CN116402957B - 基于全直径岩心ct扫描的储层构型相控智能建模方法 - Google Patents

基于全直径岩心ct扫描的储层构型相控智能建模方法 Download PDF

Info

Publication number
CN116402957B
CN116402957B CN202310683031.0A CN202310683031A CN116402957B CN 116402957 B CN116402957 B CN 116402957B CN 202310683031 A CN202310683031 A CN 202310683031A CN 116402957 B CN116402957 B CN 116402957B
Authority
CN
China
Prior art keywords
reservoir
model
well
core
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310683031.0A
Other languages
English (en)
Other versions
CN116402957A (zh
Inventor
高梦寒
李希元
詹卓琛
胡望水
刘国文
胡智颖
雷建军
高飞跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Zhongwang Yineng Technology Development Co ltd
Original Assignee
Wuhan Zhongwang Yineng Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Zhongwang Yineng Technology Development Co ltd filed Critical Wuhan Zhongwang Yineng Technology Development Co ltd
Priority to CN202310683031.0A priority Critical patent/CN116402957B/zh
Publication of CN116402957A publication Critical patent/CN116402957A/zh
Application granted granted Critical
Publication of CN116402957B publication Critical patent/CN116402957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/12Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using gamma or X-ray sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Analytical Chemistry (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开一种基于全直径岩心CT扫描的储层构型相控智能建模方法,该方法利用数字定量化CT无损检测技术,建立取心井全直径岩心非均质三维微纳米岩石结构模型,构建取心井全直径岩心三维数字岩心微纳米储层构型模型,通过储层确定性和随机性三维建模方法,建立三维数字岩心微纳米储层构型相控的储层非均质三维精细化模型,明确油气富集、剩余油气成因机理,为油气开发、剩余油气挖潜方案提供定量化三维高分辨率技术数据,有效地提高了油气富集主控因素预测精度,提高了油气开发的效率,降低了油气开发周期、成本。

Description

基于全直径岩心CT扫描的储层构型相控智能建模方法
技术领域
本发明属于油气开发地质工程设计与生产技术领域,具体涉及一种基于全直径岩心CT扫描的储层构型相控智能建模方法。
背景技术
储层建模一直是油气开发方案设计长期需求解决而未根本解决的一项世界级技术顶级难题。因受目前建模属于沉积微相相控建模的技术原理限制建模结果的非均质性刻画精度不够,建模结果相对粗糙,不能精确表征储层非均质及空间变化,无法充分有效地表征油气富集规律、剩余油气成因机理,导致后续生产、效果评估无法得到技术保障。随着全直径岩心CT无损检测技术的出现,储层构型相控建模技术,给油气井生产过程中预测剩余油气分布提供了全新的技术保障。随着油气勘探开发深入,油气可供勘探的领域越来越少,且取得新的发现越来越难。因此,剩余油气深度开发逐渐成为目前及未来油气开发重点领域,油气开发周期越长剩余油气分布预测的难度就越大。预测剩余油气分布是剩余油气开发及效果、效益的基石,是油气田开发治理中的核心内容之一。
现有基于沉积微相相控建模的技术原理限制,相控建模无法精确地表征储层非均质及其空间变化,因而无法准确有效地预测生产生产过程中剩余油气成因机理、分布区域及随生产变化的演变规律,无法充分有效地及时实施剩余油气开发方案及措施,导致后续剩余油气开采生产无法把控,进而导致油气开发效率低、生产成本增加。
亟需开发基于全直径岩心CT扫描的储层构型相控智能建模方法的新方法,给调整剩余油气开发方案设计提供技术信息,提供剩余油气开采过程中及时实施剩余油气开发方案及调整措施的最优效果方案,不仅有利于掌控油气生产最佳状态,而且更好地指导油气高效深度开发,提高精细开发效益,降低风险。
发明内容
本发明的目的是为了克服上述背景技术的不足,提供一种基于全直径岩心CT扫描的储层构型相控智能建模方法,提供剩余油气开采过程中及时实施剩余油气开发方案及调整措施的最优效果方案,以实现准确评价预测剩余油气开采过程中剩余油气动态变化及规律,提前预报油气水运动规律,提高了油气深度开发效果的技术实施水准和油气开发的效率,降低油气开采成本。
为解决上述技术问题,本发明通过下述技术方案实现:
一种基于全直径岩心CT扫描的储层构型相控智能建模方法,包括如下步骤:
步骤一,以油气地质背景为依据,利用全直径岩心CT扫描技术,获取岩石组成、孔缝、内部结构非均质性的灰度数据体,建立取心井全直径岩心非均质三维微纳米岩石结构模型;
步骤二,利用取心井全直径岩心非均质三维微纳米岩石结构模型,依据目的层沉积成岩非均质结构旋回,构建取心井全直径岩心非均质三维微纳米储层构型模型,通过岩电关系转换,建立取心井非均质三维微纳米储层测井构型模型;
步骤三,利用取心井非均质三维微纳米储层测井构型模型,进行岩电关系转换,建立非取心井非均质三维微纳米储层测井构型模型;
步骤四,利用单井非均质三维微纳米储层测井构型模型进行井控地震岩性反演,预测目的层井控构型模型约束下的三维岩性空间分布模型,建立井控构型模型约束下地震波阻抗构型模型;
步骤五,依据目的层储层构型模型,应用多点地质统计学随机建模方法,建立储层构型控制下的储层非均质三维模型,预测目的层有利储层空间分布及规律,为油气深度开发提供更精细的储层非均质模型。
优选地,所述步骤二中:
该基于全直径岩心CT扫描的储层构型相控智能建模方法的取心井岩心沉积成岩高分辨率处理的标准为:基于所建的取心井全直径岩心非均质三维微纳米岩石结构模型,依据取心井岩心沉积成岩非均质结构旋回,建立取心井全直径岩心非均质三维微纳米储层构型模型;
该基于全直径岩心CT扫描的储层构型相控智能建模方法的取心井测井资料高分辨率处理的标准为:基于米氏旋回理论的小波变换方法构建取心井测井资料高分辨率储层模型,构建测井资料高分辨率微纳米储层构型。
进一步优选地,所述步骤三中:
该基于全直径岩心CT扫描的储层构型相控智能建模方法的非取心井测井资料高分辨率处理的标准为:基于米氏旋回理论的小波变换方法构建取心井测井资料高分辨率储层构型模型及标准,确保与岩心微纳米储层构型有较好的一致性;
利用已建立的测井资料高分辨率储层构型模型及标准,通过深度学习方法,建立非取心井非均质三维微纳米储层构型模型。
进一步优选地,所述步骤四中:
地震资料分辨率的提高方法为:在米氏旋回框架下通过小波处理,提高地震资料分辨率,以满足井震资料的融合性;
该基于全直径岩心CT扫描的储层构型相控智能建模方法的地震资料高分辨率处理的标准为:基于取心井测井资料高分辨率微纳米储层构型模型,通过深度学习建立取心井井震资料融合高分辨率储层构型深度学习模型;
应用取心井井震资料融合高分辨率储层构型深度学习模型,通过深度学习,建立非取心井井震资料融合高分辨率储层构型深度学习模型;
通过深度学习,模拟预测井震资料融合高分辨率储层构型深度学习模型控制下井震融合三维地震反演高分辨率微储层构型模型。
本发明提供的基于全直径岩心CT扫描的储层构型相控智能建模方法,利用CT无损检测技术建立全直径岩心非均质三维微纳米储层模型,通过米氏旋回理论的小波变换方法、深度学习方法及储层建模预测方法及其标准,提供剩余油气开采过程中及时实施剩余油气开发方案及调整措施的最优效果方案,以实现准确评价预测剩余油气开采过程中剩余油气动态变化及规律,提前预报油气水运动规律,提高了油气深度开发效果的技术实施水准和油气开发的效率,降低油气开采成本。
本发明与现有技术相比,具有以下优点及有益效果:
1)填补了预测剩余油气开采过程中剩余油气动态变化及规律的定量构型评价方法,利用全直径岩心CT扫描的储层构型相控建模的定量化模型,应用米氏旋回理论的小波变换方法、深度学习方法及储层建模预测方法及其标准,提前预报油气水运动规律,为剩余油气开发生产提供更有效的技术信息;
2)提高油气开发的效率,降低了成本,本发明利用全直径岩心CT扫描的储层构型相控建模的定量化模型,应用米氏旋回理论的小波变换方法、深度学习方法及储层建模预测方法及其标准,以实现准确评价预测剩余油气开采过程中剩余油气动态变化及规律,提高了油气深度开发效果的技术实施水准和油气开发的效率,降低油气开采成本。
附图说明
图1是本发明实施例提供的基于全直径岩心CT扫描的储层构型相控智能建模方法的流程图。
图2是本发明实施例提供的岩心非均质三维微纳米岩石结构模型图。
图3是本发明实施例提供的岩心非均质三维微纳米储层构型模型图。
图4是本发明实施例提供的非取心井非均质三维微纳米储层测井构型模型图。
图5是本发明实施例提供的井控构型模型约束下地震波阻抗构型模型图。
实施方式
为了更好的解释本发明,以下结合具体实施例进行详细说明。
如图1所示,本发明提供一种基于全直径岩心CT扫描的储层构型相控智能建模方法,该方法利用数字定量化CT无损检测技术,建立取心井全直径岩心非均质三维微纳米岩石结构模型,构建取心井全直径岩心三维数字岩心微纳米储层构型模型,通过储层确定性和随机性三维建模方法,建立三维数字岩心微纳米储层构型相控的储层非均质三维精细化模型,明确油气富集、剩余油气成因机理,为油气开发、剩余油气挖潜方案提供定量化三维高分辨率技术数据,有效地提高了油气富集主控因素预测精度,提高了油气开发的效率,降低了油气开发周期、成本;具体包括以下步骤:
JM110:以油气地质背景为依据,利用全直径岩心CT扫描技术,获取岩石组成、孔缝、内部结构非均质性的灰度数据体,建立取心井全直径岩心非均质三维微纳米岩石结构模型(图2);
JM120:利用取心井全直径岩心非均质三维微纳米岩石结构模型,依据目的层沉积成岩非均质结构旋回,构建取心井全直径岩心非均质三维微纳米储层构型模型(图3),通过岩电关系转换,建立取心井非均质三维微纳米储层测井构型模型;
进一步,该基于全直径岩心CT扫描的储层构型相控智能建模方法的取心井岩心沉积成岩高分辨率处理的标准为:基于所建的取心井全直径岩心非均质三维微纳米岩石结构模型,依据取心井岩心沉积成岩非均质结构旋回,建立取心井全直径岩心非均质三维微纳米储层构型模型;
再进一步,该基于全直径岩心CT扫描的储层构型相控智能建模方法的取心井测井资料高分辨率处理的标准为:基于米氏旋回理论的小波变换方法构建取心井测井资料高分辨率储层模型,构建测井资料高分辨率微纳米储层构型。
JM130:利用取心井非均质三维微纳米储层测井构型模型,进行岩电关系转换,建立非取心井非均质三维微纳米储层测井构型模型(图4);
进一步,该基于全直径岩心CT扫描的储层构型相控智能建模方法的非取心井测井资料高分辨率处理的标准为:基于米氏旋回理论的小波变换方法构建取心井测井资料高分辨率储层构型模型及标准,确保与岩心微纳米储层构型有较好的一致性;
再进一步,利用已建立的测井资料高分辨率储层构型模型及标准,通过深度学习方法,建立非取心井非均质三维微纳米储层构型模型。
JM140:利用单井非均质三维微纳米储层测井构型模型进行井控地震岩性反演,预测目的层井控构型模型约束下的三维岩性空间分布模型,建立井控构型模型约束下地震波阻抗构型模型(图5);
进一步,地震资料分辨率普遍较低,导致井震结合达不到预期的效果,储层空间连续性预测离不开地震,因此需要提高地震资料分辨率,在米氏旋回框架下通过小波处理,提高地震资料分辨率,以满足井震资料的融合性;
进一步,该基于全直径岩心CT扫描的储层构型相控智能建模方法的地震资料高分辨率处理的标准为:基于取心井测井资料高分辨率微纳米储层构型模型,通过深度学习建立取心井井震资料融合高分辨率储层构型深度学习模型;
进一步,应用取心井井震资料融合高分辨率储层构型深度学习模型,通过深度学习,建立非取心井井震资料融合高分辨率储层构型深度学习模型;
再进一步,通过深度学习,模拟预测井震资料融合高分辨率储层构型深度学习模型控制下井震融合三维地震反演高分辨率微储层构型模型。
JM150:依据目的层储层构型模型,应用多点地质统计学随机建模方法,建立储层构型控制下的储层非均质三维模型,预测目的层有利储层空间分布及规律,为油气深度开发提供更精细的储层非均质模型。
本发明为预测剩余油气开采过程中剩余油气动态变化及规律,提供了坚实的基础信息与数据,可以准确提前预报油气水运动规律,因而有效地提高了对目标靶区剩余油气分布预测的质控度,避免因不知道油气生产过程中剩余油气分布区带不能提供准确资料而导致的油气开发失效的风险,因为剩余油气分布预测是油气开发方案与措施调整与实施的前提,所以大大提高了剩余油气开发效率,从而加快了剩余油气开发的进度,大大地降低了开发成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (4)

1.一种基于全直径岩心CT扫描的储层构型相控智能建模方法,其特征在于,包括如下步骤:
步骤一,以油气地质背景为依据,利用全直径岩心CT扫描技术,获取岩石组成、孔缝、内部结构非均质性的灰度数据体,建立取心井全直径岩心非均质三维微纳米岩石结构模型;
步骤二,利用取心井全直径岩心非均质三维微纳米岩石结构模型,依据目的层沉积成岩非均质结构旋回,构建取心井全直径岩心非均质三维微纳米储层构型模型,通过岩电关系转换,建立取心井非均质三维微纳米储层测井构型模型;
步骤三,利用取心井非均质三维微纳米储层测井构型模型,进行岩电关系转换,建立非取心井非均质三维微纳米储层测井构型模型;
步骤四,利用单井非均质三维微纳米储层测井构型模型进行井控地震岩性反演,预测目的层井控构型模型约束下的三维岩性空间分布模型,建立井控构型模型约束下地震波阻抗构型模型;
步骤五,依据目的层储层构型模型,应用多点地质统计学随机建模方法,建立储层构型控制下的储层非均质三维模型,预测目的层有利储层空间分布及规律,为油气深度开发提供更精细的储层非均质模型。
2.根据权利要求1所述的基于全直径岩心CT扫描的储层构型相控智能建模方法,其特征在于,所述步骤二中:
该基于全直径岩心CT扫描的储层构型相控智能建模方法的取心井岩心沉积成岩高分辨率处理的标准为:基于所建的取心井全直径岩心非均质三维微纳米岩石结构模型,依据取心井岩心沉积成岩非均质结构旋回,建立取心井全直径岩心非均质三维微纳米储层构型模型;
该基于全直径岩心CT扫描的储层构型相控智能建模方法的取心井测井资料高分辨率处理的标准为:基于米氏旋回理论的小波变换方法构建取心井测井资料高分辨率储层模型,构建测井资料高分辨率微纳米储层构型。
3.根据权利要求1或2所述的基于全直径岩心CT扫描的储层构型相控智能建模方法,其特征在于,所述步骤三中:
该基于全直径岩心CT扫描的储层构型相控智能建模方法的非取心井测井资料高分辨率处理的标准为:基于米氏旋回理论的小波变换方法构建取心井测井资料高分辨率储层构型模型及标准,确保与岩心微纳米储层构型有较好的一致性;
利用已建立的测井资料高分辨率储层构型模型及标准,通过深度学习方法,建立非取心井非均质三维微纳米储层构型模型。
4.根据权利要求1或2所述的基于全直径岩心CT扫描的储层构型相控智能建模方法,其特征在于,所述步骤四中:
地震资料分辨率的提高方法为:在米氏旋回框架下通过小波处理,提高地震资料分辨率,以满足井震资料的融合性;
该基于全直径岩心CT扫描的储层构型相控智能建模方法的地震资料高分辨率处理的标准为:基于取心井测井资料高分辨率微纳米储层构型模型,通过深度学习建立取心井井震资料融合高分辨率储层构型深度学习模型;
应用取心井井震资料融合高分辨率储层构型深度学习模型,通过深度学习,建立非取心井井震资料融合高分辨率储层构型深度学习模型;
通过深度学习,模拟预测井震资料融合高分辨率储层构型深度学习模型控制下井震融合三维地震反演高分辨率微储层构型模型。
CN202310683031.0A 2023-06-09 2023-06-09 基于全直径岩心ct扫描的储层构型相控智能建模方法 Active CN116402957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310683031.0A CN116402957B (zh) 2023-06-09 2023-06-09 基于全直径岩心ct扫描的储层构型相控智能建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310683031.0A CN116402957B (zh) 2023-06-09 2023-06-09 基于全直径岩心ct扫描的储层构型相控智能建模方法

Publications (2)

Publication Number Publication Date
CN116402957A CN116402957A (zh) 2023-07-07
CN116402957B true CN116402957B (zh) 2023-08-04

Family

ID=87014694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310683031.0A Active CN116402957B (zh) 2023-06-09 2023-06-09 基于全直径岩心ct扫描的储层构型相控智能建模方法

Country Status (1)

Country Link
CN (1) CN116402957B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822865A (zh) * 2014-03-20 2014-05-28 中国石油大学(华东) 一种高分辨率三维数字岩心建模方法
WO2016186691A1 (en) * 2015-05-20 2016-11-24 Schlumberger Canada Limited Hydraulic fracturability index using high resolution core measurements
US9507047B1 (en) * 2011-05-10 2016-11-29 Ingrain, Inc. Method and system for integrating logging tool data and digital rock physics to estimate rock formation properties
CN113514884A (zh) * 2021-06-18 2021-10-19 中国石油化工股份有限公司 一种致密砂岩储层预测方法
US11500117B1 (en) * 2021-09-13 2022-11-15 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Method and system for evaluating filling characteristics of deep paleokarst reservoir through well-to-seismic integration
CN115640733A (zh) * 2022-12-21 2023-01-24 武汉中旺亿能科技发展有限公司 基于全直径岩心ct扫描致密储层压裂缝网数值模拟方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10755427B2 (en) * 2017-05-23 2020-08-25 Schlumberger Technology Corporation Methods and systems for automatically analyzing an image representative of a formation
US20220099851A1 (en) * 2020-09-30 2022-03-31 Saudi Arabian Oil Company System and method for quantitative seismic integration modeling workflow

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9507047B1 (en) * 2011-05-10 2016-11-29 Ingrain, Inc. Method and system for integrating logging tool data and digital rock physics to estimate rock formation properties
CN103822865A (zh) * 2014-03-20 2014-05-28 中国石油大学(华东) 一种高分辨率三维数字岩心建模方法
WO2016186691A1 (en) * 2015-05-20 2016-11-24 Schlumberger Canada Limited Hydraulic fracturability index using high resolution core measurements
CN113514884A (zh) * 2021-06-18 2021-10-19 中国石油化工股份有限公司 一种致密砂岩储层预测方法
US11500117B1 (en) * 2021-09-13 2022-11-15 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Method and system for evaluating filling characteristics of deep paleokarst reservoir through well-to-seismic integration
CN115640733A (zh) * 2022-12-21 2023-01-24 武汉中旺亿能科技发展有限公司 基于全直径岩心ct扫描致密储层压裂缝网数值模拟方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于多源地球物理数据的机器学习方法在地质体分类中的应用——以黑龙江多宝山矿集区为例;李希元等;《地球物理学报》;第65卷(第9期);第3634-3649页 *

Also Published As

Publication number Publication date
CN116402957A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
CN115640733B (zh) 基于全直径岩心ct扫描致密储层压裂缝网数值模拟方法
Tardy et al. New generation 3D simulator predicts realistic mud displacement in highly deviated and horizontal wells
CN103616731A (zh) 一种油气勘探中蚀变火山岩有效储层确定方法及装置
CN111612899A (zh) 一种碳酸盐岩缝洞型油藏地质建模方法
CN115220101A (zh) 一种深层碎屑岩砂体沉积结构的建模方法
CN116402957B (zh) 基于全直径岩心ct扫描的储层构型相控智能建模方法
CN115330060A (zh) 基于储层与工程因素分析的页岩油水平井产能计算方法
CN109211745A (zh) 一种富含有机质泥页岩孔隙度的演化过程的恢复方法
CN108665545B (zh) 录井参数三维地质模型建立方法
CN111665567A (zh) 一种录井现场滩坝相砂体精细预测方法
CN110309597A (zh) 基于构型界面的阻流带模型确定方法、装置及存储介质
CN112505760B (zh) 一种基于虚拟井的断溶体储层刻画方法
Li et al. Multiscale Modeling of Meandering Fluvial Reservoir Architecture Based on Multiple‐Point Geostatistics: A Case Study of the Minghuazhen Formation, Yangerzhuang Oilfield, Bohai Bay Basin, China
Li et al. Applications of Three-Dimensional Geological Modeling in the Development of Da Qingzi Oilfield
Khvoenkova et al. Application of the DDFN (Discrete and Deformable Fracture Network) method within an integrated unconventional reservoir study workflow
Liu et al. Fine geological modeling of complex fault block reservoir based on deep learning
Gao* et al. Geosteering Drilling Technology of Ultra-long Horizontal Well in Chang 7 Unconventional Reservoir of Qingcheng Oilfield
CN109388827A (zh) 页岩油气储层的小尺度非均匀地质建模方法及系统
Ersoy et al. Geostatistical conditional simulation for the assessment of the quality characteristics of Cayırhan lignite deposits
Shi et al. Machine Learning of Sparse Site Investigation Data for Landslide Risk Assessment
Peng et al. Geological Modeling Technology and Application Based on Seismic Interpretation Results under the Background of Artificial Intelligence
Liu et al. The controls of strike-slip faults on fracture systems: Insights from 3D seismic data in the central Tarim Basin, northwest China
Rajput et al. An innovative method of integrating geo-cellular and dynamic models for secondary oil recovery
Nahiyoon et al. Computer Aided Coal Seam Modeling for Resource Estimation
Yong et al. Geological Models Comparison and Selection for Multi-layered Sandstone Reservoirs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant