asn Thr Trp Met Tyr Thr Gly Ser Gly
1185 1190 1195 1200
Tyr Tyr Tyr Pro Glu Pro Ile Thr Glu Asn Asn Val Val Val Met Ser
1205 1210 1215
Thr Cys Ala Val Asn Tyr Thr Lys Ala Pro Tyr Val Met Leu Asn Thr
1220 1225 1230
Ser Ile Pro Asn Leu Pro Asp Phe Lys Glu Glu Leu Asp Gln Trp Phe
1235 1240 1245
Lys Asn Gln Thr Ser Val Ala Pro Asp Leu Ser Leu Asp Tyr Ile Asn
1250 1255 1260
Val Thr Phe Leu Asp Leu Gln Val Glu Met Asn Arg Leu Gln Glu Ala
1265 1270 1275 1280
Ile Lys Val Leu Asn His Ser Tyr Ile Asn Leu Lys Asp Ile Gly Thr
1285 1290 1295
Tyr Glu Tyr Tyr Val Lys Trp Pro Trp Tyr Val Trp Leu Leu Ile Cys
1300 1305 1310
Leu Ala Gly Val Ala Met Leu Val Leu Leu Phe Phe Ile Cys Cys Cys
1315 1320 1325
Thr Gly Cys Gly Thr Ser Cys Phe Lys Lys Cys Gly Gly Cys Cys Asp
1330 1335 1340
Asp Tyr Thr Gly Tyr Gln Glu Leu Val Ile Lys Thr Ser His Asp Asp
1345 1350 1355 1360
<210> 159
<211> 1173
<212> PRT
<213> 229E coronavirus
<400> 159
Met Phe Val Leu Leu Val Ala Tyr Ala Leu Leu His Ile Ala Gly Cys
1 5 10 15
Gln Thr Thr Asn Gly Leu Asn Thr Ser Tyr Ser Val Cys Asn Gly Cys
20 25 30
Val Gly Tyr Ser Glu Asn Val Phe Ala Val Glu Ser Gly Gly Tyr Ile
35 40 45
Pro Ser Asp Phe Ala Phe Asn Asn Trp Phe Leu Leu Thr Asn Thr Ser
50 55 60
Ser Val Val Asp Gly Val Val Arg Ser Phe Gln Pro Leu Leu Leu Asn
65 70 75 80
Cys Leu Trp Ser Val Ser Gly Leu Arg Phe Thr Thr Gly Phe Val Tyr
85 90 95
Phe Asn Gly Thr Gly Arg Gly Asp Cys Lys Gly Phe Ser Ser Asp Val
100 105 110
Leu Ser Asp Val Ile Arg Tyr Asn Leu Asn Phe Glu Glu Asn Leu Arg
115 120 125
Arg Gly Thr Ile Leu Phe Lys Thr Ser Tyr Gly Val Val Val Phe Tyr
130 135 140
Cys Thr Asn Asn Thr Leu Val Ser Gly Asp Ala His Ile Pro Phe Gly
145 150 155 160
Thr Val Leu Gly Asn Phe Tyr Cys Phe Val Asn Thr Thr Ile Gly Asn
165 170 175
Glu Thr Thr Ser Ala Phe Val Gly Ala Leu Pro Lys Thr Val Arg Glu
180 185 190
Phe Val Ile Ser Arg Thr Gly His Phe Tyr Ile Asn Gly Tyr Arg Tyr
195 200 205
Phe Thr Leu Gly Asn Val Glu Ala Val Asn Phe Asn Val Thr Thr Ala
210 215 220
Glu Thr Thr Asp Phe Cys Thr Val Ala Leu Ala Ser Tyr Ala Asp Val
225 230 235 240
Leu Val Asn Val Ser Gln Thr Ser Ile Ala Asn Ile Ile Tyr Cys Asn
245 250 255
Ser Val Ile Asn Arg Leu Arg Cys Asp Gln Leu Ser Phe Asp Val Pro
260 265 270
Asp Gly Phe Tyr Ser Thr Ser Pro Ile Gln Ser Val Glu Leu Pro Val
275 280 285
Ser Ile Val Ser Leu Pro Val Tyr His Lys His Thr Phe Ile Val Leu
290 295 300
Tyr Val Asp Phe Lys Pro Gln Ser Gly Gly Gly Lys Cys Phe Asn Cys
305 310 315 320
Tyr Pro Ala Gly Val Asn Ile Thr Leu Ala Asn Phe Asn Glu Thr Lys
325 330 335
Gly Pro Leu Cys Val Asp Thr Ser His Phe Thr Thr Lys Tyr Val Ala
340 345 350
Val Tyr Ala Asn Val Gly Arg Trp Ser Ala Ser Ile Asn Thr Gly Asn
355 360 365
Cys Pro Phe Ser Phe Gly Lys Val Asn Asn Phe Val Lys Phe Gly Ser
370 375 380
Val Cys Phe Ser Leu Lys Asp Ile Pro Gly Gly Cys Ala Met Pro Ile
385 390 395 400
Val Ala Asn Trp Ala Tyr Ser Lys Tyr Tyr Thr Ile Gly Ser Leu Tyr
405 410 415
Val Ser Trp Ser Asp Gly Asp Gly Ile Thr Gly Val Pro Gln Pro Val
420 425 430
Glu Gly Val Ser Ser Phe Met Asn Val Thr Leu Asp Lys Cys Thr Lys
435 440 445
Tyr Asn Ile Tyr Asp Val Ser Gly Val Gly Val Ile Arg Val Ser Asn
450 455 460
Asp Thr Phe Leu Asn Gly Ile Thr Tyr Thr Ser Thr Ser Gly Asn Leu
465 470 475 480
Leu Gly Phe Lys Asp Val Thr Lys Gly Thr Ile Tyr Ser Ile Thr Pro
485 490 495
Cys Asn Pro Pro Asp Gln Leu Val Val Tyr Gln Gln Ala Val Val Gly
500 505 510
Ala Met Leu Ser Glu Asn Phe Thr Ser Tyr Gly Phe Ser Asn Val Val
515 520 525
Glu Leu Pro Lys Phe Phe Tyr Ala Ser Asn Gly Thr Tyr Asn Cys Thr
530 535 540
Asp Ala Val Leu Thr Tyr Ser Ser Phe Gly Val Cys Ala Asp Gly Ser
545 550 555 560
Ile Ile Ala Val Gln Pro Arg Asn Val Ser Tyr Asp Ser Val Ser Ala
565 570 575
Ile Val Thr Ala Asn Leu Ser Ile Pro Ser Asn Trp Thr Thr Ser Val
580 585 590
Gln Val Glu Tyr Leu Gln Ile Thr Ser Thr Pro Ile Val Val Asp Cys
595 600 605
Ser Thr Tyr Val Cys Asn Gly Asn Val Arg Cys Val Glu Leu Leu Lys
610 615 620
Gln Tyr Thr Ser Ala Cys Lys Thr Ile Glu Asp Ala Leu Arg Asn Ser
625 630 635 640
Ala Arg Leu Glu Ser Ala Asp Val Ser Glu Met Leu Thr Phe Asp Lys
645 650 655
Lys Ala Phe Thr Leu Ala Asn Val Ser Ser Phe Gly Asp Tyr Asn Leu
660 665 670
Ser Ser Val Ile Pro Ser Leu Pro Thr Ser Gly Ser Arg Val Ala Gly
675 680 685
Arg Ser Ala Ile Glu Asp Ile Leu Phe Ser Lys Leu Val Thr Ser Gly
690 695 700
Leu Gly Thr Val Asp Ala Asp Tyr Lys Lys Cys Thr Lys Gly Leu Ser
705 710 715 720
Ile Ala Asp Leu Ala Cys Ala Gln Tyr Tyr Asn Gly Ile Met Val Leu
725 730 735
Pro Gly Val Ala Asp Ala Glu Arg Met Ala Met Tyr Thr Gly Ser Leu
740 745 750
Ile Gly Gly Ile Ala Leu Gly Gly Leu Thr Ser Ala Val Ser Ile Pro
755 760 765
Phe Ser Leu Ala Ile Gln Ala Arg Leu Asn Tyr Val Ala Leu Gln Thr
770 775 780
Asp Val Leu Gln Glu Asn Gln Lys Ile Leu Ala Ala Ser Phe Asn Lys
785 790 795 800
Ala Met Thr Asn Ile Val Asp Ala Phe Thr Gly Val Asn Asp Ala Ile
805 810 815
Thr Gln Thr Ser Gln Ala Leu Gln Thr Val Ala Thr Ala Leu Asn Lys
820 825 830
Ile Gln Asp Val Val Asn Gln Gln Gly Asn Ser Leu Asn His Leu Thr
835 840 845
Ser Gln Leu Arg Gln Asn Phe Gln Ala Ile Ser Ser Ser Ile Gln Ala
850 855 860
Ile Tyr Asp Arg Leu Asp Thr Ile Gln Ala Asp Gln Gln Val Asp Arg
865 870 875 880
Leu Ile Thr Gly Arg Leu Ala Ala Leu Asn Val Phe Val Ser His Thr
885 890 895
Leu Thr Lys Tyr Thr Glu Val Arg Ala Ser Arg Gln Leu Ala Gln Gln
900 905 910
Lys Val Asn Glu Cys Val Lys Ser Gln Ser Lys Arg Tyr Gly Phe Cys
915 920 925
Gly Asn Gly Thr His Ile Phe Ser Ile Val Asn Ala Ala Pro Glu Gly
930 935 940
Leu Val Phe Leu His Thr Val Leu Leu Pro Thr Gln Tyr Lys Asp Val
945 950 955 960
Glu Ala Trp Ser Gly Leu Cys Val Asp Gly Thr Asn Gly Tyr Val Leu
965 970 975
Arg Gln Pro Asn Leu Ala Leu Tyr Lys Glu Gly Asn Tyr Tyr Arg Ile
980 985 990
Thr Ser Arg Ile Met Phe Glu Pro Arg Ile Pro Thr Met Ala Asp Phe
995 1000 1005
Val Gln Ile Glu Asn Cys Asn Val Thr Phe Val Asn Ile Ser Arg Ser
1010 1015 1020
Glu Leu Gln Thr Ile Val Pro Glu Tyr Ile Asp Val Asn Lys Thr Leu
1025 1030 1035 1040
Gln Glu Leu Ser Tyr Lys Leu Pro Asn Tyr Thr Val Pro Asp Leu Val
1045 1050 1055
Val Glu Gln Tyr Asn Gln Thr Ile Leu Asn Leu Thr Ser Glu Ile Ser
1060 1065 1070
Thr Leu Glu Asn Lys Ser Ala Glu Leu Asn Tyr Thr Val Gln Lys Leu
1075 1080 1085
Gln Thr Leu Ile Asp Asn Ile Asn Ser Thr Leu Val Asp Leu Lys Trp
1090 1095 1100
Leu Asn Arg Val Glu Thr Tyr Ile Lys Trp Pro Trp Trp Val Trp Leu
1105 1110 1115 1120
Cys Ile Ser Val Val Leu Ile Phe Val Val Ser Met Leu Leu Leu Cys
1125 1130 1135
Cys Cys Ser Thr Gly Cys Cys Gly Phe Phe Ser Cys Phe Ala Ser Ser
1140 1145 1150
Ile Arg Gly Cys Cys Glu Ser Thr Lys Leu Pro Tyr Tyr Asp Val Glu
1155 1160 1165
Lys Ile His Ile Gln
1170
<210> 160
<211> 1346
<212> PRT
<213> OC43 coronavirus
<400> 160
Val Ile Gly Asp Leu Asn Cys Thr Leu Asp Pro Arg Leu Lys Gly Ser
1 5 10 15
Phe Asn Asn Arg Asp Thr Gly Pro Pro Ser Ile Ser Ile Asp Thr Val
20 25 30
Asp Val Thr Asn Gly Leu Gly Thr Tyr Tyr Val Leu Asp Arg Val Tyr
35 40 45
Leu Asn Thr Thr Leu Phe Leu Asn Gly Tyr Tyr Pro Thr Ser Gly Ser
50 55 60
Thr Tyr Arg Asn Met Ala Leu Lys Gly Thr Asp Leu Leu Ser Thr Leu
65 70 75 80
Trp Phe Lys Pro Pro Phe Leu Ser Asp Phe Ile Asn Gly Ile Phe Ala
85 90 95
Lys Val Lys Asn Thr Lys Val Phe Lys Asp Gly Val Met Tyr Ser Glu
100 105 110
Phe Pro Ala Ile Thr Ile Gly Ser Thr Phe Val Asn Thr Ser Tyr Ser
115 120 125
Val Val Val Gln Pro Arg Thr Ile Asn Ser Thr Gln Asp Gly Val Asn
130 135 140
Lys Leu Gln Gly Leu Leu Glu Val Ser Val Cys Gln Tyr Asn Met Cys
145 150 155 160
Glu Tyr Pro His Thr Ile Cys His Pro Asn Leu Gly Asn His Phe Lys
165 170 175
Glu Leu Trp His Tyr Asp Thr Gly Val Val Ser Cys Leu Tyr Lys Arg
180 185 190
Asn Phe Thr Tyr Asp Val Asn Ala Thr Tyr Leu Tyr Phe His Phe Tyr
195 200 205
Gln Glu Gly Gly Thr Phe Tyr Ala Tyr Phe Thr Asp Thr Gly Phe Val
210 215 220
Thr Lys Phe Leu Phe Asn Val Tyr Leu Gly Met Ala Leu Ser His Tyr
225 230 235 240
Tyr Val Met Pro Leu Thr Cys Ile Arg Arg Pro Lys Asp Gly Phe Ser
245 250 255
Leu Glu Tyr Trp Val Thr Pro Leu Thr Pro Arg Gln Tyr Leu Leu Ala
260 265 270
Phe Asn Gln Asp Gly Ile Ile Phe Asn Ala Val Asp Cys Met Ser Asp
275 280 285
Phe Met Ser Glu Ile Lys Cys Lys Thr Gln Ser Ile Ala Pro Pro Thr
290 295 300
Gly Val Tyr Glu Leu Asn Gly Tyr Thr Val Gln Pro Val Ala Asp Val
305 310 315 320
Tyr Arg Arg Lys Pro Asp Leu Pro Asn Cys Asn Ile Glu Ala Trp Leu
325 330 335
Asn Asp Lys Ser Val Pro Ser Pro Leu Asn Trp Glu Arg Lys Thr Phe
340 345 350
Ser Asn Cys Asn Phe Asn Met Ser Ser Leu Met Ser Phe Ile Gln Ala
355 360 365
Asp Ser Phe Thr Cys Asn Asn Ile Asp Ala Ala Lys Ile Tyr Gly Met
370 375 380
Cys Phe Ser Ser Ile Thr Ile Asp Lys Phe Ala Ile Pro Asn Arg Arg
385 390 395 400
Lys Val Asp Leu Gln Leu Gly Asn Leu Gly Tyr Leu Gln Ser Ser Asn
405 410 415
Tyr Arg Ile Asp Thr Thr Ala Thr Ser Cys Gln Leu Tyr Tyr Asn Leu
420 425 430
Pro Ala Ala Asn Val Ser Val Ser Arg Phe Asn Pro Ser Thr Trp Asn
435 440 445
Lys Arg Phe Gly Phe Ile Glu Asp Ser Val Phe Val Pro Gln Pro Thr
450 455 460
Gly Val Phe Thr Asn His Ser Val Val Tyr Ala Gln His Cys Phe Lys
465 470 475 480
Ala Pro Lys Asn Phe Cys Pro Cys Ser Ser Cys Ser Cys Pro Gly Lys
485 490 495
Asn Asn Gly Ile Gly Thr Cys Pro Ala Gly Thr Asn Ser Leu Thr Cys
500 505 510
Asp Asn Leu Cys Thr Leu Asp Pro Ile Thr Leu Lys Ala Pro Asp Thr
515 520 525
Tyr Lys Cys Pro Gln Ser Lys Ser Leu Val Gly Ile Gly Glu His Cys
530 535 540
Ser Gly Leu Ala Val Lys Ser Asp Tyr Cys Gly Asn Asn Ser Cys Thr
545 550 555 560
Cys Gln Pro Gln Ala Phe Leu Gly Trp Ser Ala Asp Ser Cys Leu Gln
565 570 575
Gly Asp Lys Cys Asn Ile Phe Ala Asn Phe Ile Leu His Asp Val Asn
580 585 590
Asn Gly Leu Thr Cys Ser Thr Asp Leu Gln Lys Ala Asn Thr Glu Ile
595 600 605
Glu Leu Gly Val Cys Val Asn Tyr Asp Leu Tyr Gly Ile Ser Gly Gln
610 615 620
Gly Ile Phe Val Glu Val Asn Ala Thr Tyr Tyr Asn Ser Trp Gln Asn
625 630 635 640
Leu Leu Tyr Asp Ser Asn Gly Asn Leu Tyr Gly Phe Arg Asp Tyr Ile
645 650 655
Thr Asn Arg Thr Phe Met Ile His Ser Cys Tyr Ser Gly Arg Val Ser
660 665 670
Ala Ala Tyr His Ala Asn Ser Ser Glu Pro Ala Leu Leu Phe Arg Asn
675 680 685
Ile Lys Cys Asn Tyr Val Phe Asn Asn Ser Leu Thr Arg Gln Leu Gln
690 695 700
Pro Ile Asn Tyr Ser Phe Asp Ser Tyr Leu Gly Cys Val Val Asn Ala
705 710 715 720
Tyr Asn Ser Thr Ala Ile Ser Val Gln Thr Cys Asp Leu Thr Val Gly
725 730 735
Ser Gly Tyr Cys Val Asp Tyr Ser Lys Asn Arg Arg Ser Arg Arg Ala
740 745 750
Ile Thr Thr Gly Tyr Arg Phe Thr Asn Phe Glu Pro Phe Thr Val Asn
755 760 765
Ser Val Asn Asp Ser Leu Glu Pro Val Gly Gly Leu Tyr Glu Ile Gln
770 775 780
Ile Pro Ser Glu Phe Thr Ile Gly Asn Met Glu Glu Phe Ile Gln Thr
785 790 795 800
Ser Ser Pro Lys Val Thr Ile Asp Cys Ala Ala Phe Val Cys Gly Asp
805 810 815
Tyr Ala Ala Cys Lys Leu Gln Leu Val Glu Tyr Gly Ser Phe Cys Asp
820 825 830
Asn Ile Asn Ala Ile Leu Thr Glu Val Asn Glu Leu Leu Asp Thr Thr
835 840 845
Gln Leu Gln Val Ala Asn Ser Leu Met Asn Gly Val Thr Leu Ser Thr
850 855 860
Lys Leu Lys Asp Gly Val Asn Phe Asn Val Asp Asp Ile Asn Phe Ser
865 870 875 880
Pro Val Leu Gly Cys Leu Gly Ser Glu Cys Ser Lys Ala Ser Ser Arg
885 890 895
Ser Ala Ile Glu Asp Leu Leu Phe Asp Lys Val Lys Leu Ser Asp Val
900 905 910
Gly Phe Val Glu Ala Tyr Asn Asn Cys Thr Gly Gly Ala Glu Ile Arg
915 920 925
Asp Leu Ile Cys Val Gln Ser Tyr Lys Gly Ile Lys Val Leu Pro Pro
930 935 940
Leu Leu Ser Glu Asn Gln Ile Ser Gly Tyr Thr Leu Ala Ala Thr Ser
945 950 955 960
Ala Ser Leu Phe Pro Pro Trp Thr Ala Ala Ala Gly Val Pro Phe Tyr
965 970 975
Leu Asn Val Gln Tyr Arg Ile Asn Gly Leu Gly Val Thr Met Asp Val
980 985 990
Leu Ser Gln Asn Gln Lys Leu Ile Ala Asn Ala Phe Asn Asn Ala Leu
995 1000 1005
His Ala Ile Gln Gln Gly Phe Asp Ala Thr Asn Ser Ala Leu Val Lys
1010 1015 1020
Ile Gln Ala Val Val Asn Ala Asn Ala Glu Ala Leu Asn Asn Leu Leu
1025 1030 1035 1040
Gln Gln Leu Ser Asn Arg Phe Gly Ala Ile Ser Ala Ser Leu Gln Glu
1045 1050 1055
Ile Leu Ser Arg Leu Asp Ala Leu Glu Ala Glu Ala Gln Ile Asp Arg
1060 1065 1070
Leu Ile Asn Gly Arg Leu Thr Ala Leu Asn Ala Tyr Val Ser Gln Gln
1075 1080 1085
Leu Ser Asp Ser Thr Leu Val Lys Phe Ser Ala Ala Gln Ala Met Glu
1090 1095 1100
Lys Val Asn Glu Cys Val Lys Ser Gln Ser Ser Arg Ile Asn Phe Cys
1105 1110 1115 1120
Gly Asn Gly Asn His Ile Ile Ser Leu Val Gln Asn Ala Pro Tyr Gly
1125 1130 1135
Leu Tyr Phe Ile His Phe Asn Tyr Val Pro Thr Lys Tyr Val Thr Ala
1140 1145 1150
Lys Val Ser Pro Gly Leu Cys Ile Ala Gly Asn Arg Gly Ile Ala Pro
1155 1160 1165
Lys Ser Gly Tyr Phe Val Asn Val Asn Asn Thr Trp Met Tyr Thr Gly
1170 1175 1180
Ser Gly Tyr Tyr Tyr Pro Glu Pro Ile Thr Glu Asn Asn Val Val Val
1185 1190 1195 1200
Met Ser Thr Cys Ala Val Asn Tyr Thr Lys Ala Pro Tyr Val Met Leu
1205 1210 1215
Asn Thr Ser Ile Pro Asn Leu Pro Asp Phe Lys Glu Glu Leu Asp Gln
1220 1225 1230
Trp Phe Lys Asn Gln Thr Ser Val Ala Pro Asp Leu Ser Leu Asp Tyr
1235 1240 1245
Ile Asn Val Thr Phe Leu Asp Leu Gln Val Glu Met Asn Arg Leu Gln
1250 1255 1260
Glu Ala Ile Lys Val Leu Asn His Ser Tyr Ile Asn Leu Lys Asp Ile
1265 1270 1275 1280
Gly Thr Tyr Glu Tyr Tyr Val Lys Trp Pro Trp Tyr Val Trp Leu Leu
1285 1290 1295
Ile Cys Leu Ala Gly Val Ala Met Leu Val Leu Leu Phe Phe Ile Cys
1300 1305 1310
Cys Cys Thr Gly Cys Gly Thr Ser Cys Phe Lys Lys Cys Gly Gly Cys
1315 1320 1325
Cys Asp Asp Tyr Thr Gly Tyr Gln Glu Leu Val Ile Lys Thr Ser His
1330 1335 1340
Asp Asp
1345
<210> 161
<211> 1157
<212> PRT
<213> 229E coronavirus
<400> 161
Gln Thr Thr Asn Gly Leu Asn Thr Ser Tyr Ser Val Cys Asn Gly Cys
1 5 10 15
Val Gly Tyr Ser Glu Asn Val Phe Ala Val Glu Ser Gly Gly Tyr Ile
20 25 30
Pro Ser Asp Phe Ala Phe Asn Asn Trp Phe Leu Leu Thr Asn Thr Ser
35 40 45
Ser Val Val Asp Gly Val Val Arg Ser Phe Gln Pro Leu Leu Leu Asn
50 55 60
Cys Leu Trp Ser Val Ser Gly Leu Arg Phe Thr Thr Gly Phe Val Tyr
65 70 75 80
Phe Asn Gly Thr Gly Arg Gly Asp Cys Lys Gly Phe Ser Ser Asp Val
85 90 95
Leu Ser Asp Val Ile Arg Tyr Asn Leu Asn Phe Glu Glu Asn Leu Arg
100 105 110
Arg Gly Thr Ile Leu Phe Lys Thr Ser Tyr Gly Val Val Val Phe Tyr
115 120 125
Cys Thr Asn Asn Thr Leu Val Ser Gly Asp Ala His Ile Pro Phe Gly
130 135 140
Thr Val Leu Gly Asn Phe Tyr Cys Phe Val Asn Thr Thr Ile Gly Asn
145 150 155 160
Glu Thr Thr Ser Ala Phe Val Gly Ala Leu Pro Lys Thr Val Arg Glu
165 170 175
Phe Val Ile Ser Arg Thr Gly His Phe Tyr Ile Asn Gly Tyr Arg Tyr
180 185 190
Phe Thr Leu Gly Asn Val Glu Ala Val Asn Phe Asn Val Thr Thr Ala
195 200 205
Glu Thr Thr Asp Phe Cys Thr Val Ala Leu Ala Ser Tyr Ala Asp Val
210 215 220
Leu Val Asn Val Ser Gln Thr Ser Ile Ala Asn Ile Ile Tyr Cys Asn
225 230 235 240
Ser Val Ile Asn Arg Leu Arg Cys Asp Gln Leu Ser Phe Asp Val Pro
245 250 255
Asp Gly Phe Tyr Ser Thr Ser Pro Ile Gln Ser Val Glu Leu Pro Val
260 265 270
Ser Ile Val Ser Leu Pro Val Tyr His Lys His Thr Phe Ile Val Leu
275 280 285
Tyr Val Asp Phe Lys Pro Gln Ser Gly Gly Gly Lys Cys Phe Asn Cys
290 295 300
Tyr Pro Ala Gly Val Asn Ile Thr Leu Ala Asn Phe Asn Glu Thr Lys
305 310 315 320
Gly Pro Leu Cys Val Asp Thr Ser His Phe Thr Thr Lys Tyr Val Ala
325 330 335
Val Tyr Ala Asn Val Gly Arg Trp Ser Ala Ser Ile Asn Thr Gly Asn
340 345 350
Cys Pro Phe Ser Phe Gly Lys Val Asn Asn Phe Val Lys Phe Gly Ser
355 360 365
Val Cys Phe Ser Leu Lys Asp Ile Pro Gly Gly Cys Ala Met Pro Ile
370 375 380
Val Ala Asn Trp Ala Tyr Ser Lys Tyr Tyr Thr Ile Gly Ser Leu Tyr
385 390 395 400
Val Ser Trp Ser Asp Gly Asp Gly Ile Thr Gly Val Pro Gln Pro Val
405 410 415
Glu Gly Val Ser Ser Phe Met Asn Val Thr Leu Asp Lys Cys Thr Lys
420 425 430
Tyr Asn Ile Tyr Asp Val Ser Gly Val Gly Val Ile Arg Val Ser Asn
435 440 445
Asp Thr Phe Leu Asn Gly Ile Thr Tyr Thr Ser Thr Ser Gly Asn Leu
450 455 460
Leu Gly Phe Lys Asp Val Thr Lys Gly Thr Ile Tyr Ser Ile Thr Pro
465 470 475 480
Cys Asn Pro Pro Asp Gln Leu Val Val Tyr Gln Gln Ala Val Val Gly
485 490 495
Ala Met Leu Ser Glu Asn Phe Thr Ser Tyr Gly Phe Ser Asn Val Val
500 505 510
Glu Leu Pro Lys Phe Phe Tyr Ala Ser Asn Gly Thr Tyr Asn Cys Thr
515 520 525
Asp Ala Val Leu Thr Tyr Ser Ser Phe Gly Val Cys Ala Asp Gly Ser
530 535 540
Ile Ile Ala Val Gln Pro Arg Asn Val Ser Tyr Asp Ser Val Ser Ala
545 550 555 560
Ile Val Thr Ala Asn Leu Ser Ile Pro Ser Asn Trp Thr Thr Ser Val
565 570 575
Gln Val Glu Tyr Leu Gln Ile Thr Ser Thr Pro Ile Val Val Asp Cys
580 585 590
Ser Thr Tyr Val Cys Asn Gly Asn Val Arg Cys Val Glu Leu Leu Lys
595 600 605
Gln Tyr Thr Ser Ala Cys Lys Thr Ile Glu Asp Ala Leu Arg Asn Ser
610 615 620
Ala Arg Leu Glu Ser Ala Asp Val Ser Glu Met Leu Thr Phe Asp Lys
625 630 635 640
Lys Ala Phe Thr Leu Ala Asn Val Ser Ser Phe Gly Asp Tyr Asn Leu
645 650 655
Ser Ser Val Ile Pro Ser Leu Pro Thr Ser Gly Ser Arg Val Ala Gly
660 665 670
Arg Ser Ala Ile Glu Asp Ile Leu Phe Ser Lys Leu Val Thr Ser Gly
675 680 685
Leu Gly Thr Val Asp Ala Asp Tyr Lys Lys Cys Thr Lys Gly Leu Ser
690 695 700
Ile Ala Asp Leu Ala Cys Ala Gln Tyr Tyr Asn Gly Ile Met Val Leu
705 710 715 720
Pro Gly Val Ala Asp Ala Glu Arg Met Ala Met Tyr Thr Gly Ser Leu
725 730 735
Ile Gly Gly Ile Ala Leu Gly Gly Leu Thr Ser Ala Val Ser Ile Pro
740 745 750
Phe Ser Leu Ala Ile Gln Ala Arg Leu Asn Tyr Val Ala Leu Gln Thr
755 760 765
Asp Val Leu Gln Glu Asn Gln Lys Ile Leu Ala Ala Ser Phe Asn Lys
770 775 780
Ala Met Thr Asn Ile Val Asp Ala Phe Thr Gly Val Asn Asp Ala Ile
785 790 795 800
Thr Gln Thr Ser Gln Ala Leu Gln Thr Val Ala Thr Ala Leu Asn Lys
805 810 815
Ile Gln Asp Val Val Asn Gln Gln Gly Asn Ser Leu Asn His Leu Thr
820 825 830
Ser Gln Leu Arg Gln Asn Phe Gln Ala Ile Ser Ser Ser Ile Gln Ala
835 840 845
Ile Tyr Asp Arg Leu Asp Thr Ile Gln Ala Asp Gln Gln Val Asp Arg
850 855 860
Leu Ile Thr Gly Arg Leu Ala Ala Leu Asn Val Phe Val Ser His Thr
865 870 875 880
Leu Thr Lys Tyr Thr Glu Val Arg Ala Ser Arg Gln Leu Ala Gln Gln
885 890 895
Lys Val Asn Glu Cys Val Lys Ser Gln Ser Lys Arg Tyr Gly Phe Cys
900 905 910
Gly Asn Gly Thr His Ile Phe Ser Ile Val Asn Ala Ala Pro Glu Gly
915 920 925
Leu Val Phe Leu His Thr Val Leu Leu Pro Thr Gln Tyr Lys Asp Val
930 935 940
Glu Ala Trp Ser Gly Leu Cys Val Asp Gly Thr Asn Gly Tyr Val Leu
945 950 955 960
Arg Gln Pro Asn Leu Ala Leu Tyr Lys Glu Gly Asn Tyr Tyr Arg Ile
965 970 975
Thr Ser Arg Ile Met Phe Glu Pro Arg Ile Pro Thr Met Ala Asp Phe
980 985 990
Val Gln Ile Glu Asn Cys Asn Val Thr Phe Val Asn Ile Ser Arg Ser
995 1000 1005
Glu Leu Gln Thr Ile Val Pro Glu Tyr Ile Asp Val Asn Lys Thr Leu
1010 1015 1020
Gln Glu Leu Ser Tyr Lys Leu Pro Asn Tyr Thr Val Pro Asp Leu Val
1025 1030 1035 1040
Val Glu Gln Tyr Asn Gln Thr Ile Leu Asn Leu Thr Ser Glu Ile Ser
1045 1050 1055
Thr Leu Glu Asn Lys Ser Ala Glu Leu Asn Tyr Thr Val Gln Lys Leu
1060 1065 1070
Gln Thr Leu Ile Asp Asn Ile Asn Ser Thr Leu Val Asp Leu Lys Trp
1075 1080 1085
Leu Asn Arg Val Glu Thr Tyr Ile Lys Trp Pro Trp Trp Val Trp Leu
1090 1095 1100
Cys Ile Ser Val Val Leu Ile Phe Val Val Ser Met Leu Leu Leu Cys
1105 1110 1115 1120
Cys Cys Ser Thr Gly Cys Cys Gly Phe Phe Ser Cys Phe Ala Ser Ser
1125 1130 1135
Ile Arg Gly Cys Cys Glu Ser Thr Lys Leu Pro Tyr Tyr Asp Val Glu
1140 1145 1150
Lys Ile His Ile Gln
1155
<210> 162
<211> 56
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-OC43-COV wtTMCT-AA
<400> 162
Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly Val Ala Met Leu Val
1 5 10 15
Leu Leu Phe Phe Ile Cys Cys Cys Thr Gly Cys Gly Thr Ser Cys Phe
20 25 30
Lys Lys Cys Gly Gly Cys Cys Asp Asp Tyr Thr Gly Tyr Gln Glu Leu
35 40 45
Val Ile Lys Thr Ser His Asp Asp
50 55
<210> 163
<211> 40
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-OC43-COV H5iTMCT-AA
<400> 163
Trp Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
1 5 10 15
Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
20 25 30
Ser Leu Gln Cys Arg Ile Cys Ile
35 40
<210> 164
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-OC43-COV H5iCT-AA
<400> 164
Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly Val Ala Met Leu Val
1 5 10 15
Leu Leu Phe Phe Ile Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln
20 25 30
Cys Arg Ile Cys Ile
35
<210> 165
<211> 34
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-OC43-COV H5iCT (V4) -AA
<400> 165
Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly Val Ala Met Leu Val
1 5 10 15
Leu Leu Phe Phe Ile Cys Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile
20 25 30
Cys Ile
<210> 166
<211> 37
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-OC43-COV H1cCT-AA
<400> 166
Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly Val Ala Met Leu Val
1 5 10 15
Leu Leu Phe Phe Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln
20 25 30
Cys Arg Ile Cys Ile
35
<210> 167
<211> 58
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-229E-wtTMCT-AA
<400> 167
Trp Trp Val Trp Leu Cys Ile Ser Val Val Leu Ile Phe Val Val Ser
1 5 10 15
Met Leu Leu Leu Cys Cys Cys Ser Thr Gly Cys Cys Gly Phe Phe Ser
20 25 30
Cys Phe Ala Ser Ser Ile Arg Gly Cys Cys Glu Ser Thr Lys Leu Pro
35 40 45
Tyr Tyr Asp Val Glu Lys Ile His Ile Gln
50 55
<210> 168
<211> 40
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-229E-H5iTMCT-AA
<400> 168
Trp Trp Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala
1 5 10 15
Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly
20 25 30
Ser Leu Gln Cys Arg Ile Cys Ile
35 40
<210> 169
<211> 36
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-229E-H5iCT-AA
<400> 169
Trp Trp Val Trp Leu Cys Ile Ser Val Val Leu Ile Phe Val Val Ser
1 5 10 15
Met Leu Leu Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln Cys
20 25 30
Arg Ile Cys Ile
35
<210> 170
<211> 33
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-229E-H5iCT (V4) -AA
<400> 170
Trp Trp Val Trp Leu Cys Ile Ser Val Val Leu Ile Phe Val Val Ser
1 5 10 15
Met Leu Leu Leu Cys Cys Ser Asn Gly Ser Leu Gln Cys Arg Ile Cys
20 25 30
Ile
<210> 171
<211> 35
<212> PRT
<213> artificial sequence
<220>
<223> TMCT region of modified PDI-229E-H1cCT-AA
<400> 171
Trp Val Trp Leu Cys Ile Ser Val Val Leu Ile Phe Val Val Ser Met
1 5 10 15
Leu Leu Leu Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg
20 25 30
Ile Cys Ile
35
<210> 172
<211> 34
<212> PRT
<213> artificial sequence
<220>
<223> modified OC43-CoV S protein, TM/CT region of Xn having intermediate peptide sequence
<220>
<221> MISC_FEATURE
<222> (22)..(22)
<223> Xaa can be any combination of 0 to 10 amino acids
<220>
<221> misc_feature
<222> (28)..(29)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (31)..(31)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (22)..(22)
<223> The 'Xaa' at location 22 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (28)..(28)
<223> The 'Xaa' at location 28 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (29)..(29)
<223> The 'Xaa' at location 29 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (31)..(31)
<223> The 'Xaa' at location 31 stands for Gln, Arg, Pro, or Leu.
<400> 172
Trp Tyr Val Trp Leu Leu Ile Cys Leu Ala Gly Val Ala Met Leu Val
1 5 10 15
Leu Leu Phe Phe Ile Xaa Cys Ser Asn Gly Ser Xaa Xaa Cys Xaa Ile
20 25 30
Cys Ile
<210> 173
<211> 33
<212> PRT
<213> artificial sequence
<220>
<223> modified OC43-CoV S protein, TM/CT region with intermediate peptide sequence Xn
<220>
<221> MISC_FEATURE
<222> (21)..(21)
<223> Xaa can be any combination of 0 to 10 amino acids
<220>
<221> misc_feature
<222> (27)..(28)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (30)..(30)
<223> Xaa can be any naturally occurring amino acid
<220>
<221> misc_feature
<222> (21)..(21)
<223> The 'Xaa' at location 21 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (27)..(27)
<223> The 'Xaa' at location 27 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (28)..(28)
<223> The 'Xaa' at location 28 stands for Gln, Arg, Pro, or Leu.
<220>
<221> misc_feature
<222> (30)..(30)
<223> The 'Xaa' at location 30 stands for Gln, Arg, Pro, or Leu.
<400> 173
Trp Trp Val Trp Leu Cys Ile Ser Val Val Leu Ile Phe Val Val Ser
1 5 10 15
Met Leu Leu Leu Xaa Cys Ser Asn Gly Ser Xaa Xaa Cys Xaa Ile Cys
20 25 30
Ile
Claims (60)
1. A modified coronavirus S protein comprising, in order:
an extracellular domain derived from the coronavirus S protein;
transmembrane and cytoplasmic tail domain (TMCT), wherein the TMCT is a chimeric TMCT comprising:
a transmembrane domain (TM), wherein said TM or a portion of said TM is derived from a coronavirus S protein, and
cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from influenza Hemagglutinin (HA) protein.
2. The modified coronavirus S protein of claim 1, wherein the TM is directly fused to the CT.
3. The modified coronavirus S protein of claim 1, wherein the TM is a chimeric TM comprising an N-terminal sequence derived from the coronavirus S protein TM and a C-terminal sequence derived from the influenza HA protein TM.
4. The modified coronavirus S protein of claim 3, wherein the chimeric TM comprises an N-terminal sequence derived from the coronavirus S protein TM comprising a sequence corresponding to SEQ ID NO:18 or SEQ ID NO:169, or at least 20 amino acids corresponding to amino acids 1-20 of SEQ ID NO:118 or SEQ ID NO:164, or at least 21 amino acids corresponding to amino acids 1-21 of SEQ ID NO:123, at least 22 amino acids 1-22, and one or more amino acids from the C-terminus of the influenza HA protein TM.
5. The modified coronavirus S protein of claim 4, wherein the one or more amino acids derived from the C-terminus of the influenza HA protein TM are selected from AGL or conservative substitutions of AGL, MAGL or conservative substitutions of MAGL.
6. The modified coronavirus S protein of claim 1, wherein the CT is a chimeric CT comprising an N-terminal sequence derived from the coronavirus S protein CT and a C-terminal sequence derived from the influenza HA protein CT.
7. The modified coronavirus S protein of claim 6, wherein the chimeric CT comprises a C-terminal sequence derived from the influenza HA protein CT comprising a sequence corresponding to SEQ ID NO: 18. 126, 128, 129, 130 or 131, or amino acids 27-37 corresponding to SEQ ID NO:127, and one or more than one amino acid from the N-terminus of the coronavirus S protein CT.
8. The modified coronavirus S protein of claim 7, wherein the one or more amino acids from the N-terminus of the coronavirus S protein CT are selected from a C or a conservative substitution of C, a CC or a conservative substitution of CC, or a CCM or a conservative substitution of CCM.
9. The modified coronavirus S protein of claim 3, wherein the chimeric TM comprises a sequence corresponding to SEQ ID NO:18 or SEQ ID NO:169, or amino acids 1-20 corresponding to SEQ ID NO:118 or SEQ ID NO:164, or amino acids corresponding to amino acids 1-21 of SEQ ID NO:123 amino acids 1-22.
10. The modified coronavirus S protein of claim 4, wherein the chimeric CT comprises a sequence corresponding to SEQ ID NO: 18. 126, 128, 129, 130 or 131 amino acids 27-37, or SEQ ID NO:127, amino acids 27-36.
11. The modified coronavirus S protein of claim 1, wherein the chimeric TMCT comprises a chimeric TM comprising a sequence corresponding to SEQ ID NO:18 or SEQ ID NO:169, or amino acids 1-20 corresponding to SEQ ID NO:118 or SEQ ID NO:164, or amino acids corresponding to amino acids 1-21 of SEQ ID NO:123, said chimeric CT comprises amino acids corresponding to amino acids 1-22 of SEQ ID NO: 18. 126, 128, 129, 130 or 131, amino acids 27-37, corresponding to SEQ ID NO:127 from amino acids 27 to 36 or a combination thereof.
12. The modified S protein of any one of claims 1-11, wherein the S protein comprises one or more amino acid substitutions when compared to the wild-type coronavirus S protein amino acid sequence.
13. The modified S protein of claim 12, wherein the one or more amino acid substitutions comprise:
i) Limiting substitution of processing at the cleavage site between the S1 subunit and the S2 subunit;
ii) one or more amino acids are replaced with one or more proline; or (b)
iii) Substitutions that limit processing at the cleavage site between the S1 subunit and the S2 subunit, and one or more amino acid substitutions to one or more proline.
14. The modified S protein of claim 12 or 13, wherein the amino acid sequence corresponding to SEQ ID NO:2, said one or more amino acid substitutions corresponding to the amino acids at positions 971 and 972 when compared to the reference amino acid sequence.
15. The modified S protein of claim 12 or 13, wherein the amino acid sequence corresponding to SEQ ID NO:2, said one or more amino acid substitutions corresponding to amino acids at positions 802, 927, 971 and 972.
16. The modified S protein of claim 14 or 15, wherein the amino acid sequence corresponding to SEQ ID NO:2, the modified S protein further comprises one or more amino acid substitutions corresponding to amino acids at positions 667, 668, 670, or a combination thereof.
17. The modified S protein of claim 16, wherein corresponds to the amino acid sequence set forth in SEQ ID NO:2 is glycine or a conservative substitution of glycine, corresponding to amino acid at position 667 of SEQ ID NO:2 is serine or a conservative substitution of serine, corresponding to amino acid sequence of SEQ ID NO:2 is serine or a conservative substitution of serine, corresponding to SEQ ID NO: amino acid substitutions at positions 971 and 972 of 2 are proline or conservative substitutions of proline.
18. The modified S protein of claim 16, wherein corresponds to the amino acid sequence set forth in SEQ ID NO:2 is glycine or a conservative substitution of glycine, corresponding to amino acid at position 667 of SEQ ID NO:2 is serine or a conservative substitution of serine, corresponding to amino acid sequence of SEQ ID NO:2 is serine or a conservative substitution of serine, corresponding to SEQ ID NO: amino acid substitutions at positions 802, 927, 971 and 972 of 2 are proline or conservative substitutions of proline.
19. The modified S protein of any one of claims 14-18, wherein the amino acid sequence that hybridizes to SEQ ID NO:2, the modified S protein further comprises an amino acid substitution corresponding to the amino acid at position 923 when compared to the reference amino acid sequence.
20. The modified S protein of claim 19, wherein the amino acid sequence corresponding to SEQ ID NO:2 is glycine or a conservative substitution of glycine, corresponding to amino acid at position 667 of SEQ ID NO:2 is serine or a conservative substitution of serine, corresponding to SEQ ID NO:2 is serine or a conservative substitution of serine, corresponding to SEQ ID NO:2 is proline or a conservative substitution of proline and corresponds to amino acid substitutions at positions 802, 927, 971 and 972 of SEQ ID NO: the amino acid substitution at position 923 of 2 is phenylalanine or a conservative substitution of phenylalanine.
21. The modified S protein of any one of claims 12-20, wherein the one or more substitutions maintain the S protein in a pre-fusion state or produce a higher yield of the modified S protein when expressed in a host or host cell when compared to the yield of the corresponding S protein without the one or more substitutions expressed in the host or host cell.
22. The modified S protein of any one of claims 1-21, wherein the S protein comprises an S1 subunit and an S2 subunit, wherein the S2 subunit comprises the chimeric TMCT.
23. The modified S protein of any one of claims 1-22, wherein the influenza HA protein is derived from influenza b or H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, or H16 subtype influenza.
24. The modified S protein of any one of claims 1-23, wherein the coronavirus S protein is derived from SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43-CoV, or 229E-CoV.
25. The modified S protein of any one of claims 1-23, wherein the extracellular domain is derived from SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43-CoV, or 229E-CoV, the TM or a portion of the TM is derived from SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43-CoV, or 229E-CoV, or wherein the extracellular domain and the TM or a portion of the TM are derived from SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43-CoV, or 229E-CoV.
26. The modified S protein of any one of claims 1-25, wherein the TMCT comprises a sequence having about 80% to about 100% identity to: SEQ ID NO: 18. 19, 37, 38, 39, 64, 126, 127, 128, 129, 130, 131, 118, 119, 120, 123, 124, 125, 134, 135, 164, 165, 166, 169, 170, 171, 172 or 173.
27. The modified S protein of any one of claims 1-26, wherein the modified S protein is produced as a precursor protein comprising the modified S protein and a signal peptide.
28. The modified S protein of claim 27, wherein the signal peptide is native or non-native to the modified S protein.
29. The modified S protein of claim 27 or 28, wherein the signal peptide is derived from a signal peptide of a Protein Disulfide Isomerase (PDI).
30. The modified S protein of any one of claims 1-29, wherein the modified S protein comprises a plant-specific N-glycan.
31. The modified S protein of claim 1, wherein the amino acid sequence of the S protein has 80% to 100% identity to: SEQ ID NO: 5. 21, 30, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 95, 96, 97, 108, 109, 110, 144, 145, 146, 155, 156 or 157, or the amino acid of SEQ ID NO:47, amino acids 24-1259, seq ID NO:48, amino acids 25-1259, seq ID NO:49, amino acids 25-1259, seq ID NO:50, amino acids 25-1259, seq ID NO:51, amino acids 25-1259, seq ID NO:52, amino acids 25-1259, seq ID NO:53, amino acids 25-1259, seq ID NO:54, amino acids 25-1259, seq ID NO:55, amino acids 25-1259, seq ID NO:56, amino acids 25-1259, seq ID NO:57, amino acids 25-1259, seq ID NO:58, amino acids 25-1259, seq ID NO:59, amino acids 25-1262, seq ID NO:60, amino acids 25-1261, seq ID NO:61, amino acids 25-1258, or SEQ ID NO:62, amino acids 25-1256, seq ID NO:95, amino acids 25-1243, seq ID NO:96, amino acids 25-1240, seq ID NO:97, amino acids 25-1243, seq ID NO:108, amino acids 25-1341, seq ID NO:109, amino acids 25-1338, seq ID NO:110, or amino acids 25-1341 of SEQ ID NO:144, amino acids 25-1351, seq ID NO:145, amino acids 25-1348, seq ID NO:146, amino acids 25-1351, seq ID NO:155, amino acids 25-1159 of seq ID NO:156, or amino acids 25-1156 of SEQ ID NO:157 from amino acids 25-1159.
32. The modified S protein of any one of claims 1-30, wherein the CT or a portion of the CT has 80% to 100% identity to: SEQ ID NO:15, or SEQ ID NO: 6. 8, 7, 9, 10, 12, 13 or 14, or amino acids 35-50 of SEQ ID NO:11, or amino acids 34-49 of SEQ ID NO:3, or amino acids 553-568 of SEQ ID NO:18, or amino acids 22-37 of SEQ ID NO:19, amino acids 21-40 of SEQ ID NO:37, or amino acids 21-39 of SEQ ID NO:38, or amino acids 25-36 of SEQ ID NO:39, or amino acids 24-34 of SEQ ID NO: 126. 128, 129, 130 or 131, or amino acids 22-37 of SEQ ID NO:127 from amino acids 22 to 36.
33. The modified S protein of claim 27, wherein the precursor protein has 80% to 100% identity to: SEQ ID NO:1, or amino acids 1-1234 of SEQ ID NO:5, or amino acids 1-1234 of SEQ ID NO:30, amino acids 1-1243, seq ID NO:95, amino acids 1-1227 of seq ID NO:108, amino acids 1-1325, seq ID NO:112, amino acids 1-1216, seq ID NO:113, amino acids 1-1318, seq ID NO:144, amino acids 1-1335, seq ID NO:155, amino acids 1-1143, seq ID NO:158, amino acids 1-1325, seq ID NO:159, and wherein the amino acid sequence of CT has 80% to 100% identity to: SEQ ID NO:15, or SEQ ID NO: 6. 8, 7, 9, 10, 12, 13 or 14, or amino acids 35-50 of SEQ ID NO:11, or amino acids 34-49 of SEQ ID NO:3, amino acids 553-568.
34. A nucleic acid comprising a nucleotide sequence encoding the modified S protein of any one of claims 1-33.
35. A trimer comprising a modified S protein according to any one of claims 1 to 33.
36. A virus-like particle (VLP) comprising the modified S protein of any one of claims 1-33 or the trimer of claim 35.
37. The VLP of claim 36, wherein the VLP further comprises a plant lipid.
38. A composition comprising an effective dose of the modified S protein of any one of claims 1-33, the trimer of claim 35 or the VLP of any one of claims 36-37, and a pharmaceutically acceptable carrier, adjuvant, vehicle or excipient.
39. A vaccine for inducing an immune response, the vaccine comprising an effective dose of the modified S protein of any one of claims 1-33, the trimer of claim 35, the VLP of any one of claims 36-37, or the composition of claim 38.
40. The vaccine of claim 39, wherein the vaccine is a multivalent vaccine comprising a mixture of VLPs.
41. A method for inducing immunity to a coronavirus infection in a subject, the method comprising administering to the subject a composition according to claim 38 or a vaccine according to claim 39 or 40.
42. The method of claim 41, wherein the composition or vaccine is administered to the subject once.
43. The method of claim 41, wherein the composition or vaccine is administered to the subject multiple times.
44. The method of claim 41, wherein the composition or vaccine is administered at an initial dose and one or more subsequent doses are administered between 1 day and 6 months from the initial dose.
45. An antibody or antibody fragment prepared using the composition of claim 38 or the vaccine of claim 39 or 40.
46. A non-human host or host cell comprising the modified S protein of any one of claims 1-33, the trimer of claim 35, the nucleic acid of claim 34, or the VLP of claim 36 or 37.
47. A method of producing a modified S protein in a non-human host or host cell, comprising:
a) Introducing the nucleic acid according to claim 34 into the non-human host or host cell, or providing the non-human host or host cell comprising the nucleic acid according to claim 34, and
b) Culturing the non-human host or host cell under conditions that allow expression of the nucleic acid, thereby producing the modified S protein.
48. A method of producing a virus-like particle (VLP) in a non-human host or host cell, comprising:
a) Introducing the nucleic acid according to claim 34 into the non-human host or host cell, or providing the non-human host or host cell comprising the nucleic acid according to claim 34, and
b) Culturing the non-human host or host cell under conditions that allow expression of the nucleic acid, thereby producing the VLP.
49. The method of claim 47 or 48, further comprising step c) harvesting the non-human host or host cell.
50. A method of increasing the production yield of a modified coronavirus S protein in a non-human host or host cell comprising:
a) Introducing the nucleic acid of claim 34 into the host or host cell; or providing a non-human host or host cell comprising the nucleic acid of claim 34; and
b) Culturing the non-human host or host cell under conditions that allow expression of the modified S protein encoded by the nucleic acid, thereby producing the modified S protein in higher yield as compared to a host or host cell expressing an unmodified S protein.
51. A method of increasing the yield of production of virus-like particles (VLPs) in a non-human host or host cell, comprising:
a) Introducing a nucleic acid encoding a modified coronavirus S protein into a non-human host or host cell, said modified coronavirus S protein comprising, in order: an extracellular domain, transmembrane and cytoplasmic tail domain (TMCT) derived from a coronavirus S protein, wherein the TMCT is a chimeric TMCT comprising: a transmembrane domain (TM), wherein the TM or a portion of the TM is derived from a coronavirus S protein and a Cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from an influenza Hemagglutinin (HA) protein, or
Providing a non-human host or host cell comprising a nucleic acid encoding a modified coronavirus S protein comprising, in order: an extracellular domain, transmembrane and cytoplasmic tail domain (TMCT) derived from a coronavirus S protein, wherein the TMCT is a chimeric TMCT comprising: a transmembrane domain (TM), wherein the TM or a portion of the TM is derived from a coronavirus S protein and a Cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from an influenza Hemagglutinin (HA) protein; and
b) Culturing the non-human host or host cell under conditions that allow expression of the modified S protein encoded by the nucleic acid, thereby producing VLPs comprising the modified S protein in higher yields than VLP yields in a host of host cells expressing unmodified S protein.
52. A method of producing a virus-like particle (VLP) in a non-human host or host cell, comprising:
a) Introducing a nucleic acid encoding a modified coronavirus S protein into a non-human host or host cell, said modified coronavirus S protein comprising, in order: an extracellular domain, transmembrane and cytoplasmic tail domain (TMCT) derived from a coronavirus S protein, wherein the TMCT is a chimeric TMCT comprising: a transmembrane domain (TM), wherein the TM or a portion of the TM is derived from a coronavirus S protein and a Cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from an influenza Hemagglutinin (HA) protein; or alternatively
Providing a non-human host or host cell comprising a nucleic acid encoding a modified coronavirus S protein comprising, in order: an extracellular domain, transmembrane and cytoplasmic tail domain (TMCT) derived from a coronavirus S protein, wherein the TMCT is a chimeric TMCT comprising: a transmembrane domain (TM), wherein the TM or a portion of the TM is derived from a coronavirus S protein and a Cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from an influenza Hemagglutinin (HA) protein; and
b) Culturing the non-human host or host cell under conditions that allow expression of the nucleic acid, thereby producing the VLP.
53. The method of any one of claims 48, 51 or 52, wherein said VLP is further extracted and purified from said non-human host or host cell.
54. A VLP produced by the method of claim 48, 51 or 52.
55. A modified S protein produced by the method of claim 47 or 50.
56. The method of any one of claims 47-55 or the non-human host or host cell of claim 46, wherein the non-human host or host cell comprises a plant, plant part, plant cell, fungus, fungal cell, insect cell, animal or animal cell.
57. A composition comprising a virus-like particle (VLP), said VLP comprising a modified coronavirus S protein, said modified coronavirus S protein comprising, in order: an extracellular domain, transmembrane and cytoplasmic tail domain (TMCT) derived from a coronavirus S protein, wherein the TMCT is a chimeric TMCT comprising: a transmembrane domain (TM), wherein the TM or a portion of the TM is derived from a coronavirus S protein and a Cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from an influenza Hemagglutinin (HA) protein, and wherein the amino acid sequence of SEQ ID NO:2, the S protein comprises substitutions at positions 667, 668, 670, 971 and 972 when compared to the reference amino acid sequence.
58. A composition comprising a virus-like particle (VLP), said VLP comprising a modified coronavirus S protein, said modified coronavirus S protein comprising, in order: an extracellular domain, transmembrane and cytoplasmic tail domain (TMCT) derived from a coronavirus S protein, wherein the TMCT is a chimeric TMCT comprising: a transmembrane domain (TM), wherein the TM or a portion of the TM is derived from a coronavirus S protein and a Cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from an influenza Hemagglutinin (HA) protein, and wherein the S protein comprises a glycine substitution at position 667, a serine substitution at position 668, a serine substitution at position 670, a proline substitution at position 971, and a proline substitution at position 972, the positions corresponding to SEQ ID NO:2, and a reference amino acid sequence.
59. A composition comprising a virus-like particle (VLP), said VLP comprising a modified coronavirus S protein, said modified S protein comprising the amino acid sequence of SEQ ID NO:21 or SEQ ID NO:51 amino acids 25-1259.
60. A composition comprising a virus-like particle (VLP), said VLP comprising a modified coronavirus S protein, said modified coronavirus S protein comprising, in order: an extracellular domain, transmembrane and cytoplasmic tail domain (TMCT) derived from a coronavirus S protein, wherein the TMCT is a chimeric TMCT comprising: a transmembrane domain (TM), wherein the TM or a portion of the TM is derived from a coronavirus S protein and a Cytoplasmic Tail (CT), wherein the CT or a portion of the CT is derived from an influenza Hemagglutinin (HA) protein, and wherein the amino acid sequence of SEQ ID NO:2, the S protein comprises substitutions at positions 667, 668, 670, 802, 923, 927, 971 and 972 when compared to the reference amino acid sequence.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63/073,327 | 2020-09-01 | ||
US202163211716P | 2021-06-17 | 2021-06-17 | |
US63/211,716 | 2021-06-17 | ||
PCT/CA2021/051201 WO2022047575A1 (en) | 2020-09-01 | 2021-08-31 | Modified coronavims structural protein |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116457008A true CN116457008A (en) | 2023-07-18 |
Family
ID=87124221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180072506.1A Pending CN116457008A (en) | 2020-09-01 | 2021-08-31 | Modified coronavirus structural proteins |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116457008A (en) |
-
2021
- 2021-08-31 CN CN202180072506.1A patent/CN116457008A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101925414B1 (en) | Virus like particle production in plants | |
KR102199018B1 (en) | Influenza virus-like particle production in plants | |
KR102162118B1 (en) | Rotavirus-like particle production in plants | |
US11987601B2 (en) | Norovirus fusion proteins and VLPs comprising norovirus fusion proteins | |
KR101974017B1 (en) | Increasing virus-like particle yield in plants | |
EA034733B1 (en) | Nucleic acid for increased expression of hemagglutinin of influenza virus in a plant and use thereof | |
JP2024050650A (en) | Influenza virus hemagglutinin mutants | |
KR20230079057A (en) | Modified coronavirus structural proteins | |
CA2974438A1 (en) | Rotavirus-like particle production in plants | |
CN116457008A (en) | Modified coronavirus structural proteins | |
RU2809237C2 (en) | Hemaglutinin mutants of influenza virus | |
RU2801708C2 (en) | Hemaglutinin mutants of the influenza virus | |
US12139511B2 (en) | Influenza virus hemagglutinin mutants | |
RU2800938C2 (en) | Hemaglutinin mutants of the influenza virus | |
WO2023049983A1 (en) | Cpmv vlps displaying sars-cov-2 epitopes | |
AU2023319154A1 (en) | Modified coronavirus s protein | |
WO2024040325A1 (en) | Modified influenza b virus hemagglutinin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240707 Address after: Quebec Applicant after: Aramis Biotechnology Co. Country or region after: Canada Address before: Quebec Applicant before: MEDICAGO Inc. Country or region before: Canada |