CN116412801A - 基于回环切分判断的多路型多包匹配融合方法及装置 - Google Patents

基于回环切分判断的多路型多包匹配融合方法及装置 Download PDF

Info

Publication number
CN116412801A
CN116412801A CN202111628653.0A CN202111628653A CN116412801A CN 116412801 A CN116412801 A CN 116412801A CN 202111628653 A CN202111628653 A CN 202111628653A CN 116412801 A CN116412801 A CN 116412801A
Authority
CN
China
Prior art keywords
map
low
matching
packet
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111628653.0A
Other languages
English (en)
Inventor
贾玉鹏
刘瑀璋
齐航
罗金辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momenta Suzhou Technology Co Ltd
Original Assignee
Beijing Chusudu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Chusudu Technology Co ltd filed Critical Beijing Chusudu Technology Co ltd
Priority to CN202111628653.0A priority Critical patent/CN116412801A/zh
Publication of CN116412801A publication Critical patent/CN116412801A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20128Atlas-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种基于回环切分判断的多路型多包匹配融合方法,属于地图数据处理领域。该方法包括获取同一任务中的多个低精地图包,对每一低精地图包是否含有回头路进行判断并切分回头路,得到低精单包地图;在每一低精单包地图中,以随机选取的数据元素为中心点,生成对应的固定范围的子图;每相邻两个低精单包地图中的每一个中心点分别对应的两个子图分别同时进行特征提取及自动匹配,得到两个子图之间不同数据元素对应的匹配分数,通过匹配分数确定出符合几何一致性的最确信匹配对应的物体。本申请能够节省设备成本,打破现有技术依赖地图元素的独特性,并且建立的低精单包地图方便后续匹配。

Description

基于回环切分判断的多路型多包匹配融合方法及装置
技术领域
本申请涉及地图数据处理领域,特别涉及一种基于回环切分判断的多路型多包匹配融合方法及装置。
背景技术
现有技术中,人为规则的方法在处理地图数据时,更加依赖地图元素的独特性。规则的方法首先在单包地图中找到最具有独特性的物体,然后将具有独特性的物体作匹配,将匹配上的物体组合在一起,然后依次再找次独特性的物体进行匹配组合。如果单包地图中没有独特的元素,或者独特的元素缺失了,如隧道的场景,没有标志牌、杆的场景;独特的元素位置偏差较大,如标志牌、杆的位置建立的不恰当;在筛选匹配过程中,丢弃的地图数据较多,这些都会导致匹配失败。规则的方法依赖阈值,针对不同场景需要不断调整阈值,如在多少米范围内才算是一个独特的物体。
本方案利用低精度的设备通过学习计算也能得到高精度的地图,解决了高精度设备的成本高,现有技术依赖地图元素的独特性的问题。
发明内容
针对现有技术存在的过度依赖地图元素的独特性,获取高精地图的成本高的问题,本申请主要提供一种基于回环切分判断的多路型多包匹配融合方法及装置。
本申请采用的一个技术方案是:提供一种基于回环切分判断的多路型多包匹配融合方法,其包括:
获取同一任务中的多个低精地图包,对每一低精地图包是否含有回头路进行判断并切分回头路,得到低精单包地图,以使得每一低精单包地图均不包含重叠的数据元素;
在每一低精单包地图中,以随机选取的数据元素为中心点,生成对应的固定范围的子图;
每相邻两个低精单包地图中的每一个中心点分别对应的两个子图分别同时进行特征提取及自动匹配,得到两个子图之间不同数据元素对应的匹配分数,通过匹配分数确定出符合几何一致性的最确信匹配对应的物体;
根据最确信匹配,得到与最确信匹配相邻近的符合几何一致性的其它最确信匹配对应的物体;
将多个低精单包地图中最确信匹配对应的物体分别进行一一对齐,得到高精单包地图;
将高精单包地图进行融合并优化,得到高精地图。
本申请采用的另一个技术方案是:提供一种基于回环切分判断的多路型多包匹配融合装置,其包括:
用于获取同一任务中的多个低精地图包,对每一低精地图包是否含有回头路进行判断并切分回头路,得到低精单包地图,以使得每一低精单包地图均不包含重叠的数据元素的模块;
用于在每一低精单包地图中,以随机选取的数据元素为中心点,生成对应的固定范围的子图的模块;
用于每相邻两个低精单包地图中的每一个中心点分别对应的两个子图分别同时进行特征提取及自动匹配,得到相邻两个子图之间不同数据元素对应的匹配分数,通过匹配分数确定出符合几何一致性的最确信匹配对应的物体的模块;
用于根据最确信匹配,得到与最确信匹配相邻近的符合几何一致性的其它最确信匹配对应的物体的模块;
用于将多个低精单包地图中最确信匹配对应的物体分别进行一一对齐,得到高精单包地图的模块;
用于将高精单包地图进行融合并优化,得到高精地图的模块。
本申请采用的另一个技术方案是:提供一种计算机可读存储介质,其存储有计算机指令,该计算机指令被操作以执行方案一中的基于回环切分判断的多路型多包匹配融合方法。
本申请采用的另一个技术方案是:提供一种计算机设备,其包括处理器和存储器,存储器存储有计算机指令,该计算机指令被操作以执行方案一中的基于回环切分判断的多路型多包匹配融合方法。
本申请的技术方案可以达到的有益效果是:本申请设计了一种基于回环切分判断的多路型多包匹配融合方法及装置。本申请通过对含有回头路的低精单包地图进行判断并回环切分,使得每个低精单包地图不会重复建图,并且低精单包地图节省设备成本,通过最确信匹配节省算力,不依赖地图元素的独特性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一种基于回环切分判断的多路型多包匹配融合方法的一个具体实施方式的示意图;
图2是本申请一种基于回环切分判断的多路型多包匹配融合装置的一个具体实施方式的示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
下面结合附图对本申请的较佳实施例进行详细阐述,以使本申请的优点和特征能更易于被本领域技术人员理解,从而对本申请的保护范围做出更为清楚明确的界定。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图1示出了本申请一种基于回环切分判断的多路型多包匹配融合方法的一个具体实施方式。在图1所示的具体实施方式中,基于回环切分判断的多路型多包匹配融合方法包括:
步骤S101,获取同一任务中的多个低精地图包,对每一低精地图包是否含有回头路进行判断并切分回头路,得到低精单包地图,以使得每一低精单包地图均不包含重叠的数据元素。
本实施方式中,同一个任务可以建立多个低精单包地图,但是为了防止同一段路径建立两次地图元素,使得地图在匹配时无法与正确的地图元素进行匹配,需要对包含回头路的低精单包地图在回头路出进行切分,切分出两个不包含回头路的低精单包地图,方便后续匹配。
需要说明是,低精单包地图指的是采集车辆采集一趟经过一段路道采集到的描述了交通牌、车道线等交通元素的空间信息和语义信息的矢量地图。
在本申请的一个具体实施例中,对低精地图包是否含有回头路进行判断并切分,得到低精单包地图,包括:若低精地图含有回头路,则在回头路处对低精地图包进行切分,得到不包含重叠的数据元素的低精单包地图,其中低精单包地图包括不包含回头路的低精地图包和经切分的包含回头路的低精地图包。
本实施例中,同一个任务中包含多个低精单包地图,有些低精单包地图含有回头路,有些低精单包地图不含回头路,为了在匹配时方便地图元素对应,需要将含有回头路的低精单包地图在回头路处进行切分,使得每一个物体在一个低精单包地图中对应一个地图元素。
在本申请的一个具体实例中,低精度设备采集一趟数据可以建一个低精单包地图,一趟采集到的数据均属于低精单包地图中的信息,将多趟采集建立的低精单包地图进行匹配融合优化。因为有低精度的采集设备,如GPS,其精度不高,算力有限,导致感知的结果不可靠。本方法采用两两配对的方式,同一个物体只针对低精单包地图中的一种数据元素进行配对。假如一个低精单包地图是有回头路的,就相当于同一个地方走过两次,建过两次地图,有两个数据元素,同一个物体会对应在低精单包地图中表现出来的两个数据元素。
在图1所示的具体实施方式中,基于回环切分判断的多路型多包匹配融合方法,还包括:
步骤S102,在每一低精单包地图中,以随机选取的数据元素为中心点,生成对应的固定范围的子图。
本实施方式中,一个低精单包地图中会有很多个子图,低精单包地图是不定大小的,子图是固定大小的,子图的目的是方便匹配,多个子图之间有大量的重叠,目的是为了后续的冗余匹配(冗余机制),保证匹配的鲁棒性。
在本申请的一个具体实例中,一个任务中的所有低精单包地图由相距10~20米的中心点覆盖;每个中心点可生成一个固定范围为100米*100米的子图;其中100远远大于10,每相邻两个子图之间有大量的重叠区域。对于一个中心点而言,其可能存在于十几个子图中。
在本申请的一个具体实施例中,每相邻两个低精单包地图中的每一个中心点分别对应的两个子图分别同时进行特征提取及自动匹配,得到两个子图之间不同数据元素对应的匹配分数,包括:同时对两个子图中分别对应的不同种数据元素进行特征提取,分别得到两个子图对应的特征信息;将两个子图对应的特征信息输入到注意力图神经网络进行自动匹配,得到匹配分数。
本实施例中,将需要匹配的数据元素的信息进行特征提取,为后续匹配作基础;每一个子图中的不同数据元素可以同时进行特征提取,在进行匹配时,将同一个中心点在两个低精单包地图中对应的子图中数据元素中的特征信息同时进行匹配,具有高效便捷性。
在本申请的一个具体实施例中,同时对两个子图中分别对应的不同种数据元素进行特征提取,分别得到两个子图对应的特征信息,还包括:在同一个子图中,根据一种数据元素的周围元素和自身属性分别进行特征提取,得到对应的语义特征信息和感知特征信息,将语义特征信息与感知特征信息叠加得到一种数据元素对应的整体特征信息;根据另一数据元素的自身属性进行特征提取,得到属性特征信息,进而得到同一个子图中不同种数据元素对应的特征信息。
本实施例中,特征信息包括但不限于类型、大小、位置坐标、方位和、或高度;其中语义特征信息包括但不限于该数据元素的周围其他元素的类型、相对深度、方位;感知特征信息和属性特征信息包括该数据元素的位置坐标。将一个低精单包地图分为多个子图,对每个子图中的不同数据元素进行特征提取,提取特征可以使得数据元素的匹配更加容易且方便。
在本申请的一个具体实施例中,将两个子图对应的特征信息输入到注意力图神经网络进行自动匹配,还包括:注意力图神经网络自动学习同一个子图中的一种数据元素与其他数据元素之间的注意力,以及自动学习两个子图中同一种数据元素之间的注意力。
本实施例中,注意力图神经网络是已训练好的,其运算效率高。根据注意力机制分配不同的注意力得分,从而识别出更重要的对应关系。注意力图神经网络自动学习同一个子图中的不同种数据元素之间的注意力,能够更好的识别同一个子图中的不同数据元素对应的物体;注意力图神经网络自动学习两个子图中的同种数据元素之间的注意力,能够更好的识别两个子图的对应关系。
在本申请的一个具体实施例中,在将两个子图对应的特征信息输入到注意力图神经网络进行自动匹配之前,还包括:构造具有完整真值的伪单包数据;使用伪单包数据对注意力图神经网络进行预训练;使用产线上的残缺真值对经预训练的注意力图神经网络进行训练。
本实施例中,通过预训练和再训练这两步训练,使得注意力图神经网络能够用来进行子图之间的匹配。
在本申请的一个具体实例中,伪单包是新生成的,用来第一次训练注意力图神经网络,弥补了真值数据缺失的问题;第二次训练注意力图神经网络是使用产线上的实际的真值进行训练。完整的真值指的是低精单包地图中所有的元素都有一个真值匹配。产线上使用rolebase的方法产生真值,这些真值是缺失的。
在本申请的一个具体实施例中,通过匹配分数确定出符合几何一致性的最确信匹配对应的物体,包括:当匹配分数与基准阈值一致时,匹配分数对应的数据元素符合几何一致性;且当匹配分数与基准阈值一致的数量在匹配分数中的占比大于预设阈值时,匹配分数对应的数据元素为最确信匹配对应的物体。
本实施例中,通过基准阈值可以筛选出多个匹配结果,多个匹配结果均符合几何一致性,当基准阈值的数量在所有的匹配分数的数量中的占比达到预设阈值时,则为最确信匹配。这保证了匹配的准确性。
在本申请的一个具体实例中,每一对子图对应一个匹配,一个匹配就会有多个匹配结果;假如,15个匹配结果中有14个给出了同一个匹配,则为网络最确信的匹配。同一个物体在两个低精单包地图中所建出来的地图元素之间的匹配。一个中心点对应一个子图。两个子图公用一套世界坐标系下的中心点的点集,两个子图的中心点是同一套同等数量的中心点,即中心点一样,大小一样,只是在不同的低精单包地图里对应的子图之间的匹配。15个匹配结果可能是因为多个子图都包含着同一个物体的地图元素,就是说有15个子图都出现了同一个中心点。
在图1所示的具体实施方式中,基于回环切分判断的多路型多包匹配融合方法,还包括:
步骤S103,每相邻两个低精单包地图中的每一个中心点分别对应的两个子图分别同时进行特征提取及自动匹配,得到两个子图之间不同数据元素对应的匹配分数,通过匹配分数确定出符合几何一致性的最确信匹配对应的物体。
本实施方式中,两个低精单包地图进行匹配的时候,有多个成对的子图同时在匹配,分别得到不同种数据元素的匹配分数,根据这些匹配分数去进行几何一致性校验,得到最确信匹配对应的物体。本方法完全不依赖地图元素的独特性,更不会丢弃地图数据,不需要不断调整规则阈值。
在图1所示的具体实施方式中,基于回环切分判断的多路型多包匹配融合方法,还包括:
步骤S104,根据最确信匹配,得到与最确信匹配相邻近的符合几何一致性的其它最确信匹配对应的物体。
本实施方式中,若一对匹配就是同一个物体,则符合几何一致性。在最确信匹配的附近,检查不确信的物体的匹配结果,使得低精单包地图中的所有物体均不会被遗漏,保证匹配的完整性。
在图1所示的具体实施方式中,基于回环切分判断的多路型多包匹配融合方法,还包括:
步骤S105,将多个低精单包地图中最确信匹配对应的物体分别进行一一对齐,得到高精单包地图。
本实施方式中,通过多次迭代的位姿图优化将每两个低精单包地图中的匹配上的物体组合在一起,分别得到高精单包地图。提高了地图的精度。
在图1所示的具体实施方式中,基于回环切分判断的多路型多包匹配融合方法,还包括:
步骤S106,将高精单包地图进行融合并优化,得到高精地图。
本实施方式中,通过融合优化的方式,使得地图的精度能够达到更高的效果。
本申请中通过低精度采集设备采集地图数据,建立低精单包地图,并为了匹配的准确性,对由回头路的低精单包地图进行切分,以使得每个低精单包地图都不含有重复的地图数据元素。每个低精单包地图都是有一定间隔的中心点分布的,随机选取多个中心点,生成多个对应的有固定范围的子图,每个低精单包地图不定长,每个子图定长,定长的子图方便后续数据元素之间进行匹配。将每个子图中的数据元素按照种类分别进行特征提取,将需要匹配的元素的信息进行提取出来,为后续匹配作基础,将两个低精单包地图中同一个中心点对应的两个子图之间的数据元素进行匹配,得到匹配分数,通过匹配分数与基准阈值确定最确信匹配的物体,在第一批最确信匹配的物体的附近,检查其他不确信匹配的物体的结果。本方案能够节省设备成本,并且不依赖地图元素的独特性,也能保证匹配的准确性。
图2示出了本申请一种基于回环切分判断的多路型多包匹配融合装置的具体实施方式。在图2所示的具体实施方式中,基于回环切分判断的多路型多包匹配融合装置主要包括:
模块201,用于获取同一任务中的多个低精地图包,对每一低精地图包是否含有回头路进行判断并切分回头路,得到低精单包地图,以使得每一低精单包地图均不包含重叠的数据元素的模块;
模块202,用于在每一低精单包地图中,以随机选取的数据元素为中心点,生成对应的固定范围的子图的模块;
模块203,用于每相邻两个低精单包地图中的每一个中心点分别对应的两个子图分别同时进行特征提取及自动匹配,得到相邻两个子图之间不同数据元素对应的匹配分数,通过匹配分数确定出符合几何一致性的最确信匹配对应的物体的模块;
模块204,用于根据最确信匹配,得到与最确信匹配相邻近的符合几何一致性的其它最确信匹配对应的物体的模块;
模块205,用于将多个低精单包地图中最确信匹配对应的物体分别进行一一对齐,得到高精单包地图的模块;
模块206,用于将高精单包地图进行融合并优化,得到高精地图的模块。
本实施方式中,通过对含有回头路的低精单包地图进行回环切分,使得一个物体在一个低精单包地图中只有一个数据元素对应,方便后续的匹配;通过将低精单包地图拆分为多个子图进行匹配,更具有高效性、准确性,并且就解决了高精度设备带来的成本高的问题;通过最确信匹配使得本方案不依赖地图元素的独特性。本方案更加节省了算力。
在本申请的一个具体实施例中,对低精地图包是否含有回头路进行判断并切分,得到低精单包地图,包括:若低精地图含有回头路,则在回头路处对低精地图包进行切分,得到不包含重叠的数据元素的低精单包地图,其中低精单包地图包括不包含回头路的低精地图包和经切分的包含回头路的低精地图包。
本实施例中,同一个任务中包含多个低精单包地图,有些低精单包地图含有回头路,有些低精单包地图不含回头路,为了在匹配时方便地图元素对应,需要将含有回头路的低精单包地图在回头路处进行切分,使得每一个物体在一个低精单包地图中对应一个地图元素。
本申请提供的基于回环切分判断的多路型多包匹配融合装置,可用于执行上述任一实施例描述的基于回环切分判断的多路型多包匹配融合方法,其实现原理和技术效果类似,在此不再赘述。
在本申请的一个具体实施例中,本申请一种基于回环切分判断的多路型多包匹配融合装置中各功能模块可直接在硬件中、在由处理器执行的软件模块中或在两者的组合中。
软件模块可驻留在RAM存储器、快闪存储器、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可装卸盘、CD-ROM或此项技术中已知的任何其它形式的存储介质中。示范性存储介质耦合到处理器,使得处理器可从存储介质读取信息和向存储介质写入信息。
处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)、现场可编程门阵列(英文:Field Programmable Gate Array,简称:FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件或其任何组合等。通用处理器可以是微处理器,但在替代方案中,处理器可以是任何常规处理器、控制器、微控制器或状态机。处理器还可实施为计算装置的组合,例如DSP与微处理器的组合、多个微处理器、结合DSP核心的一个或一个以上微处理器或任何其它此类配置。在替代方案中,存储介质可与处理器成一体式。处理器和存储介质可驻留在ASIC中。ASIC可驻留在用户终端中。在替代方案中,处理器和存储介质可作为离散组件驻留在用户终端中。
在本申请的另一个具体实施方式中,一种计算机可读存储介质,其存储有计算机指令,计算机指令被操作以执行任一实施例中的基于回环切分判断的多路型多包匹配融合方法。
在本申请的另一个具体实施方式中,一种计算机设备,其包括处理器和存储器,存储器存储有计算机指令,该计算机指令被操作以执行任一实施例中的基于回环切分判断的多路型多包匹配融合方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

1.一种基于回环切分判断的多路型多包匹配融合方法,其特征在于,包括:
获取同一任务中的多个低精地图包,对每一所述低精地图包是否含有回头路进行判断并切分所述回头路,得到低精单包地图,以使得每一所述低精单包地图均不包含重叠的数据元素;
在每一所述低精单包地图中,以随机选取的数据元素为中心点,生成对应的固定范围的子图;
每相邻两个所述低精单包地图中的每一个所述中心点分别对应的两个所述子图分别同时进行特征提取及自动匹配,得到两个所述子图之间不同数据元素对应的匹配分数,通过所述匹配分数确定出符合几何一致性的最确信匹配对应的物体;
根据所述最确信匹配,得到与所述最确信匹配相邻近的符合所述几何一致性的其它最确信匹配对应的物体;
将多个所述低精单包地图中所述最确信匹配对应的物体分别进行一一对齐,得到高精单包地图;
将所述高精单包地图进行融合并优化,得到高精地图。
2.如权利要求1所述的基于回环切分判断的多路型多包匹配融合方法,其特征在于,所述对所述低精地图包是否含有回头路进行判断并切分,得到低精单包地图,包括:
若所述低精地图含有所述回头路,则在所述回头路处对所述低精地图包进行切分,得到不包含重叠的数据元素的所述低精单包地图,其中所述低精单包地图包括不包含所述回头路的所述低精地图包和经切分的包含所述回头路的所述低精地图包。
3.如权利要求1所述的基于回环切分判断的多路型多包匹配融合方法,其特征在于,所述每相邻两个所述低精单包地图中的每一个所述中心点分别对应的两个所述子图分别同时进行特征提取及自动匹配,得到两个所述子图之间不同数据元素对应的匹配分数,包括:
同时对两个所述子图中分别对应的不同种数据元素进行特征提取,分别得到两个所述子图对应的特征信息;
将两个所述子图对应的特征信息输入到注意力图神经网络进行自动匹配,得到匹配分数。
4.如权利要求3所述的基于回环切分判断的多路型多包匹配融合方法,其特征在于,所述同时对两个所述子图中分别对应的不同种数据元素进行特征提取,分别得到两个所述子图对应的特征信息,还包括:
在同一个所述子图中,根据一种所述数据元素的周围元素和自身属性分别进行特征提取,得到对应的语义特征信息和感知特征信息,将所述语义特征信息与所述感知特征信息叠加得到一种所述数据元素对应的整体特征信息;
根据另一所述数据元素的自身属性进行特征提取,得到属性特征信息,进而得到同一个所述子图中不同种数据元素对应的特征信息。
5.如权利要求3所述的基于回环切分判断的多路型多包匹配融合方法,其特征在于,所述将两个所述子图对应的特征信息输入到注意力图神经网络进行自动匹配,还包括:
所述注意力图神经网络自动学习同一个所述子图中的一种数据元素与其他数据元素之间的注意力,以及自动学习两个所述子图中同一种数据元素之间的注意力。
6.如权利要求3所述的基于回环切分判断的多路型多包匹配融合方法,其特征在于,在将两个所述子图对应的特征信息输入到注意力图神经网络进行自动匹配之前,还包括:
构造具有完整真值的伪单包数据;
使用所述伪单包数据对所述注意力图神经网络进行预训练;
使用产线上的残缺真值对经预训练的注意力图神经网络进行训练。
7.如权利要求1所述的基于回环切分判断的多路型多包匹配融合方法,其特征在于,所述通过所述匹配分数确定出符合几何一致性的最确信匹配对应的物体,包括:
当所述匹配分数与基准阈值一致时,所述匹配分数对应的数据元素符合几何一致性;
且当所述匹配分数与所述基准阈值一致的数量在所述匹配分数中的占比大于预设阈值时,所述匹配分数对应的数据元素为最确信匹配对应的物体。
8.一种基于回环切分判断的多路型多包匹配融合装置,其特征在于,包括:
用于获取同一任务中的多个低精地图包,对每一所述低精地图包是否含有回头路进行判断并切分所述回头路,得到低精单包地图,以使得每一所述低精单包地图均不包含重叠的数据元素的模块;
用于在每一所述低精单包地图中,以随机选取的数据元素为中心点,生成对应的固定范围的子图的模块;
用于每相邻两个所述低精单包地图中的每一个所述中心点分别对应的两个所述子图分别同时进行特征提取及自动匹配,得到相邻两个所述子图之间不同数据元素对应的匹配分数,通过所述匹配分数确定出符合几何一致性的最确信匹配对应的物体的模块;
用于根据所述最确信匹配,得到与所述最确信匹配相邻近的符合所述几何一致性的其它最确信匹配对应的物体的模块;
用于将多个所述低精单包地图中所述最确信匹配对应的物体分别进行一一对齐,得到高精单包地图的模块;
用于将所述高精单包地图进行融合并优化,得到高精地图的模块。
9.一种计算机可读存储介质,其存储有计算机指令,其特征在于,所述计算机指令被操作以执行权利要求1-7中任一项所述的基于回环切分判断的多路型多包匹配融合方法。
10.一种计算机设备,其包括处理器和存储器,所述存储器存储有计算机指令,其中所述处理器操作所述计算机指令以执行权利要求1-7中任一项所述的基于回环切分判断的多路型多包匹配融合方法。
CN202111628653.0A 2021-12-28 2021-12-28 基于回环切分判断的多路型多包匹配融合方法及装置 Pending CN116412801A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111628653.0A CN116412801A (zh) 2021-12-28 2021-12-28 基于回环切分判断的多路型多包匹配融合方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111628653.0A CN116412801A (zh) 2021-12-28 2021-12-28 基于回环切分判断的多路型多包匹配融合方法及装置

Publications (1)

Publication Number Publication Date
CN116412801A true CN116412801A (zh) 2023-07-11

Family

ID=87049678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111628653.0A Pending CN116412801A (zh) 2021-12-28 2021-12-28 基于回环切分判断的多路型多包匹配融合方法及装置

Country Status (1)

Country Link
CN (1) CN116412801A (zh)

Similar Documents

Publication Publication Date Title
CN110599570B (zh) 基于众包数据开放场景下的地图生成方法及系统
CN111858805A (zh) 高精地图更新方法、车辆、服务器及存储介质
CN109710708B (zh) 一种电子地图映射方法及装置
CN113255578B (zh) 交通标识的识别方法及装置、电子设备和存储介质
CN104819726A (zh) 导航数据处理方法、装置及导航终端
CN109214314B (zh) 一种车道线自动融合匹配算法
CN116255992A (zh) 一种同时定位与建图的方法和装置
CN112013862A (zh) 一种基于众包轨迹的行人路网提取及更新方法
CN116518960B (zh) 路网更新方法、装置、电子设备和存储介质
US20200380085A1 (en) Simulations with Realistic Sensor-Fusion Detection Estimates of Objects
CN106446102B (zh) 基于地图围栏的终端定位方法和装置
CN115344655A (zh) 地物要素的变化发现方法、装置及存储介质
CN113887391A (zh) 用于识别路面标识的方法、装置以及自动驾驶车辆
CN118031952A (zh) 一种地图场景验证方法、路径规划方法及相关装置
CN116412801A (zh) 基于回环切分判断的多路型多包匹配融合方法及装置
CN111985366A (zh) 一种道路中心线及桩号识别方法、装置
CN114705180B (zh) 高精地图的数据修正方法、装置、设备及存储介质
CN113435427B (zh) 车道线的聚合方法和装置
CN113836251B (zh) 一种认知地图构建方法、装置、设备及介质
CN116412800A (zh) 基于连通图的多包高效匹配融合方法、装置、介质及设备
CN114111817A (zh) 基于slam地图与高精度地图匹配的车辆定位方法及系统
CN116358569A (zh) 数据驱动的低精地图匹配方法、装置、介质及设备
CN114926799A (zh) 一种车道线检测方法、装置、设备及可读存储介质
CN116358570A (zh) 基于子图冗余的多包稳健匹配融合方法及装置
JP2021182243A (ja) 画像判定装置、方法、及びプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20240919

Address after: 215131 23 / F, Tiancheng Times Business Plaza, 58 qinglonggang Road, high speed rail new town, Xiangcheng District, Suzhou City, Jiangsu Province

Applicant after: MOMENTA (SUZHOU) TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: Unit 201, 2nd Floor, Block C, Dongsheng Building, No. 8 Zhongguancun East Road, Haidian District, Beijing, 100083

Applicant before: BEIJING CHUSUDU TECHNOLOGY Co.,Ltd.

Country or region before: China