CN116388711A - Doherty功放装置以及功率放大系统 - Google Patents

Doherty功放装置以及功率放大系统 Download PDF

Info

Publication number
CN116388711A
CN116388711A CN202111603628.7A CN202111603628A CN116388711A CN 116388711 A CN116388711 A CN 116388711A CN 202111603628 A CN202111603628 A CN 202111603628A CN 116388711 A CN116388711 A CN 116388711A
Authority
CN
China
Prior art keywords
transistor
circuit
sub
electrically connected
power amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111603628.7A
Other languages
English (en)
Inventor
杨梦苏
林良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Huatai Electronics Co Ltd
Original Assignee
Suzhou Huatai Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Huatai Electronics Co Ltd filed Critical Suzhou Huatai Electronics Co Ltd
Priority to CN202111603628.7A priority Critical patent/CN116388711A/zh
Publication of CN116388711A publication Critical patent/CN116388711A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本申请提供了一种Doherty功放装置以及功率放大系统,该Doherty功放装置包括封装件,封装件包括MMIC芯片、第一晶体管以及第二晶体管,MMIC芯片为采用LDMOS工艺得到的,第一晶体管以及第二晶体管为采用GaN工艺得到的,MMIC芯片包括第一功率分配器以及推动电路,其中,第一功率分配器用于接收输入信号,将输入信号分成多路信号后从多个输出端输出;推动电路包括第一子推动电路和第二子推动电路,第一子推动电路的输入端以及第二子推动电路的输入端分别与第一功率分配器的输出端电连接,第一子推动电路的输出端与第一晶体管的输入端电连接,第二子推动电路的输出端与第二晶体管的输入端电连接。

Description

Doherty功放装置以及功率放大系统
技术领域
本申请涉及功率放大器领域,具体而言,涉及一种Doherty功放装置以及功率放大系统。
背景技术
Doherty(多尔蒂)功放作为常见的功放架构,能够针对高峰均比的调制信号提供高效率放大,在大规模MIMO(Multiple Input Multiple Ourput,多进多出)基站应用中得到了广泛的应用。同时,得益于氮化镓(GaN)技术具备的高功率密度,高效率和大带宽的优势特征,氮化镓也成为大规模MIMO基站应用中的常用工艺,尤其针对高频的应用,如2.6GHz,3.5GHz和4.9GHz。基于现实考量,目前的大规模MIMO基站中普遍采用分立GaNDoherty方案。如图1所示,此种方案使用两个封装去分别实现推动级和末级,在封装内采用MOS电容器和键合线实现预匹配,在PCB板上通过微带线和分立元件实现功率分配、功率合成和阻抗匹配等功能,具备迭代快速,可调性强,效率高等优势。但是总体来看,分立Doherty方案仍然存在一些弊端,如面积大,量产管控复杂,客户不易使用以及成本高等。
目前,如图2所示,已有部分供应商尝试了集成方案,即使用氮化镓技术实现有源器件,使用砷化镓IPD(Integrated Passive Device,集成无源器件)技术实现无源器件,在同一个封装内通过多芯片互联搭建一个Doherty功放系统,并且在PCB板上通过微带线和分立元件合路以最大可能的降低损耗。该方案兼顾了集成度和性能,但是因为引入了过多的芯片(如图2中统计,需要5颗GaAs芯片和3颗GaN芯片),在加工过程中需要管控的项目数量大幅上升,例如芯片的工艺管控,键合线的线长线高管控,芯片的位置管控等。这些相互独立的管控项目的波动会增大芯片整体性能的波动,导致可量产性受限。另外,砷化镓IPD的成本也不可忽视。
因此,如何在保证Doherty功放系统的性能的前提下,提高集成度,以及降低制作成本,是现有技术中亟需解决的问题。
在背景技术部分中公开的以上信息只是用来加强对本文所描述技术的背景技术的理解,因此,背景技术中可能包含某些信息,这些信息对于本领域技术人员来说并未形成在本国已知的现有技术。
发明内容
本申请的主要目的在于提供一种Doherty功放装置以及功率放大系统,以解决现有技术中无法在保证Doherty功放系统的性能的前提下,提高集成度以及降低成本的问题。
根据本申请的一个方面,提供了一种Doherty功放装置,包括封装件,所述封装件为采用表面贴装技术得到的,所述封装件包括MMIC(Monolithic Microwave IntegratedCircuit,单片微波集成电路)芯片、至少一个第一晶体管以及至少一个第二晶体管,所述MMIC芯片为采用LDMOS(Laterally-Diffused Metal-Oxide Semiconductor,横向扩散金属氧化物半导体)工艺得到的,所述第一晶体管以及所述第二晶体管为采用GaN工艺得到的,所述MMIC芯片包括第一功率分配器以及推动电路,其中,所述第一功率分配器用于接收输入信号,将所述输入信号分成多路信号后从多个输出端输出;所述推动电路包括至少一个第一子推动电路和至少一个第二子推动电路,所述第一子推动电路的输入端以及所述第二子推动电路的输入端分别与所述第一功率分配器的输出端一一对应电连接,所述第一子推动电路的输出端与所述第一晶体管的输入端一一对应电连接,所述第二子推动电路的输出端与所述第二晶体管的输入端一一对应电连接。
可选地,所述第一子推动电路和所述第二子推动电路分别包括输入匹配电路、第三晶体管以及级间匹配电路,其中,所述输入匹配电路的输入端与所述第一功率分配器的输出端电连接;所述第三晶体管的输入端与所述输入匹配电路的输出端电连接;所述级间匹配电路的输入端与所述第三晶体管的输出端电连接,所述级间匹配电路的输出端与所述第一晶体管的输入端或者所述第二晶体管的输入端电连接。
可选地,所述电路板还包括第二功率分配器以及阻抗匹配电路,其中,所述第二功率分配器的输入端与所述第一晶体管的输出端以及所述第二晶体管的输出端分别电连接,所述第二功率分配器用于将所述第一晶体管以及所述第二晶体管发出的信号组合后输出;所述阻抗匹配电路与所述第二功率分配器的输出端电连接。
可选地,所述阻抗匹配电路包括一阶LC匹配电路。
可选地,所述第二功率分配器以及所述阻抗匹配电路为采用表面贴装技术和/或微带线技术在所述电路板上制作得到的。
可选地,所述电路板还包括偏置馈电网络,所述偏置馈电网络与所述封装件电连接,所述偏置馈电网络用于给所述封装件提供偏置电压。
可选地,所述偏置馈电网络包括多个电压源以及多个滤波电容,所述电压源通过所述滤波电容与所述封装件电连接。
根据本申请的另一方面,还提供了一种功率放大系统,所述功率放大器包括任一种所述的Doherty功放装置。
应用本申请的技术方案,所述的Doherty功放装置包括电路板,电路板中,所述封装件包括采用LDMOS工艺得到的MMIC芯片以及采用GaN工艺得到的至少一个第一晶体管以及至少一个第二晶体管,所述封装件为采用表面贴装技术得到的封装件。相比现有技术中将Doherty功率放大器的匹配拓扑结构通过多芯片的GaAs IPD工艺实现,造成制作难度较大的问题,本申请中,前级采用LDMOS工艺得到MMIC芯片、后级采用GaN工艺得到第一晶体管以及第二晶体管,且将LDMOS MMIC芯片和分立的GaN芯片封装在所述封装件内来形成所述Doherty功放装置,在保证Doherty功放装置的性能的前提下,保证了所述Doherty功放装置的集成度较高,保证了Doherty功放装置占用面积较小,保证了封装的可靠性以及可重复性。并且,本申请中通过LDMOS工艺制作所述MMIC芯片,由于LDMOS制作工艺与现有的标准CMOS制作工艺相兼容,使得其制造成本低于现有技术中采用GaAs IPD制作多个芯片的成本,这样保证了所述Doherty功放装置的制作成本较低。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了现有技术中分立的氮化镓Doherty功放装置的结构图;
图2示出了现有技术中集成砷化镓IPD和氮化镓芯片形成的Doherty功放装置的结构图;
图3示出了根据本申请的实施例的Doherty功放装置的结构示意图;
图4示出了根据本申请的一种具体的实施例的Doherty功放装置的结构示意图。
其中,上述附图包括以下附图标记:
10、电路板;100、封装件;101、MMIC芯片;103、第一晶体管;104、第二晶体管;105、第二功率分配器;106、阻抗匹配电路;107、第一功率分配器;108、输入匹配电路;109、第三晶体管;110、级间匹配电路;111、第一元件;112、第二元件;113、第三元件;114、第四元件;115、第五元件;116、第一子滤波电容;117、第二子滤波电容。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
应该理解的是,当元件(诸如层、膜、区域、或衬底)描述为在另一元件“上”时,该元件可直接在该另一元件上,或者也可存在中间元件。而且,在说明书以及权利要求书中,当描述有元件“连接”至另一元件时,该元件可“直接连接”至该另一元件,或者通过第三元件“连接”至该另一元件。
正如背景技术所介绍的,现有技术中无法在保证Doherty功放系统的性能的前提下,提高集成度以及降低成本,为了解决如上问题,本申请提出了一种Doherty功放装置以及功率放大系统。
根据本申请的一种典型的实施例,如图3所示,提供了一种Doherty功放装置,包括电路板10,上述电路板10包括封装件100,上述封装件100为采用表面贴装技术得到的,上述封装件100包括MMIC芯片101、至少一个第一晶体管103以及至少一个第二晶体管104,上述MMIC芯片101为采用LDMOS工艺得到的,上述MMIC芯片101包括第一功率分配器以及推动电路,其中,上述第一功率分配器用于接收输入信号,将上述输入信号分成多路信号后从多个输出端输出;上述推动电路包括至少一个第一子推动电路和至少一个第二子推动电路,上述第一子推动电路的输入端以及上述第二子推动电路的输入端分别与上述第一功率分配器的输出端一一对应电连接,上述第一子推动电路的输出端与上述第一晶体管103的输入端一一对应电连接,上述第二子推动电路的输出端与上述第二晶体管104的输入端一一对应电连接。
上述的Doherty功放装置包括电路板,电路板中,上述封装件包括采用LDMOS工艺得到的MMIC芯片以及采用GaN工艺得到的至少一个第一晶体管以及至少一个第二晶体管,上述封装件为采用表面贴装技术得到的封装件。相比现有技术中将Doherty功率放大器的匹配拓扑结构通过多芯片的GaAs IPD工艺实现,造成制作难度较大的问题,本申请中,前级采用LDMOS工艺得到MMIC芯片、后级采用GaN工艺得到第一晶体管以及第二晶体管,且将LDMOS MMIC芯片和分立的GaN芯片封装在上述封装件内来形成上述Doherty功放装置,在保证Doherty功放装置的性能的前提下,保证了上述Doherty功放装置的集成度较高,保证了Doherty功放装置占用面积较小,保证了封装的可靠性以及可重复性。并且,本申请中通过LDMOS工艺制作上述MMIC芯片,由于LDMOS制作工艺与现有的标准CMOS制作工艺相兼容,使得其制造成本低于现有技术中采用GaAs IPD制作多个芯片的成本,这样保证了上述Doherty功放装置的制作成本较低。
并且,本申请的上述Doherty功放装置中,通过采用LDMOS工艺得到包括上述第一功率分配器、上述第一子推动电路和上述第二子推动电路的基本匹配拓扑结构,并将上述基本匹配拓扑结构集成在一个MMIC芯片中,这样避免了多芯片的键合线之间的耦合和键合焊盘带来的寄生效应对功放装置的影响,使用单个LDMOS MMIC实现匹配拓扑结构中有源器件和无源器件的匹配,无需精确管控多芯片的位置和键合线的线长以及线高以保证每段键合线的电气性能一致性,保证了上述Doherty功放装置的制作难度较低,可实施性较强,量产管控较为容易。
在实际的应用过程中,上述LDMOS工艺为现有技术中任意可行的LDMOS工艺技术,本领域技术人员可以根据实际情况灵活选择合适的LDMOS工艺制作上述MMIC芯片。
上述的表面贴装技术可以为QFN(Quad Flat No-leads Package,方形扁平无引脚封装)、DFN(Dual Flat No-leads Package,双边扁平无引脚封装)或者OMP(Over MoldedPad Array Carrier,模压树脂密封的封装),当然,上述表面贴装技术还可以为现有技术中任意可行的其他表面贴装型封装技术,如BGA(Ball Grid Array,球形触点陈列)封装或者PGA(Pin Grid Array Package,插针网络阵列封装)等。标准化的QFN/DFN/OMP封装可以大大提升客户友好度,一方面,定版后无需繁琐的级间匹配调试,有利于大规模量产,另一方面,便于实施平台化策略,将同一类型的应用做Pin-to-Pin设计,客户只需要更换芯片和相应BOM,无需进行大量针对性的改版。这样进一步地保证了上述Doherty功放装置的可量产性以及可实施性较强。
具体地,如图3所示,上述封装件还包括多个焊盘,通过多个焊盘可以满足MMIC芯片、上述第一晶体管以及上述第二晶体管的馈电需求。
另外,在实际的应用过程中,上述MMIC芯片并不限于上述的匹配拓扑结构,其还可以包括现有技术中任意可行的匹配拓扑结构,来实现对第一晶体管以及第二晶体管的功率分配以及阻抗匹配等功能。
一种具体的实施例中,上述第一功率分配器为等分功率分配器,也可以为不等分功率分配器。其可以包括威尔金森功分器或者Branch-line定向耦合器。当然,上述第一功率分配器并不限于上的功率分配器,其还可以为其他类型的功分器。
为了进一步地保证上述Doherty功放装置的系统性能较好,本申请的又一种具体的实施例中,上述第一子推动电路和上述第二子推动电路分别包括输入匹配电路、第三晶体管以及级间匹配电路,其中,上述输入匹配电路的输入端与上述第一功率分配器的输出端电连接;上述第三晶体管的输入端与上述输入匹配电路的输出端电连接;上述级间匹配电路的输入端与上述第三晶体管的输出端电连接,上述级间匹配电路的输出端与上述第一晶体管的输入端或者上述第二晶体管的输入端电连接。上述第一子推动电路以及上述第二子推动电路通过上述输入匹配电路、上述第三晶体管以及上述级间匹配电路,进一步地保证了发送给上述第一晶体管以及上述第二晶体管的信号的性能较好。
根据本申请的另一种具体的实施例,如图3所示,上述电路板还包括第二功率分配器105以及阻抗匹配电路106,其中,上述第二功率分配器105的输入端与上述第一晶体管的输出端以及上述第二晶体管的输出端分别电连接,上述第二功率分配器105用于将上述第一晶体管以及上述第二晶体管发出的信号组合后输出;上述阻抗匹配电路106与上述第二功率分配器105的输出端电连接。通过上述第二功率分配器以及上述阻抗匹配电路,进一步地实现了对上述第一晶体管以及上述第二晶体管的功率合成以及阻抗匹配功能。
上述的阻抗匹配电路可以包括现有技术中任意可行的阻抗匹配电路结构,如混合匹配电路、单分支匹配电路或者双分支匹配电路等,也可以为I形匹配电路、T形匹配电路、π形匹配电路或者多级匹配电路等。一种具体的实施例中,上述阻抗匹配电路包括一阶LC匹配电路。更为具体的一种实施例中,上述阻抗匹配电路为一阶LC匹配电路,上述第二功率分配器为π型网络的合路器。
本申请的再一种具体的实施例中,上述第二功率分配器以及上述阻抗匹配电路为采用表面贴装技术和/或微带线技术在上述电路板上制作得到的。当然,上述第二功率分配器以及上述阻抗匹配电路也可以根据实际使用场景或便利性拓展至其他形式得到。这样保证了可以较为灵活地在上述电路板上设置上述第二功率分配器以及上述阻抗匹配电路。
在实际的应用过程中,上述电路板还包括偏置馈电网络,上述偏置馈电网络与上述封装件电连接,上述偏置馈电网络用于给上述封装件提供偏置电压。上述偏置馈电网络包括多个电压源以及多个滤波电容,上述电压源通过上述滤波电容与上述封装件电连接。上述馈电网络也是采用表面贴装技术在上述电路板上制作得到。这样保证了可以较为灵活地在上述电路板上设置上述偏置馈电网络。
图4为根据本申请的一种具体实施例的Doherty功放装置布版示意图。MMIC芯片101、第一晶体管103以及第二晶体管104封装在一个QFN封装件100内。LDMOS MMIC芯片101包括第一功率分配器107,第一晶体管的输入匹配电路108、第三晶体管109以及级间匹配电路110,辅放大器的输入匹配电路108、第三晶体管109以及级间匹配电路110。MMIC芯片101还包括多个第一焊盘,第一晶体管103还包括多个第二焊盘,上述第二晶体管还包括多个第三焊盘,上述封装件100还包括多个第四焊盘,上述MMIC芯片101的上述第一焊盘通过上述第四焊盘连接输入信号以及连接偏置电压,上述MMIC芯片101的上述第一焊盘分别连接第一晶体管103上的第二焊盘以及第二晶体管104上的第三焊盘,第一晶体管103的第二焊盘、第二晶体管104的第三焊盘通过上述第四焊盘外连。其中,焊盘之间采用键合线连接。
在图4中,第二功率分配器105和阻抗匹配电路106通过表贴元件实现。其中第一元件111,第二元件112以及第三元件113用于实现第二功率分配器105,具体的元件类型和数值根据应用的具体频率和功率来确定。第四元件114以及第五元件115用于实现阻抗匹配电路106,上述阻抗匹配电路为一阶LC匹配电路。
上述电路板10还包括偏置馈电网络,偏置馈电网络包括多个电压源以及多个滤波电容,多个上述滤波电容中部分为第一子滤波电容116,其他的为第二子滤波电容117,其中推动栅压,推动漏压,第一晶体管栅压以及辅助第二晶体管栅压经过第一子滤波电容116、对应的焊盘以及键合线供应到对应的晶体管。第一晶体管以及第二晶体管的漏压根据具体情况可以采用如图4所示的分开供电,也可以单独供电,两个第二子滤波电容117分别用于偏置电路的滤波。
根据本申请的另一种典型的实施例,还提供了一种功率放大系统,上述功率放大器包括任一种上述的Doherty功放装置。
上述的功率放大系统,包括任一种上述的Doherty功放装置,上述Doherty功放装置中,前级采用LDMOS工艺得到MMIC芯片、后级采用GaN工艺得到第一晶体管以及第二晶体管,且将LDMOS MMIC芯片和分立的GaN芯片封装在上述封装件内来形成上述Doherty功放装置,在保证Doherty功放装置的性能的前提下,保证了上述Doherty功放装置的集成度较高,保证了Doherty功放装置占用面积较小,保证了封装的可靠性以及可重复性。并且,本申请中通过LDMOS工艺制作上述MMIC芯片,由于LDMOS制作工艺与现有的标准CMOS制作工艺相兼容,使得其制造成本低于现有技术中采用GaAs IPD制作多个芯片的成本,这样保证了上述Doherty功放装置的制作成本较低,从而在保证了上述功率放大系统的性能的前提下,保证了上述功率放大系统的集成度较高,制作成本较低。
另外,上述Doherty功放装置中,通过采用LDMOS工艺得到包括上述第一功率分配器、上述第一子推动电路和上述第二子推动电路的基本匹配拓扑结构,并将上述基本匹配拓扑结构集成在一个MMIC芯片中,这样避免了多芯片的键合线之间的耦合和键合焊盘带来的寄生效应对功放装置的影响,使用单个LDMOS MMIC实现匹配拓扑结构中有源器件和无源器件的匹配,无需精确管控多芯片的位置和键合线的线长以及线高以保证每段键合线的电气性能一致性,保证了上述Doherty功放装置的制作难度较低,可实施性较强,量产管控较为容易,从而保证了上述功率放大系统的可实施性较强。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1)、本申请上述的Doherty功放装置包括电路板,电路板中,上述封装件包括采用LDMOS工艺得到的MMIC芯片以及采用GaN工艺得到的至少一个第一晶体管以及至少一个第二晶体管,上述封装件为采用表面贴装技术得到的封装件。相比现有技术中将Doherty功率放大器的匹配拓扑结构通过多芯片的GaAs IPD工艺实现,造成制作难度较大的问题,本申请中,前级采用LDMOS工艺得到MMIC芯片、后级采用GaN工艺得到第一晶体管以及第二晶体管,且将LDMOS MMIC芯片和分立的GaN芯片封装在上述封装件内来形成上述Doherty功放装置,在保证Doherty功放装置的性能的前提下,保证了上述Doherty功放装置的集成度较高,保证了Doherty功放装置占用面积较小,保证了封装的可靠性以及可重复性。并且,本申请中通过LDMOS工艺制作上述MMIC芯片,由于LDMOS制作工艺与现有的标准CMOS制作工艺相兼容,使得其制造成本低于现有技术中采用GaAs IPD制作多个芯片的成本,这样保证了上述Doherty功放装置的制作成本较低。
2)、本申请上述的功率放大系统,包括任一种上述的Doherty功放装置,上述Doherty功放装置中,前级采用LDMOS工艺得到MMIC芯片、后级采用GaN工艺得到第一晶体管以及第二晶体管,且将LDMOS MMIC芯片和分立的GaN芯片封装在上述封装件内来形成上述Doherty功放装置,在保证Doherty功放装置的性能的前提下,保证了上述Doherty功放装置的集成度较高,保证了Doherty功放装置占用面积较小,保证了封装的可靠性以及可重复性。并且,本申请中通过LDMOS工艺制作上述MMIC芯片,由于LDMOS制作工艺与现有的标准CMOS制作工艺相兼容,使得其制造成本低于现有技术中采用GaAs IPD制作多个芯片的成本,这样保证了上述Doherty功放装置的制作成本较低,从而在保证了上述功率放大系统的性能的前提下,保证了上述功率放大系统的集成度较高,制作成本较低。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (8)

1.一种Doherty功放装置,其特征在于,包括:
电路板,包括封装件,所述封装件为采用表面贴装技术得到的,所述封装件包括MMIC芯片、至少一个第一晶体管以及至少一个第二晶体管,所述MMIC芯片为采用LDMOS工艺得到的,所述第一晶体管以及所述第二晶体管为采用GaN工艺得到的,所述MMIC芯片包括第一功率分配器以及推动电路,其中,所述第一功率分配器用于接收输入信号,将所述输入信号分成多路信号后从多个输出端输出;所述推动电路包括至少一个第一子推动电路和至少一个第二子推动电路,所述第一子推动电路的输入端以及所述第二子推动电路的输入端分别与所述第一功率分配器的输出端一一对应电连接,所述第一子推动电路的输出端与所述第一晶体管的输入端一一对应电连接,所述第二子推动电路的输出端与所述第二晶体管的输入端一一对应电连接。
2.根据权利要求1所述的Doherty功放装置,其特征在于,所述第一子推动电路和所述第二子推动电路分别包括:
输入匹配电路,所述输入匹配电路的输入端与所述第一功率分配器的输出端电连接;
第三晶体管,所述第三晶体管的输入端与所述输入匹配电路的输出端电连接;
级间匹配电路,所述级间匹配电路的输入端与所述第三晶体管的输出端电连接,所述级间匹配电路的输出端与所述第一晶体管的输入端或者所述第二晶体管的输入端电连接。
3.根据权利要求1所述的Doherty功放装置,其特征在于,所述电路板还包括:
第二功率分配器,所述第二功率分配器的输入端与所述第一晶体管的输出端以及所述第二晶体管的输出端分别电连接,所述第二功率分配器用于将所述第一晶体管以及所述第二晶体管发出的信号组合后输出;
阻抗匹配电路,与所述第二功率分配器的输出端电连接。
4.根据权利要求3所述的Doherty功放装置,其特征在于,所述阻抗匹配电路包括一阶LC匹配电路。
5.根据权利要求3所述的Doherty功放装置,其特征在于,所述第二功率分配器以及所述阻抗匹配电路为采用表面贴装技术和/或微带线技术在所述电路板上制作得到的。
6.根据权利要求1至5中任一项所述的Doherty功放装置,其特征在于,所述电路板还包括:
偏置馈电网络,与所述封装件电连接,所述偏置馈电网络用于给所述封装件提供偏置电压。
7.根据权利要求6所述的Doherty功放装置,其特征在于,所述偏置馈电网络包括多个电压源以及多个滤波电容,所述电压源通过所述滤波电容与所述封装件电连接。
8.一种功率放大系统,其特征在于,包括权利要求1至7中任一项所述的Doherty功放装置。
CN202111603628.7A 2021-12-24 2021-12-24 Doherty功放装置以及功率放大系统 Pending CN116388711A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111603628.7A CN116388711A (zh) 2021-12-24 2021-12-24 Doherty功放装置以及功率放大系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111603628.7A CN116388711A (zh) 2021-12-24 2021-12-24 Doherty功放装置以及功率放大系统

Publications (1)

Publication Number Publication Date
CN116388711A true CN116388711A (zh) 2023-07-04

Family

ID=86968035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111603628.7A Pending CN116388711A (zh) 2021-12-24 2021-12-24 Doherty功放装置以及功率放大系统

Country Status (1)

Country Link
CN (1) CN116388711A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090206928A1 (en) * 2006-09-29 2009-08-20 Nortel Networks Limited Enhanced doherty amplifier with asymmetrical semiconductors
CN102170269A (zh) * 2011-04-29 2011-08-31 中兴通讯股份有限公司 功率放大装置及功放电路
US20180367104A1 (en) * 2017-06-20 2018-12-20 Infineon Technologies Ag Interstage Matching Network
WO2020060851A1 (en) * 2018-09-20 2020-03-26 Qualcomm Incorporated Multi-mode hybrid radio frequency (rf) power amplifier with driver amplifier bypass
CN210578437U (zh) * 2019-12-13 2020-05-19 苏州华太电子技术有限公司 低成本高集成度的射频芯片封装结构及射频功率放大器
CN112187194A (zh) * 2020-09-30 2021-01-05 锐石创芯(深圳)科技有限公司 推挽功率放大器、射频前端电路和无线装置
CN113014204A (zh) * 2019-12-19 2021-06-22 恩智浦美国有限公司 多级功率放大器和放大器阵列
CN113595509A (zh) * 2020-04-30 2021-11-02 中兴通讯股份有限公司 一种多级Doherty功率放大器装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090206928A1 (en) * 2006-09-29 2009-08-20 Nortel Networks Limited Enhanced doherty amplifier with asymmetrical semiconductors
CN102170269A (zh) * 2011-04-29 2011-08-31 中兴通讯股份有限公司 功率放大装置及功放电路
US20180367104A1 (en) * 2017-06-20 2018-12-20 Infineon Technologies Ag Interstage Matching Network
WO2020060851A1 (en) * 2018-09-20 2020-03-26 Qualcomm Incorporated Multi-mode hybrid radio frequency (rf) power amplifier with driver amplifier bypass
CN210578437U (zh) * 2019-12-13 2020-05-19 苏州华太电子技术有限公司 低成本高集成度的射频芯片封装结构及射频功率放大器
CN113014204A (zh) * 2019-12-19 2021-06-22 恩智浦美国有限公司 多级功率放大器和放大器阵列
CN113595509A (zh) * 2020-04-30 2021-11-02 中兴通讯股份有限公司 一种多级Doherty功率放大器装置
CN112187194A (zh) * 2020-09-30 2021-01-05 锐石创芯(深圳)科技有限公司 推挽功率放大器、射频前端电路和无线装置

Similar Documents

Publication Publication Date Title
EP3331161B1 (en) Amplifier die with elongated side pads, and amplifier modules that incorporate such amplifier die
CN107395129B (zh) 具有偏移的信号路径方向的多路径rf放大器及其制造方法
CN112134533A (zh) 集成多路功率放大器
US11967937B2 (en) Modularized power amplifier devices and architectures
US11277098B2 (en) Integrally-formed multiple-path power amplifier with on-die combining node structure
CN112953401A (zh) 集成多路径功率放大器
US11108361B2 (en) Integrated multiple-path power amplifier with interdigitated transistors
EP3799303A2 (en) Compact three-way doherty amplifier module
US20220200551A1 (en) Power amplification device and an rf circuit module
CN117546407A (zh) 结合内部连接的输出集成晶体管放大器器件封装
CN114614779A (zh) 具有输入侧谐波终端电路的功率晶体管装置和放大器
CN210578437U (zh) 低成本高集成度的射频芯片封装结构及射频功率放大器
CN116388699B (zh) Doherty功放装置以及功率放大系统
CN116388711A (zh) Doherty功放装置以及功率放大系统
US20230050988A1 (en) Radio frequency amplifier
CN115940823A (zh) 功率放大器和包括功率放大器的多尔蒂放大器
CN113141162A (zh) 具有串联耦合的输出键合线阵列和并联电容器键合线阵列的rf放大器
EP4052369A1 (en) Efficiency improvements for multi-stage power amplifiers
US20240071960A1 (en) Packaged power amplifier device
US20240072739A1 (en) Packaged power amplifier device with air cavity over die
US20240194413A1 (en) Stacked integrated passive device
CN117413461B (zh) 用于信号放大的封装结构及信号放大器
US20240072740A1 (en) Power amplifier device having dies with elongated bondpads connected through a device substrate
US11190145B2 (en) Power amplifier with integrated bias circuit having multi-point input
US20230260935A1 (en) Transistor with integrated passive components

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination