CN116429280A - 一种动力电池整包温度确定方法及装置 - Google Patents

一种动力电池整包温度确定方法及装置 Download PDF

Info

Publication number
CN116429280A
CN116429280A CN202310694586.5A CN202310694586A CN116429280A CN 116429280 A CN116429280 A CN 116429280A CN 202310694586 A CN202310694586 A CN 202310694586A CN 116429280 A CN116429280 A CN 116429280A
Authority
CN
China
Prior art keywords
temperature
whole
power battery
ntc
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310694586.5A
Other languages
English (en)
Inventor
邓小强
朱林培
魏丹
陈玉祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAC Aion New Energy Automobile Co Ltd
Original Assignee
GAC Aion New Energy Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GAC Aion New Energy Automobile Co Ltd filed Critical GAC Aion New Energy Automobile Co Ltd
Priority to CN202310694586.5A priority Critical patent/CN116429280A/zh
Publication of CN116429280A publication Critical patent/CN116429280A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种动力电池整包温度确定方法及装置,该方法包括:对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果;根据环境模拟试验结果,构建动力电池的整包温度分布模型;将整包温度分布模型嵌入至针对目标车辆的实车温度采集程序中,得到目标温度采集程序;通过目标温度采集程序实时获取动力电池的整包温度。可见,该方法及装置能够在不增加成本的情况下,提升电池包整包温度采集精度,从而解决实际车辆采用有限个NTC采集点代替整包温度场时存在的精度不高的问题。

Description

一种动力电池整包温度确定方法及装置
技术领域
本申请涉及电池热管理技术领域,具体而言,涉及一种动力电池整包温度确定方法及装置。
背景技术
动力电池包是电动汽车的动力来源,是影响整车的动力性、经济性、安全性等性能的核心部件。电动汽车的动力电池需要在适宜的温度下工作,一旦温度过高,会影响电池的实际工作性能,还可能出现安全性问题。温度过低会电池放电量会减少,影响整车续航里程。实际车辆使用是需要对电池的最高温和最大温差进行控制。现有方法中,通常需要先在电池包内部布置NTC温度采集点,来获取电池组的温度及温差。在实际使用中,要在电池包内部每个模组布置一到两个NTC来采集电池模组温度,因为成本及布置空间等因素,电池包内部NTC温度采集点的布置数量有限,不能够完全反应电池包内全部电池组的实际最高温度与温差,降低了电池包整包温度采集精度。
发明内容
本申请实施例的目的在于提供一种动力电池整包温度确定方法及装置,能够在不增加成本的情况下,提升电池包整包温度采集精度,从而解决实际车辆采用有限个NTC采集点代替整包温度场时存在的精度不高的问题。
本申请实施例第一方面提供了一种动力电池整包温度确定方法,包括:
对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果;
根据所述环境模拟试验结果,构建所述动力电池的整包温度分布模型;
将所述整包温度分布模型嵌入至针对所述目标车辆的实车温度采集程序中,得到目标温度采集程序;
通过所述目标温度采集程序实时获取所述动力电池的整包温度。
进一步地,所述对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果,包括:
获取针对目标车辆上动力电池的NTC布置方案;
对所述动力电池进行环境模拟试验;
在进行所述环境模拟试验时,根据所述NTC布置方案进行温度采集,得到电池包NTC温度试验数据;以及在进行所述环境模拟试验时,获取电池包整包最大温度和最大温差的试验结果;
汇总所述电池包NTC温度试验数据和所述试验结果,得到环境模拟试验结果。
进一步地,所述根据所述环境模拟试验结果,构建所述动力电池的整包温度分布模型,包括:
根据所述电池包NTC温度试验数据和预设的克里金插值法,确定所述动力电池的整包温度分布函数;
根据所述整包温度分布函数构建整包温度分布模型。
进一步地,所述根据所述电池包NTC温度试验数据和预设的克里金插值法,确定所述动力电池的整包温度分布函数,包括:
采用预设的克里金插值法构建原始未知点预测值函数;
根据所述电池包NTC温度试验数据确定变异函数;
根据所述电池包NTC温度试验数据和所述变异函数,计算所述电池包NTC温度试验数据对应的已知点权重;
根据所述已知点权重和所述电池包NTC温度试验数据,确定未知点预测值函数;
根据所述试验结果确定所述未知点预测值函数的预测误差;
当所述预测误差大于预设误差阈值时,将所述未知点预测值函数确定为所述动力电池的整包温度分布函数。
进一步地,所述根据所述试验结果确定所述未知点预测值函数的预测误差,包括:
通过所述未知点预测值函数和所述电池包NTC温度试验数据进行NTC点温度预测,得到预测结果;
将所述预测结果与所述试验结果对比,得到对比结果;
根据所述对比结果确定所述未知点预测值函数的预测误差。
本申请实施例第二方面提供了一种动力电池整包温度确定装置,所述动力电池整包温度确定装置包括:
模拟试验单元,用于对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果;
第一构建单元,用于根据所述环境模拟试验结果,构建所述动力电池的整包温度分布模型;
第二构建单元,用于根据所述整包温度分布模型和预设的实车温度采集程序,构建目标温度采集程序;
采集单元,用于通过所述目标温度采集程序实时获取所述动力电池的整包温度。
进一步地,所述模拟试验单元包括:
获取子单元,用于获取针对目标车辆上动力电池的NTC布置方案;
试验子单元,用于对所述动力电池进行环境模拟试验;
采集子单元,用于在进行所述环境模拟试验时,根据所述NTC布置方案进行温度采集,得到电池包NTC温度试验数据;以及在进行所述环境模拟试验时,获取电池包整包最大温度和最大温差的试验结果;
汇总子单元,用于汇总所述电池包NTC温度试验数据和所述试验结果,得到环境模拟试验结果。
进一步地,所述第一构建单元包括:
确定子单元,用于根据所述电池包NTC温度试验数据和预设的克里金插值法,确定所述动力电池的整包温度分布函数;
构建子单元,用于根据所述整包温度分布函数构建整包温度分布模型。
进一步地,所述确定子单元包括:
构建模块,用于采用预设的克里金插值法构建原始未知点预测值函数;
确定模块,用于根据所述电池包NTC温度试验数据确定变异函数;
计算模块,用于根据所述电池包NTC温度试验数据和所述变异函数,计算所述电池包NTC温度试验数据对应的已知点权重;
所述确定模块,还用于根据所述已知点权重和所述电池包NTC温度试验数据,确定未知点预测值函数;
所述确定模块,还用于根据所述试验结果确定所述未知点预测值函数的预测误差;
所述确定模块,还用于当所述预测误差大于预设误差阈值时,将所述未知点预测值函数确定为所述动力电池的整包温度分布函数。
进一步地,所述确定模块,具体用于通过所述未知点预测值函数和所述电池包NTC温度试验数据进行NTC点温度预测,得到预测结果;
所述确定模块,具体还用于将所述预测结果与所述试验结果对比,得到对比结果;
所述确定模块,具体还用于根据所述对比结果确定所述未知点预测值函数的预测误差。
本申请实施例第三方面提供了一种电子设备,包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行本申请实施例第一方面中任一项所述的动力电池整包温度确定方法。
本申请实施例第四方面提供了一种计算机可读存储介质,其存储有计算机程序指令,所述计算机程序指令被一处理器读取并运行时,执行本申请实施例第一方面中任一项所述的动力电池整包温度确定方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的一种动力电池整包温度确定方法的流程示意图;
图2为本申请实施例提供的另一种动力电池整包温度确定方法的流程示意图;
图3为本申请实施例提供的一种动力电池整包温度确定装置的结构示意图;
图4为本申请实施例提供的另一种动力电池整包温度确定装置的结构示意图;
图5为本申请实施例提供的一种三个工况下NTC点温度预测值与试验偏差对比曲线图;
图6为本申请实施例提供的一种NTC点温度预测误差值示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例1
请参看图1,图1为本实施例提供了一种动力电池整包温度确定方法的流程示意图。其中,该动力电池整包温度确定方法包括:
S101、对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果。
S102、根据环境模拟试验结果,构建动力电池的整包温度分布模型。
S103、将整包温度分布模型嵌入至针对目标车辆的实车温度采集程序中,得到目标温度采集程序。
S104、通过目标温度采集程序实时获取动力电池的整包温度。
本实施例中,该方法描述了一种驱动电机转子温升确定方法及装置,其中最主要的四个步骤为描述为:
(1)获取电池包NTC温度采集点方案;
(2)电池包环模试验NTC温度数据;
(3)采用克里金法预测整包温度场;
(4)嵌入整车电池包温度采集程序。
本实施例中,该方法的执行主体可以为计算机、服务器等计算装置,对此本实施例中不作任何限定。
在本实施例中,该方法的执行主体还可以为智能手机、平板电脑等智能设备,对此本实施例中不作任何限定。
可见,实施本实施例所描述的动力电池整包温度确定方法,能够通过NTC点的温度试验数据,采用克里金插值法预测整体空间的电池组温度分布,并将预测程序嵌入至实车温度采集程序中,从而在不增加成本的情况下,提升电池包整包温度采集精度,进而解决实际车辆采用有限个NTC采集点代替整包温度场而导致在的精度不高的问题。
实施例2
请参看图2,图2为本实施例提供了一种动力电池整包温度确定方法的流程示意图。其中,该动力电池整包温度确定方法包括:
S201、获取针对目标车辆上动力电池的NTC布置方案。
本实施例中,某BEV车型的电池包温度采集点NTC布置图对应的坐标位置如表1所示。
表1 某BEV车型的电池包温度采集点NTC布置图对应的坐标位置表
Figure SMS_1
因为,本电池包NTC布置位置都处于电池组的上端面(z坐标相同,z=295mm),故实可以用两个变量x,y描述。
S202、对动力电池进行环境模拟试验。
S203、在进行环境模拟试验时,根据NTC布置方案进行温度采集,得到电池包NTC温度试验数据;以及在进行环境模拟试验时,获取电池包整包最大温度和最大温差的试验结果。
S204、汇总电池包NTC温度试验数据和试验结果,得到环境模拟试验结果。
本实施例中,该方法可以通过电池包整包的环境模拟试验,其中,
试验工况(1)为低温加热工况,电池从-20加热至5度(结束时刻为整包所有NTC点的温度≥5℃);
试验工况(2)为怠速冷却工况,电池从40冷却至35℃(结束时刻为整包所有NTC点的温度≤35℃),试验终止时刻电池包22个NTC位置的温度情况如表2所示。
表2 试验终止时刻电池包22个NTC位置的温度情况
Figure SMS_2
本实施例中,整包最高温度、最大温差试验结果如表3所示。
表3 整包最高温度、最大温差试验结果
Figure SMS_3
其中,低温加热电池组最大温度16.0℃,最大温差11.0℃;怠速冷却电池组最大温度35℃,最大温差4.0℃。低温快充30min后电池组最大温度25.4℃,最大温差5.3℃。
S205、采用预设的克里金插值法构建原始未知点预测值函数。
S206、根据电池包NTC温度试验数据确定变异函数。
S207、根据电池包NTC温度试验数据和变异函数,计算电池包NTC温度试验数据对应的已知点权重。
S208、根据已知点权重和电池包NTC温度试验数据,确定未知点预测值函数。
S209、通过未知点预测值函数和电池包NTC温度试验数据进行NTC点温度预测,得到预测结果。
S210、将预测结果与试验结果对比,得到对比结果。
S211、根据对比结果确定未知点预测值函数的预测误差。
S212、当预测误差大于预设误差阈值时,将未知点预测值函数确定为动力电池的整包温度分布函数。
本实施例中,根据上述NTC采样点的电阻温度试验数据,采用克里金插值法的电池组整个x、y平面空间进行预测。
在本实施例中,克里金法可根据已知有限个样本点数据,插值预测未知相邻空间位置样本的数据值,具体方法如下:
Figure SMS_4
式中,Z(X)为未知点的预测值,其中X为x、y平面空间,Z(Xi)为已知样本点的值,γi已知点的权重。
Figure SMS_5
式中,
Figure SMS_6
为变异函数(协方差),/>
Figure SMS_7
为样本对数,h为样本点之间的间距。
Figure SMS_8
式中,
Figure SMS_9
为拉格朗日乘数。
可见,在确定了变异函数
Figure SMS_10
,就可以联立上式求解出权重/>
Figure SMS_11
,从而预测/>
Figure SMS_12
本实施例中,该方法可以通过上述方法预测得到电池组NTC点温度与试验测试数据点的偏差对比曲线如图5(即三个工况下NTC点温度预测值与试验偏差对比曲线图)所示,误差值如图6(即NTC点温度预测误差值)所示。从图5和图6可以看出数据偏差关联系数最小R2=0.9564,最大误差+2.5%,这说明此方法精度较高,可满足实际使用要求。
由于在上述三个工况下,克里金插值法拟合效果较好,故跟Z(X)可以较好的描述所有电池组在xy平面的温度场,其中xy平面空间范围(x[425,1680],y[-595,595])。因此可求解出Z(X)在xy平面内温度场的最大值和最小值,即所为整个电池包电池组的最大值和最小值。求解出Z(x,y)在整个xy平面空间的最高温及最低温如表4所示,从表4可知采用22个NTC点采集整包的最高温和最大温差与预测值存在一定差异。
表4 克里金插值法预测温度场的结果与NTC采集结果对比表
Figure SMS_13
举例来说,低温加热工况NTC体现的为最高温16.0℃,温差5.0℃;而克里金插值法预测整包的最高温为16.5℃,最大温差为5.9℃。因此采用克里金插值法可以弥补只采用NTC点体现整包温差的不足,它可以更精确的描述整包的最高温和最大温差,进而提升整车电池包热管理精度。
S213、根据整包温度分布函数构建整包温度分布模型。
S214、将整包温度分布模型嵌入至针对目标车辆的实车温度采集程序中,得到目标温度采集程序。
S215、通过目标温度采集程序实时获取动力电池的整包温度。
本实施例中,该方法可以将上述方法预测的Z(X)表达式(或者程序)嵌入至电池组采集程序中,从而实时获取实车电池组的温度,进而弥补只22个NTC温度点来体现整包温度不足,以提高电池包热管理控制精度。
本实施例中,该方法的执行主体可以为计算机、服务器等计算装置,对此本实施例中不作任何限定。
在本实施例中,该方法的执行主体还可以为智能手机、平板电脑等智能设备,对此本实施例中不作任何限定。
可见,实施本实施例所描述的动力电池整包温度确定方法,能够通过NTC点的温度试验数据,采用克里金插值法预测整体空间的电池组温度分布,并将预测程序嵌入至实车温度采集程序中,从而在不增加成本的情况下,提升电池包整包温度采集精度,进而解决实际车辆采用有限个NTC采集点代替整包温度场而导致在的精度不高的问题。
实施例3
请参看图3,图3为本实施例提供的一种动力电池整包温度确定装置的结构示意图。如图3所示,该动力电池整包温度确定装置包括:
模拟试验单元310,用于对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果;
第一构建单元320,用于根据环境模拟试验结果,构建动力电池的整包温度分布模型;
第二构建单元330,用于根据整包温度分布模型和预设的实车温度采集程序,构建目标温度采集程序;
采集单元340,用于通过目标温度采集程序实时获取动力电池的整包温度。
本实施例中,对于动力电池整包温度确定装置的解释说明可以参照实施例1或实施例2中的描述,对此本实施例中不再多加赘述。
可见,实施本实施例所描述的动力电池整包温度确定装置,能够通过NTC点的温度试验数据,采用克里金插值法预测整体空间的电池组温度分布,并将预测程序嵌入至实车温度采集程序中,从而在不增加成本的情况下,提升电池包整包温度采集精度,进而解决实际车辆采用有限个NTC采集点代替整包温度场而导致在的精度不高的问题。
实施例4
请参看图4,图4为本实施例提供的一种动力电池整包温度确定装置的结构示意图。如图4所示,该动力电池整包温度确定装置包括:
模拟试验单元310,用于对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果;
第一构建单元320,用于根据环境模拟试验结果,构建动力电池的整包温度分布模型;
第二构建单元330,用于根据整包温度分布模型和预设的实车温度采集程序,构建目标温度采集程序;
采集单元340,用于通过目标温度采集程序实时获取动力电池的整包温度。
作为一种可选的实施方式,模拟试验单元310包括:
获取子单元311,用于获取针对目标车辆上动力电池的NTC布置方案;
试验子单元312,用于对动力电池进行环境模拟试验;
采集子单元313,用于在进行环境模拟试验时,根据NTC布置方案进行温度采集,得到电池包NTC温度试验数据;以及在进行环境模拟试验时,获取电池包整包最大温度和最大温差的试验结果;
汇总子单元314,用于汇总电池包NTC温度试验数据和试验结果,得到环境模拟试验结果。
作为一种可选的实施方式,第一构建单元320包括:
确定子单元321,用于根据电池包NTC温度试验数据和预设的克里金插值法,确定动力电池的整包温度分布函数;
构建子单元322,用于根据整包温度分布函数构建整包温度分布模型。
作为一种可选的实施方式,确定子单元321包括:
构建模块,用于采用预设的克里金插值法构建原始未知点预测值函数;
确定模块,用于根据电池包NTC温度试验数据确定变异函数;
计算模块,用于根据电池包NTC温度试验数据和变异函数,计算电池包NTC温度试验数据对应的已知点权重;
确定模块,还用于根据已知点权重和电池包NTC温度试验数据,确定未知点预测值函数;
确定模块,还用于根据试验结果确定未知点预测值函数的预测误差;
确定模块,还用于当预测误差大于预设误差阈值时,将未知点预测值函数确定为动力电池的整包温度分布函数。
作为一种可选的实施方式,确定模块,具体用于通过未知点预测值函数和电池包NTC温度试验数据进行NTC点温度预测,得到预测结果;
确定模块,具体还用于将预测结果与试验结果对比,得到对比结果;
确定模块,具体还用于根据对比结果确定未知点预测值函数的预测误差。
本实施例中,对于动力电池整包温度确定装置的解释说明可以参照实施例1或实施例2中的描述,对此本实施例中不再多加赘述。
可见,实施本实施例所描述的动力电池整包温度确定装置,能够通过NTC点的温度试验数据,采用克里金插值法预测整体空间的电池组温度分布,并将预测程序嵌入至实车温度采集程序中,从而在不增加成本的情况下,提升电池包整包温度采集精度,进而解决实际车辆采用有限个NTC采集点代替整包温度场而导致在的精度不高的问题。
本申请实施例提供了一种电子设备,包括存储器以及处理器,存储器用于存储计算机程序,处理器运行计算机程序以使电子设备执行本申请实施例1或实施例2中的动力电池整包温度确定方法。
本申请实施例提供了一种计算机可读存储介质,其存储有计算机程序指令,所述计算机程序指令被一处理器读取并运行时,执行本申请实施例1或实施例2中的动力电池整包温度确定方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (6)

1.一种动力电池整包温度确定方法,其特征在于,包括:
对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果;
根据所述环境模拟试验结果,构建所述动力电池的整包温度分布模型;
将所述整包温度分布模型嵌入至针对所述目标车辆的实车温度采集程序中,得到目标温度采集程序;
通过所述目标温度采集程序实时获取所述动力电池的整包温度;
其中,所述对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果,包括:
获取针对目标车辆上动力电池的NTC布置方案;
对所述动力电池进行环境模拟试验;
在进行所述环境模拟试验时,根据所述NTC布置方案进行温度采集,得到电池包NTC温度试验数据;以及在进行所述环境模拟试验时,获取电池包整包最大温度和最大温差的试验结果;
汇总所述电池包NTC温度试验数据和所述试验结果,得到环境模拟试验结果;
其中,所述根据所述环境模拟试验结果,构建所述动力电池的整包温度分布模型,包括:
根据所述电池包NTC温度试验数据和预设的克里金插值法,确定所述动力电池的整包温度分布函数;
根据所述整包温度分布函数构建整包温度分布模型。
2.根据权利要求1所述的动力电池整包温度确定方法,其特征在于,所述根据所述电池包NTC温度试验数据和预设的克里金插值法,确定所述动力电池的整包温度分布函数,包括:
采用预设的克里金插值法构建原始未知点预测值函数;
根据所述电池包NTC温度试验数据确定变异函数;
根据所述电池包NTC温度试验数据和所述变异函数,计算所述电池包NTC温度试验数据对应的已知点权重;
根据所述已知点权重和所述电池包NTC温度试验数据,确定未知点预测值函数;
根据所述试验结果确定所述未知点预测值函数的预测误差;
当所述预测误差大于预设误差阈值时,将所述未知点预测值函数确定为所述动力电池的整包温度分布函数。
3.根据权利要求2所述的动力电池整包温度确定方法,其特征在于,所述根据所述试验结果确定所述未知点预测值函数的预测误差,包括:
通过所述未知点预测值函数和所述电池包NTC温度试验数据进行NTC点温度预测,得到预测结果;
将所述预测结果与所述试验结果对比,得到对比结果;
根据所述对比结果确定所述未知点预测值函数的预测误差。
4.一种动力电池整包温度确定装置,其特征在于,所述动力电池整包温度确定装置包括:
模拟试验单元,用于对目标车辆的动力电池进行环境模拟试验,得到环境模拟试验结果;
第一构建单元,用于根据所述环境模拟试验结果,构建所述动力电池的整包温度分布模型;
第二构建单元,用于根据所述整包温度分布模型和预设的实车温度采集程序,构建目标温度采集程序;
采集单元,用于通过所述目标温度采集程序实时获取所述动力电池的整包温度;
其中,所述模拟试验单元包括:
获取子单元,用于获取针对目标车辆上动力电池的NTC布置方案;
试验子单元,用于对所述动力电池进行环境模拟试验;
采集子单元,用于在进行所述环境模拟试验时,根据所述NTC布置方案进行温度采集,得到电池包NTC温度试验数据;以及在进行所述环境模拟试验时,获取电池包整包最大温度和最大温差的试验结果;
汇总子单元,用于汇总所述电池包NTC温度试验数据和所述试验结果,得到环境模拟试验结果;
其中,所述第一构建单元包括:
确定子单元,用于根据所述电池包NTC温度试验数据和预设的克里金插值法,确定所述动力电池的整包温度分布函数;
构建子单元,用于根据所述整包温度分布函数构建整包温度分布模型。
5.一种电子设备,其特征在于,所述电子设备包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行权利要求1至3中任一项所述的动力电池整包温度确定方法。
6.一种可读存储介质,其特征在于,所述可读存储介质中存储有计算机程序指令,所述计算机程序指令被一处理器读取并运行时,执行权利要求1至3任一项所述的动力电池整包温度确定方法。
CN202310694586.5A 2023-06-13 2023-06-13 一种动力电池整包温度确定方法及装置 Pending CN116429280A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310694586.5A CN116429280A (zh) 2023-06-13 2023-06-13 一种动力电池整包温度确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310694586.5A CN116429280A (zh) 2023-06-13 2023-06-13 一种动力电池整包温度确定方法及装置

Publications (1)

Publication Number Publication Date
CN116429280A true CN116429280A (zh) 2023-07-14

Family

ID=87091086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310694586.5A Pending CN116429280A (zh) 2023-06-13 2023-06-13 一种动力电池整包温度确定方法及装置

Country Status (1)

Country Link
CN (1) CN116429280A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494778A (zh) * 2011-11-14 2012-06-13 北京理工大学 一种基于人工神经网络的二次电池表面最高温度预测方法
CN102865942A (zh) * 2011-07-04 2013-01-09 杭州市电力局 一种动力电池温度测试方法、装置和系统
CN106714336A (zh) * 2016-10-25 2017-05-24 南京邮电大学 一种基于改进克里金算法的无线传感网温度监测方法
CN108448132A (zh) * 2018-01-23 2018-08-24 同济大学 燃料电池电堆不同工况下温度分布模拟装置及方法
CN111611541A (zh) * 2020-04-26 2020-09-01 武汉大学 基于Copula函数的无资料地区降水数据推求方法及系统
CN112578298A (zh) * 2019-09-29 2021-03-30 比亚迪股份有限公司 电池温度估算方法、装置、电子设备及存储介质
CN113359038A (zh) * 2021-02-23 2021-09-07 万向一二三股份公司 一种锂离子电池放电及其连接件产热验证方法
CN114824357A (zh) * 2022-03-31 2022-07-29 中国第一汽车股份有限公司 一种氢燃料电池电动汽车动力总成冷却系统、试验方法及评价方法
CN115201693A (zh) * 2021-04-13 2022-10-18 广汽埃安新能源汽车有限公司 方形锂离子电池热模型建立方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865942A (zh) * 2011-07-04 2013-01-09 杭州市电力局 一种动力电池温度测试方法、装置和系统
CN102494778A (zh) * 2011-11-14 2012-06-13 北京理工大学 一种基于人工神经网络的二次电池表面最高温度预测方法
CN106714336A (zh) * 2016-10-25 2017-05-24 南京邮电大学 一种基于改进克里金算法的无线传感网温度监测方法
CN108448132A (zh) * 2018-01-23 2018-08-24 同济大学 燃料电池电堆不同工况下温度分布模拟装置及方法
CN112578298A (zh) * 2019-09-29 2021-03-30 比亚迪股份有限公司 电池温度估算方法、装置、电子设备及存储介质
CN111611541A (zh) * 2020-04-26 2020-09-01 武汉大学 基于Copula函数的无资料地区降水数据推求方法及系统
CN113359038A (zh) * 2021-02-23 2021-09-07 万向一二三股份公司 一种锂离子电池放电及其连接件产热验证方法
CN115201693A (zh) * 2021-04-13 2022-10-18 广汽埃安新能源汽车有限公司 方形锂离子电池热模型建立方法及装置
CN114824357A (zh) * 2022-03-31 2022-07-29 中国第一汽车股份有限公司 一种氢燃料电池电动汽车动力总成冷却系统、试验方法及评价方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
余文利等: "一种新的基于隐马尔可夫模型的股票价格时间序列预测方法", 计算机应用与软件, vol. 27, no. 06, pages 186 - 190 *
刘霏霏等: "基于动态内热源特性的车用锂离子动力电池温度场仿真及试验", 机械工程学报, vol. 52, no. 08, pages 141 - 151 *
周炳伟;: "电动汽车动力锂电池组电源管理系统的设计研究", 科技资讯, no. 14, pages 34 - 35 *
唐艳娜等: "基于预测的无损视频压缩技术", 科技信息(学术研究), no. 18, pages 440 - 442 *
毛思奇等: "城市土地重金属污染分析", 《中国科技信息》, no. 10, pages 130 - 38 *
辛明华等: "纯电动汽车动力电池系统对标技术研究", 汽车工程师, no. 01, pages 57 - 58 *

Similar Documents

Publication Publication Date Title
CN108805217B (zh) 一种基于支持向量机的锂离子电池健康状态估计方法及系统
US20180080997A1 (en) Method for testing battery cycle life based on environmental temperature
JP7069025B2 (ja) 電熱電池モデルの生成及び使用のためのシステム及び方法
Sung et al. Electrochemical model of a lithium-ion battery implemented into an automotive battery management system
KR20150022896A (ko) 프로세싱 방법으로부터의 데이터에 따라 전력 상태를 결정하기 위한 장치 및 방법
CN110456273A (zh) 一种电池soc估算方法、估算系统、动力电池系统
CN113794254B (zh) 一种热管理策略配置方法、装置、计算机设备和存储介质
CN113009351A (zh) 电池容量的确定方法及装置
CN114371408A (zh) 电池荷电状态的估算方法、充电曲线的提取方法及装置
CN115754726A (zh) 一种电池寿命预测及维持方法、电子设备和存储介质
Sharma et al. A closed form reduced order electrochemical model for lithium-ion cells
CN116429280A (zh) 一种动力电池整包温度确定方法及装置
CN113158589A (zh) 一种电池管理系统的仿真模型校准方法以及装置
CN110068409B (zh) 锂电池应力预测方法和装置
CN113570116B (zh) 一种储充站发热功率的估算方法及终端
CN114722487B (zh) 一种基于大数据的新能源汽车车型参数预测估计方法
CN115632181A (zh) 锂电池温度预警方法、系统、存储介质及终端
CN113722926A (zh) 一种方形锂电池电热耦合建模误差源分析方法
CN109738805B (zh) 电池及其测试方法、装置、电子设备
CN115128465A (zh) 电池热仿真系统、方法及电子设备
CN116148700B (zh) 电池的状态预测方法及存储介质
CN117112971B (zh) 一种温度曲线生成方法、装置、电子设备及存储介质
CN112240987A (zh) 功率测试方法、系统、计算机设备和存储介质
Wang et al. Structure optimization of the battery thermal management system based on surrogate modeling of approximate and detailed simulations
Pillai et al. Open-Circuit Voltage Modelling Toolbox for Battery Management Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination