CN116387384A - 基于多肖特基结构的波长可调无机窄带光电探测器 - Google Patents

基于多肖特基结构的波长可调无机窄带光电探测器 Download PDF

Info

Publication number
CN116387384A
CN116387384A CN202310600132.7A CN202310600132A CN116387384A CN 116387384 A CN116387384 A CN 116387384A CN 202310600132 A CN202310600132 A CN 202310600132A CN 116387384 A CN116387384 A CN 116387384A
Authority
CN
China
Prior art keywords
schottky
substrate
wavelength
electrode
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310600132.7A
Other languages
English (en)
Inventor
王莉
王全优
王艺飞
方昶月
潘艳
罗林保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202310600132.7A priority Critical patent/CN116387384A/zh
Publication of CN116387384A publication Critical patent/CN116387384A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了基于多肖特基结构的波长可调无机窄带光电探测器,其是以无机半导体作为衬底,在衬底的表面设置有与衬底呈欧姆接触的欧姆电极以及与衬底呈肖特基接触的肖特基电极;通过在肖特基电极附近的衬底表面区域另外设置至少一个与衬底呈肖特基接触的肖特基结区,调控光电探测器的光谱响应范围,实现波长可调的窄带光电探测。本发明的光电探测器具有制备成本低廉、工艺简单、易于实现的特点。

Description

基于多肖特基结构的波长可调无机窄带光电探测器
技术领域
本发明涉及光电探测器领域,具体涉及基于多肖特基结构的波长可调无机窄带光电探测器。
背景技术
波长可调窄带光电探测器在成像技术、光通信等领域发挥着至关重要的作用[1]。具有可调和选择性光谱响应的器件在机器视觉、颜色选择成像、生物医学传感和国防等领域有着广泛的应用。目前,具有可调和选择性光谱响应的器件大多为垂直结构[2-3],其普遍存在以下问题:通过厚度调控,不易于集成;或是通过一系列光敏阵列、光谱分裂系统或者滤波器实现,器件的制备较为复杂。
参考文献:
[1]Wang L,Chen B-H,Fang C-Y,He J,Wu C-Y,Zhang X,et al.Wavelength-Tunable Multispectral Photodetector With Both Ultraviolet and Near-InfraredNarrowband Detection Capability[J].IEEE Transactions on Electron Devices,2022,69(6):3258-3261.
[2]Daquan Zhang,Yudong Zhu,Qianpeng Zhang,Beitao Ren,Bryan Cao,QizhenLi,Swapnadeep Poddar,Yu Zhou,Xiao Qiu,Zhubing He,and Zhiyong Fan.VerticalHeterogeneous Integration of Metal Halide PerovskiteQuantum-Wires/Nanowiresfor Flexible Narrowband Photodetectors.Nano Lett,2022,22,3062-3070.
[3]Yue Guo,Weidong Song,Qing Liu,Yiming Sun,Zhao Chen,Xin He,Qingguang Zeng,Xingjun Luo,Ruiqing Zhang and Shuti Li.J.Mater.Chem.C,2022,10,5116.
发明内容
本发明是为避免上述现有技术所存在的不足之处,提供一种基于多肖特基结构的波长可调无机窄带光电探测器,通过在肖特基电极附近不同位置增加肖特基结区,实现对光电探测器光谱响应范围的调制,该器件结构更加简单,尺寸可以更小且调制方法简单。
本发明解决技术问题采用如下技术方案:
基于多肖特基结构的波长可调无机窄带光电探测器,其特点在于:所述光电探测器以无机半导体作为衬底,在所述衬底的表面设置有与衬底呈欧姆接触的欧姆电极以及与衬底呈肖特基接触的肖特基电极;
通过在所述肖特基电极附近的衬底表面区域,另外设置至少一个与衬底呈肖特基接触的肖特基结区,调控所述光电探测器的光谱响应范围(包括响应峰值波长与半高宽),实现波长可调的窄带光电探测。
进一步地,在所述衬底表面通过遮光处理设置光照区域。所述光照区域避开所述欧姆电极、所述肖特基电极及所述肖特基结区。所述光照区域为平面结构。
进一步地,本发明的所述窄带光电探测器可以使用大多数无机半导体材料作为衬底。当所述衬底为硅时,在硅上与其形成肖特基接触的金属材料包括Au、Ag、Al、Pt、Mo、Ni、Ti和W中的一种。当所述衬底为锗时,在锗上与其形成肖特基接触的金属材料包括Ti、Pt、Gr和Al中的一种。当所述衬底为砷化镓时,在砷化镓上与其形成肖特基接触的二维薄膜材料为石墨烯,金属材料为Au、Ti、Ag、Pt、Al和Gr中的一种。当所述衬底为磷化铟时,在磷化铟上与其形成肖特基接触的二维薄膜材料为石墨烯,金属材料为Au、Pt、Ti和Pd中的一种。
本发明所述基于多肖特基结构的波长可调无机窄带光电探测器的制作方法可采用如下方法:
1)提供无机半导体晶片作为衬底,同时为光吸收层;
2)保持光照区域形貌不变;
3)衬底表面光照区域和电极的尺寸以及间距通过光刻或掩膜版控制;利用电子束蒸发、化学气相沉积及磁控溅射等技术分布制备欧姆电极、肖特基电极与肖特基结区;
4)对衬底表面除光照区域外的其余区域进行遮光处理。
与已有技术相比,本发明的有益效果体现在:
1.本发明提供了一种基于多肖特基结构的波长可调无机窄带光电探测器,通过在肖特基电极附近不同位置增加肖特基结区,实现对光电探测器光谱响应范围的调制,调制方法易于实现、器件结构简单,且对器件尺寸没有限制,可以实现极小尺寸器件的制作。
2.本发明的光电探测器为平面结构,相较于垂直结构的窄带探测器,由于光入射面和源漏电极均位于基底的同一侧,因此制备与测试更为简单方便。
3.本发明的光电探测器具有制备成本低廉、工艺简单、易于实现的特点。
4、与基于有机材料制成的光电探测器相比,本发明采用硅、锗、砷化镓、磷化铟等无机半导体和金属薄膜构建的光电探测器,具有更高的稳定性。
附图说明
图1为本发明实施例1提供的一种基于多肖特基结构的波长可调无机窄带光电探测器的结构示意图。
图2为本发明实施例1提供的一种基于多肖特基结构的波长可调无机窄带光电探测器表面的电极分布图(图中的灰色区域皆为遮光区域)。
图3为本发明实施例1提供的基于多肖特基结构的波长可调无机窄带光电探测器的光谱响应曲线。
图4为本发明实施例2提供的一种基于多肖特基结构的波长可调无机窄带光电探测器的结构示意图。
图5为本发明实施例2提供的一种基于多肖特基结构的波长可调无机窄带光电探测器表面的电极分布图(图中的灰色区域皆为遮光区域)。
图6为本发明实施例2提供的基于多肖特基结构的波长可调无机窄带光电探测器的光谱响应曲线。
图7为本发明实施例3提供的一种基于多肖特基结构的波长可调无机窄带光电探测器的结构示意图。
图8为本发明实施例3提供的一种基于多肖特基结构的波长可调无机窄带光电探测器表面的电极分布图(图中的灰色区域皆为遮光区域)。
图9为本发明实施例3提供的基于多肖特基结构的波长可调无机窄带光电探测器的光谱响应曲线。
图10为本发明对比例1提供的基于单肖特基结构的光电探测器的光谱响应曲线。
图中标号:1为衬底;2为光照区域;3为欧姆电极;4为肖特基电极;5为第一肖特基结区;6为第二肖特基结区;7绝缘黑胶带。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1和图2所示,本实施例基于多肖特基结构的波长可调无机窄带光电探测器,以无机半导体作为衬底1,在衬底1的表面一侧设置有与衬底呈欧姆接触的欧姆电极3,另一侧设置有与衬底呈肖特基接触的肖特基电极4;本实施例在肖特基电极4远离欧姆电极3的衬底表面区域,另外设置有一个与衬底呈肖特基接触的肖特基结区(命名为第一肖特基结区5),用于调控光电探测器的光谱响应范围,实现波长可调的窄带光电探测。
在衬底表面通过对其余区域进行遮光处理,而形成有光照区域2。光照区域位于欧姆电极3与肖特基电极4之间。
具体的,本实施例中采用n型重掺杂锗片(电阻率:0.003-0.005Ω·cm,厚度为400±50μm,尺寸为1cm×0.5cm)作为衬底,采用50nm的镍作为欧姆电极,采用50nm的钛作为肖特基电极与第一肖特基结区材料。
本实施例基于多肖特基结构的波长可调无机窄带光电探测器的制作方法如下:
(1)将n型重掺杂锗片依次用丙酮、乙醇和去离子水在超声清洗机中各清洗15分钟,用氮气吹干备用。
(2)通过光刻技术控制衬底表面光照区域和欧姆电极的尺寸以及间距。将光刻后锗片放入电子束沉积腔室中,沉积50nm的镍,然后用丙酮溶液去除多余的光刻胶,之后将锗片放入管式炉中进行退火处理(氮气气氛下105°退火10分钟,350°退火1分钟,500°退火1分钟),形成欧姆电极。
(3)通过光刻技术控制衬底表面光照区域和两个肖特基接触区域的尺寸以及间距。将光刻后的锗片放入电子束沉积腔室中,沉积50nm的钛,然后用丙酮溶液去除多余的光刻胶,形成肖特基电极和肖特基结区。
(4)由于器件尺寸较小,需将其固定在面积稍大的PCB板上,分别从欧姆电极3和肖特基电极4处引出导线便于测试,然后将衬底表面除光照区域外的其余区域用绝缘黑胶带7进行遮光处理。
图3为本实施例所得光电探测器的光谱响应曲线,从图中可以看出,当在肖特基电极远离欧姆电极3的衬底表面区域另外增加肖特基结区时,远离入射光的肖特基结部分复合掉了较长波长的光,而肖特基电极收集到的主要是短波长光激发产生的光生载流子,器件在1080nm处实现了窄带探测,半高宽仅为22nm。
实施例2
如图4和图5所示,本实施例基于多肖特基结构的波长可调无机窄带光电探测器与实施例1的结构相同,区别在于肖特基结区设置在肖特基电极4靠近欧姆电极3的衬底表面区域。
图6为本实施例所得光电探测器的光谱响应曲线,从图中可以看出,当在肖特基电极靠近欧姆电极3的衬底表面区域另外增加肖特基结区时,靠近入射光的肖特基结部分复合掉了较短波长的光,肖特基电极收集到的主要是长波长光激发产生的光生载流子,器件在1400nm处实现了窄带探测,半高宽为52nm。
实施例3
如图7和图8所示,本实施例基于多肖特基结构的波长可调无机窄带光电探测器与实施例1、2的结构相同,区别在于本实施例结合了实施例1与实施例2的两种肖特基结区,即在肖特基电极4靠近与远离欧姆电极3的衬底表面区域皆设置有肖特基结区(分别命名为第一肖特基结区5与第二肖特基结区6)。
图9为本实施例所得光电探测器的光谱响应曲线,从图中可以看出,当在肖特基电极两侧均增加肖特基结区时,靠近入射光的肖特基结部分复合掉了较短波长的光,而远离入射光的肖特基结部分复合掉了较长波长的光,使得肖特基电极收集到的主要是介于较短和较长波长之间的光激发产生的光生载流子,进而使得器件的响应介于前两种情况的响应峰值波长之间,器件在1180nm处实现了窄带探测,半高宽为31nm。
对比例1
本对比例的光电探测器与实施例1、2、3的结构相同,区别在于未另外设置肖特基结区。
图10为本实施例所得光电探测器的光谱响应曲线,从图中可以看出当未设置肖特基结区时,器件在1000nm-1600nm之间均有较高的响应,无法实现窄带探测。
根据以上结果可知,通过在肖特基电极附近增加肖特基结区以及改变肖特基结区的位置,可以实现光谱响应范围的调制。
以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所作出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (3)

1.基于多肖特基结构的波长可调无机窄带光电探测器,其特征在于:所述光电探测器以无机半导体作为衬底,在所述衬底的表面设置有与衬底呈欧姆接触的欧姆电极以及与衬底呈肖特基接触的肖特基电极;
通过在所述肖特基电极附近的衬底表面区域,另外设置至少一个与衬底呈肖特基接触的肖特基结区,调控所述光电探测器的光谱响应范围,实现波长可调的窄带光电探测。
2.根据权利要求1所述的基于多肖特基结构的波长可调无机窄带光电探测器,其特征在于:在所述衬底表面通过遮光处理设置光照区域的位置和大小,且所述光照区域避开所述欧姆电极、所述肖特基电极与所述肖特基结区。
3.根据权利要求2所述的基于多肖特基结构的波长可调无机窄带光电探测器,其特征在于:所述光照区域为平面结构。
CN202310600132.7A 2023-05-25 2023-05-25 基于多肖特基结构的波长可调无机窄带光电探测器 Pending CN116387384A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310600132.7A CN116387384A (zh) 2023-05-25 2023-05-25 基于多肖特基结构的波长可调无机窄带光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310600132.7A CN116387384A (zh) 2023-05-25 2023-05-25 基于多肖特基结构的波长可调无机窄带光电探测器

Publications (1)

Publication Number Publication Date
CN116387384A true CN116387384A (zh) 2023-07-04

Family

ID=86969658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310600132.7A Pending CN116387384A (zh) 2023-05-25 2023-05-25 基于多肖特基结构的波长可调无机窄带光电探测器

Country Status (1)

Country Link
CN (1) CN116387384A (zh)

Similar Documents

Publication Publication Date Title
Mariani et al. Patterned radial GaAs nanopillar solar cells
US8384179B2 (en) Black silicon based metal-semiconductor-metal photodetector
CN110265504B (zh) 一种紫外光电探测器及其制备方法
CN110047957B (zh) 一种中红外光探测器及其制备方法
US20150228837A1 (en) Photodetector and method of facricating the same
CN110224041B (zh) 一种包含石墨烯夹层结构的光电探测器
WO2020003564A1 (ja) グラフェンを用いた電子デバイス、その製造方法及びそれを備えた電磁波検出器
JP2011133472A (ja) プラズモン構造を有する光検出器
Ferhati et al. Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector
US9960299B2 (en) Avalanche photodiode using silicon nanowire and silicon nanowire photomultiplier using the same
WO2010006440A1 (en) Terahertz photoconductive antennas having transparent conductor electrodes and methods of making same
CN108615783B (zh) 一种肖特基紫外探测器及其制造方法
CN106711289A (zh) 一种抑制锑化物超晶格红外探测器表面泄露电流的方法
Chakrabarty et al. Enhanced performance of hybrid self-biased heterojunction photodetector on soft-lithographically patterned organic platform
CN111223957B (zh) 一种法布罗共振近红外热电子光电探测器及其制备方法
CN116387384A (zh) 基于多肖特基结构的波长可调无机窄带光电探测器
Liu et al. Sensitive silicon nanowire ultraviolet B photodetector induced by leakage mode resonances
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
Teker et al. Improving detectivity of self-powered GaN ultraviolet photodetector by nickel nanoparticles
CN112420872A (zh) 基于WSe2/KTaO3范德华异质结的光电探测器及其制备方法
CN116705878A (zh) 基于平面结构的无机窄带光电探测器
CN114883434B (zh) 自供电MSM型ZnO基紫外光电探测器及制备方法
Adachi et al. Silicon nanowire metal-semiconductor-metal photodetectors
Dobrovolsky et al. Photodiode based on the epitaxial phosphide gallium with increased sensitivity at a wavelength of 254 nm
CN112687800B (zh) 基于石墨烯材料和有机配合物的swir光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination