CN116423527A - 一种机械臂的构建方法、装置、存储介质及电子设备 - Google Patents

一种机械臂的构建方法、装置、存储介质及电子设备 Download PDF

Info

Publication number
CN116423527A
CN116423527A CN202310689825.8A CN202310689825A CN116423527A CN 116423527 A CN116423527 A CN 116423527A CN 202310689825 A CN202310689825 A CN 202310689825A CN 116423527 A CN116423527 A CN 116423527A
Authority
CN
China
Prior art keywords
joint
mechanical arm
load
stress
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310689825.8A
Other languages
English (en)
Other versions
CN116423527B (zh
Inventor
秦美娟
严敏东
宛敏红
顾建军
汪清强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lab
Original Assignee
Zhejiang Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lab filed Critical Zhejiang Lab
Priority to CN202310689825.8A priority Critical patent/CN116423527B/zh
Publication of CN116423527A publication Critical patent/CN116423527A/zh
Application granted granted Critical
Publication of CN116423527B publication Critical patent/CN116423527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1661Programme controls characterised by programming, planning systems for manipulators characterised by task planning, object-oriented languages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Manipulator (AREA)

Abstract

本说明书公开了一种机械臂的构建方法、装置、存储介质及电子设备。机械臂的构建方法包括:在仿真环境中构建虚拟机械臂的初始三维模型,确定各关节的角度变换序列,将各关节对应的角度变换序列输入动力学模型,确定各关节的载荷变换序列并将载荷的最大值作为极限载荷,向虚拟机械臂的每个关节施加各关节各自对应的极限载荷,在虚拟机械臂的执行器上施加目标外载,以计算极限应力,以及,在各关节上施加单位扭矩,确定各关节对应的单位应力,基于单位应力以及载荷变换序列,确定应力变换序列,根据应力变换序列确定疲劳寿命,根据极限应力以及疲劳寿命得到目标三维模型并构建真实机械臂。

Description

一种机械臂的构建方法、装置、存储介质及电子设备
技术领域
本说明书涉及人形机器人技术领域,尤其涉及一种机械臂的构建方法、装置、存储介质及电子设备。
背景技术
随着人工智能的快速发展,各种人形机器人也开始被广泛的应用到各行各业中,如救援机器人、按摩机器人以及演奏机器人等。其中,机械臂是人形机器人的重要部件之一,它要承受机器人服务作业过程中的各种复杂动态载荷,而且仿人手臂一体化关节造价很高,一旦发生损坏,损失巨大且不利于维修。因此,机械臂的强度性能评估对于整个机器人安全运行十分重要。
然而,目前对机械臂进行评估时主要依赖于工程师的经验,评估结果的准确性较低,评估指标也不够全面,很难根据得到的评估结果对机器人进行优化,导致实际构建出的机械臂不符合实际作业中的强度需求。
因此,如何对机械臂进行准确、全面的评估,从而根据评估结果进行准确的优化,构建出符合实际强度需求的机械臂,是一个亟待解决的问题。
发明内容
本说明书提供一种机械臂的构建方法、装置、存储介质及电子设备,以部分的解决现有技术存在的上述问题。
本说明书采用下述技术方案:
本说明书提供了一种机械臂的构建方法,包括:
在仿真环境中构建虚拟机械臂的初始三维模型,确定所述虚拟机械臂在执行指定动作时,所述虚拟机械臂各关节的角度变换序列;
针对所述虚拟机械臂的每个关节,将该关节对应的角度变换序列输入预先构建的所述虚拟机械臂的动力学模型,确定该关节对应的载荷变换序列,并将所述载荷变换序列中载荷的最大值作为该关节对应的极限载荷;
根据接收到的载荷施加指令,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷,以及在所述虚拟机械臂末端的执行器上施加目标外载,以根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力,以及,在所述各关节上施加单位扭矩,确定各关节对应的单位应力,基于所述单位应力以及所述载荷变换序列,确定各关节的应力变换序列,并根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命;
根据所述极限应力以及所述疲劳寿命,在所述仿真环境中对所述初始三维模型进行调整,得到目标三维模型,以根据所述目标三维模型构建所述虚拟机械臂对应的真实机械臂。
可选地,将该关节对应的角度变换序列输入预先构建的所述虚拟机械臂的动力学模型之前,所述方法还包括:
基于所述虚拟机械臂的结构动力学参数,构建所述虚拟机械臂的动力学模型,所述结构动力学参数包括所述虚拟机械臂各结构件的质量、质心位置以及转动惯量。
可选地,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷之前,所述方法还包括:
对所述初始三维模型进行有限元建模,确定所述虚拟机械臂对应的有限元模型,所述有限元模型包括:所述虚拟机械臂的各结构件、各关节对应的质量点、连接各结构件与各关节轴承的连接假体以及所述执行器对应的质量点;
针对每个关节,确定该关节对应的质量点和该关节对应的连接假体之间的第一刚性载荷单元,所述第一刚性载荷单元用于将该关节对应质量点上的载荷刚性传递到与该关节相连接的连接假体上,以及,确定所述执行器和所述执行器对应的连接假体之间的第二刚性载荷单元,所述第二刚性载荷单元用于将所述执行器对应质量点上的载荷刚性传递到与所述执行体相连接的连接假体上。
可选地,所述方法还包括:
确定所述有限元模型中各网格结构对应的单元属性以及材料属性;
将所述有限元模型中各关节所在位置的结构件与连接假体之间建立绑定关系。
可选地,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷,以及在所述虚拟机械臂末端的执行器上施加目标外载,具体包括:
针对所述虚拟机械臂的每个关节,在所述仿真环境中向该关节对应的质量点和该关节对应的连接假体之间的第一刚性载荷单元上施加该关节对应的极限载荷,向所述第二刚性载荷单元上施加所述目标外载。
可选地,根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力,具体包括:
根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力以及位移情况;
根据所述极限应力以及所述疲劳寿命对所述初始三维模型进行调整,具体包括:
根据所述极限应力、所述位移情况以及所述疲劳寿命对所述初始三维模型进行调整。
可选地,根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命,具体包括:
根据所述虚拟机械臂各构件的材料属性,以及所述应力变换序列,确定所述虚拟机械臂对应的应力—寿命S-N曲线;
根据所述S-N曲线,确定所述虚拟机械臂对应的疲劳寿命。
可选地,在所述各关节上施加单位扭矩,确定各关节对应的单位应力之前,所述方法还包括:
判断所述极限应力是否小于许用应力;
若否,对所述初始三维模型进行调整,直到所述极限应力小于许用应力,得到调整后三维模型。
可选地,根据所述极限应力以及所述疲劳寿命对所述初始三维模型进行调整,得到目标三维模型,具体包括:
判断所述疲劳寿命是否大于预设周期数,若否,对所述调整后三维模型进行调整,直到所述疲劳寿命大于所述预设周期数,得到所述目标三维模型。
可选地,基于所述单位应力以及所述载荷变换序列,确定各关节的应力变换序列,并根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命,具体包括:
基于所述单位应力以及所述载荷变换序列,确定各关节在六个应力分量上的应力变换序列;
根据所述六个应力分量上的应力变换序列,确定所述疲劳寿命。
本说明书提供了一种机械臂的构建装置,包括:
确定模块,在仿真环境中构建虚拟机械臂的初始三维模型,确定所述虚拟机械臂在执行指定动作时,所述虚拟机械臂各关节的角度变换序列;
输入模块,针对所述虚拟机械臂的每个关节,将该关节对应的角度变换序列输入预先构建的所述虚拟机械臂的动力学模型,确定该关节对应的载荷变换序列,并将所述载荷变换序列中载荷的最大值作为该关节对应的极限载荷;
施加模块,根据接收到的载荷施加指令,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷,以及在所述虚拟机械臂末端的执行器上施加目标外载,以根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力,以及,在所述各关节上施加单位扭矩,确定各关节对应的单位应力,基于所述单位应力以及所述载荷变换序列,确定各关节的应力变换序列,并根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命;
构建模块,根据所述极限应力以及所述疲劳寿命,在所述仿真环境中对所述初始三维模型进行调整,得到目标三维模型,以根据所述目标三维模型构建所述虚拟机械臂对应的真实机械臂。
可选地,所述确定模块还用于,基于所述虚拟机械臂的结构动力学参数,构建所述虚拟机械臂的动力学模型,所述结构动力学参数包括所述虚拟机械臂各结构件的质量、质心位置以及转动惯量。
可选地,所述施加模块还用于,对所述初始三维模型进行有限元建模,确定所述虚拟机械臂对应的有限元模型,所述有限元模型包括:所述虚拟机械臂的各结构件、各关节对应的质量点、连接各结构件与各关节轴承的连接假体以及所述执行器对应的质量点;针对每个关节,确定该关节对应的质量点和该关节对应的连接假体之间的第一刚性载荷单元,所述第一刚性载荷单元用于将该关节对应质量点上的载荷刚性传递到与该关节相连接的连接假体上,以及,确定所述执行器和所述执行器对应的连接假体之间的第二刚性载荷单元,所述第二刚性载荷单元用于将所述执行器对应质量点上的载荷刚性传递到与所述执行体相连接的连接假体上。
本说明书提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述机械臂的构建方法。
本说明书提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述机械臂的构建方法。
本说明书采用的上述至少一个技术方案能够达到以下有益效果:
在本说明书提供的机械臂的构建方法中,在仿真环境中构建虚拟机械臂的初始三维模型,确定各关节的角度变换序列,将各关节对应的角度变换序列输入动力学模型,确定各关节的载荷变换序列并将载荷的最大值作为极限载荷,向虚拟机械臂的每个关节施加各关节各自对应的极限载荷,在虚拟机械臂的执行器上施加目标外载,以计算极限应力,以及,在各关节上施加单位扭矩,确定各关节对应的单位应力,基于单位应力以及载荷变换序列,确定应力变换序列,根据应力变换序列确定疲劳寿命,根据极限应力以及疲劳寿命得到目标三维模型并构建真实机械臂。
从上述方法可以看出,本方案在对虚拟机械臂的极限应力和疲劳寿命进行评估之前,可以先依据虚拟机械臂在执行指定动作时的角度变换序列,对虚拟机械臂的初始三维模型进行动力学分析,这样一来,就可以确定出该初始三维模型的虚拟机械臂在执行指定动作的过程中各关节的载荷情况以及极限载荷,从而为后续的极限应力评估和疲劳寿命评估提供精确、可靠的数据,相比于目前依赖于工程师的经验进行评估的方法,本方案能够对虚拟机械臂的极限应力以及疲劳寿命进行准确的评估,从而根据评估结果对虚拟机械臂的三维模型进行调整,使得实际构建出的真实机械臂满足实际作业中的安全性要求。
附图说明
此处所说明的附图用来提供对本说明书的进一步理解,构成本说明书的一部分,本说明书的示意性实施例及其说明用于解释本说明书,并不构成对本说明书的不当限定。在附图中:
图1为本说明书中提供的一种机械臂的构建方法的流程示意图;
图2为本说明书中提供的一种虚拟机械臂的动力学模型示意图;
图3为本说明书中提供的一种载荷变换序列的曲线图;
图4为本说明书中提供的一种虚拟机械臂的有限元模型示意图;
图5为本说明书中提供的一种虚拟机械臂的目标三维模型的示意图;
图6为本说明书中提供的一种虚拟机械臂的评估过程示意图;
图7为本说明书提供的一种机械臂的构建装置的示意图;
图8为本说明书提供的一种对应于图1的电子设备示意图。
具体实施方式
为使本说明书的目的、技术方案和优点更加清楚,下面将结合本说明书具体实施例及相应的附图对本说明书技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书保护的范围。
人形机器人手臂三维的零件非常零散,且相互之间的耦合性较强,要兼顾多零件、多姿态的结构形态,由于将手臂结构三维导入动力学分析软件进行计算之前需要花费大量时间对模型进行人工处理。因此,现有的有限元应力计算施加的载荷依赖于工程师经验估计而非测试也非仿真得到,其准确度无从考证。并且,人形机器人手臂涉及多个一体化关节,同时手臂末端执行器也承受了外力,目前对手臂进行疲劳强度评估的方法缺乏各载荷输入点的时序载荷。
以下结合附图,详细说明本说明书各实施例提供的技术方案。
图1为本说明书中提供的一种机械臂的构建方法的流程示意图,包括以下步骤:
S101:在仿真环境中构建虚拟机械臂的初始三维模型,确定所述虚拟机械臂在执行指定动作时,所述虚拟机械臂各关节的角度变换序列。
机械臂是人形机器人的重要部件之一,它要承受机器人服务作业过程中的各种复杂动态载荷,而且机械臂因连续反复作业在服役一定时间后容易发生疲劳破坏,不进行疲劳强度分析导致整个仿人机器人手臂的安全性无法得到保证。
以往建立的人形机器人手臂模型的结构简单,将手臂关节结构件拆分开进行校核,将载荷直接施加在手臂关节结构件上,这样做不仅容易引起应力集中,也不符合载荷的传递路径,并且,人形机器人机械臂结构的极限强度评估采用的载荷基本依赖于经验评估,评估结果准确度无法得到保证,可靠性不高。
基于此,本说明书提供了一种机械臂的构建方法,对虚拟机械臂进行评估前先进行动力学分析,得到一个完整周期工况下的极限载荷和疲劳时序载荷,从而为后续的应力极限和疲劳寿命评估提供高可靠性的载荷输入,进而根据评估结果调整三维模型,以对人形机器人的真实机械臂进行构建。
在本说明书中,用于实现一种机械臂的构建方法的执行主体可以是指用于部署仿真软件的终端设备(如笔记本电脑、台式电脑等),为了便于描述,本说明书仅以终端设备是执行主体为例,对本说明书中提供的机械臂的构建方法进行说明。
其中,终端设备可以在仿真环境中构建虚拟机械臂的三维模型(如计算机辅助设计(Computer Aided Design,CAD)模型),将该三维模型中诸如连接螺栓、橡胶圈等非必要零件进行删除,根据人形机器人机械臂结构实际作业的初始状态完成关节结构件和关节的三维装配,得到虚拟机械臂的初始三维模型。
而后终端设备可以对虚拟机械臂在实际执行作业时的指定动作进行轨迹规划,确定虚拟机械臂在一个动作周期内各关节的角度变换序列(即角度-时间序列)。
在本说明书中,机器臂的各关节可以为一体化关节,上述指定动作可以包括诸如抓取、摆放、钻孔以及焊接等实际作业中的动作,本说明书对此不做具体限定。
S102:针对所述虚拟机械臂的每个关节,将该关节对应的角度变换序列输入预先构建的所述虚拟机械臂的动力学模型,确定该关节对应的载荷变换序列,并将所述载荷变换序列中载荷的最大值作为该关节对应的极限载荷。
终端设备可以基于虚拟机械臂三维模型的结构动力学参数,构建虚拟机械臂的动力学模型,该结构动力学参数可以包括虚拟机械臂各结构件的预设质量、质心位置以及转动惯量,当然,还可以包含有其他结构动力学参数,本说明书对此不做具体限定。为了便于理解,本说明书提供了一种虚拟机械臂的动力学模型示意图,如图2所示。
图2为本说明书中提供的一种虚拟机械臂的动力学模型示意图。
其中,该动力学模型可以为简化的虚拟机械臂三维模型,用于对虚拟机械臂执行上述角度变换序列对应的动作的过程进行仿真,从而通过仿真计算确定各关节在该过程中的每一时刻所对应的载荷。
终端设备可以将各关节的角度变换序列作为该动力学模型的运动输入,从而进行虚拟机械臂结构的多体力学仿真,得到各个关节对应的载荷变换序列(即载荷-时间序列)。为了便于理解,本说明书提供了一种载荷变换序列的曲线图,如图3所示。
图3为本说明书中提供的一种载荷变换序列的曲线图。
其中,图3中的横坐标表示一个动作周期的时间,单位为sec,纵坐标表示关节n对应的载荷,单位为N*m。需要说明的是,该图仅是以虚拟机械臂的其中一个关节(关节n)为例,对其载荷变换序列的曲线图进行表示,对于其他关节载荷变换序列的曲线图不再一一进行示出。
由于一体化关节通常是由供应商进行定制的,所以在实际应用中可以从供应商提供的技术手册中直接获得。在构建动力学模型的过程中,终端设备可以根据上述结构动力学参数,定义运动力学模型的运动约束以及各结构之间的运动关系,进而将各关节的角度变换序列输入该运动力学模型。
针对每个关节,终端设备可以将该关节对应载荷变换序列中的最大力矩(载荷的最大值)作为该关节对应的极限载荷,将完成一个指定动作(一个动作周期)的载荷变换序列作为疲劳载荷谱。
S103:根据接收到的载荷施加指令,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷,以及在所述虚拟机械臂末端的执行器上施加目标外载,以根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力,以及,在所述各关节上施加单位扭矩,确定各关节对应的单位应力,基于所述单位应力以及所述载荷变换序列,确定各关节的应力变换序列,并根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命。
S104:根据所述极限应力以及所述疲劳寿命,在所述仿真环境中对所述初始三维模型进行调整,得到目标三维模型,以根据所述目标三维模型构建所述虚拟机械臂对应的真实机械臂。
终端设备可以将初始三维模型导入有限元分析软件的前处理模块,对初始三维模型进行有限元建模,模拟人形机器人虚拟机械臂结构的受力。
具体的,对初始三维模型进行有限元建模后,可以得到虚拟机械臂对应的有限元模型,该有限元模型包括:虚拟机械臂的各结构件、各关节对应的质量点、连接各结构件与各关节轴承的连接假体、执行器对应的质量点以及连接执行器与结构件的连接假体,当然,还可以包含有其他模型结构,本说明书对此不做具体限定,在实际应用中,执行器对应的连接假体可以为虚拟机械臂手腕的连接件。
在本说明书中,虚拟机械臂由不同的结构件构成,连接假体用于将结构件与关节轴承进行连接,以及将执行器和虚拟机械臂手腕进行连接,由于在实际应用中虚拟机械臂往往会执行不同的作业,因此,虚拟机械臂末端的执行器可以包括机械钩爪、钻头、刀具以及焊头等用于执行不同作业的器件,当然,还可以包含有执行其他作业的器件,本说明书对此不做具体限定。
进一步的,针对每个关节,终端设备可以确定该关节对应的质量点和该关节对应的连接假体之间的第一刚性载荷单元,该第一刚性载荷单元用于将该关节对应质量点上的载荷刚性传递到与该关节相连接的连接假体上,以及,确定执行器和执行器对应的连接假体(虚拟机械臂手腕)之间的第二刚性载荷单元,该第二刚性载荷单元用于将执行器对应质量点上的载荷刚性传递到与执行体相连接的连接假体上。需要说明的是,该第一刚性载荷单元以及第二刚性载荷单元均为有限元模型中的虚拟载荷点,并不作为虚拟机械臂的实际结构。
为了便于理解,本说明书中提供了一种虚拟机械臂的有限元模型示意图,如图4所示。
图4为本说明书中提供的一种虚拟机械臂的有限元模型示意图。
其中,该有限元模型包括8个关节的结构件、7对一体化关节与轴承连接件假体、7个一体化关节质量点、7个连接一体化关节质量点和连接假体的刚性载荷单元,7个连接一体化关节质量点以及末端执行器的质量点以及连接末端执行器和手腕连接件的刚性载荷单元。上述各质量点以及刚性载荷单元在图4中未示出。
而后终端设备可以将上述有限元模型对应的各网格结构分别赋予单元属性(如实体单元、梁单元、壳单元等)和材料属性(如材质、密度等),将以上有限元模型中各个关节位置的结构件和连接件假体之间分别建立绑定接触关系,在肩关节定子端的结构件末端边界设定绑定约束。
在接收到载荷施加指令后,终端设备可以基于各个关节的载荷变换序列,考虑到安全性裕度,在仿真环境中分别向各个关节对应的刚性载荷单元上施加各自对应的极限载荷,向执行器对应的刚性载荷单元上施加实际作业情况所对应的目标外载。
其中,上述目标外载可以根据实际情况进行设定,如在执行进行货物抓取或者货物摆放作业时,上述目标外载可以为实际抓取或摆放的货物所对应的负载。
在本说明书中,对于7个关节的虚拟机械臂有限元模型,向各个关节对应的刚性载荷单元所施加的极限载荷可以如表1所示。
Figure SMS_1
这样一来,终端设备可以根据每个关节上的极限载荷以及目标外载对虚拟机械臂的有限元模型进行仿真计算,得到该虚拟机械臂对应的极限应力以及位移情况。
而后终端设备可以判断上述极限应力是否小于许用应力,以及根据位移情况判断虚拟机械臂的位移距离是否大于预设距离,若极限应力小于许用应力且位移距离小于预设距离,则说明该虚拟机械臂的初始三维模型满足安全性要求(即满足极限应力评估)。若极限应力不小于许用应力且位移距离不小于预设距离,则说明该初始三维模型不满足安全性要求(即不满足极限应力评估),此时调整初始三维模型的局部结构,迭代极限应力强度校核,直到结果满足上述要求,得到调整后三维模型。上述许用应力以及预设距离可以根据实际情况进行设定,本说明书对此不做具体限定。
终端设备可以进一步对虚拟机械臂的调整后三维模型进行疲劳寿命评估,具体的,服务可以获取单位工况下的应力结果。在有限元模型的基础上分别将每个关节的单位扭矩(1N*m)作为每个关节的载荷工况施加在各关节对应的刚性载荷单元上。通过有限元计算出每个单位载荷工况下各关节的单位应力,进而将各关节的单位应力合并为一个应力结果rst文件。
终端设备可以将各单位载荷工况的应力结果与动力学分析得到的各关节载荷变换序列进行线性乘积并线性叠加,得到各应力分量的应力变换序列,即应力谱。各应力分量的应力变换序列可以通过如下公式进行表示:
Figure SMS_2
其中,i=1,2,3,4,5,6,
Figure SMS_6
、/>
Figure SMS_7
、/>
Figure SMS_13
、/>
Figure SMS_3
、/>
Figure SMS_9
、/>
Figure SMS_11
表示线性叠加后的应力变换序列的6个分量,/>
Figure SMS_14
表示各关节的载荷变换序列,/>
Figure SMS_4
、/>
Figure SMS_10
Figure SMS_12
、/>
Figure SMS_15
、/>
Figure SMS_5
、/>
Figure SMS_8
表示在各载荷工况(单位扭矩)下得到的6个应力分量。
而后终端设备可以对对应力谱进行雨流计数计算,得到应力谱马科夫矩阵,进而确定平均应力、应力幅值及相对应的循环次数。
进一步的,终端设备可以根据虚拟机械臂各结构的材料以及上述计算结果,确定初始应力-寿命(S-N)曲线,而后基于上述应力变换序列,依据德国劳埃德GL2010规范附录中的规定,选取应力比为R=-2,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,并根据以上9条不同应力比的曲线根据需要得到不同应力比的应力曲线。将上述得到的各应力结合根据各结构材料获得的S-N曲线,得到最终的S-N曲线,而后终端设备可以从该S-N曲线中读取虚拟机械臂的调整后模型对应的疲劳寿命N。
终端设备可以根据该疲劳寿命对调整后的三维模型进行进一步的调整,具体的,终端设备可以判断疲劳寿命是否大于预设周期数,若否,对调整后三维模型进行再次调整,直到该疲劳寿命大于预设周期数,得到最终的目标三维模型,在本说明书中,上述预设周期数可以根据实际情况进行设定,本说明书对此不做具体限定。
进一步的,在实际应用中,终端设备可以基于上述疲劳寿命N,确定虚拟机械臂的疲劳损伤值,该疲劳损伤值可以表示为:
Figure SMS_16
,其中,n为虚拟机械臂的实际使用周期,而后终端设备可以结合预设的安全系数K,计算K*D的值,若该值小于1则满足疲劳要求,否则需要对虚拟机械臂的三维模型进行调整。
当然,在本说明书中,终端设备也可以在确定极限应力以及位移距离后暂时不对初始三维模型进行评估以及调整,而是直接对初始三维模型进行疲劳寿命评估,并在确定疲劳寿命后,分别根据确定出的极限应力,位移情况以及疲劳寿命对初始三维模型进行调整,从而得到虚拟机械臂的目标三维模型。为了便于理解,本说明书提供了一种虚拟机械臂的目标三维模型的示意图,如图5所示。
图5为本说明书中提供的一种虚拟机械臂的目标三维模型的示意图。
其中,该目标三维模型可以为CAD的三维模型。
在此过程中,终端设备可以基于上述极限应力的分析结果以及疲劳寿命的分析结果,确定虚拟机械臂初始三维模型中的薄弱部位,从而对该薄弱部位的结构进行加强以及优化,直至满足极限应力评估以及疲劳寿命评估。为了便于理解,本说明书提供了一种虚拟机械臂的评估过程示意图,如图6所示。
图6为本说明书中提供的一种虚拟机械臂的评估过程示意图。
其中,终端设备可以先对虚拟机械臂进行动力学分析,得到各关节的载荷变换序列,而后构建有限元模型,向各关节施加极限载荷并向末端执行器施加外载,确定虚拟机械臂的极限应力,根据极限应力对虚拟机械臂进行评估,以及,根据载荷变换序列确定应力变换序列,根据应力变换序列确定虚拟机械臂的疲劳寿命,以根据疲劳寿命对虚拟机械臂进行疲劳强度评估。
得到目标三维模型后,终端设备可以按照该目标三维模型,构建虚拟机械臂对应的真实机械臂,例如,终端设备将目标三维模型输入3D打印设备中,从而控制3D打印机对真实的机械臂进行打印。
从上述方法可以看出,本方案建立了一个完整的模型,手臂末端执行器的载荷通过末端的手腕结构件给手臂,各一体化关节的驱动力通过刚性梁单元施加在相应的驱动假体然后传递给对应的关节结构件,构成了一个完整的载荷传递路径。
在强度计算评估前期首先进行动力学分析,得到一个完整周期工况下的极限载荷和疲劳时序载荷,为后续的极限应力和疲劳寿命评估提供高可靠性的载荷输入;
在设计环节对手臂结构件的极限应力和疲劳寿命分析结果进行评估,判定手臂结构件的薄弱位置,即人形机器人手臂结构的应力最大和疲劳损伤最大部位,可在设计环节进行局部加强,缩短手臂结构研发迭代周期;
然后,通过动力学分析-有限元极限强度校核-几何局部加强-有限元疲劳强度校核-几何局部加强的标准化流程进行人形机器人手臂结构的强度校核,计算出精确的极限应力和疲劳寿命,有效实现强度可靠性。
以上为本说明书的一个或多个实施机械臂的构建方法,基于同样的思路,本说明书还提供了相应的机械臂的构建装置,如图7所示。
图7为本说明书提供的一种机械臂的构建装置的示意图,包括:
确定模块701,用于在仿真环境中构建虚拟机械臂的初始三维模型,确定所述虚拟机械臂在执行指定动作时,所述虚拟机械臂各关节的角度变换序列;
输入模块702,用于针对所述虚拟机械臂的每个关节,将该关节对应的角度变换序列输入预先构建的所述虚拟机械臂的动力学模型,确定该关节对应的载荷变换序列,并将所述载荷变换序列中载荷的最大值作为该关节对应的极限载荷;
施加模块703,用于根据接收到的载荷施加指令,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷,以及在所述虚拟机械臂末端的执行器上施加目标外载,以根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力,以及,在所述各关节上施加单位扭矩,确定各关节对应的单位应力,基于所述单位应力以及所述载荷变换序列,确定各关节的应力变换序列,并根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命;
构建模块704,用于根据所述极限应力以及所述疲劳寿命,在所述仿真环境中对所述初始三维模型进行调整,得到目标三维模型,以根据所述目标三维模型构建所述虚拟机械臂对应的真实机械臂。
可选地,将该关节对应的角度变换序列输入预先构建的所述虚拟机械臂的动力学模型之前,所述确定模块701还用于,基于所述虚拟机械臂的结构动力学参数,构建所述虚拟机械臂的动力学模型,所述结构动力学参数包括所述虚拟机械臂各结构件的质量、质心位置以及转动惯量。
可选地,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷之前,所述施加模块703还用于,对所述初始三维模型进行有限元建模,确定所述虚拟机械臂对应的有限元模型,所述有限元模型包括:所述虚拟机械臂的各结构件、各关节对应的质量点、连接各结构件与各关节轴承的连接假体以及所述执行器对应的质量点中;针对每个关节,确定该关节对应的质量点和该关节对应的连接假体之间的第一刚性载荷单元,所述第一刚性载荷单元用于将该关节对应质量点上的载荷刚性传递到与该关节相连接的连接假体上,以及,确定所述执行器和所述执行器对应的连接假体之间的第二刚性载荷单元,所述第二刚性载荷单元用于将所述执行器对应质量点上的载荷刚性传递到与所述执行体相连接的连接假体上。
可选地,所述施加模块703还用于,确定所述有限元模型中各网格结构对应的单元属性以及材料属性;将所述有限元模型中各关节所在位置的结构件与连接假体之间建立绑定关系。
可选地,所述施加模块703具体用于,针对所述虚拟机械臂的每个关节,在所述仿真环境中向该关节对应的质量点和该关节对应的连接假体之间的第一刚性载荷单元上施加该关节对应的极限载荷,向所述第二刚性载荷单元上施加所述目标外载。
可选地,所述施加模块703具体用于,根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力以及位移情况;
所述构建模块704具体用于,根据所述极限应力、所述位移情况以及所述疲劳寿命对所述初始三维模型进行调整。
可选地,所述施加模块703具体用于,根据所述虚拟机械臂各构件的材料属性,以及所述应力变换序列,确定所述虚拟机械臂对应的应力—寿命S-N曲线;根据所述S-N曲线,确定所述虚拟机械臂对应的疲劳寿命。
可选地,在所述各关节上施加单位扭矩,确定各关节对应的单位应力之前,所述施加模块703还用于,判断所述极限应力是否小于许用应力;若否,对所述初始三维模型进行调整,直到所述极限应力小于许用应力,得到调整后三维模型。
可选地,所述构建模块704具体用于,判断所述疲劳寿命是否大于预设周期数,若否,对所述调整后三维模型进行调整,直到所述疲劳寿命大于所述预设周期数,得到所述目标三维模型。
可选地,所述施加模块703具体用于,基于所述单位应力以及所述载荷变换序列,确定各关节在六个应力分量上的应力变换序列;
根据所述六个应力分量上的应力变换序列,确定所述疲劳寿命。
本说明书还提供了一种计算机可读存储介质,该存储介质存储有计算机程序,计算机程序可用于执行上述图1提供的一种机械臂的构建方法。
本说明书还提供了图8所示的一种对应于图1的电子设备的示意结构图。如图8所述,在硬件层面,该电子设备包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以实现上述图1所述的机械臂的构建方法。当然,除了软件实现方式之外,本说明书并不排除其他实现方式,比如逻辑器件抑或软硬件结合的方式等等,也就是说以下处理流程的执行主体并不限定于各个逻辑单元,也可以是硬件或逻辑器件。
对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(ProgrammableLogic Device, PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(HardwareDescription Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(AdvancedBoolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(JavaHardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby HardwareDescription Language)等,目前最普遍使用的是VHDL(Very-High-Speed IntegratedCircuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20 以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本说明书的实施例可提供为方法、系统、或计算机程序产品。因此,本说明书可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本说明书可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书是参照根据本说明书实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本说明书的实施例可提供为方法、系统或计算机程序产品。因此,本说明书可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本说明书可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本说明书的实施例而已,并不用于限制本说明书。对于本领域技术人员来说,本说明书可以有各种更改和变化。凡在本说明书的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书的权利要求范围之内。

Claims (15)

1.一种机械臂的构建方法,其特征在于,包括:
在仿真环境中构建虚拟机械臂的初始三维模型,确定所述虚拟机械臂在执行指定动作时,所述虚拟机械臂各关节的角度变换序列;
针对所述虚拟机械臂的每个关节,将该关节对应的角度变换序列输入预先构建的所述虚拟机械臂的动力学模型,确定该关节对应的载荷变换序列,并将所述载荷变换序列中载荷的最大值作为该关节对应的极限载荷;
根据接收到的载荷施加指令,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷,以及在所述虚拟机械臂末端的执行器上施加目标外载,以根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力,以及,在所述各关节上施加单位扭矩,确定各关节对应的单位应力,基于所述单位应力以及所述载荷变换序列,确定各关节的应力变换序列,并根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命;
根据所述极限应力以及所述疲劳寿命,在所述仿真环境中对所述初始三维模型进行调整,得到目标三维模型,以根据所述目标三维模型构建所述虚拟机械臂对应的真实机械臂。
2.如权利要求1所述的方法,其特征在于,将该关节对应的角度变换序列输入预先构建的所述虚拟机械臂的动力学模型之前,所述方法还包括:
基于所述虚拟机械臂的结构动力学参数,构建所述虚拟机械臂的动力学模型,所述结构动力学参数包括所述虚拟机械臂各结构件的质量、质心位置以及转动惯量。
3.如权利要求1所述的方法,其特征在于,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷之前,所述方法还包括:
对所述初始三维模型进行有限元建模,确定所述虚拟机械臂对应的有限元模型,所述有限元模型包括:所述虚拟机械臂的各结构件、各关节对应的质量点、连接各结构件与各关节轴承的连接假体以及所述执行器对应的质量点;
针对每个关节,确定该关节对应的质量点和该关节对应的连接假体之间的第一刚性载荷单元,所述第一刚性载荷单元用于将该关节对应质量点上的载荷刚性传递到与该关节相连接的连接假体上,以及,确定所述执行器和所述执行器对应的连接假体之间的第二刚性载荷单元,所述第二刚性载荷单元用于将所述执行器对应质量点上的载荷刚性传递到与所述执行体相连接的连接假体上。
4.如权利要求3所述的方法,其特征在于,所述方法还包括:
确定所述有限元模型中各网格结构对应的单元属性以及材料属性;
将所述有限元模型中各关节所在位置的结构件与连接假体之间建立绑定关系。
5.如权利要求3所述的方法,其特征在于,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷,以及在所述虚拟机械臂末端的执行器上施加目标外载,具体包括:
针对所述虚拟机械臂的每个关节,在所述仿真环境中向该关节对应的质量点和该关节对应的连接假体之间的第一刚性载荷单元上施加该关节对应的极限载荷,向所述第二刚性载荷单元上施加所述目标外载。
6.如权利要求1所述的方法,其特征在于,根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力,具体包括:
根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力以及位移情况;
根据所述极限应力以及所述疲劳寿命对所述初始三维模型进行调整,具体包括:
根据所述极限应力、所述位移情况以及所述疲劳寿命对所述初始三维模型进行调整。
7.如权利要求1所述的方法,其特征在于,根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命,具体包括:
根据所述虚拟机械臂各构件的材料属性,以及所述应力变换序列,确定所述虚拟机械臂对应的应力—寿命S-N曲线;
根据所述S-N曲线,确定所述虚拟机械臂对应的疲劳寿命。
8.如权利要求1所述的方法,其特征在于,在所述各关节上施加单位扭矩,确定各关节对应的单位应力之前,所述方法还包括:
判断所述极限应力是否小于许用应力;
若否,对所述初始三维模型进行调整,直到所述极限应力小于许用应力,得到调整后三维模型。
9.如权利要求8所述的方法,其特征在于,根据所述极限应力以及所述疲劳寿命对所述初始三维模型进行调整,得到目标三维模型,具体包括:
判断所述疲劳寿命是否大于预设周期数,若否,对所述调整后三维模型进行调整,直到所述疲劳寿命大于所述预设周期数,得到所述目标三维模型。
10.如权利要求1所述的方法,其特征在于,基于所述单位应力以及所述载荷变换序列,确定各关节的应力变换序列,并根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命,具体包括:
基于所述单位应力以及所述载荷变换序列,确定各关节在六个应力分量上的应力变换序列;
根据所述六个应力分量上的应力变换序列,确定所述疲劳寿命。
11.一种机械臂的构建装置,其特征在于,包括:
确定模块,在仿真环境中构建虚拟机械臂的初始三维模型,确定所述虚拟机械臂在执行指定动作时,所述虚拟机械臂各关节的角度变换序列;
输入模块,针对所述虚拟机械臂的每个关节,将该关节对应的角度变换序列输入预先构建的所述虚拟机械臂的动力学模型,确定该关节对应的载荷变换序列,并将所述载荷变换序列中载荷的最大值作为该关节对应的极限载荷;
施加模块,根据接收到的载荷施加指令,在所述仿真环境中向所述虚拟机械臂的每个关节施加各关节各自对应的极限载荷,以及在所述虚拟机械臂末端的执行器上施加目标外载,以根据每个关节上的极限载荷以及所述目标外载计算所述虚拟机械臂对应的极限应力,以及,在所述各关节上施加单位扭矩,确定各关节对应的单位应力,基于所述单位应力以及所述载荷变换序列,确定各关节的应力变换序列,并根据所述应力变换序列,确定所述虚拟机械臂对应的疲劳寿命;
构建模块,根据所述极限应力以及所述疲劳寿命,在所述仿真环境中对所述初始三维模型进行调整,得到目标三维模型,以根据所述目标三维模型构建所述虚拟机械臂对应的真实机械臂。
12.如权利要求11所述的装置,其特征在于,所述确定模块还用于,基于所述虚拟机械臂的结构动力学参数,构建所述虚拟机械臂的动力学模型,所述结构动力学参数包括所述虚拟机械臂各结构件的质量、质心位置以及转动惯量中。
13.如权利要求11所述的装置,其特征在于,所述施加模块还用于,对所述初始三维模型进行有限元建模,确定所述虚拟机械臂对应的有限元模型,所述有限元模型包括:所述虚拟机械臂的各结构件、各关节对应的质量点、连接各结构件与各关节轴承的连接假体以及所述执行器对应的质量点;针对每个关节,确定该关节对应的质量点和该关节对应的连接假体之间的第一刚性载荷单元,所述第一刚性载荷单元用于将该关节对应质量点上的载荷刚性传递到与该关节相连接的连接假体上,以及,确定所述执行器和所述执行器对应的连接假体之间的第二刚性载荷单元,所述第二刚性载荷单元用于将所述执行器对应质量点上的载荷刚性传递到与所述执行体相连接的连接假体上。
14.一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述权利要求1~10任一项所述的方法。
15.一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现上述权利要求1~10任一项所述的方法。
CN202310689825.8A 2023-06-12 2023-06-12 一种机械臂的构建方法、装置、存储介质及电子设备 Active CN116423527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310689825.8A CN116423527B (zh) 2023-06-12 2023-06-12 一种机械臂的构建方法、装置、存储介质及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310689825.8A CN116423527B (zh) 2023-06-12 2023-06-12 一种机械臂的构建方法、装置、存储介质及电子设备

Publications (2)

Publication Number Publication Date
CN116423527A true CN116423527A (zh) 2023-07-14
CN116423527B CN116423527B (zh) 2023-09-01

Family

ID=87081804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310689825.8A Active CN116423527B (zh) 2023-06-12 2023-06-12 一种机械臂的构建方法、装置、存储介质及电子设备

Country Status (1)

Country Link
CN (1) CN116423527B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130632A (en) * 1989-12-06 1992-07-14 Hitachi, Ltd. Manipulator and control method therefor
JP2016055659A (ja) * 2014-09-05 2016-04-21 Jfeスチール株式会社 自動車用足廻り部品及び自動車用足廻り部品の疲労強度向上方法
CN106649990A (zh) * 2016-11-16 2017-05-10 中国北方发动机研究所(天津) 一种应用于快速疲劳试验的发动机主连杆载荷的简化方法
CN109614640A (zh) * 2018-10-30 2019-04-12 中国电力科学研究院有限公司 一种大型风电机组轮毂疲劳寿命预测方法及系统
CN110032816A (zh) * 2019-04-19 2019-07-19 中科新松有限公司 机械臂扭矩估算方法及估算系统
JP2019193965A (ja) * 2017-09-21 2019-11-07 上銀科技股▲分▼有限公司 ロボットアームのための負荷推定及び重力補償方法、並びにそのシステム
CN110442920A (zh) * 2019-07-15 2019-11-12 南京理工大学 一种基于刚柔耦合的起重机臂架疲劳计算方法
US20200061820A1 (en) * 2018-08-24 2020-02-27 Siemens Aktiengesellschaft Simulation assisted planning of motions to lift heavy objects
CN111185909A (zh) * 2020-01-14 2020-05-22 深圳众为兴技术股份有限公司 机器人运行工况获取方法、装置、机器人及存储介质
CN112659120A (zh) * 2020-12-11 2021-04-16 山东大学 一种液压作业机械臂的主从遥操作及力反馈控制方法
CN113524174A (zh) * 2021-06-21 2021-10-22 五邑大学 机械臂数字孪生模型构建方法、系统、装置及存储介质
CN114330043A (zh) * 2021-11-16 2022-04-12 新兴际华集团有限公司 一种多自由度多功能高负载液压机械臂刚柔耦合分析方法
CN115828359A (zh) * 2022-09-27 2023-03-21 中国电力科学研究院有限公司 一种风电试验台基础的安全评估方法、系统、设备及介质
CN116105993A (zh) * 2023-02-07 2023-05-12 浙江极氪智能科技有限公司 万向节寿命预测方法、装置、设备及可读存储介质

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130632A (en) * 1989-12-06 1992-07-14 Hitachi, Ltd. Manipulator and control method therefor
JP2016055659A (ja) * 2014-09-05 2016-04-21 Jfeスチール株式会社 自動車用足廻り部品及び自動車用足廻り部品の疲労強度向上方法
CN106649990A (zh) * 2016-11-16 2017-05-10 中国北方发动机研究所(天津) 一种应用于快速疲劳试验的发动机主连杆载荷的简化方法
JP2019193965A (ja) * 2017-09-21 2019-11-07 上銀科技股▲分▼有限公司 ロボットアームのための負荷推定及び重力補償方法、並びにそのシステム
US20200061820A1 (en) * 2018-08-24 2020-02-27 Siemens Aktiengesellschaft Simulation assisted planning of motions to lift heavy objects
CN109614640A (zh) * 2018-10-30 2019-04-12 中国电力科学研究院有限公司 一种大型风电机组轮毂疲劳寿命预测方法及系统
CN110032816A (zh) * 2019-04-19 2019-07-19 中科新松有限公司 机械臂扭矩估算方法及估算系统
CN110442920A (zh) * 2019-07-15 2019-11-12 南京理工大学 一种基于刚柔耦合的起重机臂架疲劳计算方法
CN111185909A (zh) * 2020-01-14 2020-05-22 深圳众为兴技术股份有限公司 机器人运行工况获取方法、装置、机器人及存储介质
CN112659120A (zh) * 2020-12-11 2021-04-16 山东大学 一种液压作业机械臂的主从遥操作及力反馈控制方法
CN113524174A (zh) * 2021-06-21 2021-10-22 五邑大学 机械臂数字孪生模型构建方法、系统、装置及存储介质
CN114330043A (zh) * 2021-11-16 2022-04-12 新兴际华集团有限公司 一种多自由度多功能高负载液压机械臂刚柔耦合分析方法
CN115828359A (zh) * 2022-09-27 2023-03-21 中国电力科学研究院有限公司 一种风电试验台基础的安全评估方法、系统、设备及介质
CN116105993A (zh) * 2023-02-07 2023-05-12 浙江极氪智能科技有限公司 万向节寿命预测方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN116423527B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
Renda et al. Discrete cosserat approach for multisection soft manipulator dynamics
Zhang et al. Performance analysis and optimization of a five-degrees-of-freedom compliant hybrid parallel micromanipulator
Enferadi et al. The performance indices optimization of a symmetrical fully spherical parallel mechanism for dimensional synthesis
Velarde-Sanchez et al. 5-DOF manipulator simulation based on MATLAB-Simulink methodology
CN116423527B (zh) 一种机械臂的构建方法、装置、存储介质及电子设备
Er et al. Hybrid adaptive fuzzy controllers of robot manipulators with bounds estimation
Sönmez Introduction to compliant long dwell mechanism designs using buckling beams and arcs
Simon et al. Orccad: software engineering for real-time robotics. a technical insight
Bottin et al. Comparison of under-actuated and fully actuated serial robotic arms: A case study
Cheng et al. “Adult” robot enabled learning process in high precision assembly automation
Zhang et al. Global stiffness and well-conditioned workspace optimization analysis of 3UPU-UPU robot based on Pareto Front theory
Schlette et al. 3D simulation-based user interfaces for a highly-reconfigurable industrial assembly cell
Vennishmuthu et al. Stability Simulation of Six DOF manipulators using ADAMS and MATLAB
Ganin et al. Redundant Manipulator Control System Simulation with Adaptive Neural Network and Newton-Raphson Refinement Algorithm
Toreh et al. Kinematic and kinetic study of rescue robot by SolidWorks software
Lang et al. Graph theoretic modeling and analysis of multibody planar mechanical systems
Martell et al. A Linear Multiport Network Approach for Elastically Coupled Underactuated Grippers
Fekik et al. FPGA in the loop implementation of the PUMA 560 robot based on backstepping control
Hong et al. Optimizing Reinforcement Learning Control Model In Furuta Pendulum And Transferring It to Real-World (JULY 2023)
WO2024103241A1 (zh) 一种基于物质点法的软体机器人仿真方法
CN112818479B (zh) 一种有限元子模型边界条件加载方法
Mendes et al. Simulation Approach for Soft Manipulators in Gazebo using Kinematic Model
Cholewa et al. Forward kinematics and numerical model of a FANUC AM100IB robot
Rosário et al. Control of a 6-DOF parallel manipulator through a mechatronic approach
Cohodar Husic et al. An Approach to Dynamic Modelling of Industrial Robots Based on 3D Cad Technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant